
 1

������������������	���
�������	��������������������������

��� ��� ����
����� ����	�		��� ������
������ ��	��� ��� ��!
�	���� ���� ��� ����	����	���� ������� ��"� 	������	��� ����	��� ���
��� ����
� ����
����#� �� ���� $���� ���	�	�� ������� ���
����
�"���������� ���	�	�	������"��	� ����� �����������
�� ���� ��� ����� ��� �� �����"� ��� ��� ���� �� ��� �	���� ����
�
���������#�������������������!"��������������
������������
������	��"���� ���������������!"��������������	����������!
������������	���
��������������������������	��"����%	��#�&��
�	�� � �������"����	��� ���"	������� ��� ��������� ������	���

���������������	����	�����������������
�����$���#�

I. INTRODUCTION

he ATLAS experiment [1] is one of four experiments
at the Large Hadron Collider (LHC) particle accelera-

tor that is currently being built at CERN and is scheduled to
start data taking in 2007. Its main goals are precision test of
the Standard Model and the discovery of new physics signa-
tures beyond the Standard Model.

The bunch crossing frequency of LHC will be ~40MHz
with an average of ~25 events per collision. To cope with this
high number of simultaneous events, the ATLAS detector has
been designed as a high granularity spectrometer having ~108
detector channels. Both the high bunch crossing frequency, as
well as the large amount of ATLAS detector data of ~1.5 MB
per event, requires the design of a very efficient Data Acqui-
sition (DAQ) with a three level trigger system. The first level
trigger operates at the full rate of 40MHz, reducing the rate
down to 100 kHz. The second level trigger will reduce the ra-
te further down to a rate of ~1kHz before the third level trig-
ger (Event Filter) reduces the rate to the final rate in the order
of 200 Hz at which the data is put to permanent storage [2].

1 Joint Institute for Nuclear Research, Dubna, Russia
2 Science University of Lisbon (FCUL), Lisbon, Portugal
3 Institute of Atomic Physics, Bucharest, Romania
4 European Organization for Nuclear Research (CERN), Geneva,

Switzerland
5 Corresponding author
6 National Institute for Nuclear Physics and High Energy Physics

(NIKHEF), Amsterdam, Netherlands
7 Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg,

Russia

The Online Software is the global system software to con-
figure and control the DAQ as well as to share information
within the DAQ system, it excludes however the processing
and transportation of physics data. It has interfaces to the
DataFlow System (being responsible for the transportation of
the data from the Readout Drivers to Mass Storage), to the
different triggers as well as to the Detector Readout Crates
controllers and the Detector Control System (DCS). Fig. 1
shows an overview of the DAQ system of ATLAS.

Fig. 1 Overview of the ATLAS Data Acquisition and Trigger system and
the Online Software. The detector is split up in 33 sub-detector partitions
that are read out by ~1000 Readout Drivers. The data is further processed by
the Readout System (ROS) and the Event Builder (EB) before it is written to
tape. The detector hardware is controlled by the Detector Control System
(DCS) and the Online Software is responsible for the configuration, control
and information sharing of the system.

II. ATLAS TEST BEAM

In order to study important performance aspects like align-
ment and calibration as well as to proceed on the way to the
final ATLAS DAQ system, a Test Beam facility at the Super
Proton Synchrotron (SPS) accelerator at CERN has been
setup for the different detectors of ATLAS [3]. In summer
2002, three out of six sub-detectors were using the Online
Software for their DAQ system to perform their data taking:
the ��������	
���	����������	 �
������, the �����	��������
and the ����	��������. In addition, a combined data taking
of these three sub-detectors has been done.

Online Software for the ATLAS
Test Beam Data Acquisition System
����	����	����	
���	���������

I. Alexandrov1, A. Amorim2, E. Badescu3, M. Barczyk4, D.Burckhart-Chromek4, M. Caprini3,
J. Da Silva Conceicao4, J. Flammer4,5, B. Di Girolamo4, M. Dobson4, R. Hart6, R. Jones4, A. Kazarov,7,

S. Kolos7, V. Kotov1, D. Klose2, D. Liko4, J. Lima2, L. Lucio4, L. Mapelli4, M. Mineev1, L. Pedro2,
Y. Ryabov7, I. Soloviev7, H. Wolters2�

T

A
T

L
-D

A
Q

-2
00

3-
04

4
19

 N
ov

em
be

r
20

03

 2

For the combined data taking, each detector was read out
by a separate Readout System (ROS), who was sending the
data – controlled by a common DataFlow Manager – via the
SubFarm Input (SFI) to an Event Filter farm for processing
and triggering. The accepted events were then send via the
SubFarm Output (SFO) to permanent storage. The Online
Software was used as the global baseline software of the Test
Beam DAQ, providing all the necessary functionality for the
configuration, control and information sharing and giving the
detectors the possibility to incorporate their specific needs
(e.g. specialized controllers). Fig. 2 shows the setup of the
DAQ system at the Test Beam for the combined data taking.

Fig. 2 Setup of the DAQ system at the Test Beam for the combined run of
the Hadronic Tile Calorimeter, the Pixel and the Muon Detector in 2002.

III. ONLINE SOFTWARE

As the Online Software is the global system software, offe-
ring all the functionality to configure and control the DAQ as
well as to share information in the DAQ, it has to be able to
start, stop and synchronize in the order of 2000 programs on
as many processors. It is build up as a customizable frame-
work having no detector specific components in order to be
able to interface to all the various sub-systems and to be used
by all the various configurations of the DAQ [4].

The Online Software consists out of three main packages –
������������� ������ and �����������	 !�����	"	which in
terms contain several components. Table 1 gives an overview
of the different Online Software packages and their compo-
nents. The full functionality of the Online Software was
available for the Test Beam DAQ system and used by the
three sub-detectors.

IV. CONFIGURATION

The DAQ needs a large number of parameters in order to
describe its architecture, hardware and software components,
running modes as well as its running status. Additionally it

has to be as flexible as possible and externally parenthesized
by databases describing its setup.

TABLE I
ONLINE SOFTWARE PACKAGES AND THEIR COMPONENTS

To store and access the configuration information of the
data taking as well as the conditions during data taking, the
Online Software offers two persistent services: For the con-
figuration of the DAQ, a ������������	����#�$�, for the pa-
rameters during the data taking an %�����	&��''��(��	�%&)�*	

The Configuration Database uses data object models to
describe the configurations and is based on the OKS package.
The database can be accessed by the user via a graphical user
interface to define, view and modify configurations. Applica-
tions can access the database via a Data Access Library
(DAL) that hides the databases implementation details [5].

Each Test Beam detector was using the database schema to
describe their applications and hardware setup in a separate,
independent Configuration Database. Using the DAL, they
were able to access this information from their applications.
In a second step, the different individual databases were com-
bined into one common database to describe the common set-
up for the combined data taking of the three detectors. Fig. 3
shows a part of the database for the combined run in the gra-
phical configuration database editor of the Online Software.

	

Fig. 3 The graphical database editor of the Online Software showing a part
of the database for the combined data taking of the Test Beam.

 3

The %�����	 &��''��(��, to store the relevant operational
information and configuration description during data taking,
organizes the data internally on a per-run basis and provides
querying-APIs as well as a graphical user interface to browse
and append information. The TileCal and Pixel detector were
using the OBK to record their run information – both for the
parameters during running as well as to add comments and
histograms. Using the OBK, they were able to access the in-
formation immediately after the run via the web which proved
to be very important for the analysis. Fig. 4 shows the gra-
phical user interface of the mySQL OBK implementation [6].

Fig. 4 The Online Bookkeeper graphical user interface to browse and ap-
pend operational information and configuration description.

V. CONTROL

The control package of the Online Software supplies all the
necessary control and supervision of the data taking by coor-
dinating the different DAQ subsystem and detector opera-
tions from user interactions over initialization and shutdown,
error handling, verification of the system status up to process,
resource and access management [7].

To control the complete system in a coordinated way, a
hierarchical tree structure of controllers is used with the top
level ����	 ��������� taking the role of the overall control
and coordination of the system. Each controller level controls
the next level controllers. The lowest level controllers are the
+����	���������$ being responsible for objects like readout
crates. This flexible partitioning scheme also allows to exclu-
de part of the system (e.g. a sub-detector) and to operate this
part of the system in stand-alone mode for calibration or de-
bugging. Fig. 5 shows an example of a controller tree.

Fig. 5 Hierarchical controller tree of the ATLAS detector.

A controller in this tree is characterized by its state using a
������	 $����	���!���. In any place of the hierarchy, a change
of state is initiated from the root controller and then subse-
quently passed down from level to level. Four main states
from initial to running are introduced. A further !��'(����
state allows to deal with changes in conditions, leading to a
new run number without going to the stop/start sequence. Fig.
6 shows the finite state machine of the Online Software.

Fig. 6 The finite state machine of the Online Software Run Control.

A ���	 ����������	 $'������ is used as a basic template to
provide all the necessary core functionality to control the
system in a coherent way. This skeleton is adaptable to the
individual needs of the different systems.

For the Test Beam, the sub-detectors were using the run
controller skeleton to implement their specific controller
needs. Various controller have been implemented in this way
from Readout Crate controllers up to SFI controllers.

To start, stop and supervise the processes being under the
control of the Online Software, the Online Software imple-
ments a �,-	 �(��.�$��	 component. He is also able to re-
initialize part of the DAQ partition when necessary.

The �����$$	������� ���/� provides the basic process
management functionality in a distributed environment. It
starts, stops and monitors processes on the different DAQ
hosts. To execute the requests, the PMG runs agents on all
the machines and uses the information provided by the user
and/or the configuration databases. The detectors at the Test
Beam were using the PMG to control their specific processes
running on the different hosts at the Test Beams.

A /��(!����	0$��	���������	�/0�� allows the user to send
commands to control as well as to monitor the system. To
adapt for the needs of the different systems, it allows to add
specialized panels. For the Test Beam, the sub-detectors were
implementing several panels to be able to configure their
setup (e.g. to define calibration files) as well as to receive and
visualize information, their applications were publishing. Fig.
7 shows the Graphical User Interface of the Online Software.

VI. INFORMATION SHARING

There is a wide field of information sharing within the
DAQ system like synchronization between processes, error
reporting, operational or physics event monitoring. The On-
line Software offers several services for information sharing.

 4

Fig. 7 Graphical User Interface of the Online Software.

The information sharing of the Online Software is based on

a three layer architecture: The basic communication layer
uses the �����	 %#1���	 ��2��$�	 &��'��	 ,��!��������	
�%�&,�. On top of this, the middle layer, the �����	�����$$	
������������	���� implements a communication abstrac-
tion layer to support partitioning and concurrent running of
the Online Software. The top layer are the implementations of
the different Online Software services. Fig. 8 shows the archi-
tecture of the Information Sharing Services.

Figure 8 Information Sharing architecture.

The common principle of all Online Software services is
an interaction between an information provider who provides
data and receives commands and an information consumer
who receives the data and issues commands [8]. To use the
information sharing services, the user has to implement the
corresponding interfaces of the different services.

In order to exchange user-defined information between
software applications, the Online Software offers a service
called �����������	 ��.���	 �� �. Any �����������	 ���.����
can make its information publicly available via the �������3
������4 interface. An �����������	 ��$���� can subscribe
via the ���������.�� interface to this information and gets a
notification from IS via the �������#��' interface when an
update of the information has been done. In addition an Infor-
mation Consumer can get the information on request without

subscribing for the information via the ������������ inter-
face. The structure of the information is defined in XML and
the description of the information is available at run-time.

At the Test Beam, the sub-detectors were using the IS to
exchange information between their different applications as
well as between the applications and the GUI for the shift
users: Defining their information together with the descrip-
tion of their information in XML and implementing the diffe-
rent IS interfaces in their applications as well in specialized
GUI panels, allowed them to exchange and publish detector
and application specific values like the number of processed
events, still pending events or buffer sizes which were then
displayed on specialized panels in the GUI. In addition, the
information were put from IS via the OBK to permanent sto-
rage so that they were accessible for further analysis of the
data taking. Fig. 9 shows the interfaces provided by the IS.

Fig. 9 Information Service (IS) to exchange used-defined information bet-
ween applications.

The ��$$���	��(������	 ��.���	��� � provides the trans-
portation of messages between different applications. Each
message is identified by a unique ID, severity and text. A
��$$���	 ���.���� can send messages via the �� �����
interface to the MRS. To automatically receive a message via
the �� ���#��' interface, a ��$$���	��$���� can imple-
ment the �� �����.�� interface and specify what kind of
messages he wants to receive.

For the Test Beam, the different sub-detectors implemen-
ted the MRS interfaces in their applications to monitor the
status of their applications and to inform the shift crew about
upcoming errors via the GUI. In this way, the sub-detectors
were able to detect problems early on and solve the problems
in a fast way. Fig. 10 shows the interfaces provided by MRS.

Fig. 10 Message Reporting Service (MRS) to transport messages between
different applications.

The �.���	����������	 ��.��� ��� � allows the transpor-
tation of samples of physical events from points in the Data-
Flow chain to software application that want to analyze them.
An application that is able to provide such samples, has to
implement the �.��� ��(��� interface, applications interes-
ted in this samples can implement the �.����������� interface.
If an Event Consumer requests information from a specific

 5

Event Provider, the EMS system asks the Event Provider to
start the sampling process. The Event Provider then starts to
add the event samples via the �.���,���������� interface. If
no more applications are interested in the samples of an
Event Provider, the EMS system stops the sampling.

For the Test Beam, EMS was used to examine the raw data
as well as to put them to histograms for monitoring purposes:
The �.���	 ���(���� application of the Online Software
was used to look at the raw data from the Test Beam detec-
tors. The ED uses the EMS to transport event fragments and
allows the user to see the event fragments (e.g. for debugging
purposes) in a raw format via a graphical user interface. In
addition, the TileCal was using the EMS for a standalone
monitoring application: Their application was using the EMS
to transport event fragments from different points in the
DataFlow chain to a standalone application that was produ-
cing ROOT histograms out of the data. Fig. 11 shows the
interfaces of the EMS.

Fig. 11 Event Monitoring Service (EMS) to transport samples of physical
events.

The %�����	��$����������	 ��.���	�%� � allows applica-
tions to exchange histograms. It is based on the Online Soft-
ware IS, described earlier in this paper. However, in contrast
to IS, the transported information has a predefined format.
The current implementation supports ROOT and raw histo-
grams (vectors of data). Having an abstract interface layer, it
also allows to add support for other types of histograms.

An %�����	 ��$���������� application of the Online
Software based on ROOT and using the OHS offered the Test
Beam detectors the possibility to look at online produced
histograms for monitoring and debugging purposes. Fig. 12
shows the interface of the OHS.

Fig. 12 Online Histogramming Service (OHS) to exchange histograms.

Finally, the	�,-3� 	���������	���� allows the com-
munication between the DAQ and the DCS system using the
Online Software services in three ways: First the DCS can
send alarms via DDC to the DAQ using MRS messages. Se-
cond, the DAQ can send commands to the DCS via DDC.
This can be either done by using specialized controllers or,
for commands outside of state transitions, using the IS. Third,

data can be send via the DDC in between the DCS and the
DAQ. On the Online Software side, this is realized via the IS
service.

At the Test Beam, the TileCal was using the DDC to
transport information from the DCS to the IS server of the
Online Software, where the information was published and
also recorded via the OBK. Using the OBK, the TileCal was
able to reproduce and study the conditions of the data taking
in more detail for their analysis. Fig. 13 shows the communi-
cation types of the DDC.

 Fig. 13 DAQ-DCS connection (DDC).

VII. SUPPORT

The Online Software is based on a common software relea-
se scheme where one release was used for the full Test Beam
period. This was giving the user the necessary stability, yet
offering the Online Software to apply necessary patches. The
Online Software was installed and supported on a separate
server at the Test Beam.

In order to support the Test Beam users, the Online Soft-
ware includes a training package which allows the user to
learn about the different components of the Online Software
and their usage. Furthermore detailed descriptions about the
installation and the usage are available via the WWW. Final-
ly specialized training lectures with hands-on examples were
given for the Test Beam users before the start of the Test
Beam [5]. In this way, the setup time for the software at the
Test Beam has been minimized, maximizing the available
time at the Test Beam.

During the Test Beam, the Online Software was offering
on-call expert support to help with upcoming problems. Also,
feed-back meetings with the Test Beam users were organized
on a regular basis to discuss problems and experiences of the
users.

VIII. EXPERIENCES FROM THE TEST BEAM

The Online Software was successfully used at the Test
Beam by the different sub-detectors. It not only offered the
detectors the possibility to use a ready made, flexible and
adaptable DAQ software, but also gave the Online Software
group the possibility to test the software in a real test environ-
ment. Besides receiving a lot of positive feedback from the
detectors, the Test Beam also helped to improve the Online
Software: Problems of the software were identified and new
requirements for the Online Software were brought up.

In this context, the Test Beam proved to be a very valuable
test-bed for the Online Software on the way to the final
system.

 6

IX. SUMMARY

The Online Software is the global system software of the
ATLAS Data Acquisition system to configure, control and
share information. Different detectors were using the Online
Software framework to implement their specific needs, mini-
mizing the work to setup the DAQ system. Also, it is an
important step to start commissioning the final ATLAS DAQ
system. Furthermore it allowed in an easy way to combine
different detector setups to perform a combined data taking of
the three detectors. The training and support of the Online
Software helped the detectors in preparing their setup and
software in front of the Test Beam, minimizing the time for
setup during the Test Beam and so maximizing the usable
Test Beam time for data taking. Valuable feedback has been
given by the different detectors that helped to improve the
Online Software.

X. ACKNOWLEDGMENT

We’d like to thank all the detectors at the Test Beam that
have used the Online Software for their feed-back.

XI. REFERENCES

[1] ATLAS Collaboration, ����������	
��������
�������
���	�
�������

����
���������������
������
����������
��������, CERN/LHCC/94-
43, 1994

[2] ATLAS Collaboration, ������ ����������� �
����
 � !�"� ���� !���

����������	
�����, CERN/LHCC/2000-17, 31 March 2000
[3] ATLAS Collaboration – ATLAS Technical Coordination Technical

Design Report – CERN LHC 99/01, ATLAS TDR 13, January 1999.
[4] Online Software: http://atlas-onlsw.web.cern.ch/Atlas-onlsw/
[5] I. Alexandrov et al.., ������ !�"� �������
������ !���#��, Proc.

CHEP 2001, Beijing.
[6] I. Alexandrov et al.., $%&�'����$��������������
�(�	�(��)�*����

!�����������
(, Proc. 28th VLDB Conference, Hong Kong (2002)
[7] Run Control User Guide, ATLAS TDAQ-1 Note 107
[8] I. Alexandrov et al., $������ *�����
���� ����+�
�� ,
���+�
-� ��� ����

����������
�����, Proc. CHEP 2003, to be published

