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Abstract

We present here a recopilation of recent results about the possibility of detect-
ing solar electron antineutrinos produced by solar core and convective magnetic
fields. These antineutrinos are predicted by spin-flavor oscillations at a significant
rate even if this mechanism is not the leading solution to the SNP. Using the re-
cent Kamland results and assuming a concrete model for antineutrino production
by spin-flavor precession in the convective zone based on chaotic magnetic fields,
we obtain bounds on the flux of solar antineutrinos, on the average conversion
neutrino-antineutrino probability and on intrinsic neutrino magnetic moment In
the most conservative case, µ≤2.5 × 10−11 µB (95% CL). When studying the
effects of a core magnetic field, we find in the weak limit a scaling of the an-
tineutrino probability with respect to the magnetic field profile in the sense that
the same probability function can be reproduced by any profile with a suitable
peak field value. In this way the solar electron antineutrino spectrum can be
unambiguosly predicted. We use this scaling and the negative results indicated
by the KamLAND experiment to obtain upper bounds on the solar electron an-
tineutrino flux. We find that, for a wide family of magnetic field profiles in the
sun interior, the antineutrino appearance probability is largely determined by
the magnetic field intensity but not by its shape. Explicit limits on neutrino
transition moments are also obtained consistent with the convective case. These
limits are therefor largerly independent of the detailed structure of the magnetic
field in the solar interior.

Expanded version of the presentation contributed to “ 8th International Workshop

On Topics In Astroparticle And Underground Physics (TAUP 2003)”
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1 Introduction

Evidence of eelctron antineutrino disappearance in a beam of antineutrinos in the Kam-

LAND experiment has been recently presented [1]. The analysis of these results [1, 2]

in terms of neutrino oscillations have largely improved our knowledge of neutrino mix-

ing in the LMA region. The results appear to confirm in a independent way that the

observed deficit of solar neutrinos is indeed due to neutrino oscillations. The ability

to measure the LMA solution, the one preferred by the solar neutrino data at present,

“in the lab” puts KamLAND in a pioneering situation: after these results there should

remain little doubt of the physical reality of neutrino mass and oscillations. Once neu-

trino mass is observed, neutrino magnetic moments are an inevitable consequence in

the Standard Model and beyond. Magnetic moment interactions arise in any renormal-

izable gauge theory only as finite radiative corrections: the diagrams which contribute

to the neutrino mass will inevitably generate a magnetic moment once the external

photon line is added.

The spin flavor precession (SFP) [3–5], based on the interaction of the neutrino

magnetic moment with the solar magnetic field was, second to oscillations, the most

attractive scenario [19]. SFP, although certainly not playing the major role in the solar

neutrino deficit, may still be present as a subdominant process, provided neutrinos

have a sizeable transition magnetic moment. Its signature will be the appearance of

solar antineutrinos [4, 6, 18] which result from the combined effect of the vacuum mixing

angle θ and the transition magnetic moment µν converting neutrinos into antineutrinos

of a different flavor. This can be schematically shown as

νeL → νµL
→ ν̄eR

, (1)

νeL → ν̄µR
→ ν̄eR

(2)

with oscillations acting first and SFP second in sequence (1) and in reverse order in

sequence (2). Oscillations and SFP can either take place in the same spatial region,

or be spatially separated. Independently of their origin, antineutrinos with energies

above 1.8 MeV can be detected in KamLAND via the observation of positrons from the

inverse β-decay reaction ν̄e +p → n+e+ and must all be originated from 8B neutrinos.

The KamLAND experiment is the successor of previous reactor experiments (

CHOOZ [8], PaloVerde [9]) at a much larger scale in terms of baseline distance and

total incident flux. This experiment relies upon a 1 kton liquid scintillator detector

located at the old, enlarged, Kamiokande site. It searches for the oscillation of antineu-

trinos emitted by several nuclear power plants in Japan. The nearby 16 (of a total of

51) nuclear power stations deliver a νe flux of 1.3× 106cm−2s−1 for neutrino energies

Eν > 1.8 MeV at the detector position. About 85% of this flux comes from reactors

forming a well defined baseline of 139-344 km. Thus, the flight range is limited in spite

2



of using several reactors, because of this fact the sensitivity of KamLAND increases by

nearly two orders of magnitude compared to previous reactor experiments.

Beyond reactor neutrino measurements, the secondary physics program of Kam-

LAND includes diverse objectives as the measurement of geoneutrino flux emitted by

the radioactivity of the earth’s crust and mantle, the detection of antineutrino bursts

from galactic supernova and, after extensive improvement of the detection sensitivity,

the detection of low energy 7Be neutrinos using neutrino-electron elastic scattering.

Moreover, the KamLAND experiment is capable of detecting potential electron

antineutrinos produced on fly from solar 8B neutrinos [18]. These antineutrinos are

predicted by spin-flavor oscillations at a significant rate if the neutrino is a Majorana

particle and if its magnetic moment is high enough [19, 20]. In Ref.[18] as been remarked

that the flux of reactor antineutrinos at the Kamiokande site is comparable, and in fact

smaller, to the flux of 8B neutrinos emitted by the sun ,Φ(8B) ' 5.6 × 106cm−2s−1

[1, 21, 22]. Their energy spectrum is important at energies 2 − 4 MeV while solar

neutrino spectrum peaks at around 9 − 10 MeV. As the inverse beta decay reaction

cross section increases as the square of the energy, we would expect nearly 10 times more

solar electron antineutrino events even if the initial fluxes were equal in magnitude.

The publication of the SNO results [22, 23] has already made an important break-

through towards the solution of the long standing solar neutrino [28, 29, 33, 34] problem

(SNP) possible. These results provide the strongest evidence so far (at least until Kam-

LAND improves its statistics) for flavor oscillation in the neutral lepton sector.

The existing bounds on solar electron antineutrinos are strict. The present upper

limit on the absolute flux of solar antineutrinos originated from 8B neutrinos is [18,

36, 37] Φν(
8B) < 1.8 × 105 cm−2 s−1 which is equivalent to an averaged conversion

probability bound of P < 3.5% (SSM-BP98 model). There are also bounds on their

differential energy spectrum [36]: the conversion probability is smaller than 8% for all

Ee,vis > 6.5 MeV going down the 5% level above Ee,vis ' 10 MeV.

The main aim of this work is to study the implications of the recent KamLAND

results on the determination of the solar electron antineutrino appearance probability,

independently from concrete models on antineutrino production. We obtain upper

limits on the solar antineutrino flux, the intrinsic magnetic moment and the magnetic

field at the bottom of the convective zone were [18] from the published KamLAND data.

In the second part of the work, we address however a different antineutrino production

model where the magnetic field at the solar core is the relevant one. The purpose of

this part is to relate the solar magnetic field profile to the solar antineutrino event rate

in KamLAND which is a component of the total positron event rate in the reaction

above. In a previous paper [7] the question of what can be learned about the strength

and coordinate dependence of the solar magnetic field in relation to the current upper

limits on the solar ν̄e flux was addressed. The system of equations describing neutrino

evolution in the sun was solved analytically in perturbation theory for small µνB,
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the product of the neutrino magnetic moment by the solar field. The three oscillation

scenarios with the best fits were considered, namely LMA, LOW and vacuum solutions.

In particular for LMA it was found that the antineutrino probability depends only on

the magnitude of the magnetic field in the neutrino production zone. Neutrinos were, in

the approximation used, considered to be all produced at the same point (x = 0.05RS),

where 8B neutrino production is peaked. In this work we will consider the more realistic

case of a convolution of the production distribution spectrum with the field profile in

that region. It will be seen that this convolution leads to an insensitiveness of the

antineutrino probability with respect to the solar magnetic field profile, in the sense

that different profiles can correspond to the same probability function, provided the

peak field values are conveniently scaled. As a consequence, an upper bound on the

solar antineutrino flux can be derived which is independent of the field profile and the

energy spectrum of this flux will also be seen to be profile independent.

The structure of this work is the following. In section 2 we discuss the main features

of KamLAND experiment that are relevant for our analysis: The salient aspects of the

procedure we are adopting and the results of our analysis are presented and discussed

in sections 3. In Section 4 we apply the results we obtained in a particular model

for the solar magnetic field, we obtain bounds on the values of the intrinsic neutrino

transition magnetic moments. Finally, in section 5 we draw our conclusions and discuss

possible future scenarios.
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Figure 1: (Top) The reactor antineutrino and solar 8B neutrino [21] fluxes. (Bottom).

Upper limits on solar antineutrino conversion probabilities (from Ref.[36]).
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2 A KamLAND overview

Independently of their origin, solar or reactor electron antineutrinos from nuclear reac-

tors with energies above 1.8 MeV can be detected in KamLAND by the inverse β-decay

reaction νe + p → n + e+. The time coincidence, the space correlation and the energy

balance between the positron signal and the 2.2 MeV γ-ray produced by the capture of

a already-thermalized neutron on a free proton make it possible to identify this reaction

unambiguously, even in the presence of a rather large background.

The main ingredients in the calculation of the corresponding expected signals in

KamLAND are solar fluxes mentioned above, the reactor flux and the antineutrino

cross section on protons. These last two are considered below (see also Ref.[24]).

2.1 The reactor antineutrino flux

We first describe the flux of antineutrinos coming from the power reactors. A number

of short baseline experiments (Ref.[40] and references therein) have measured the en-

ergy spectrum of reactors at distances where oscillatory effects have been shown to be

inexistent. They have shown that the theoretical neutrino flux predictions are reliable

within 2% [42].

The effective flux of antineutrinos released by the nuclear plants is a rather well

understood function of the thermal power of the reactor and the amount of thermal

power emitted during the fission of a given nucleus, which gives the total amount, and

the isotopic composition of the reactor fuel which gives the spectral shape. Detailed

tables for these magnitudes can be found in Ref. [40].

For a given isotope (j) the energy spectrum can be parametrized by the following

expression dN j
ν/dEν = exp(a0 + a1Eν + a2E

2
ν) where the coefficients ai depend on

the nature of the fissionable isotope (see Ref.[40] for explicit values). Along the year,

between periods of refueling, the total effective flux changes with time as the fuel is

expended and the isotope relative composition varies. The overall spectrum is at a given

time dNν/dEν =
∑

j=isotopes cj(t)dN j
ν/dEν . To compute a fuel-cycle averaged spectrum

we have made use of the typical time evolution of the relative abundances cj, which

can be seen in Fig. 2 of Ref.[40]. This averaged spectrum can be again fitted very well

by the same functional expression as above. The isotopic energy yield is properly taken

into account. As the result of this fit, we obtain the following values which are the ones

to be used in the rest of this work: a0 = 0.916, a1 = −0.202, a2 = −0.088. Although

individual variations of the cj along the fuel cycle can be very high, the variation of

the two most important ones is highly correlated: the coefficient c(235U) increases in

the range ∼ 0.5− 0.7 while c(239Pu) decreases ∼ 0.4− 0.2. This correlation makes the

effective description of the total spectrum by a single expression as above useful. With

the fitted coefficients ai above, the difference between this effective spectrum and the
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real one is typically 2− 4% along the yearly fuel cycle.

2.2 Antineutrino cross sections

We now consider the cross sections for antineutrinos on protons. We will sketch the

form of the well known differential expression and more importantly we will give up-

dated numerical values for the transition matrix elements which appear as coefficients.

In the limit of infinite nucleon mass, the cross section for the reaction νe + p → n + e+

is given by [11, 12] σ(Eν) = k Ee+pe+ where E, p are the positron energy and momen-

tum and k a transition matrix element which will be considered below. The positron

spectrum is monoenergetic: Eν and Ee+ are related by: E
(0)
ν = E

(0)
e+ + ∆M , where

Mn, Mp are the neutron and proton masses and ∆M = Mn −Mp ' 1.293 MeV.

Nucleon recoil corrections are potentially important in relating the positron and an-

tineutrino energies in order to evaluate the antineutrino flux. Because the antineutrino

flux Φ(Eν) would typically decrease quite rapidly with energy, the lack of adequate

corrections will systematically overestimate the positron yield. For both cases, solar

or reactor antineutrinos, because the antineutrino flux Φ(Eν) would typically decrease

quite rapidly with energy, the lack of adequate corrections will systematically overes-

timate the positron yield. For the solar case and taking into account the SSM-BP98
8B spectrum, the effect decrease the positron yield by 2-8% at the main visible energy

range ∼ 6−10 MeV. The positron yield could decrease up 50% at hep neutrino energies,

a region where incertitudes in the total and differential spectrum are of comparable size

or larger. Finite energy resolution smearing will however diminish this correction when

integrating over large enough energy bins: in the range 6.5− 20 MeV the net positron

suppression is estimated to be at the 5% level, increasing up 20% at hep energies.

At highest orders, the positron spectrum is not monoenergetic and one has to

integrate over the positron angular distribution to obtain the positron yield. We have

used the complete expressions which can be found in Ref. [10]. Here we only want to

stress the numerical value of the overall coefficient σ0 (notation of Ref.[10]) which is

related to the transition matrix element k above. The matrix transition element can be

written in terms of measurable quantities as k = 2π2 log 2/(m5
ef t1/2). Where the value

of the space factor f = 1.71465 ± 0.00015 follows from calculation [13], while t1/2 =

613.9±0.55 sec is the latest published value for the free neutron half-life [37]. This value

has a significantly smaller error than previously quoted measurements. From the values

above, we obtain the extremely precise value: k = (9.5305±0.0085)×10−44 cm2/MeV 2.

From here the coefficient which appears in the differential cross section is obtained as

(vector and axial vector couplings f = 1, g = 1.26): k = σ0(f
2 + 3g2). In summary,

the differential cross section which appear in KamLAND are very well known, its

theoretical errors are negligible if updated values are employed.
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3 The solar signal and reactor backgrounds

Electron antineutrinos from any source, nuclear reactors or solar origin, with energies

above 1.8 MeV are measured in KamLAND by detecting the inverse β-decay reaction

νe + p → n + e+. The time coincidence, the space correlation and the energy balance

between the positron signal and the 2.2 MeV γ-ray produced by the capture of a

already-thermalized neutron on a free proton make it possible to identify this reaction

unambiguously, even in the presence of a rather large background.

The two principal ingredients in the calculation of the expected signal in KamLAND

are the corresponding flux and the electron antineutrino cross section on protons. The

average number of positrons Ni originated from the solar source which are detected

per visible energy bin ∆Ei is given by the convolution of different quantities:

Ni = Q0

∫
∆Ei

dEe

∫ ∞

0

dEr
eε(Ee)R(Ee, E

r
e)

∫ ∞

Er
e

dEνp(Eν)Φ(Eν)σ(Eν , E
r
e) (3)

where Q0 is a normalization constant accounting for the fiducial volume and live time

of the experiment, p. Expressions for the electron antineutrino capture cross section

σ(Eν , E
r
e) are taken from the literature [10, 38]. The matrix element for this cross

section can be written in terms of the neutron half-life, we have used the latest published

value t1/2 = 613.9 ± 0.55 [37]. The functions ε(Ee) and R(Ee, E
r
e) are the detection

efficiency and the energy resolution function. We use in our analysis the following

expression for the energy resolution in the prompt positron detection σ(Ee) = 0.0062+

0.065
√

Ee . This expression is obtained from the raw calibration data presented in

Ref.[39]. Note that we prefer to use this expression instead of the much less accurate

one given in Ref.[1]. Moreover, we assume a 408 ton fiducial mass and the detection

efficiency is taken independent of the energy [1], ε = 80%. In order to obtain concrete

limits, a model should be taken which predict p and its dependence with the energy.

For our purpose it will suffice to suppose p a constant. This is justified at least in

two cases: a) if the energy range ∆E over which we perfom the integration is small

enough so the variation of the probability is not very large, or b) if we reinterpret

p as an energy-averaged probability, note that, in a general case, this is always true

because the un-avoidable convolution with a finite energy resolution. (see Expression

10 in Ref.[20]):

p∆E =

∫
∆E

dE σ(E)Φ(E)Pν(E)/

∫
∆E

dE σ(E)Φ(E). (4)

Let us finally note that independently of the reasons above, upper limits to be obtained

on continuation are still valid even if the antineutrino probabilities are significantly dif-

ferent from constant: if we take p = max∆E Pν(E) the expected antineutrino signal

computed with p will be always larger than the signal obtained inserting the full prob-

ability.
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Similarly, the expected numbers of positron events originated from power reactor

neutrinos are obtained summing the expectations for all the relevant reactor sources

weighting each source by its power and distance to the detector (table II in Ref. [40]),

assuming the same spectrum originated from each reactor. We have used the antineu-

trino flux spectrum given by the expression of the previous section and the relative

reactor-reactor power normalization.

For one year of running with the 600 ton fiducial mass and for standard nuclear

plant power and fuel schedule: we assume all the reactors operated at ∼ 80% of their

maximum capacity and an averaged, time-independent, fuel composition equal for each

detector, the experiment expects about 550 antineutrino events.

In addition to the reactor antineutrino signal deposited in the detector, two classes

of other backgrounds can be distinguished [14, 40, 42]. The so called random coinci-

dence background is due to the contamination of the detector scintillator by U, Th

and Rn. From MC studies and assuming that an adequate level of purification can be

obtained, the background coming from this source is expected to be ∼ 0.15 events/d/kt

which is equivalent to a signal to background ratio of ∼ 1%. Other works [26] conser-

vatively estimate a 5% level for this ratio. More importantly for what it follows, one

expects that the random coincidence backgrounds will be a relatively steeply falling

function of energy. The assumption of no random coincidence background should be

relatively safe at high energies above ∼ 5 MeV which are those of interest here.

The second source of background, the so called correlated background is dominantly

caused by cosmic ray muons and neutrons. The KamLAND’s depth is the main tool to

suppress those backgrounds. MC methods estimate a correlated background of around

0.05 events/day/kt distributed over all the energy range up to ∼ 20 MeV, this is the

quantity that we will consider later.

In order to estimate the sensitivity of KamLAND to put limits on the flux of an-

tineutrinos arriving from the sun we have computed the expected signals coming from

solar and reactor antineutrinos and from the background. They are presented in Table

(1) for different representative values of the minimum energy required (Ethr) for the vis-

ible positrons. We have supposed a background of 0.05 evt/d/kt uniformly distributed

over the full energy range. To obtain the solar numbers (first column, Ssun) we have

supposed full neutrino-antineutrino conversion (P = 1) with no spectral distortion. For

any other conversion probability, the experiment should see the antineutrino quantity

P × Ssun in addition to the reactor ones and other background. If the experiment

does not receive any solar antineutrinos, making a simple statistical estimation (only

statistical errors are included) we obtain the upper limits on the conversion probability

which appear in the last column of the table.

From the table we see that after three years of data taking the optimal result is

obtained imposing a energy detection threshold at ∼ 7 MeV. A negative result would

allow to impose an upper limit on the average antineutrino appearance probability at
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∼ 0.20% (95% CL). The corresponding limits after one year of data taking are only

slightly worse, they are respectively: 0.21-0.24% (95% CL).

The results of our simulation are summarized in Fig.3 where we show the “solar”

positron spectrum obtained assuming the shape of the 8B neutrino flux and a total

normalization 10−2 × Φ(8B) which means an overall νe − νe conversion probability

P ∼ 1%.

These results are obtained under the supposition of no disappearance on the reactor

flux arriving to KamLAND. No flux suppression is expected for values of the mixing

parameters in the LOW region, more precisely for any ∆m2 ≤ 2× 10−5 eV2 (see Plot

1(right) in Ref.[28] and Ref.[24]). The consideration of reactor antineutrino oscillations

does not change significantly the sensitivity in obtaining upper limits on P . For values

of the mixing parameters fully on the LMA region, ∆m2 ≥ 1 − 9 × 10−5 eV2, the

flux suppression is typically S/S0 ∼ 0.5− 0.9 and always over S/S0 ∼ 0.4, for any the

energy threshold Ethr ∼ 5−8 MeV. We have obtained the expected reactor antineutrino

contribution for a variety of points in the LMA region (see table I in Ref.[24]) and

corresponding upper limits on P : the results after 3 years of running are practically

the same while for 1 year of data running are slightly better (for example P goes down

from 0.27 to 0.3 for Ethr > 6 MeV.
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Ethr SSun SRct Bckg. P (CL 95)% P (CL 99)%

6 MeV 616 43 70 0.22 0.23

7 MeV 500 11 65 0.19 0.20

8 MeV 366 2 60 0.21 0.23

Table 1: Expected signals from solar antineutrinos after 3 years of data taking. Reactor
antineutrino (no oscillation is assumed) and other background (correlated background) over
the same period. The random coincidence background is supposed negligble above these
energy thresholds. Upper limits on the antineutrino oscillation probability.
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Figure 2: The KamLAND positron spectrum from reactor antineutrinos (from Fig.5 in
Ref.[1]): measured (145.5 days), MC expectations in absence of oscillations and best fit
including neutrino oscillations (∆m2 = 6.9 × 10−5 eV2, sin2 θ = 1, respectively points with
error-bars, triangles and stars). The “solar” positron spectrum (black solid squares) obtained
assuming the shape of the 8B neutrino flux and a total normalization 10−2 ×Φ(8B) (that is,
an overall νe − νe conversion probability P ∼ 1%).
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4 Analysis and Results

We will obtain upper bounds on the solar electron antineutrino appearance probability

analyzing the observed KamLAND rates in three different ways (see Refs.[15, 18], see

also Refs.[16]). In the first one, we will make a standard χ2 analysis of the observed and

expected solar signals in the 13 prompt positron energy bins considered by KamLAND

[1]. In the second and third cases we will apply Gaussian and poissonian probabilistic

considerations to the global rate seen by the experiment and to the individual event

content in the highest energy bins (Ee > 6 MeV) where KamLAND observes zero

events. This null signal makes particularly simple the extraction of statistical conclu-

sions in this case.

Analysis of the KamLAND Energy Spectrum

Here we fully use the binned KamLAND signal (see Fig. 5 in Ref.[1]) for esti-

mating the parameters of solar electron antineutrino production from the method of

maximum-likelihood. We minimize the quantity χ2 = χ2
i=1,9 + χ2

i=10,13 where the first

term correspond to the contribution of the first nine bins where the signal is large

enough and the use of the Gaussian approximation is justified. The second term cor-

respond to the latest bins where the observed and expected signals are very small and

poissonian statistics is needed. The explicit expressions are:

χ2
i=1,9 =

∑
i=1,9

(Sexp
i − Steo

i )2

σ2
(5)

χ2
i=10,13 = 2

∑
i=10,13

Steo
i − Sexp

i + Sexp
i log

Sexp
i

Steo
i

. (6)

The quantities Si are the observed bin contents from KamLAND. The theoretical

signals are in principle a function of three different parameters: the solar electron an-

tineutrino appearance probability p and the neutrino oscillation parameters (∆m2, θ).

Both contributions, the contribution from solar antineutrinos and that one from solar

reactors, can be treated as different summands:

Si(p, ∆m2, θ) = Ssolar
i (p) + Sreactor

i (∆m2, θ). (7)

According to our model, the solar antineutrino appearance probability p is taken as a

constant and we can finally write:

Si(p, ∆m2, θ) = p× S0
i + Sreactor

i (∆m2, θ). (8)

In this work we will take for the minimization values of the oscillation parameters those

obtained when ignoring any solar antineutrinos (LMA solution ∆m2 = 6.9× 10−5 eV2,

sin2 θ = 1 from Ref.[1]) and we will perform a one-parameter minimization with respect

p. This approximation is well justified because the solar antineutrino probability is

12



clearly very small, We avoid in this way the simultaneous minimization with respect

to the three parameters (p, ∆m2, θ).

We perform a minimization of the one dimensional function χ2(p). to test a partic-

ular oscillation hypothesis against the parameters of the best fit and obtain the allowed

interval in p parameter space taking into account the asymptotic properties of the like-

lihood function, i.e. logL − logLmin behaves asymptotically as a χ2 with one degree

of freedom. In our case, the minimization can be performed analytically because of

the simple, lineal, dependence. A given point in the confidence interval is allowed if

the globally subtracted quantity fulfills the condition ∆χ2 = χ2(p) − χ2
min < χ2

n(CL).

Where χ2
n=1(90%, 95%, ...) = 2.70, 3.84, .. are the quantiles for one degree of freedom.

Restricting to physical values of p, the minimum of the χ2 function is obtained for

p = 0. The corresponding confidence intervals are p < 4.5% (90% CL) and p < 7.0%

(95% CL). We have explicitly checked, varying the concrete place where the division

between “Gaussian” and “poissonian” bins is established that the values of these upper

limits are largely insensitive to details of our analysis. In particular, similar upper limits

are obtained in the extreme cases: if Gaussian or poissonian statistics is employed

for all 13 bins. These upper limits are considerably weaker than those obtained in

the next section. One possible reason for that is that they are obtained applying

asymptotic general arguments to the χ2 distribution, stronger, or more precise limits

could be obtained if a Monte Carlo simulation of the distribution of the finite sample

χ2 distribution is performed (where the boundary condition p > 0 should be properly

included).

Analysis of the global rate and highest energy bins

We can make an estimation of the upper bound on the appearance solar electron

antineutrino probability simply counting the number of observed events and subtracting

the number of events expected from the best-fit oscillation solution. For our purposes

this difference, which in this case is positive, can be interpreted as a hypothetical signal

coming from solar antineutrinos (∆m2
0 = 6.9× 105 eV 2, sin2 θ0 = 1).:

Ssolar = p× S0
solar = Sobs − Sreact(∆m2

0, sin
2 θ0). (9)

Putting [1] Sobs = 54.3±7.5 and Sreact(∆m2
0, sin

2 θ0) = 49±1.3, we obtain Sobs−Sreact <

64.8 (67.2) at 90 (95)% CL. From these numbers, the corresponding limits on solar

electron antineutrino appearance probability are p < 0.45%, 0.52% at 90 or 95% CL.

These limits are valid for the neutrino energy range Eν ∼ 2− 8 MeV. In this case, due

to the large range, the limits are better interpreted as limits on an energy-averaged

probability according to expression 4.

In a similar approach, we use on continuation the binned KamLAND signal cor-

responding to the four highest energy bins (see Fig.3) which, as we will see, provide

the strongest statistical significance and bounds. The reason for that is that the ex-

periment KamLAND does not observe any signal here and, furthermore, the expected
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signal from oscillating neutrinos with LMA parameters is negligibly small. Due to the

small sample, we apply Poisson statistics to any of these bins and use the fact that

a sum of Poisson variables of mean µi is itself a Poisson variable of mean
∑

µi. The

background (here the reactor antineutrinos) and the signal (solar electron antineutri-

nos) are assumed to be independent Poisson Random variables with known means.

If no events are observed, and, in particular, no background is observed, the unified

intervals [37, 43] [0, εCL] are [0, 2.44] at 90% CL and [0, 3.09] at 95% CL. From here, we

obtain p×Ssolar
0 < εCL or p < εCL/Ssolar

0 . Taking the expected number of events in the

first 145 days of data taking and in this energy range (6-8 MeV) we obtain: p < 0.12%

(90% CL) and p < 0.15% (95% CL).
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5 A model for solar antineutrino production in the

sun convection zone

The combined action of spin flavor precession in a magnetic field and ordinary neutrino

matter oscillations can produce an observable flux of νeR’s from the Sun in the case

of the neutrino being a Majorana particle. In the simplest model, where a thin layer

of highly chaotic of magnetic field is assumed at the bottom of the convective zone

(situated at R ∼ 0.7R�), the antineutrino appearance probability at the exit of the

layer P (ν) is basically equal to the appearance probability of antineutrinos at the

earth [19, 20] ( see also Refs.[44] for some recent studies on RSFP solutions to the

Solar Neutrino Problem). The quantity P (ν) is in general a function of the neutrino

oscillation parameters (∆m2, θ), the neutrino intrinsic magnetic moment and also of

the neutrino energy and the characteristics and magnitude of the solar magnetic field.

However, in a accurate enough approximation, such probability can be factorized in a

term depending only on the oscillation parameters and another one depending only on

the spin-flavor precession parameters:

P (ν) =
1

2
Peµ(∆m2, θ)× [

1− exp
(−4Ω2∆r

)]
(10)

where Peµ is the e−µ solar conversion probability. We will assume in this work the LMA

central values for (∆m2, θ) obtained from recent KamLAND data and which are com-

patible with the SNO observations in solar neutrinos [45], we will take Peµ(∆m2, θ) '
〈Peµ〉exp,SNO ' 0.4. The second factor appearing in the expression contains the effect

of the magnetic field. This quantity depends on the layer width ∆r (∼ 0.1R�) and

Ω2 ≡ 1
3
L0µ

2〈B2〉, where 〈B2〉 the r.m.s strength of the magnetic field and L0 is a

scale length (L0 ∼ 1000 km). For small values of the argument we have the following

approximate expression which is accurate enough for many applications

P (ν) ' Peµ × 2Ω2∆r = κ µ2〈B2〉

the solar astrophysical factor κ ≡ 2/3PeµL0∆r is numerically κLMA ' 2.8 × 10−44

MeV−2. Upper limits on the antineutrino appearance probability can be translated

into upper limits on the neutrino transition magnetic moment and the magnitude

of the magnetic field in the solar interior. The results of the Formula 10 can be

seen in Figure 3. An upper bound p < 0.15 − 0.20% (95% CL) implies an upper

limit on the product of the intrinsic neutrino magnetic moment and the value of the

convective solar magnetic field as µB < 2.3× 10−21 MeV (95% CL). In Fig.3 we show

the antineutrino probability as a function of the magnetic moment µ for fixed values

of the magnitude of the magnetic field. For realistic values of other astrophysical

solar parameters (L0 ∼ 1000 km, ∆r ∼ 0.1 R�), these upper limits would imply that

the neutrino magnetic moment is constrained to be, in the most desfavourable case,
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µ≤3.9× 10 12 µB (95% CL) for a relatively small field B = 50 kG. Stronger limits are

obtained for slightly higher values of the magnetic field: µ≤9.0× 10−13 µB (95% CL)

for field B = 200 kG and µ≤2.0 × 10−13 µB (95% CL) for field B = 1000 kG. Let us

note that these assumed values for the magnetic field at the base the solar convective

zone are relatively mild and well within present astrophysical expectatives.

10-13 10-12 10-11

Μ�ΜB

0.05

0.1

0.15

0.2

0.25

0.3
P

H%L

Figure 3: The solar antineutrino appearance probability p as a function of the transition
neutrino magnetic moment, in units of Bohr magnetons µB, for fixed values of the r.m.s
solar magnetic field (Formula 10). From left (solid) to right (dashed), curves correspond
to B = 1000, 200, 50 kG. From the curves, an upper limit p < 0.15% implies µ < 1.9 ×
10−13µB, 9.0 × 10−13µB, 3.0 × 10−12µB respectively for each of the magnetic field above.
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6 The magnetic field in the sun core

6.1 The solar antineutrino probability in core conversions

We start (see Ref.[16]) with the probability that a νeL produced inside the sun will

reach the earth as a ν̄eR

P (νeL
→ ν̄eR

) = P (νeL
→ ν̄µR

; RS)× P (ν̄µR
→ ν̄eR

; Res) (11)

in which the first term is the SFP probability, RS is the solar radius and the second

term is given by the well known formula for vacuum oscillations

P (ν̄µR
→ ν̄eR

; Res) = sin22θ sin2

(
∆m2

4E
Res

)
=

1

2
. (12)

Here Res is the distance between the sun and the earth and the rest of the notation

is standard. Since 1.8MeV < E < 15MeV and, for LMA, ∆m2 = 6.9 × 10−5eV 2,

sin2 2θ = 1 [27], we take the ν̄µR
→ ν̄eR

vacuum oscillations to be in the averaging

regime.

The SFP amplitude in perturbation theory for small µB is [7] 1

A(νeL
→ ν̄µR

) =
µB(ri) sin2 θ(ri)

g
′
2(ri)

. (13)

A key observation is that the antineutrino appearance probability is dependent on the

production point of its parent neutrino so that the overall antineutrino probability is

P (νeL
→ ν̄eR

) =
1

2

∫
|A(νeL

→ ν̄µR
)|2fB(ri)dri (14)

where fB represents the neutrino production distribution function for Boron neutrinos

[25] and the integral extends over the whole production region. As shall be seen, owing

to this integration, the energy shape of probability (6) is largely insensitive to the

magnetic field profile.

As mentioned above, for the LMA solution only the solar field profile in the neutrino

production region [7] can affect the antineutrino flux. Hence we will discuss three

profiles which span a whole spectrum of possibilities at this region. We study from a

vanishing field (profile 1) to a maximum field at the solar center, with, in this second

case, either a fast decreasing field intensity (profile 2) or a nearly flat one (profile 3)

in the solar core (see fig. 4, lower panel). Thus, we consider respectively the following

three profiles

Profile 1

B(r) = B0[cosh(9r)− 1] , |r| ≤ rc (15)

1For notation we refer the reader to ref. [7].
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B(r) = B0/ cosh[25(r − rR)] , |r| > rc, (16)

with rc = 0.08, rR = 0.16,

Profile 2

B(r) = B0/ cosh(15r) , |r| ≥ 0, (17)

Profile 3

B(r) = B0[1− (r/rc)
2] , |r| ≤ rc, (18)

with rc = 0.713.

We also show in fig. 4 (upper panel) the 8B production distribution spectrum, so

that a comparison between the strength of the field and the production intensity can

be directly made.

The antineutrino production probabilities as a function of energy for each of these

profiles are given in fig. 4. In the first panel, the values of the peak field are chosen

so as to produce a fixed number of events. In this case the probability curves differ

only slightly in their shapes while their normalizations are the same. The curves are

in any case similar to the SFP survival probability ones [30] in the same energy range.

In the second panel of fig. 4 the antineutrino probabilities for a common value of the

peak field and these three different profiles are shown. It is hence apparent from these

two graphs how the distribution of the magnetic field intensity is determinant for the

magnitude of the antineutrino probability, but not for its shape. One important reason

for this behavior is that we have integrated the antineutrino probability over the Boron

production region.
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Figure 4: (LEFT) Upper panel: 8B neutrino production spectrum (in arbitrary units) as
a function of the radial coordinate. Lower panel: the three solar field profiles considered in
the main text normalized to B0, the peak field value. (RIGHT) Antineutrino probabilities
for solar field profiles 1, 2 and 3. Upper panel: the peak field is chosen in each case so as to
produce the same event rate in KamLAND, (see the main text). Lower panel: the same value
of the peak field (B0 = 107G) is seen in each case to lead to probabilities of quite different
magnitudes.
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7 Results for the Magnetic Profile

The antineutrino signal for any magnetic field profile B(r) can be written, taking into

account the previous formulas and the near invariance of the probability shape (see fig.

4), as

Sν [B(r)] = αS0
ν (19)

where S0
ν is the antineutrino signal taken at some nominal reference value B0

0 for

the field at the solar core for a certain reference profile B0. This profile dependent

parameter α, being a ratio of two event rates given by eq.(7) for different profiles, can

thus be simplified to

α =

∫ (
B(ri) sin2 θ(ri)

g
′
2(ri)

)2

fB(ri)dri

∫ (
B0(ri) sin2 θ(ri)

g
′
2(ri)

)2

fB(ri)dri

(20)

where the integrals extend over the production region. As we mentioned before, for

concreteness we have fixed along this discussion the neutrino magnetic moment µν =

10−12µB.

We will now obtain bounds on parameter α and the peak field B0 for each profile

derived from KamLAND data, applying Gaussian probabilistic considerations to the

global rate in the whole energy range, Eν = (2.6−8.125) MeV , and Poissonian consider-

ations to the event content in the highest energy bins (Ee > 6 MeV) where KamLAND

observes zero events. We denote by S0
ν̄ the event rate with B0 = 107G for each given

profile (S0
ν̄ = Sν̄(107G)). Taking the number of observed events and subtracting the

number of events expected from the best-fit oscillation solution [(∆m2, sin2 2θ)LMA =

(6.9 × 10−5 eV 2, 1)] and interpreting this difference as a hypothetical signal coming

from solar antineutrinos, we have

Ssun
ν = Sobs − Sreact(LMA). (21)

Inserting [39] Sobs = 54.3± 7.5 and Sreact(LMA) = 49± 1.3, we obtain Sobs − Sreact =

αS0
ν̄ < 17.8 (20.2) at 90 (95)% CL. Within each specific profile it is seen from (20)

that the quantity α is simplified to α = (B0/107G)2, so that the previous inequality

becomes

B2
0 <

Ssun
ν

S0
ν̄

(107G)2. (22)

In this way we can derive for each given profile an upper bound on B0. The quantity

S0
ν̄ for profiles 1, 2 and 3 and the respective upper bounds on B0 are shown in table 1.

These upper limits can be cast in a more general way if do not fix the neutrino magnetic

moment. To this end we will consider an arbitrary reference value µ0
ν = 10−12µB. Then

within each profile, α = (µνB0/µ
0
ν 107G)2, where in the numerator and denominator

we have respectively the peak field value and some reference peak field value of the
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same profile. In the same manner as before we can derive the upper bounds on µνB0

which are also shown in table 1.

From the definition of α (20) it follows that the upper bounds on the antineutrino

flux are independent of the field profile. These turn out to be φν̄ < 0.0034φ(8B) and

φν̄ < 0.0038φ(8B) for 90 and 95% CL respectively.

We can similarly and independently apply Poisson statistics to the five highest

energy bins of the KamLAND experiment. No events are observed in this region and

the expected signal from oscillating neutrinos with LMA parameters is negligibly small.

We use the fact that the sum of Poisson variables of mean µi is itself a Poisson variable

of mean
∑

µi. The background (here the reactor antineutrinos) and the signal (the

solar antineutrinos) are assumed to be independent Poisson random variables with

known means. If no events are observed and in particular no background is observed,

the unified intervals [31, 43] [0, εCL] are [0, 2.44] at 90% CL and [0, 3.09] at 95% CL.

From here, we obtain αS0
ν̄ < εCL or α < εCL/S0

ν̄ . Hence, as in the previous case, we

have

B2
0 <

εCL

S0
ν̄

(107G)2. (23)

Using the expected number of events in the first 145 days of data taking and in this

energy range (6 − 8.125) MeV , we have derived upper bounds on B0 (90 and 95%

CL) for all three profiles. They are shown in table 2 along with the upper bounds

on µνB0 taking µν as a free parameter. The antineutrino flux upper bounds are now

φν̄ < 0.0049φ(8B) φν̄ < 0.0055φ(8B) at 90 and 95% CL respectively. The KamLAND

expected signal for an arbitrary field profile corresponding to 95% CL is shown in fig.

3.

The differences in magnitude among the bounds on B0 and µνB0 presented in

tables 1 and 2 for the different profiles are easy to understand. In fact, recalling that

the 8B production zone peaks at 5% of the solar radius and becomes negligible at

approximately 15% (fig. 4), then in order to generate a sizeable antineutrino flux,

the magnetic field intensity should lie relatively close to its maximum in the range

where the neutrino production is peaked. Thus for profile 1 the value of B0 required

to produce the same signal is considerably larger than for the other two, while profile

3 is the most efficient one for antineutrino production.

As referred to above, for different field profiles the probability curves will differ only

slightly in their shape if they lead to the same number of events. In other words, for

a given number of events the probability curves are essentially the same, regardless of

the field profile, a fact illustrated in fig. 4. As a consequence, the energy spectrum

of the expected solar antineutrino flux will be nearly the same for any profile. In fig.

6 we plot this profile independent spectrum together with the 8B one [25], so that a

comparison can be made showing the shift in the peak and the distortion introduced.
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Profile S0
ν̄(107G) B0(90%CL) B0(95%CL) µνB0(90%CL) µνB0(95%CL)

G G MeV MeV

1. 0.006 5.27× 108 5.62× 108 3.05× 10−18 3.25× 10−18

2. 0.137 1.14× 108 1.21× 108 6.60× 10−19 7.04× 10−19

3. 0.224 8.92× 107 9.50× 107 5.16× 10−19 5.50× 10−19

Table 2: Solar antineutrino event rates, upper bounds on the peak field value for µν =
10−12µB and on µνB0 for arbitrary µν and B0, assuming Gaussian statistics in the whole
KamLAND spectrum.

Profile S0
ν̄(107G) B0(90%CL) B0(95%CL) µνB0(90%CL) µνB0(95%CL)

G G MeV MeV

1. 0.004 2.53× 108 2.85× 108 1.47× 10−18 1.65× 10−18

2. 0.079 5.56× 107 6.25× 107 3.22× 10−19 3.62× 10−19

3. 0.130 4.34× 107 4.88× 107 2.51× 10−19 2.82× 10−19

Table 3: Same as table 1 assuming Poissonian statistics in the KamLAND energy range
Ee = (6− 8.125) MeV .
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Figure 5: The solid squares represent the MC expectation of the KamLAND positron spec-
trum from reactor antineutrinos with no oscillations and the points with error bars represent
the measured spectrum (from Fig.5 in Ref.[27]). Solid triangles represent the positron spec-
trum from solar antineutrinos (multiplied by 5) assuming profile 3 with peak field given by
its 95% CL upper limit (B0 = 4.88 × 107G). All curves refer to the same time exposure of
145 days.
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Figure 6: The expected solar antineutrino spectrum and the 8B neutrino one [25], both
normalized to unity, showing the peak shift and the distortion introduced by the antineutrino
probability.

23



8 Conclusions

In summary in this work we investigate the possibility of detecting solar antineutrinos

with the KamLAND experiment. These antineutrinos are predicted by spin-flavor

solutions to the solar neutrino problem.

The KamLAND experiment is sensitive to potential antineutrinos originated from

solar 8B neutrinos. We find that the results of the KamLAND experiment put relatively

strict limits on the flux of solar electron antineutrinos Φ(8B) < 1.1−3.5×104 cm−2 s−1,

and their energy averaged appearance probability (P < 0.15 − 0.50%). These limits

are largely independent from any model on the solar magnetic field or any other astro-

physical properties. As we remarked in Section 2.1, these upper limits on antineutrino

probabilities and fluxes are still valid even if the antineutrino probabilities are signifi-

cantly different from constant.

Next we assume a concrete model for antineutrino production where they are pro-

duced by spin-flavor precession in the convective solar magnetic field. In this model, the

antineutrino appearance probability is given by a simple expression as P (ν) = κ µ2〈B2〉
with κLMA ' 2.8 × 10−44 MeV−2. In the context of this model and assuming LMA

central values for neutrino oscillation parameters (∆m2 = 6.9× 10−5 eV2, sin2 θ = 1)

[1], the upper bound p < 0.15% (95% CL) implies an upper limit on the product of

the intrinsic neutrino magnetic moment and the value of the convective solar magnetic

field as µ B < 2.3 × 10−21 MeV (95% CL). For realistic values of other astrophysical

solar parameters these upper limits would imply that the neutrino magnetic moment

is constrained to be, in the most desfavourable case, µ≤3.9 × 10−12 µB (95% CL) for

a relatively small field B = 50 kG. For slightly higher values of the magnetic field:

µ≤9.0× 10−13 µB (95% CL) for field B = 200 kG and µ≤2.0× 10−13 µB (95% CL) for

field B = 1000 kG. These assumed values for the magnetic field at the base the solar

convective zone are relatively mild and well within present astrophysical expectatives.

To conclude, now that SFP is ruled out as a dominant effect for the solar neutrino

deficit, it is important to investigate its still remaining possible signature in the solar

neutrino signal, namely an observable ν̄e flux. Our main conclusion is that, from the

antineutrino production model expound here, an upper bound on the solar antineutrino

flux can be derived, namely φν̄ < 3.8 × 10−3φ(8B) and φν̄ < 5.5 × 10−3φ(8B) at 95%

CL, assuming respectively Gaussian or Poissonian statistics. For 90% CL we found

φν̄ < 3.4× 10−3φ(8B) and φν̄ < 4.9× 10−3φ(8B) which shows an improvement relative

to previously existing bounds from LSD [32] by a factor of 3-5. These are independent

of the detailed magnetic field profile in the core and radiative zone and the energy

spectrum of this flux is also found to be profile independent. We also derive upper

bounds on the peak field value which are uniquely determined for a fixed solar field

profile. In the most efficient antineutrino producing case (profile 3), we get (95% CL)

an upper limit on the product of the neutrino magnetic moment by the solar field
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µνB ≤ 2.8 × 10 19 MeV or B0 ≤ 4.9 × 107G for µν = 10 12µB. A recent study

of the magnetic field in the radiative zone of the sun has provided upper bounds of

(3-7) MG [46] in that region in the vicinity of 0.2 RS which are independent of any

neutrino magnetic moment. Therefore we can use them in conjunction with our results

to obtain a limit on µν . Using B0 ∼ 3 − 7MG, we get from the results for profiles

1-3: µ ≤ 0.7− 9.6× 10−12µB. Moreover, from the limits obtained in this work, if the

’true’ solar profile resembles either a profile like 1 or 3, this criterion implies that SFP

cannot be experimentally traced in the next few years, since the peak field value must

be substantially reduced in order to comply with this upper bound, thus leading to a

much too small antineutrino probability to provide an observable event rate. On the

other hand, for a profile like 2 or in general any one resembling a dipole field, SFP

could possibly be visible.
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