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Abstract

Chiral polyhedra in ordinary Euclidean space E3 are nearly regular polyhedra; their
geometric symmetry group has two orbits on the flags, such that adjacent flags are
in distinct orbits. This paper completely enumerates the infinite chiral polyhedra in
E3 with finite skew faces and finite skew vertex-figures. There are several families of
such polyhedra of types {4, 6}, {6, 4} and {6, 6}. Their geometry and combinatorics
is discussed in detail. It is also proved that a chiral polyhedron in E3 cannot be
finite. Part II of the paper will complete the classification of all chiral polyhedra
in E3. All chiral polyhedra not described in Part I have infinite, helical faces and
occur again in families. So, in effect, Part I enumerates all chiral polyhedra in E3

with finite faces.

1 Introduction

The study of highly-symmetric polyhedra in ordinary Euclidean space E3 has a long
history. With the passage of time, the concept of a polyhedron has undergone a number
of changes which have brought to light new classes of regular polyhedra. Coxeter’s famous
Regular Polytopes [6] and his various other writings treat the Platonic solids, the Kepler-
Poinsot polyhedra and the Petrie-Coxeter polyhedra in great detail, and cover what might
be called the classical theory. Around 1975, Grünbaum [11] generalized the notion of a
polyhedron by permitting discrete polyhedral structures with finite or infinite, planar or
skew, polygonal faces or vertex-figures, and discovered all, save one, regular generalized
polyhedra; the final instance was discovered by Dress [8, 9] around 1980, who also proved
the completeness of the enumeration. We refer to [18, Section 7E] (or [17]) for a quick
method of arriving at the full characterization, as well as for presentations of the symmetry
groups.

∗MSC 2000: Primary, 51M20 Polyhedra and polytopes, regular figures, division of space.
†The research was done, in part, while the author visited I.H.E.S. in Bures-sur-Yvette, France, for

two months in 2002. The author would like to thank I.H.E.S. for the hospitality.
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This paper deals with chiral polyhedra in ordinary space. A polyhedron is (geomet-
rically) chiral if its geometric symmetry group has two orbits on the flags, such that
adjacent flags are in distinct orbits. Recall that a polyhedron is regular if its geometric
symmetry group is transitive on the flags. Thus chiral polyhedra are nearly regular. Most
regular polyhedra in E3 have either skew faces or skew vertex-figures, but it is quite re-
markable that none has both finite skew faces and finite skew vertex-figures. However,
this phenomenon changes drastically in the context of chiral polyhedra.

The present paper describes a complete classification of the discrete chiral polyhedra
with finite skew faces and finite skew vertex-figures in E3. There are three integer-valued
two-parameter families of chiral polyhedra of this kind for each type {4, 6}, {6, 4} or
{6, 6}. Each chiral polyhedron with finite skew faces and finite skew vertex-figures in E3

necessarily belongs to one infinite family. Some infinite families split further into several
smaller subfamilies. The geometry and combinatorics of these polyhedra is discussed in
detail. It is also proved that there are no chiral polyhedra in E3 which are finite.

The paper is organized as follows. In Section 2, we begin with some basic notions about
chiral and regular polyhedra. Then in Section 3 we establish that a chiral polyhedron
in E3 must necessarily be an apeirohedron, that is, a polyhedron with infinitely many
faces. All remaining sections of the paper deal with infinite polyhedra. In Section 4, we
introduce some general considerations, in particular those concerning the special group
of the symmetry group. The actual enumeration is then carried out in Sections 5 and 6.
In particular, we describe in detail the chiral polyhedra of types {6, 6} and {4, 6} with
skew faces and vertex-figures. Finally, in Section 7 we briefly discuss relationships among
them.

In Part II, we then complete the enumeration of the chiral polyhedra in E3. All chiral
polyhedra not described in Part I have infinite, helical faces and occur again in families.
So, in effect, Part I enumerates all chiral polyhedra in E3 with finite faces.

2 Chiral polyhedra

Since we shall discuss chiral polyhedra on the abstract as well as the geometric level, we
begin with a brief introduction to the underlying general theory (see [18, Chapter 2]).
An (abstract) polyhedron (abstract 3-polytope) is a partially ordered set P with a strictly
monotone rank function whose range is {−1, 0, . . . , 3}. The elements of rank j are called
the j-faces of P . For j = 0, 1 or 2, we also call j-faces vertices, edges and facets , respec-
tively. When there is no possibility of confusion, we shall adopt standard terminology
for polyhedra and use the term “face” to mean “2-face” (facet). The flags (maximal
totally ordered subsets) of P each contain one vertex, one edge and one facet, as well as
the unique minimal face F−1 and unique maximal face F3 of P . Further, P is strongly
flag-connected , meaning that any two flags Φ and Ψ of P can be joined by a sequence of
flags Φ = Φ0, Φ1, . . . , Φk = Ψ , where Φi−1 and Φi are adjacent (differ by one face), and
Φ∩Ψ ⊆ Φi for each i. Finally, if F and G are a (j−1)-face and a (j+ 1)-face with F < G
and 0 6 j 6 2, then there are exactly two j-faces H such that F < H < G.

When F and G are two faces of a polyhedron P with F 6 G, we call G/F := {H |
F 6 H 6 G} a section of P . We may usually safely identify a face F with the section
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F/F−1. For a face F , the section F3/F is called the co-face of P at F , or the vertex-figure
at F if F is a vertex.

An abstract polyhedron P is regular if its (combinatorial automorphism) group Γ (P)
is transitive on its flags. Let Φ := {F0, F1, F2} be a fixed or base flag of P (we usually
omit F−1 and F3 from the notation for flags). The group Γ (P) of a regular polyhedron
P is generated by distinguished generators ρ0, ρ1, ρ2 (with respect to Φ), where ρj is the
unique automorphism which keeps all but the j-face of Φ fixed. These generators satisfy
the standard relations

ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)p = (ρ1ρ2)q = (ρ0ρ2)2 = ε, (2.1)

with p and q determined by the (Schläfli) type {p, q} of P ; in general there are also other
independent relations. Observe that, in a natural way, the group of the facet of P is
〈ρ0, ρ1〉, while that of the vertex-figure is 〈ρ1, ρ2〉.

An abstract polyhedron P is chiral if Γ (P) has two orbits on the flags, such that
adjacent flags are in distinct orbits. Once again let Φ := {F0, F1, F2} be a base flag of P ,
and let F ′j , with j = 0, 1, 2, denote the j-face of P with Fj−1 < F ′j < Fj+1 and F ′j 6= Fj.
The group Γ (P) of a chiral polyhedron P is generated by distinguished generators σ1, σ2

(with respect to Φ), where σ1 fixes the base facet F2 and cyclically permutes its vertices
such that F1σ1 = F ′1 (and thus F ′0σ1 = F0) 1, and σ2 fixes the base vertex F0 and cyclically
permutes the vertices in the vertex-figure at F0 such that F2σ2 = F ′2 (and thus F ′1σ2 = F1).
Now we have the standard relations

σp1 = σq2 = (σ1σ2)2 = ε, (2.2)

where again p and q are determined by the type {p, q} of P and in general other indepen-
dent relations occur. We often take τ := σ1σ2 and σ2 as generators of Γ (P). Note that
τ acts like a “half-turn” about the “midpoint” of the base edge F1; it interchanges the
vertices F0 and F ′0 of F1, as well as the two facets F2 and F ′2 that meet at F1.

In a chiral polyhedron, adjacent flags are not equivalent under the group. If Φ is
replaced by the adjacent flag Φ2 := {F0, F1, F

′
2} (say), then the generators σ1, σ2 of Γ (P)

must be replaced by the new generators σ1σ
2
2, σ

−1
2 . Note that their product is again τ . A

chiral polyhedron occurs in two (combinatorially) enantiomorphic forms (see [22, 23]); an
enantiomorphic form simply is a pair consisting of the underlying abstract polyhedron and
an orbit of flags (specifying a “combinatorial orientation”). These two enentiomorphic
forms of P correspond to the two sets of generators σ1, σ2 and σ1σ

2
2, σ

−1
2 of Γ (P).

If P is a regular polyhedron, then the generators σ1 := ρ0ρ1 and σ2 := ρ1ρ2 of the
rotation subgroup Γ+(P) of Γ (P) also satisfy the relations (2.2). Moreover, τ = ρ0ρ2.
Now the two sets of generators of Γ+(P) are conjugate in Γ (P) under ρ2 (so that the two
enantiomorphic forms can be identified).

Let P be an abstract polyhedron, and let Pj denote its set of j-faces. Following [18,
Section 5A], a realization of P is a mapping β:P0 → E of the vertex-set P0 into some
euclidean space E. In applications, E = E3. Define β0 := β and V0 := V := P0β, and
write 2X for the family of subsets of the set X. The realization β recursively induces

1Throughout, mappings will act on the right.
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surjections βj:Pj → Vj, for j = 1, 2, 3, with Vj ⊂ 2Vj−1 consisting of the elements

Fβj := {Gβj−1 | G ∈ Pj−1 and G 6 F}

for F ∈ Pj; further, β−1 is given by F−1β−1 := ∅. Even though each βj is determined by
β, it is helpful to think of the realization as given by all the βj. A realization β is faithful
if each βj is a bijection; otherwise, β is degenerate.

Except in one instance, we shall work with discrete and faithful realizations. In this
case, the vertices, edges and facets of P are in one-to-one correspondence with certain
points, line segments and simple (finite or infinite) polygons in E, and it is safe to identify
a face of P and its image in E. The resulting family of points, line segments and polygons
is a geometric polyhedron in E and is denoted by P ; it is understood that P inherits the
partial ordering of P , and when convenient P will be identified with P .

A realization β of P is symmetric if each automorphism of P induces an isometric
permutation of the vertex-set V = P0β; such an isometric permutation extends to an
isometry of E, uniquely if E is the affine hull of V . Thus associated with a realization
β of P is a euclidean representation of Γ (P) as a group of isometries. The Grünbaum-
Dress polyhedra mentioned in the Introduction are precisely the realizations P of abstract
regular polyhedra in ordinary space E3, which are discrete, faithful and symmetric. They
are geometric polyhedra in E3 which are geometrically regular , meaning that they have a
flag-transitive symmetry group G(P ).

In this paper we are mainly concerned with geometric polyhedra P in E3. We call
such a polyhedron P geometrically chiral if its symmetry group G(P ) has two orbits on
the flags of P , such that adjacent flags are in distinct orbits. Then it is immediate that
the underlying abstract polyhedron P must be combinatorially chiral or combinatorially
regular. In any case, the above general results for abstract chiral polyhedra carry over to
geometrically chiral polyhedra. In particular, we now have distinguished generators S1, S2

for G(P ) corresponding to σ1, σ2, as well as their product T := S1S2 corresponding to
τ = σ1σ2. If P is also chiral, then Γ (P) and G(P ) are isomorphic, and the realization is
symmetric. If P is regular, then the geometric group G(P ) is isomorphic to the subgroup
Γ+(P) of Γ (P), and the generators S1, S2 for G(P ) correspond to those of Γ+(P); in this
case, the involutory automorphism ρ0 of P does not correspond to a symmetry of P , so
only one half of the automorphisms of P are realized as symmetries of P . In this situation
we shall call P a chiral realization of the regular polyhedron P . Not much is known about
chiral realizations of regular polyhedra in euclidean spaces.

Regular or chiral polyhedra P (or P) can be obtained by Wythoff’s construction.
There are two variants, one based on reflections and applying only to regular polytopes
(see [6] and [18, p.124]), and the other based on rotations and applying to both kinds of
polyhedra.

Let P be an abstract regular polyhedron, and let G := 〈R0, R1, R2〉 be a euclidean
representation of its group Γ (P) = 〈ρ0, ρ1, ρ2〉 in E3, where the (point, line, or plane)
reflection Ri corresponds to ρi for each i. Each point v which is fixed by R1 and R2 yields
a realization P of P ; the base (or initial) vertex, base edge and base facet of P are given
by v, v〈R0〉 and v〈R0, R1〉, respectively, and the other vertices, edges and facets of P are
their images under G.
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Let P be abstractly chiral or abstractly regular, and let G := 〈S1, S2〉 be a euclidean
representation of its group Γ (P) or its rotation subgroup Γ+(P), respectively. Now each
point v which is fixed by S2 can serve as the initial vertex of a realization P , again
with vertex-set V = vG. Its base vertex, base edge and base facet are v, v〈T 〉 and v〈S1〉,
respectively, and the other vertices, edges and facets are again their images under G. Note
that, a priori, an abstract regular polyhedron can have a realization which is geometrically
chiral.

Our main goal is to describe the geometrically chiral polyhedra P whose symmetry
group G(P ) is generated by rotatory reflections S1, S2 of finite period. In particular,
this will yield a complete enumeration of the geometrically chiral polyhedra with finite
skew facets and finite skew vertex-figures. Moreover, we shall see that there are no finite
geometric polyhedra that are geometrically chiral.

The regular polyhedra in E3 were extensively studied in [18, Section 7E]. It is inter-
esting to observe that some of the basic operations that can be applied to them, have
analogues that also apply to abstract chiral polyhedra, and frequently to geometrically
chiral polyhedra as well. Two examples are the duality operation δ, yielding the genera-
tors for the group of the dual, and the (2-nd) facetting operation ϕ2 (see [18, p.192,194]).
If P is a chiral polytope with group Γ (P) = 〈σ1, σ2〉, then δ and ϕ2 are given by

δ: (σ1, σ2) 7→ (σ−1
2 , σ−1

1 ) and ϕ2: (σ1, σ2) 7→ (σ1σ
−1
2 , σ2

2), (2.3)

respectively. When applied to the rotation subgroup Γ+(P) of a regular polyhedron P ,
the generators on the right become the distinguished generators for the rotation subgroups
of the polyhedra Pδ (the dual P∗) and Pϕ2 of [18, Section 7B], respectively. In Section 7
we shall meet a third example, the halving operation η (see [18, p.197]).

Finally, recall that the Petrial of a polyhedron P (or P) has the same vertices and
edges as P , and has as its facets the Petrie polygons of P , whose defining property is
that two successive edges, but not three, are edges of a facet of P . Note that the Petrie
operation of [18, p.192] cannot be expressed in terms of rotations only; in fact, this should
not come as a surprise, because a chiral polyhedron will generally have “right-handed”
and “left-handed” Petrie polygons of different lengths.

3 Finite polyhedra

Let P be a geometric polyhedron in E3 which is geometrically regular or geometrically
chiral, and let Φ := {F0, F1, F2} be a base flag of P . Then G(P ) contains elements S1, S2

as above, and these generate G(P ) if P is geometrically chiral, or a subgroup of index 2
in G(P ) (isomorphic to Γ+(P)) if P is geometrically regular. Once again, let T := S1S2.

If P is finite, then G(P ) leaves a point invariant, which we take to be the origin o
from now on. Then G(P ) is a finite subgroup of O3, the orthogonal group. Its elements
S1 and S2 are rotations or rotatory reflections of periods p and q, respectively, and their
product T must be a reflection in o or in a line or plane through o. Note that p, q > 3, by
our assumption of faithfulness. Moreover, T cannot be the reflection in o; in fact, T fixes
the midpoint of F1, so o would be the midpoint of every edge of P , which again cannot
occur in a faithful realization. We now examine the two possible types of mirrors for T .
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Theorem 3.1 There are no chiral geometric polyhedra in E3 which are finite. In other
words, in the above situation, P must be geometrically regular and must be one of the
eighteen finite regular polyhedra in E3. Moreover,
a) if T is a half-turn (reflection in a line), then P is either a Platonic solid {3, 3},
{3, 4}, {4, 3}, {3, 5} or {5, 3}, or a Kepler-Poinsot polyhedron {3, 5

2
}, {5

2
, 3}, {5, 5

2
} or

{5
2
, 5};

b) if T is a reflection in a plane, then P is the Petrial of either a Platonic solid or a
Kepler-Poinsot polyhedron.

Proof Since P is finite, its vertices must lie on a sphere centered at o. The vertices
adjacent to the base vertex F0 are cyclically permuted by S2, hence lie on a sphere
centered at F0. It follows that the vertex-figure at F0 lies in the plane containing the
intersection of these spheres, and therefore that all vertex-figures are planar. Moreover,
S2 must be a rotation about the line passing through o and F0, and hence S1 must be a
rotation or a rotatory reflection according as T is a half-turn or a plane reflection.

If T is a half-turn, then 〈S1, S2〉 is a group of rotations in E3. Since the rotation axes
of S1 and S2 cannot coincide (because F0 is not fixed by S1), the only possible groups
are [3, 3]+, [3, 4]+ and [3, 5]+ (see [10, Ch.2] for the list of finite subgroups of O3); here,
[r, s]+ denotes the rotation subgroup of the symmetry group [r, s] of {r, s} (see [6]). We
now employ Wythoff’s construction for P from 〈S1, S2〉 to show that P must indeed be
regular; the lemma then follows by inspection of the eighteen finite regular polyhedra in
E3. This is obvious for the groups [3, 3]+ and [3, 4]+, because then S1, S2 must necessarily
be the standard distinguished generators of these groups, so P must be {3, 3}, {3, 4} or
{4, 3}, respectively.

The situation is slightly more complicated for [3, 5]+. First note that, because S1 is
a rotation, we can apply Wythoff’s construction, with initial vertex on the rotation axis
of S1, to obtain the dual of P . Hence, up to duality we may assume that S1 has period
p = 3 or 5, and that S2 has period q = 5. Taking an icosahedron Q := {3, 5} as a figure
of reference, we then observe that S2 is a 5-fold rotation about a vertex F0 of Q, and
that the vertices of P are necessarily those of Q. If p = 3, then S1 must rotate in a face
of Q which either contains F0 or is adjacent to a face which contains F0; accordingly we
have P = {3, 5} or {3, 5

2
}. If p = 5, then S1 must rotate about a vertex of Q adjacent

to F0. If S2 is a rotation by 2π
5

, then S1 must be a rotation by 4π
5

, or vice versa; in fact,
by Wythoff’s construction, we must have faces {5

2
} and vertex-figures {5}, or vice versa.

This yields the two star-polyhedra {5, 5
2
} and {5

2
, 5}. Hence, if T is a half-turn, then P is

regular and 〈S1, S2〉 is of index 2 in G(P ).
Now let T be a plane reflection; then its mirror must be the perpendicular bisector of

the base edge F1 of P , whose vertices are F0 and F0T . The group 〈S1, S2〉 now contains
proper and improper isometries, so its subgroup of rotations is of index 2. Since this
subgroup contains rotations of period at least 3 in more than one axis (for example,
S2 and TS2T ), it must necessarily be [3, 3]+, [3, 4]+ or [3, 5]+. Hence, we must have
〈S1, S2〉 = [3, 3], [3, 4] or [3, 5], and G(P ) = 〈S1, S2〉. We shall prove that G(P ) contains

the reflection T̂ (say) whose mirror is the affine hull of o and F1. Then T̂ must map the

base flag {F0, F1, F2} of P to an adjacent flag, so P must be regular. Note that T̂ fixes

6



            

F0 and F1, but maps F2 to an adjacent face; in fact, F2 cannot lie in the mirror of T̂ ,
because then every face, and thus P itself, would lie in a plane through o.

First consider the groups [3, 3] and [3, 5]. Then the vertices of P , including the base
vertex F0, are just those of a polyhedron Q := {3, 3}, {3, 5} or {5, 3}. If F1 is also an

edge of Q, then it is obvious that T̂ belongs to [3, 3] or [3, 5]; this already settles the case
[3, 3]. But the same also remains true if F1 connects opposite vertices in adjacent faces of
{3, 5} or {5, 3}. On the other hand, there are no further possibilities in which F1 could
join vertices of {3, 5} or {5, 3}. If Q = {5, 3}, all other choices would lead to hexagonal
vertex-figures for P , because P would have the same symmetries as Q; however, S2 would
have period 3 in this case.

For the group [3, 4], the vertices of P are just those of a polyhedron Q := {3, 4} or

{4, 3}. In either case, F1 must be an edge of Q and T̂ must belong to [3, 4]. If Q = {3, 4},
then F1 cannot join antipodal vertices of Q, because otherwise all edges of P would pass
through o. If Q = {4, 3}, we can also rule out that F1 is a diagonal of a square face,
because otherwise P would only take half the vertices of Q, yielding a smaller group
G(P ).

We now know that P is also regular if T is a plane reflection. Inspection of the eighteen
finite regular polyhedra in E3 shows that P must be the Petrial of a Platonic solid or a
Kepler-Poinsot polyhedron in this case; in fact, exactly those have groups in which T is
a plane reflection. (Recall from [18, p.192] that P and its Petrial have the same group,
but with different sets of generators, namely R0, R1, R2 and R0R2, R1, R2, respectively;
since R2 is a plane reflection, the corresponding mappings T , given by R0R2 and R0,
respectively, have the property that one is a half-turn if and only if the other is a plane
reflection.) This completes the proof. 2

The conjecture that there are also no geometrically chiral realizations of finite abstract
n-polytopes in En with n > 3 was recently confirmed in McMullen [16]. This paper also
completely enumerates the geometrically regular realizations of such polytopes.

4 General considerations for infinite polyhedra

We now investigate geometrically chiral apeirohedra, or infinite geometric polyhedra, in
E3. Throughout we assume discreteness. In particular this implies that the vertex-figures
are finite polygons.

We begin with a lemma which restricts the groups that can occur as symmetry groups.
Recall that an infinite discrete group G of isometries of E3 is said to act irreducibly if
there is no non-trivial linear subspace L of E3 which is invariant in the sense that G
permutes the translates of L. If such an invariant subspace L exists, then its orthogonal
complement L⊥ is also invariant in the same sense. In effect, the following lemma was
proved in [18, p.220].

Lemma 4.1 An irreducible infinite discrete group of isometries in E3 is a crystallographic
group. In particular, it does not contain rotations of periods other than 2, 3, 4 or 6.

Bieberbach’s theorem now tells us that such a group G contains a subgroup T (G) of
the group T3 of translations of E3, such that the quotient G/T (G) is finite; in effect, T (G)
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can be thought of as a lattice in E3 (see [1] and [20, §7.4]). If R : x 7→ xR′+ t is a general
element of G, with R′ ∈ O3 and t ∈ E3 a translation vector (we may thus think of t ∈ T3),
then the mappings R′ clearly form a subgroup G0 of O3, called the special group of G.
Thus G0 is the image of G under the homomorphism on I3, the group of isometries of E3,
whose kernel is T3 (the image is, of course, O3). In other words,

G0 = GT3/T3
∼= G/(G ∩ T3) = G/T (G)

if T (G) is the full translation subgroup of G.
In this context the following lemma is useful.

Lemma 4.2 Let R ∈ I3, R′ ∈ O3 and t ∈ E3, such that xR = xR′ + t for each x ∈ E3.
Let H be a plane through o, with orthogonal complement H⊥, and let t = t1 + t2 with
t1 ∈ H and t2 ∈ H⊥.
a) If R′ is the reflection in H, then R is the glide reflection given by the reflection in
the plane through 1

2
t2 parallel to H, followed by the translation by t1 parallel to H.

b) If R′ is a non-trivial rotation about H⊥, then R is a twist (screw motion) given by
a rotation about an axis parallel to H⊥, followed by the translation by t2 in the direction
of this axis.
c) If R′ is a rotatory reflection with reflection plane H and rotation axis H⊥, such that
R′ is not the reflection in H, then R is a rotatory reflection with a reflection plane parallel
to H and passing through 1

2
t2, and with a rotation axis parallel to H⊥.

Now let P be a geometrically chiral apeirohedron in E3 of type {p, q}, and let G(P ) act
irreducibly on E3 (that is, P is a pure realization in the sense of [18, p.126]). We assume
that the base vertex is at the origin o. Then G(P ) = 〈S1, S2〉 must be a crystallographic
group, whose special group G0(P ) is a finite subgroup of O3 generated by the images S ′1
of S1 and S ′2 of S2 under the above homomorphism on I3. The isometries S ′1 and S ′2 are
rotations or rotatory reflections of finite period at least 3. Note that S ′2 = S2, because S2

fixes the base vertex o.
If the apeirohedron P has finite faces, then each of the four isometries S1, S2, S

′
1, S

′
2

must be a rotation or rotatory reflection of finite period. Moreover, if P has finite skew
faces and skew vertex-figures, then indeed all four must be rotatory reflections. In this
case the products T = S1S2 and T ′ = S ′1S

′
2 are proper involutory isometries and thus are

half-turns.
From now on we shall assume that the generators S1 and S2 of G(P ) are rotatory

reflections of finite period. The next lemma limits the groups that can occur as special
groups to only two possibilities. Let C = {4, 3} be a cube centered at o with edges
parallel to the coordinate axes, and let K = {3, 3} be a tetrahedron inscribed in C as in
Figure 4.1. Consider the subgroup

[3, 3]∗ := [3, 3]+ ∪ (−I)[3, 3]+ (4.1)

of [3, 4] = G(C) isomorphic to A4×C2. Then [3, 3]∗ consists of the rotational symmetries
of C which map K to itself, as well as of the symmetries of C obtained from those by
adjoining −I, the negative of the identity mapping I.
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Figure 4.1: A regular tetrahedron inscribed in a cube.

Lemma 4.3 As before, let P be a geometrically chiral apeirohedron in E3 with group
G(P ) = 〈S1, S2〉, let P be discrete and pure, and let o be the base vertex of P . If S1 and
S2 are rotatory reflections of finite period (this is true if P has finite skew faces and finite
skew vertex-figures), then G0(P ) = 〈S ′1, S ′2〉 is either the group [3, 4] or its subgroup [3, 3]∗.
Moreover, P is of type {4, 6}, {6, 4} or {6, 6}.

Proof We know that G0(P ) is a finite subgroup of O3 generated by two rotatory reflec-
tions of period at least 3, whose product is of period 2. Since P is pure, we must have
rotatory reflections in G0(P ) for more than one axis. Moreover, by Lemma 4.1 we cannot
have 5-fold rotations in G0(P ). Inspection of the finite subgroups of O3 (see [10, Ch. 2])
now limits the admissible groups to only two, namely [3, 4] and [3, 3]∗.

In [3, 3]∗ we have eight rotatory reflections of period 6, each given by a rotation by ±π
3

about a diagonal of C, followed by a reflection in the plane through o perpendicular to
the diagonal (see Figure 4.1). They correspond to Petrie polygons of C, or, equivalently,
faces of K. In particular, we obtain pairs S ′1, S

′
2 of generators from pairs of adjacent faces

of K, suitably oriented to yield products of period 2. Thus P must be a polyhedron of
type {6, 6}, whose faces and vertex-figures are skew hexagons of type {6}#{ } (see [18,
p.222]). Note that T ′ = S ′1S

′
2 is a half-turn about a coordinate axis (passing through the

centers of antipodal faces of C).
In [3, 4] we have six rotatory reflections of periods 4 and eight of period 6, the latter

being those of the subgroup [3, 3]∗. Each rotatory reflection of period 4 is given by a
rotation by ±π

2
about a coordinate axis, followed by a reflection in the plane through

o perpendicular to the axis. Since the product of the two generators S ′1, S
′
2 must be of

period 2, one generator must be of period 4 and the other of period 6. In fact, given
a rotatory reflection of period 6 in [3, 4], exactly three rotatory reflections of period 4
will yield a product with it of period 2, one for each coordinate axis. Now P must be a
polyhedron of type {4, 6} or {6, 4}, whose faces and vertex-figures are skew quadrilaterals
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{4}#{ } or skew hexagons {6}#{ }, respectively. Now T ′ = S ′1S
′
2 is a half-turn about the

midpoint of an edge of C. 2

Next we investigate translations in G(P ). Once again, let P be a geometrically chiral
apeirohedron with base vertex o, and let G(P ) be generated by rotatory reflections S1

and S2. We shall concentrate on the types {4, 6} and {6, 6}, and shall later derive the
type {6, 4} by duality. Then S2 has period 6, and hence

S3
2 = −I ∈ G(P ).

Now let R := S3
2T , and let R′ := S3

2T
′ = −T ′ be its image in G0(P ); since T ′ is a half-turn,

R′ is a plane reflection. The base edge F1 with vertices o and v := oT is perpendicular to
the axes of T and T ′, and thus lies in the reflection plane of R′. Moreover, oR = oS3

2T = v,
and hence R is the glide reflection given by

xR = xR′ + v (x ∈ E3).

This gives us the translation R2 in G(P ) by the vector 2v. But then the conjugates of
R2 by elements of 〈S2〉 will yield all translations by vectors 2w, with w in the hexagonal
vertex-figure of P at o. In particular, if we identify a translation with its translation
vector, we see that 2Λ0, with

Λ0 := 〈w | w a vertex of P adjacent to o〉Z, (4.2)

is a subgroup of G(P ). Note that Λ0 will generally be a lattice spanned by any three
independent vectors in the (generally skew) vertex-figure at o. However, there are more
translations in G(P ), as the following general considerations explain.

Let P be a realization of an abstract n-polytope in Euclidean d-space Ed (see [18,
Section 5A]), and let o be a vertex of P . In our applications, n = d = 3. Now define the
edge-module Λ of P by

Λ := 〈x− y | x, y adjacent vertices of P 〉Z. (4.3)

Then Λ is the Z-module generated by the “oriented” edges of P ; alternatively, if we call
the set of vectors {x − y | x a vertex adjacent to y} the vertex-star of P at its vertex y,
then Λ is the Z-module generated by all the vertex-stars of P . If V denotes the vertex-set
of P , then

V ⊂ Λ,

because P is connected. In fact, if x is a vertex of P , then there is a chain of vertices
o = x0, x1, . . . , xk = x of P such that consecutive vertices are adjacent; then

x =
k∑

i=1

(xi − xi−1) ∈ Λ

because each summand is in Λ.
More can be said if the realization P is vertex-transitive; in particular, this applies if

P is chiral or regular. If G0(P ) is the special group of G(P ), then

Λ = 〈xR′ | R′ ∈ G0(P ), x ∈ V, x adjacent to o〉Z,

10



            

and Λ is invariant under G0(P ). (In fact, under an element R ∈ G(P ) direction vectors
are changed by R′.) In our applications, P will be centrally symmetric with respect to o,
and −I will be an element of G(P ) contained in the group of the vertex-figure at o. In
this context we then have

2Λ ⊂ V ⊂ Λ, (4.4)

such that V is the union of certain cosets of Λ modulo 2Λ. In fact, if y is a vertex adjacent
to o, and if y = oR with R ∈ G(P ), then the translation by 2y is simply (−I)R−1(−I)R
and hence belongs to G(P ). The conjugates of such translations by elements in G(P )
then yield all the generating translations of 2Λ. Therefore,

2Λ 6 G(P ). (4.5)

Its orbit of o, which we identify with 2Λ, then is a subset of V . But 2Λ yields translations,
so V must be the union of certain cosets of Λ modulo 2Λ. Observe also that, in effect, we
have proved that “twice an oriented edge” (pointing from a vertex to its neighbor) will
always determine a translation in G(P ).

We mention in passing that edge modules are particular examples of diagonal modules .
The diagonals (pairs of vertices) of a realization P fall into diagonal classes , consisting
of equivalent diagonals modulo G(P ). With any diagonal class of P is associated the Z-
module spanned by the diagonals (the vectors x−y) in this class. Every diagonal module
of P is a submodule of the edge module.

In the next sections we shall describe all chiral polyhedra of types {4, 6} and {6, 6}
with a group generated by rotatory reflections. In particular, this will yield the polyhedra
with skew faces and skew vertex-figures. We shall construct these polyhedra from their
vertex-sets and their edge-modules by identifying the vectors which point from a given
vertex to the adjacent vertices. The pure regular polyhedra of types {4, 6} and {6, 6} with
finite faces all have their generators S1, S2 given by rotatory reflections (see [18, p.225]),
so they also naturally arise in this context.

In Part II of the paper we shall prove that a polyhedron P with reducible group G(P )
cannot be chiral; that is, a chiral polyhedron in E3 cannot be a blend ([18, p.125]). This
then settles the enumeration of polyhedra with finite skew faces and vertex-figures. We
shall also see that a chiral polyhedron cannot be planar.

5 The type {6, 6}
In this section, we derive the chiral polyhedra of type{6, 6} and describe their geometry
and combinatorics in detail.

For a polyhedron P of type {6, 6} we must begin with the group [3, 3]∗ and realize it as
the special group of a suitable group G, the group of P . Once again we pick o as the base
vertex of P ; its orbit under G will then be the vertex-set V (P ) of P . The six faces which
contain o must correspond to six rotatory reflections of period 6; their reflection planes
are parallel in pairs, with one pair for each pair of antipodal faces which contain o. If
we move these planes into o and include the mirror of the reflection component of S2, we
obtain four planes each perpendicular to one of four diagonals of a cube (see Figure 4.1).

11



         

The following lemma implies that there is essentially only one way in which the group
G and its generators may be taken to give a chiral polyhedron.

Lemma 5.1 Let S2(= S ′2) be a rotatory reflection of period 6 in [3, 3]∗. Then there are
precisely three rotatory reflections S ′1 of period 6 in [3, 3]∗ such that their product S ′1S2 is
of period 2. If S ′1 is one of them, then the other two are S−1

2 S ′1S2 and S−2
2 S ′1S

2
2 , and their

products with S2 are S−1
2 (S ′1S2)S2 and S−2

2 (S ′1S2)S2
2 , respectively.

Proof Let H := [3, 3]∗ = [3, 3]+ ∪ (−I)[3, 3]+. Each rotatory reflection S of period 6 in
H is of the form S = −R with R ∈ [3, 3]+(∼= A4). If S ′1 = −R1 and S2 = −R2 (say),
then S ′1S2 = R1R2. It is easy to see that given R2 there are just three possible choices for
R1 such that R1R2 is of period 2. If R1 is one of them, then the other two are R−1

2 R1R2

and R−2
2 R1R

2
2. Accordingly, we obtain S−1

2 S ′1S2 and S−2
2 S ′1S

2
2 from S ′1. Note that, since

S3
2 = −I, we have S−j2 S ′1S

j
2 = S

−(j+3)
2 S ′1S

j+3
2 for j = 0, 1, 2. 2

Since the four diagonals of the cube are equivalent under the group [3, 3]∗, and there
are just three equivalent ways to pick the first generator for [3, 3]∗ once the second is
chosen, we may confine ourselves to some very specific choices for S2 and T = S1S2.
There is of course the further possibility to reverse the orientation of the generator S2 and
replace it by its inverse S−1

2 . However, as we shall see, this just replaces the polyhedron
P by its enantiomorphic image (with an adjacent base flag).

Thus we take the group G = G(a, b) generated by

S2: x 7→ −(ξ3, ξ1, ξ2),
T : x 7→ (−ξ1, ξ2,−ξ3) + (a, 0, b),

(5.1)

described in terms of x = (ξ1, ξ2, ξ3), and with real parameters a and b, not both zero.
Since S1 = TS−1

2 , we then have

S1: x 7→ (−ξ2, ξ3, ξ1) + (0,−b,−a). (5.2)

When necessary we will indicate the parameters a and b more explicitly and write T =
T (a, b), S1 = S1(a, b), and so on; note that S2 does not depend on a and b. The polyhedron
P = P (a, b) now is obtained by Wythoff’s construction applied to G. In particular,
v := oT = (a, 0, b) is the vertex in the base edge F1 distinct from o. Note that F1 lies
in the ξ1ξ3-plane and is perpendicular to the rotation axes of T , which is parallel to the
ξ2-axis and passes through 1

2
v.

Before we move on, let us note that

P (−a,−b) = −P (a, b) = P (a, b) (5.3)

for all a and b. In fact, −I = S3
2 ∈ G, and conjugation by −I maps the generators T, S2

of G = G(a, b) to those of G(−a,−b).
The orbit V0 of v under 〈S2〉 is given by

V0 := {(a, 0, b), (−b,−a, 0), (0, b, a), (−a, 0,−b), (b, a, 0), (0,−b,−a)}; (5.4)
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its elements are the vertices in the vertex-figure at o and are listed in cyclic order. We
shall think of them as a set of six vectors, called the vertex-star at the vertex o. Similarly,
V2 := V0T

′ = V0T − v is the vertex-star at the vertex v and is given by

V2 = {(−a, 0,−b), (b,−a, 0), (0, b,−a), (a, 0, b), (−b, a, 0), (0,−b, a)}. (5.5)

The vertex-stars at the other vertices adjacent to o can be computed using the half-turns

T1 := S−2
2 TS2

2 : x 7→ (ξ1,−ξ2,−ξ3) + (0, b, a),
T3 := S−4

2 TS4
2 : x 7→ (−ξ1,−ξ2, ξ3) + (b, a, 0).

(5.6)

In particular, the vertex-stars V1 := V0T1 − (0, b, a) at (0, b, a) and V3 := V0T3 − (b, a, 0)
at (b, a, 0) are given by

V1 = {(a, 0,−b), (−b, a, 0), (0,−b,−a), (−a, 0, b), (b,−a, 0), (0, b, a)},
V3 = {(−a, 0, b), (b, a, 0), (0,−b, a), (a, 0,−b), (−b,−a, 0), (0, b,−a)}, (5.7)

respectively. It is convenient to also set T2 := T , so that V2 = V0T2 − (a, 0, b).
Alternatively we can obtain the vertex-star at a vertex w := vSj2 as V2S

j
2, for j =

0, . . . , 5. Since Vi = −Vi for each i, this also shows that the vertex-stars at ±w are the
same. In fact, the latter should not come as a surprise, because the translation by 2w is
an element in G, namely S−j2 (S3

2T )2Sj2 with j as above (see Section 4). Note also that
|Vi ∩ Vj| = 2 for all i, j with i 6= j, provided a, b 6= 0.

Before we move on, let us recall that the base face F2 of P is determined by the orbit
of o under S1. If we identify a face with its vertex-set, then F2 is given by

F2 = {(0, 0, 0), (0,−b,−a), (b,−a− b,−a), (a+ b,−a− b,−a+ b), (a+ b,−a, b), (a, 0, b)},
(5.8)

where the vertices are listed in cyclic order. The other faces with vertex o are the images
of F2 under the non-trivial elements of 〈S2〉. Note that the faces are skew hexagons of
type {6}#{ } (see [18, p.222]); their vertices are among the vertices of a hexagonal prism.
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Figure 5.1: The points of V for a = 1 and b = 3.
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Next consider the set of (generally twelve) vectors

V := V0 ∪ V1 ∪ V2 ∪ V3 = {(±a, 0,±b), (±b,±a, 0), (0,±b,±a)}. (5.9)

The corresponding points are the vertices of a convex 3-polytope, which is combinatorially
equivalent to an icosahedron if a, b 6= 0 and a 6= ±b, or is a cuboctahedron if a = ±b 6= 0,
or an octahedron if a = 0 or b = 0. Figure 5.1 shows the twelve points of V for a = 1 and
b = 3. The fat lines indicate the five triangles meeting at a vertex of the convex polytope
with vertex set V . The cubes only serve as figures of reference.

Note that V is invariant under S2 and T ′, and thus under the special group [3, 3]∗ of
G. In fact,

V0S2 = V0, V1S2 = V2, V2S2 = V3, V3S2 = V1, V0T
′ = V2, V1T

′ = V3. (5.10)

In particular, since the vertex-stars at the vertices of P are the images of the vertex-star
at o under the special group, (5.10) implies that V0, V1, V2, V3 are the only vertex-stars
which can occur in P . Moreover, (5.10) gives a permutation representation on the indices
0, 1, 2, 3 of the vertex-stars; in particular,

S2 = (1 2 3), T ′ = (0 2) (1 3), S ′1 = (0 1 2), (5.11)

and these permutations generate the alternating group A4 (= [3, 3]∗/{±I}).
Observe that, if a = 0 or b = 0, the vertex-stars Vi all coincide as sets, but not as

sets equipped with the cyclic ordering of their vectors as in (5.4), (5.5) and (5.7); these
orderings correspond to the Petrie polygons of the octahedron.

Figure 5.2 shows the polyhedron P (1, 0) obtained for the parameters a = 1 and b = 0.
Its skew hexagonal faces are Petrie polygons of cubes in the cubical tessellation {4, 3, 4}.
The six faces which contain o are represented by fat lines, dotted lines or circled lines,
such that opposite faces are indicated in the same way. The vertex-figure of P (1, 0) at o
is also a skew hexagon given by a Petrie polygon of the vertex-figure {3, 4} of {4, 3, 4}.
Note that the edges of P (1, 0) are edges of {4, 3, 4}, but this is generally not the case for
the other polyhedra.

Let Λ := Z[V ] denote the Z-module spanned by the vectors in V ; this is the edge-
module of P . Then it follows from the above considerations that each vector in 2Λ
determines a translation in G. More precisely, the generating translations by vectors in
2V are either conjugates of (S3

2T )2 by elements in 〈S2〉, or their conjugates by T1, T2 or
T3; the former correspond to the vectors in 2V0, the latter to those in 2V1, 2V2 or 2V3,
respectively. In general, 2Λ will not be the full translation subgroup of G (see Lemma 5.5).

We now discuss discreteness. Since 2Λ is a subgroup of G, it maps vertices to vertices;
it follows that 2Λ itself, being its own orbit of o, is a subset of the vertex-set (see (4.4)).

Lemma 5.2 G is discrete if and only if a or b is zero or a and b are rational multiples
of each other.

Proof If G is discrete, then Λ must also be discrete. We have

2(a, 0, 0) = (a, 0, b) + (a, 0,−b) ∈ Λ,
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Figure 5.2: The six faces of the polyhedron P (1, 0) containing o.

and, similarly, 2(b, 0, 0) ∈ Λ; hence 2(na + mb, 0, 0) ∈ Λ for all integers n and m. But
the subset {na + mb | n,m ∈ Z} of R is dense in R, unless a or b is zero or a and b are
rational multiples of each other. This proves one direction.

Conversely, if a = k
l
b with integers k, l such that (k, l) = 1, then (a, 0, b) = b

l
(k, 0, l),

and we can rescale to obtain an equivalent group with parameters k and l. This group is
a subgroup of [4, 3, 4], the symmetry group of the cubical tessellation with vertex-set Z3;
hence it is discrete. Similarly, if a or b is zero, we can rescale to a group with parameters
0 and 1, so once again we have a subgroup of [4, 3, 4]. 2

In the present context we are mainly interested in discrete groups and discrete poly-
hedra. However, the reader should be aware that there are interesting chiral polyhedra
which are non-discrete. For example, if a = 1 and b = τ , the golden ratio, then the
polyhedron in Figure 5.1 is a regular icosahedron and Λ is the Z−module spanned by its
vertices. We remark that similar Z-modules have occurred in the context of icosahedral
quasicrystals (see [3]).

Then, up to similarity, we can take a and b to be integers with (a, b) = 1. If nothing
is said to the contrary, we explicitly allow a = 0 or b = 0; in this case, b = ±1 or a = ±1,
respectively. Now G is a subgroup of [4, 3, 4] and each vertex is in Z3, the vertex-set of
{4, 3, 4}. In fact, we have

2Z3 ⊂ Λ ⊂ Z3. (5.12)

If a = 0 or b = 0, then Λ = Z3. To prove the first inclusion in general, choose integers n
and m with na+mb = 1 and argue as in the proof of Lemma 5.2; this yields (2, 0, 0) ∈ Λ,
and then by symmetry also (0, 2, 0), (0, 0, 2) ∈ Λ.
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The further properties of the edge-module Λ depend on the parity of a and b. Let s be
a positive integer, let k = 1, 2 or 3, and let s := (sk, 03−k), the vector with k components
s and 3 − k components 0. Following [18, p.166], we write Λs for the sublattice of Z3

generated by s and its images under permutation and changes of sign of coordinates.
Observe that

Λs = sΛ(1k,03−k),

when s = (sk, 03−k). Of course, Λ(1,0,0) is just the cubic lattice Z3. The lattice Λ(1,1,0)

is the face-centered cubic lattice (the root lattice D3) and consists of all integral vec-
tors whose coordinate sum is even (see [4]); a basis (with determinant 2) is given by
(1, 1, 0), (−1, 1, 0), (0,−1, 1) . The lattice Λ(1,1,1) is the body-centered cubic lattice, with a
basis (with determinant 4) given by (2, 0, 0), (0, 2, 0), (1, 1, 1).

Lemma 5.3 As before, let Λ be the lattice spanned by V . Then
a) Λ = Λ(1,0,0) = Z3 if a or b is even;
b) Λ = Λ(1,1,0) if a and b are odd.

Proof We know that 2Z3 ⊂ Λ. Since (a, b) = 1, the parameters a and b cannot both be
even. If a is odd and b is even (say), the generator (a, 0, b) of Λ is equivalent to (1, 0, 0)
modulo 2Z3; hence (1, 0, 0) ∈ Λ, and then also (0, 1, 0), (0, 0, 1) ∈ Λ. This proves the
first part. If both a and b are odd, we similarly obtain (1, 0, 1) ∈ Λ, and hence also
(1, 1, 0), (0, 1, 1) ∈ Λ; but the coordinate sum of each generator, and thus of each element,
of Λ is even, so this also proves the second part. 2

Next we determine the vertex-set V (P ) of the polyhedron P , that is, the orbit of o
under G. From (4.4) we know that

2Λ ⊂ V (P ) ⊂ Λ. (5.13)

More precisely, we have

Lemma 5.4 The vertex-set V (P ) of the polyhedron P is given by
a) V (P ) = Z3 (= Λ) if a or b is even;
b) V (P ) = Λ(1,1,0) (= Λ) if a and b are odd and a+ b ≡ 0 (mod 4);

c) V (P ) =
⋃3
i=0 (xi + 2Λ(1,1,0)), with x0 := (0, 0, 0), x1 := (0, 1, 1), x2 := (1, 0, 1) and

x3 := (1, 1, 0), if a and b are odd and a+ b 6≡ 0 (mod 4).

Proof We generate new vertices as images of o under G and use the fact that 2Λ is both
a subgroup of G and a subset of V (P ).

If a is odd and b is even (say), the vertices (a, 0, b), (a+b,−a, b) and (a+b,−a−b,−a+b)
of F2 are equivalent to (1, 0, 0), (1, 1, 0) or (1, 1, 1) modulo 2Λ = 2Z3, respectively, and
hence the latter are vertices. From those we obtain (0, 1, 0), (0, 0, 1), (1, 0, 1) and (0, 1, 1)
as vertices by applying S2 and once again reducing modulo 2Λ. It follows that each coset
of Λ modulo 2Λ is represented by a vertex, and hence V (P ) = Λ.

If a and b are odd, then 4Z3 ⊂ 2Λ(1,1,0) = 2Λ. If a+ b ≡ 0 (mod 4), then (a, 0, b) and
(a+b,−a, b) are equivalent to (1, 0, 1) or (0, 1,−1) modulo 2Λ, respectively; applying S2 to
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them now yields all points (±1,±1, 0), (±1, 0,±1) and (0,±1,±1) as vertices. Moreover,
we also obtain (2, 0, 0) as vertex from (a+ b,−a− b,−a+ b) in F2 modulo 2Λ. But then
each coset of Λ modulo 2Λ is represented by a vertex, and hence Λ itself is the vertex-set.

Finally, let a and b be odd and a + b 6≡ 0 (mod 4). Now (a, 0, b) is equivalent to
x2 = (1, 0, 1), and under S2 we also obtain x1 = (0, 1, 1) and x3 = (1, 1, 0) as vertices.
This proves that each coset xi + 2Λ, with i = 0, 1, 2, 3 (and x0 = o), is a subset of V (P ).
But these cosets are permuted by the generators S2 and T , so G must map a vertex
contained in their union U (say) to a vertex which is again contained in U . Since the base
vertex o is also in U , and G is transitive on the vertices, this proves that V (P ) = U . 2

We now determine the full translation subgroup T (G) of G. We already know that it
must contain 2Λ.

Lemma 5.5 The subgroup T (G) of all translations in G is given by
a) Λ(1,1,1) if a or b is even;
b) 2Z3 if a and b are odd and a+ b ≡ 0 (mod 4);
c) 2Λ(1,1,0) = 2Λ if a and b are odd and a+ b 6≡ 0 (mod 4);
In particular, T (G) contains 2Λ as a subgroup of index 2, 2 or 1, respectively.

Proof In general we have additional translations arising from products like T2T1T3, with
T2 = T as in (5.1) and T1, T3 as in (5.6). In fact, T2T1T3 is the translation by (−a+ b, a−
b, a− b), since the sign changes in the three linear parts cancel out.

If a is odd and b is even (say), then this vector is equivalent to (1, 1, 1) modulo
2Λ = 2Z3, hence the translation by (1, 1, 1) is also in G. But the lattice Λ(1,1,1) is generated
by 2Z3 and (1, 1, 1) and thus yields translations in G.

If a and b are odd and a+ b ≡ 0 (mod 4), the vector (−a+ b, a− b, a− b) is equivalent
to (2, 0, 0) modulo 2Λ = 2Λ(1,1,0). But 2Λ(1,1,0) and (2, 0, 0) generate 2Z3, so now the latter
yields translations in G.

If a and b are odd and a + b 6≡ 0 (mod 4), there are no translations in G other than
those in 2Λ = 2Λ(1,1,0). The proof is rather tedious, so we only sketch it here. The
arguments also extend to the previous two cases and will show that the full translation
subgroup of G cannot be larger than Λ(1,1,1) or 2Z3, respectively.

Since G = 〈T, S2〉, we have G = N · 〈S2〉 (as a product of subgroups) with N :=

〈S−j2 TSj2 | j = 0, . . . , 5〉. Define T̂j := S−j2 TSj2; then T̂0 = T , T̂2 = T1, T̂4 = T3, and

T̂j+3 = (−I)T̂j(−I) for each j. The translation part of the generator T̂j of N belongs to

V0, and the linear part of T̂j involves two sign changes but no permutation of coordinates.
Then a translation in G must necessarily belong to N ; in fact, in the special group, the
images of a translation in G or an element of N must involve an even number of sign
changes but no permutation of coordinates, whereas an element in 〈S2〉 either involves an
odd number of sign changes or a permutation of coordinates.

Now let R be any element of N , and let R = T̂j1 . . . T̂jn with distinct j1, . . . , jn. If

j2 ≡ j1 +3 (mod 6), then T̂j1T̂j2 is a translation by a vector in 2V0 and thus belongs to 2Λ.

If the first three generators T̂j1 , T̂j2 , T̂j3 are such that they involve the three sign changes
(−,−,+), (−,+,−), (+,−,−) (in some order), then their product also is a translation. If
j2 6≡ j1 + 3 (mod 6), then this certainly can be achieved by inserting a trivial subproduct
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T̂jT̂j between the second and third term, and this would not increase n. Therefore, by
applying a combination of these two operations, we can rewrite R as a product involving
only translations and at most two additional generators T̂j. Clearly, no additional factor

T̂j can occur if R itself is a translation.
It remains to identify the translations obtained as products of three generators involv-

ing all three sign changes. In a product of this kind, if we replace one of the factors T̂j
by T̂j+3, then the new translation vector is equivalent to the old modulo 2Λ. The same
remains true if we cyclically permute the factors in the product (by conjugation). This,

then, reduces the consideration to the two products T̂0T̂1T̂2 and T̂2T̂1T̂0, the latter being
equivalent to the product T2T1T3 modulo 2Λ discussed earlier, and the former being its
inverse.

It follows that the structure of the full translation subgroup of G is entirely determined
by the translation vector (−a + b, a − b, a − b) of T2T1T3 modulo 2Λ. In particular, this
completes the proofs for the first part and second part. Finally, for the third part observe
that (−a+ b, a− b, a− b) itself belongs to 2Λ if a and b are odd and a+ b 6≡ 0 (mod 4),
so there are no translations in addition to those of 2Λ.

Note that the proofs gives more. In fact, the translation subgroup of G is a subgroup
of N of index 4, and I, T1, T2, T3 is a system of coset representatives in N (and the quotient
group is C2 × C2). Moreover, G = N · 〈S2〉 is a semi-direct product. 2

Now that we know the vertex-set and the translation group for given parameters a
and b, we can give a direct description of the vertex-figure of the polyhedron P at any
given vertex x. This is done in Theorem 5.8. First consider the canonical mapping

π : V (P ) 7→ V (P )/T (G)
x 7→ x+ T (G).

In the case when V (P ) is a lattice (that is, when a or b is even, or a or b is odd and
a+ b ≡ 0 (mod 4)), then T (G) is a sublattice of V (P ) of index 4, π is a homomorphism,
and V (P )/T (G) is isomorphic to C2 × C2. However, when V (P ) itself is not a lattice
(that is, when a and b are odd and a + b 6≡ 0 (mod 4)), then V (P ) is the union of four
cosets of Λ(1,1,0) modulo T (G) (see Lemmas 5.4 and 5.5); these cosets are the elements of
a set, again denoted by V (P )/T (G).

We now color each vertex x of P with one of four elements of

C := {0, 1, 2, 3},

the set of colors ; the color of x will be the suffix of the vertex-star at x. We take the
mapping

c′ : V (P )/T (G) 7→ C

which associates with a coset x+T (G) a label i ∈ C as specified in Table 5.1 for its coset
representative, and then consider the induced coloring mapping

c : V (P ) 7→ C

defined by (x)c := (x + T (G))c′ = (xπ)c′. We call (x)c the color of the vertex x. Thus
the color of a vertex x is obtained by reducing x modulo T (G), and then assigning to x
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the color which is associated with its coset modulo T (G) according to Table 5.1. Note
that the vectors in the columns of Table 5.1 give a complete set of coset representatives
for the cosets in V (P )/T (G); they represent the vertices

o, oT1 = (0, b, a), oT2 = (a, 0, b), oT3 = (b, a, 0) (5.14)

of P , in this order (see (5.1) and (5.6)). If a or b is even, then, in effect, we are coloring the
vertices of a cube with colors 0, 1, 2, 3, such that antipodal vertices receive the same color,
and are extending this coloring to a coloring of the vertices of the cubical tessellation,
such that antipodal vertices of a cube always receive the same color.

When V (P ) is a lattice, it is convenient to make C into a group such that c′ becomes
an isomorphism and c a homomorphism between groups. This is done by defining addition
by

0⊕ i := i if i = 0, 1, 2, 3,
i⊕ j := k if {i, j, k} = {1, 2, 3}.

Then C is isomorphic to C2 × C2.

a odd, a even, a, b odd, a, b odd,
i b even b odd a+ b ≡ 0 (mod 4) a+ b 6≡ 0 (mod 4)
0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
1 (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 1, 1)
2 (1, 0, 0) (0, 0, 1) (1, 0, 1) (1, 0, 1)
3 (0, 1, 0) (1, 0, 0) (1, 1, 0) (1, 1, 0)

Table 5.1: The colors i assigned to the cosets in V (P )/T (G).

Note that G acts on the four cosets in V (P )/T (G) as an alternating group A4. In
fact, since S2 and T ′ (the linear part of T ) map T (G) onto itself, the generators S2 and
T of G map cosets of V (P ) modulo T (G) to cosets of V (P ) modulo T (G). It follows that
G also acts as a permutation group on C. In particular, S2 = (1 2 3) and T = (0 2)(1 3),
as permutations on C.

For the proof of Theorem 5.8 we require the following two lemmas about the vectors
in the intersections Vi ∩ Vj of two vertex-stars. The first deals with the case when V (P )
is a lattice, and the second with the case when V (P ) is not a lattice. The proof of either
lemma does not extend to the other.

Lemma 5.6 Let a or b be even and non-zero, or let a and b be odd and a+b ≡ 0 (mod 4).
a) If y ∈ Vi ∩ Vj for some i, j = 0, 1, 2, 3 with i 6= j, then (y)c = i⊕ j.
b) If y ∈ Vi and k := (y)c ( 6= 0), then y ∈ Vj with j = i⊕ k.

Proof Every set Vi ∩ Vj consists of one pair of antipodal vectors for each i 6= j (we have
excluded the case that a or b is zero). Reducing a vector y ∈ Vi ∩ Vj modulo T (G), and
then applying c′, yields the color (y)c of y. In the cases we are considering, y is a vertex of
P , so (y)c is defined. A simple case-by-case inspection then shows that indeed (y)c = i⊕j
in each case. This proves the first part.
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None of the vectors in a vertex-star is equivalent to o modulo T (G). So in the second
part we must have k 6= 0. But y ∈ Vj for some j, and k = (y)c = i⊕ j by the first part.
Hence j = i⊕ k, as required. 2

The coset representatives x0 = (0, 0, 0), x1 = (0, 1, 1), x2 = (1, 0, 1) and x3 = (1, 1, 0)
occurring in Lemma 5.4c allow a simple description of the vertex-stars Vl modulo 2Λ(1,1,0),
for l = 0, 1, 2, 3. First note that the sums xi + xj of two representatives will generally not
represent elements in V (P ).

Lemma 5.7 Let a and b be odd and a+ b 6≡ 0 (mod 4), and let l = 0, 1, 2 or 3.

a) Then V̂l := {xl + xi, xl + xj, xl + xk}, with {i, j, k, l} = {0, 1, 2, 3}, is a system of
representatives for the vectors in Vl modulo 2Λ(1,1,0).
b) If y ∈ Vl is equivalent to xl + xm modulo 2Λ(1,1,0) for some m 6= l, then also y ∈ Vm.

Proof A simple computation shows that, modulo 2Λ(1,1,0), the set xl + Vl is represented

by {xi, xj, xk}, with i, j, k as above. Hence Vl itself is represented by V̂l. This proves the
first part.

We know that Vl ∩ Vn consists of one pair of antipodal vectors for each n 6= l. If
y ∈ Vl ∩ Vn, then y must be equivalent to xl + xr and xn + xs for some r and s with r 6= l
and s 6= n. An inspection of the possible sums now shows that indeed {l, r} = {n, s}, and
thus r = n and s = l. Therefore, if y ∈ Vl and y is equivalent to xl + xm for some m 6= l,
then necessarily y ∈ Vm (and y 6∈ Vp for p 6= l,m). 2

We now have the following alternative description of the edge graph of P .

Theorem 5.8 Let a and b be integers with (a, b) = 1. Let P be the polyhedron associated
with G, and let V (P ) and T (G) be as in Lemmas 5.4 and 5.5, respectively. If x is a vertex
of P , then x+V(x)c is the set of vertices of P adjacent to x; that is, the vertex-star at x is
given by V(x)c. Moreover, P has no multiple vertices; that is, if x ∈ V (P ) and y ∈ V(x)c,
then −y ∈ V(x+y)c.

Proof There are only four orbits of vertices of P under T (G), namely the four cosets in
V (P )/T (G), with coset representatives as in Table 5.1. Any two vertices of P belonging to
the same orbit have the same vertex-stars, since they are equivalent under a translation;
in particular, a vertex x of P has the same vertex-star as its coset representative modulo
T (G). The coset representatives of Table 5.1 are representing the four vertices in (5.14)
modulo T (G), and hence their vertex-stars are V0, V1, V2 and V3, respectively.

It remains to show that the assignment of vertex-stars to vertices is indeed consistent
and produces only simple vertices each of valency 6; that is, if x is a vertex and y ∈ V(x)c,
then x + y is again a vertex and −y ∈ V(x+y)c (so that we have x = (x + y) + (−y) ∈
(x+ y) + V(x+y)c). Now Lemmas 5.6 and 5.7 come in.

First, let a or b be even and non-zero, or let a and b be odd and a + b ≡ 0 (mod 4).
Let x ∈ V (P ) with (x)c = i, and let y ∈ Vi with (y)c = k. Then x+ y is a vertex because
V (P ) = Λ, and y ∈ Vj with j = i⊕k by Lemma 5.6b. Now c is a homomorphism between
groups and thus (x+ y)c = (x)c⊕ (y)c = i⊕ k = j. It follows that y ∈ V(x+y)c, and hence
also that −y ∈ V(x+y)c.
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If a = 0 or b = 0, then V (P ) = Z3 = Λ and V0 = V1 = V2 = V3 (as sets). Now the
statement holds trivially because V(x+y)c = V(x)c.

Finally, let a and b be odd and a + b 6≡ 0 (mod 4). Let x ∈ V (P ) with (x)c = i.

Then Lemma 5.7a shows that x + y is equivalent to one vector in xi + V̂i = {xj | j 6= i}
modulo T (G), so must belong to V (P ). If x+ y is equivalent to xj (say) with j 6= i, then
(x + y)c = j and y is equivalent to xi + xj. Now Lemma 5.7b applies and proves that
y ∈ Vj = V(x+y)c. Therefore, −y ∈ V(x+y)c, as required. 2

We can rephrase the theorem (and its proof) to obtain a new definition of the edge
graph of P which is independent of G. Let a and b be integers with (a, b) = 1, and let Va,b
and Ta,b denote the vertex-set and the translation group associated with a and b (that is,
the sets V (P ) and T (G) of Lemmas 5.4 and 5.5), respectively. Take Va,b as the vertex-set
of the polyhedron. Then color each vertex x ∈ Va,b by (c)x as above, and assign to x the
set V(x)c as its vertex-star. This can be done in a consistent way. The resulting adjacency
relationships between vertices now yield the edge graph of the polyhedron.

Next we investigate the faces of the polyhedron. In particular, we shall be interested
in cyclic sequences of six vectors in V = V0 ∪ . . . ∪ V3. These sequences will describe how
we can move around the faces of P , going from one vertex to the next. We begin with a
lemma about the vertex-stars.

Lemma 5.9 Let a, b 6= 0, let i = 0, 1, 2 or 3, and let Vi = {±x,±y,±z} (say). Let ẑ
be obtained from z by changing one sign of a non-zero coordinate of z (it doesn’t matter
which one). If u := ẑ, then
i) {x, y, u} 6⊂ Vl for l = 0, 1, 2, 3;
ii) x, y ∈ Vi, y, u ∈ Vj and u, x ∈ Vk, for some j, k with i, j, k mutually distinct;
iii) x ∈ Vi ∩ Vk, y ∈ Vi ∩ Vj and u ∈ Vj ∩ Vk, for some j, k with i, j, k mutually distinct.
Moreover, if a vector u satisfies the first two properties for some j and k, then necessarily
u = ẑ.

Proof This is easily verified by inspection. Note that any two vertex-stars intersect in a
pair of vectors, and that each such pair determines the two vertex-stars which contain it.
Clearly, either one of the second or third property of the lemma follows from the other.
For the proof of the last statement observe that, if the two pairs ±x and ±y of vectors in
Vi are also known to belong to Vk or Vj, respectively, then the third pair in Vi is obtained
from the unique pair of vectors in Vj ∩ Vk by changing one sign of a non-zero component.

2

Let a, b 6= 0. A sequence of vectors ζ := (z1, . . . , z6) in V is said to be admissible if
the following properties hold, with indices considered modulo 6:

(i) zi+3 = −zi and zi · zi+1 = ab (scalar product), for i = 1, . . . 6;
(ii) z1, z2 ∈ Vi, z2, z3 ∈ Vj and z3,−z1 ∈ Vk, for some i, j, k,

mutually distinct.
(5.15)

Clearly, any cyclic permutation of the vectors in an admissible sequence gives again an
admissible sequence. The same remains true if their order is reversed and each vector is
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replaced by its negative. Note that the second condition implies that the vectors z1, z2, z3

in ζ cannot all be contained in one vertex-star.
With any face F of P we can associate a sequence ζ(F ) = (z1, . . . , z6) in V , defined

up to a cyclic permutation and the reversal of order and signs. We will say that ζ(F ) is
associated with F . More precisely, if F = {y1, . . . , y6} (say), with vertices y1, . . . , y6 in
cyclic order, we set zi := yi+1− yi for i = 1, . . . , 6. Then we can recover F from ζ(F ) and
y := y1, that is,

F = {y, y + z1, y + z1 + z2, . . . , y + z1 + . . .+ z5} =: y + {o, z1, z1 + z2, . . . , z1 + . . .+ z5}.

Notice that {o, z1, z1 + z2, . . . , z1 + . . .+ z5} is the vertex-set of a (generally skew) regular
hexagon. In particular, zi+3 = −zi for each i, and

∑6
i=1 zi = o. The center c(F ) of F is

the centroid of the vertex-set of F and is given by

c(F ) := y + 1
2
(z1 + z2 + z3).

If F is the base face F2 given by (5.8), then ζ(F ) is easily seen to be admissible. In
fact, we have

Theorem 5.10 Let a and b be non-zero integers with (a, b) = 1. The admissible sequences
in V are precisely the sequences ζ(F ) associated with the faces F of the polyhedron P . In
particular, if ζ = (z1, . . . , z6) is an admissible sequence with indices i, j, k as in (5.15),
and if y is a vertex of P colored k, then F := y + {o, z1, z1 + z2, . . . , z1 + . . . + z5} is the
vertex-set of a face of P , and ζ = ζ(F ).

Proof Each element of the special group of G permutes the four vertex-stars Vi as well
as the four cosets (colors) of vertices of P , so takes admissible sequences to admissible
sequences. We already know that ζ(F2) is admissible; if the vertices of F2 are taken
in the order in which they occur in (5.8), then the corresponding indices are given by
(i, j, k) = (1, 2, 0). Now each face F of P is an image of F2 under some element R in G.
Hence, if R′ denotes the image of R in the special group, then R′ takes ζ(F2) to ζ(F ),
and thus ζ(F ) must also be admissible. This proves that the sequences associated with
faces of P are admissible.

Conversely, let ζ = (z1, . . . , z6) be an admissible sequence with indices i, j, k as in
(5.15). Then z6, z1 ∈ Vk, z1, z2 ∈ Vi and z2, z6 ∈ Vj. From Lemma 5.9 applied to the
vertex-star Vk we obtain Vk = {±z6,±z1,±ẑ2}, where ẑ2 is defined as in Lemma 5.9.
Hence z2 is determined up to sign, and then in fact uniquely, since zizi+1 = ab for each
i. Thus ζ is uniquely determined by z1 and z6. Now, if y is a vertex of P colored k, then
Vk is the vertex-star at y, and z1 and z6 determine a face F of P which has y as a vertex.
Then ζ(F ) is an admissible sequence by the first part of the proof, and ζ(F ) contains z1

and z6. But since there is only one admissible sequence which contains z1 and z6, we now
have ζ = ζ(F ) and therefore also F = y + {o, z1, z1 + z2, . . . , z1 + . . .+ z5}. 2

We can say more about the facets of P . Each facet F which contains a given vertex y
of P is of the form F := y+ {o, z1, z1 + z2, . . . , z1 + . . .+ z5} for some admissible sequence
ζ = (z1, . . . , z6). The same facet F also occurs at the vertex y + z1 + z2 + z3 opposite
to y in F . But z1 + z2 + z3 yields a translation in G, so F is a translate of the facet

22



         

opposite to F in the vertex-figure at y. For the proof that z1 + z2 + z3 yields indeed a
translation we observe that the vertex opposite to o in the base face F2 is obtained from
o by a translation in G (it has the same color), and that under G this property must
continue to hold for any pair of opposite vertices of a face. Thus, modulo T (G), there are
only three faces at a given vertex. This also remains true if a = 0 or b = 0, because once
again opposite vertices in a face are related by a translation in T (G).

Since the four classes of vertices modulo T (G) are represented by the base vertex o
and the adjacent vertices oT2 = oT , oT1 and oT3, every face of P must be equivalent
modulo T (G) to a face which contains such a vertex, and every center of a face of P must
be equivalent to the center of such a face. The following lemma describes the full set of
face centers that occur. The details of the proof are omitted.

Lemma 5.11 Let P be the polyhedron associated with G. Then the set of centers of faces
of P is given by
a) 1

2
(1, 1, 1) + Z3 if a or b is even;

b) (1, 1, 1) + Λ(1,1,0) if a and b are odd and a+ b ≡ 0 (mod 4);
c) z + V (P ) if a and b are odd and a + b 6≡ 0 (mod 4), with V (P ) as in Lemma 5.4c,
where z = o if a ≡ b (mod 8), or z = (2, 0, 0) if a 6≡ b (mod 8).

Note that the set of face centers in Lemma 5.11c consists of four cosets of Λ(1,1,0)

modulo T (G) = 2Λ(1,1,0). If a ≡ b (mod 8), then every vertex of P is the center of
a face of P , and vice versa; their cosets are represented by the vectors x0 = (0, 0, 0),
x1 = (0, 1, 1), x2 = (1, 0, 1) and x3 = (1, 1, 0) as in Lemma 5.4c. But if a 6≡ b (mod 8),
the four cosets modulo T (G) are just those which do not yield vertices of P ; now they
are represented by (2, 0, 0), (0, 1,−1), (1, 0,−1) and (1,−1, 0).

We can also decide when the polyhedron has planar faces or vertex-figures.

Lemma 5.12 Let a and b be integers with (a, b) = 1. Let P be the polyhedron associated
with G. Then
a) P has planar vertex-figures if and only if a = −b = ±1;
b) P has planar faces if and only if a = b = ±1.

Proof The points in V0 are the vertices of P adjacent to o, so P has planar vertex-figures
if and only if these points lie in a plane. The latter holds if and only if the determinant
of any three mutually non-collinear vectors in V0 is 0. We have

∣∣∣∣∣∣

a 0 b
b a 0
0 b a

∣∣∣∣∣∣
= a3 + b3,

hence the points lie in a plane if and only a = −b. Since a and b must be prime, this
settles the first part. Note that P (−1, 1) = P (1,−1) (see (5.3)).

For the second part consider an admissible sequence (z1, . . . , z6) for the base face F2.
Then P has planar faces if and only if det(z1, z2, z3) = 0. But det(z1, z2, z3) = ±(a3− b3),

23



         

so P has planar faces if and only if a = b. Once again, since (a, b) = 1, the latter means
a = b = ±1. Note that P (−1,−1) = P (1, 1). 2

Next we discuss duality. In the present context the generators S1 and S2 of G are
rotatory reflections and thus have a unique fixed point. When taken as initial vertices for
Wythoff’s construction, these fixed points yield a pair of “geometrically” dual polyhedra.
The original polyhedron P is obtained from the point fixed by S2, namely o. Its dual P ∗

is derived from
w := 1

2
(a+ b,−a− b,−a+ b),

the fixed point of S1. Actually, as we remarked near the end of Section 2, it is more natural
to take S−1

2 , S−1
1 as distinguished generators when G is considered as the symmetry group

of P ∗. Note that S−1
2 S−1

1 = (S1S2)−1 = T , so the distinguished element T will remain the
same.

Since the base vertex w of P ∗ is the center of the base face F2 of P , the vertex-set
V (P ∗) of P ∗ is just the set of face centers of P and thus is given by Lemma 5.11. Moreover,
wT is the vertex in the base edge of P ∗ distinct from w, and the orbit of wT under 〈S1〉
(or rather, 〈S−1

1 〉) consists of the vertices in the vertex-figure at w. In particular, we
obtain the vertex-star at w from V3 by interchanging a and b in each vector. The action
of the special group G0 of G on the collection of vertex-stars Vi = Vi(a, b) of P (see (5.10))
induces a corresponding action on the collection of sets Vi(b, a) obtained by interchanging
a and b in each vector. The vertex-star at a general vertex wR of P ∗ is given by V3(b, a)R′,
where R′ is the image of the element R of G in G0. It follows that P ∗ is the polyhedron
associated with the vertex-stars Vi(b, a). Hence we have established the following

Theorem 5.13 The dual P (a, b)∗of P (a, b) is congruent to P (b, a). Or, less formal,
P (a, b)∗ ∼= P (b, a).

By Lemma 5.12 it is trivially true that the vertex-figures of P are planar if and only
if those of P ∗ are planar. However, it is not true that P has planar vertex-figures if and
only if P ∗ has planar faces.

Next we shall prove that the two polyhedra P (a, b) and P (b, a) are congruent for any
a and b. Indeed, if R denotes the reflection in the plane ξ1 − ξ3 = 0, so that

R: (ξ1, ξ2, ξ3) 7→ (ξ3, ξ2, ξ1), (5.16)

then
P (a, b)R = P (b, a). (5.17)

For the proof let S2 and T = T (a, b) be the generators of G = G(a, b) as in (5.1).
Then R−1S2R = S−1

2 and R−1T (a, b)R = T (b, a), and thus R−1G(a, b)R = G(b, a). But
oR = o, so R maps V (P (a, b)) = oG(a, b) to V (P (b, a)) = oG(b, a). In fact, R also maps
T (G(a, b)) to T (G(b, a)) (see Lemma 5.5) and takes each vertex of P (a, b) colored 0, 1,
2 or 3 to a vertex of P (b, a) colored 0, 3, 2 or 1, respectively (see Table 5.1 and note
that the first two columns are interchanged under R if a or b is even). Finally, since also
V1(a, b)R = V3(b, a), V3(a, b)R = V1(b, a), and Vi(a, b)R = Vi(b, a) for i = 0 or 2, we must
in fact have P (a, b)R = P (b, a).

Now the following corollary is immediate.
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Corollary 5.14 The polyhedron P (a, b) is geometrically self-dual, that is, P (a, b) is con-
gruent to its dual P (a, b)∗.

Before we move on, let us further comment on the case b = ±a. If b = ±a, then the
above mapping R takes P (a, b) to itself and induces an automorphism (see (5.3)); in fact,
since oR = o and V0R = V0, it induces an automorphism of the vertex-figure at o. On
the other hand, R acts like a transposition on the colors of the vertices, so it certainly
does not belong to G0, which acts on the colors like a group A4 (see (5.10)). But then R
can also not belong to G (it already fixes o), so even combinatorially it must act on the
vertex-figure at o like a reflection. Hence P (a, b) is geometrically regular if b = ±a, and
its full symmetry group is generated by G and R. We shall see later that R maps the
base flag of P (a, b) to a flag adjacent to the base flag of P (b, a).

Next we briefly discuss the general question when two polyhedra P (a, b) and P (c, d)
are affine images of each other. Here we do not need to assume that the parameters are
integers.

Lemma 5.15 Let a, b, c and d be real numbers, and let (a, b) 6= (0, 0) 6= (c, d). Let P (a, b)
and P (c, d) be the polyhedra associated with a, b and c, d, respectively. Then P (a, b) and
P (c, d) are affinely equivalent if and only if (c, d) = s(a, b) or t(b, a) for some real numbers
s or t. Moreover, P (a, b) and P (c, d) are congruent if and only if this holds with s, t = ±1.

Proof We only sketch the proof. Suppose we have P (a, b)R = P (c, d) for some affine
mapping R. Since the group G(c, d) acts transitively on the vertices, and the stabilizer
of the vertex o in G(c, d) acts transitively on the vertices adjacent to o, we can further
assume that oR = o and that (a, 0, b)R = (c, 0, d). The affine transformation R−1T (a, b)R
acts on the polyhedron P (c, d) locally in exactly the same way as the symmetry T (c, d) of
P (c, d), so it must indeed be the same transformation (because an affine transformation
of E3 is uniquely determined by its effect on four independent points). Moreover, the
cyclic order of the vertices in the vertex-figure at o is either preserved or reversed by R
(see (5.4)); that is, R−1S2R = S2 or S−1

2 (and hence R−1G(a, b)R = G(c, d)). These two
properties translate directly into conditions for the matrix entries of R and prove that
there are essentially only two possibilities. If the order of the vertices in the vertex-figure
is preserved, then R is the identity mapping, up to scaling by s := c

a
(or d

b
if a = 0). If

the order is reversed, then R is the mapping defined in (5.16), up to scaling by t := c
b

(or d
a

if b = 0). In particular, (c, d) = s(a, b) or t(b, a). Furthermore, R can only be an
isometry if s = ±1 or t = ±1, respectively. The other direction is obvious. 2

The same proof actually establishes that the polyhedra are generally chiral. In fact,
we have

Theorem 5.16 The polyhedron P (a, b) is geometrically chiral if b 6= ±a, or geometrically
regular if b = ±a.

Proof It is clear that every polyhedron P (a, b) is either geometrically chiral or geomet-
rically regular; in fact, G acts transitively on the vertices, and S2 permutes cyclically
the vertices adjacent to o. Now suppose that P (a, b) is geometrically regular. Then its
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symmetry group must contain an element R which maps the base flag of P (a, b) to the
adjacent flag differing in the 2-face. In particular, R must fix the two vertices o and
(a, 0, b) of the base edge. Now apply the arguments of the proof of Lemma 5.15 with
c = a and d = b. Since R−1S2R = S−1

2 , the order of the vertices in the vertex-figure is
reversed, so R must be the mapping as defined in (5.16), or its negative. In particular,
we must have (a, b) = t(b, a) with t = ±1. Hence we must have b = ±a. On the other
hand, we already proved above that P (a, b) is geometrically regular if b = ±a. 2

We now address enantiomorphism. As explained in Section 2, the two enantiomorphic
forms of a chiral polyhedron are represented by different pairs of generators of its group. If
S1, S2 is the pair associated with the base flag {F0, F1, F2} (say) of P (a, b), then S1S

2
2 , S

−1
2

is the pair associated with the adjacent flag {F0, F1, F
′
2} of P (a, b). For each pair, the

product of the generators is T . If Wythoff’s construction is applied to G with the new
generators S1S

2
2 , S

−1
2 and with the same initial vertex o, which again is fixed by S−1

2 , then
we indeed obtain the same underlying polyhedron, namely P (a, b), but now with a new
base flag adjacent to the original base flag. To see this, we once again employ the mapping
R defined in (5.16).

In fact, we know that R−1G(a, b)R = G(b, a), and that

R−1S2R = S−1
2 , R−1T (a, b)R = T (b, a),

R−1S1(a, b)R = R−1T (a, b)S−1
2 R = T (b, a)S2 = S1(b, a)S2

2 .
(5.18)

In other words, conjugation by R transforms the pair of generators S1(a, b), S2 of G(a, b)
into the pair S1(b, a)S2

2 , S
−1
2 of G(b, a), and vice versa; the same also remains true with

a and b interchanged. It follows that the polyhedron P (say) obtained by Wythoff’s
construction from G(a, b) and its generators S1(a, b)S2

2 , S
−1
2 , is mapped by R to the poly-

hedron obtained from G(b, a) and its generators S1(b, a), S2. But the latter is just P (b, a),
so its preimage under R is P (a, b) itself. Hence, P = P (a, b). Note that R takes the base
flag {F0(a, b), F1(a, b), F2(a, b)} of P (a, b) to the flag {F0(b, a), F1(b, a), F ′2(b, a)} adjacent
to the base flag {F0(b, a), F1(b, a), F2(b, a)} of P (b, a) (and differing from it in the 2-face).
If a = b, this once again proves that P (a, b) is geometrically regular.

These considerations also justify our initial hypothesis, pointed out at the beginning
of this section, that it is enough to concentrate on only one orientation for the generator
S2. Indeed, the opposite orientation (given by S−1

2 ) is implied by enantiomorphism.
We now address the question of abstract isomorphism between the polyhedra con-

structed in this section. The two cases a = b and a = −b are special because the
corresponding polyhedra P (1, 1) and P (1,−1) are regular. Initially we might conjecture
that each polyhedron P (a, b) is combinatorially isomorphic to P (1, 1) or P (1,−1), but
this turns out to be false.

First we identify the two regular polyhedra. We know from [18, Theorem 7E15] that
there are only two pure regular polyhedra of type {6, 6} in E3, namely the Petrie-Coxeter
polyhedron {6, 6 |3} (with planar faces and skew vertex-figures), and {6, 6}4 (with skew
faces and planar vertex-figures). The polyhedron {6, 6}4 has its vertices at alternating
vertices of the Petrie-Coxeter polyhedron {4, 6 |4}; its faces are the vertex-figures at the
remaining vertices of {4, 6 |4}. We know from Lemma 5.12 that P (1, 1) has planar faces
and that P (1,−1) has planar vertex-figures. So we have
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Theorem 5.17 P (1, 1) = {6, 6 |3} and P (1,−1) = {6, 6}4 are the only polyhedra P (a, b)
which are regular.

It is instructive to see how the general polyhedron P (a, b) is different from the two
special polyhedra P (1, 1) and P (1,−1). We know that P (1, 1) = {6, 6 |3} has 2-holes of
length 3, and that P (1,−1) = {6, 6}4 has Petrie polygons of length 4 (see [18, p.193,196]);
in other words, if their full symmetry group is 〈R0, R1, R2〉 (say), then their elements

S1S
−1
2 = R0R1R2R1, S2

1S
2
2 = (R0R1R2)2

have periods 3 and 2, respectively. Now consider the two elements S1S
−1
2 and S2

1S
2
2 in G

for general a and b. Once again they are associated with a right-handed 2-hole or Petrie
polygon of the polyhedron P (a, b). Now we have

(S1S
−1
2 )3 : x 7→ x+ s(−1, 1, 1),

(S2
1S

2
2)2 : x 7→ x+ t(1, 0, 0),

(5.19)

with s = a − b and t = −2a − 2b. Hence (S1S
−1
2 )3 and (S2

1S
2
2)2 are genuine translations

unless a = b or a = −b, respectively. The two cases a = b and a = −b yield P (1, 1) and
P (1,−1) as a and b are prime, and for them we already know that the periods of S1S

−1
2

and S2
1S

2
2 are 3 and 2, respectively. Note that the elements (S1S

2
2)(S−1

2 )−1 = S1(−I) and
(S1S

2
2)2(S−1

2 )2 = S1S
2
2S1 of G are associated with a left-handed 2-hole or Petrie polygon

of P (a, b), respectively; their cube or square is again a translation unless a = b = ±1 or
a = −b = ±1.

In particular, these considerations imply that none of the polyhedra P (a, b) with a 6=
±b is combinatorially isomorphic to P (1, 1) or P (1,−1). More generally, the following
theorem holds.

Theorem 5.18 Let a, b and c, d be pairs of relatively prime integers. Then the polyhedra
P (a, b) and P (c, d) are combinatorially isomorphic if and only if (c, d) = ±(a, b) or (c, d) =
±(b, a).

Proof Suppose that κ is a combinatorial isomorphism between (the face lattices of)
P (a, b) and P (c, d). Consider the image of the base flag {F0(a, b), F1(a, b), F2(a, b)} of
P (a, b) under κ. Since G(c, d) has at most two orbits on the flags of P (c, d), we can
compose κ with an element of G(c, d) (if need be) and achieve that the resulting isomor-
phism κ′ between P (a, b) and P (c, d) maps the base flag of P (a, b) to either the base flag
{F0(c, d), F1(c, d), F2(c, d)}, or the adjacent flag {F0(c, d), F1(c, d), F ′2(c, d)}, of P (c, d).
Moreover, in the latter case we can further compose κ′ with the isomorphism between
P (c, d) and P (d, c) determined by the reflection R of (5.16) (see also (5.18)); the resulting
isomorphism κ′′ between P (a, b) and P (d, c) then maps the base flag of P (a, b) to the
base flag of P (d, c). It follows that, up to interchanging the parameters c and d, we may
assume that we have an isomorphism between P (a, b) and P (c, d) which maps the base
flag of P (a, b) to the base flag of P (c, d).

Then this isomorphism of polyhedra induces an isomorphism of groups

µ : G(a, b) 7→ G(c, d)
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which maps the generators S1(a, b), S2 of G(a, b) to the generators S1(c, d), S2 of G(c, d).
(By composing with R as above, we have already accounted for the possibility that µ
would take S1(a, b), S2 into the other distinguished pair of generators S1(c, d)S2

2 , S
−1
2 of

G(c, d)). Then µ also maps T (a, b) to T (c, d).
First we show that µ maps translations in G(a, b) to translations in G(c, d). Let T (z)

denote the translation of E3 by the vector z ∈ E3. Now, if x is a vertex of P (a, b) adjacent
to o, then x = oL with L := T (a, b)Sj2 for some j, and

T (2x) = (−I)L−1(−I)L = S3
2L
−1S3

2L

(see the proof of (4.5)). The conjugates of such translations by elements in G(a, b) then
yield all the generating translations of the subgroup 2Λ = 2Λ(a, b) of T (G(a, b)). Then
under µ we obtain

T (2x)µ = (S3
2L
−1S3

2L)µ = S3
2(Lµ)−1S3

2(Lµ) = (−I)(Lµ)−1(−I)(Lµ) = T (2y),

with y := o(Lµ) a vertex in P (c, d); but y is adjacent to o because Lµ = (T (a, b)Sj2)µ =
T (c, d)Sj2. But µ takes conjugates to conjugates, so µ must map 2Λ(a, b) to 2Λ(c, d).
Finally, to account for all translations in G(a, b) we must also consider the translation

T2(a, b)T1(a, b)T3(a, b)

in G(a, b) (see the proof of Lemma 5.5). This is mapped by µ onto the corresponding
product for the parameters c, d, which again is a translation. Hence µ takes translations
to translations.

We now employ the translations in (5.19). Let e1, e2, e3 denote the canonical basis of
E3. Then the two translations are given by

(S2
1(a, b)S2

2)2 = T (−2(a+ b)e1), (S1(a, b)S−1
2 )3 = T ((a− b)(−e1 + e2 + e3)), (5.20)

and similarly for the parameters c, d. But µ takes S1(a, b), S2 to S1(c, d), S2, so µ must
also take the two translations for a, b to those for c, d. By Lemmas 5.3 and 5.5 we have
2e1 ∈ Λ(a, b) and T (4e1) ∈ G(a, b) for every choice of parameters a, b. We also know that
T (4e1)µ is a translation. Clearly, (T (z)µ)k = T (kz)µ for any integer k and any translation
T (z) in G(a, b). In particular, setting k := a+ b we obtain

(T (4e1)µ)a+b = T (4(a+b)e1)µ = (T (−2(a+b)e1))−2µ = (T (−2(c+d)e1))−2 = T (4(c+d)e1).

Therefore, if a + b 6= 0, then T (4e1)µ itself must be translation in the direction of e1.
Moreover, if a = −b = ±1, then also c = −d = ±1, as required.

Now let a + b 6= 0 (and hence c + d 6= 0), and let T (4e1)µ = T (re1) for some integer
r. Then

T (r(a+ b)e1) = (T (re1))a+b = T (4(c+ d)e1),

and thus we have the linear equation r(a+ b) = 4(c+ d) for a, b, c, d. To derive a second
linear equation we first observe that T (4ei)µ = T (rei) for each i = 1, 2, 3. This is proved
by conjugation with S2

2 or S4
2 ; for example, we have

T (4e3)µ = (S−2
2 T (4e1)S2

2)µ = S−2
2 T (re1)S2

2 = T (re3).
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We now use the fourth power of the second translation in (5.20). In fact, we have

T (4(c− d)(−e1 + e2 + e3)) = T (4(a− b)(−e1 + e2 + e3))µ
= (T (4e1)−1T (4e2)T (4e3))a−bµ
= (T (re1)−1T (re2)T (re3))a−b

= T (r(a− b)(−e1 + e2 + e3)).

This leads to the second linear equation, r(a − b) = 4(c − d). Together with the first
equation this implies ra = 4c and rb = 4d. Hence, bearing in mind that a, b and c, d are
relatively prime, we arrive at r = ±4; that is, (c, d) = ±(a, b), as required. This concludes
the proof. 2

In general we do not know if any polyhedron P (a, b) other than P (1, 1) and P (1,−1)
is combinatorially regular, but we do know that none is geometrically regular. If indeed
any such P (a, b) is combinatorially regular, then P (a, b) would be a chiral realization of
itself.

6 The types {4, 6} and {6, 4}
In this section, we describe the geometrically chiral polyhedra of type {4, 6}. Their duals
are the chiral polyhedra of type {6, 4}.

Once again we consider only polyhedra whose symmetry group is generated by rotatory
reflections of finite periods. We now prefer to denote the polyhedra by Q. We know from
Lemma 4.3 that there are only two groups, namely [3, 3]∗ and [3, 4], which can occur as
the special group for a geometrically chiral polyhedron Q. In this section, we discuss the
polyhedra associated with [3, 4]. They must necessarily be of type {4, 6} or {6, 4}. We
begin with the polyhedra of type {4, 6} and obtain those of type {6, 4} by duality.

As in the previous section we begin by realizing [3, 4] as the special group of a suit-
able group H (we now denote the groups by H), and then obtain the polyhedron Q by
Wythoff’s construction. In particular, o is the initial vertex of Q, and the orbit of o under
H is the vertex-set V (Q) of Q. Geometrically we take [3, 4] in the form [4, 3], that is,
as the symmetry group of the cube. The following lemma shows that there is essentially
only one way in which H and its generators may be taken.

Lemma 6.1 Let S2(= S ′2) be a rotatory reflection of period 6 in [3, 4]. Then there are
precisely three rotatory reflections S ′1 of period 4 in [3, 4] such that their product S ′1S2 is
of period 2. If S ′1 is one of them, then the other two are S−1

2 S ′1S2 and S−2
2 S ′1S

2
2 , and their

products with S2 are S−1
2 (S ′1S2)S2 and S−2

2 (S ′1S2)S2
2 , respectively.

Proof Let C be a cube centered at o with edges parallel to the coordinate axes. Each
rotatory reflection of period 4 in its symmetry group [3, 4] is given by a rotation by ±π

2

about a coordinate axis, followed by a reflection in the plane through o perpendicular to
the axis. Each rotatory reflection of period 6 in [3, 4] is given by a rotation about a vertex
of C, followed by a reflection in the plane through o perpendicular to the rotation axis.
Any two rotatory reflections of period 4 or 6, respectively, are conjugate in [3, 4]. (Note
that the analogous statement was not true for [3, 3]∗.) Once S2 is chosen, then exactly
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three rotatory reflections of period 4 will yield a product with S2 of period 2, one for each
coordinate axis; in particular, any two of them are conjugate by an element of 〈S2

2 〉. 2

It follows from Lemma 6.1 that any two pairs of admissible generators S ′1, S2 of [3, 4]
are conjugate in [3, 4]. In each case, S ′1S2 is necessarily the half-turn about the midpoint
of an edge of C which contains a vertex of C invariant under S2. (The half-turns about
face centers of C yield the group [3, 3]∗, and the half-turns about the midpoints of those
edges which do not contain a vertex invariant under S2 correspond to elements S ′1 of
period 2.)

Thus, as in the previous section, we may confine ourselves to some very specific choices
for S2 and T := S1S2. We take the group H = H(c, d) generated by

S2: x 7→ −(ξ3, ξ1, ξ2),
T : x 7→ (ξ2, ξ1,−ξ3) + (c,−c, d),

(6.1)

with real parameters c and d, not both zero. Then S1 := TS−1
2 is given by

S1: x 7→ (−ξ1, ξ3,−ξ2) + (c,−d,−c). (6.2)

The base vertex of the corresponding polyhedron Q = Q(c, d) is w := oT = (c,−c, d),
and the base edge F1 with vertices o and w lies in the plane ξ1 + ξ2 = 0. In particular,
F1 is perpendicular to the rotation axes of T , which is the line through 1

2
w with direction

vector (1, 1, 0). Observe that the same argument as in the previous section shows that

Q(−c,−d) = Q(c, d). (6.3)

Now the orbit W0 of w under 〈S2〉 is given by

W0 := {(c,−c, d), (c,−d,−c), (d, c,−c), (−c, c,−d), (−c, d, c), (−d,−c, c), }, (6.4)

where again the points are listed in cyclic order; we simply write

W0 = {±(c,−c, d),±(c,−d,−c),±(d, c,−c)}, (6.5)

with the understanding that, up to cyclic permutation, plus-signs come before minus-
signs. Then W0 is the vertex-star of Q at its vertex o, and the vertex-stars at the vertices
adjacent to o are the images of W0 under the conjugates of T by elements of 〈S2〉 (more
exactly, under their images in the special group H0 of H). In particular, the vertex-star
W2 := W0T

′ = W0T − w at (c,−c, d) = w is given by

W2 = {±(c,−c, d),±(c, d, c),±(−d, c, c)}. (6.6)

As before, define
T1 := S−2

2 TS2
2 , T2 := T, T3 := S−4

2 TS4
2 .

Then the vertex-stars W1 := W0T1 − (−c, d, c) at (−c, d, c) and W3 := W0T3 − (d, c,−c)
at (d, c,−c) are given by

W1 = {±(c, c,−d),±(c,−d,−c),±(−d,−c,−c)},
W3 = {±(c, c, d),±(c,−d, c),±(−d,−c, c)}, (6.7)
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respectively. Moreover, since −I = S3
2 belongs to H, the vertex-stars at pairs of opposite

vertices ±z in the vertex-figure at o are necessarily the same. This also follows from the
observation that the translation by 2z, which maps −z to z, is an element of H, namely
S−j2 (S3

2T )2Sj2, with j such that z = wSj2.
So far we have identified four vertex-stars for Q. Their vectors comprise certain three

of the four vertices on each square face of the “truncated octahedron” shown in Figure 6.3
for the case 0 < |c| < |d|. We shall see that there are four more vertex-stars which occur
in Q; together with the first set of four, these yield all the vertices of the truncated
octahedron. The missing vertex in each square face is the image of the opposite vertex in
the square face under the reflection in the mirror half-way between the two vertices. This
reflection is indeed contained in [3, 4], but it remains to prove that it is also the image of
an element of H in H0. The latter can be accomplished as follows.

The image T ′1S
3
2 of T1S

3
2 in H0 is the reflection in the plane perpendicular to the

rotation axis of T1. We now conjugate to obtain the desired reflection. In fact, the image
of

R := T3T1S
3
2T3: x 7→ (ξ2, ξ1, ξ3) + (−2c+ d,−d,−d) (6.8)

in H0 is the reflection R′ = T ′3T
′
1S

3
2T
′
3 in the plane ξ1 = ξ2, and the vertex-star W4 := W0R

′

at the vertex oR = (−2c+ d,−d,−d) of Q is given by

W4 = {±(−c, c, d),±(−c,−d, c),±(d,−c, c)}. (6.9)

More generally, we obtain the vertex-star Wi := Wi−4R
′ for i = 4, 5, 6, 7 at a vertex which

is the image of a vertex with vertex-star Wi under R. In particular,

W5 = {±(c, c,−d),±(c, d, c),±(d,−c, c)},
W6 = {±(−c, c, d),±(−c, d,−c),±(−d,−c,−c)},
W7 = {±(c, c, d),±(c, d,−c),±(d,−c,−c)}.

(6.10)

We now have a full set of vertex-stars for Q. In fact, since H acts transitively on the
vertices of Q, the vertex-stars of Q are images of W0 under H0, so H0 must act transitively
on them. But since H0 contains S2, the stabilizer of W0 must be at least of order 6, and
hence the number of vertex-stars cannot exceed 8.

q qq q
�
��

�
��

q qq q
�
��

�
��

5 2

1 0

4 7

6 3

Figure 6.1: The cube representing the action of H0.

Observe that the elements S ′1, S2 and T ′ of H0 act on the subscripts of the vertex-stars
in the following way:

S ′1 = (0 1 5 2) (3 6 4 7), S2 = (1 2 3) (5 7 6), T ′ = (0 2) (1 7) (3 5) (4 6). (6.11)
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These permutations generate the rotation subgroup [3, 4]+ (= [3, 4]/{±I} ∼= S4) for the
cube with vertices 0, . . . , 7 shown in Figure 6.1. The figure represents the action of H0

on the vertex-stars; bear in mind that −I acts trivially on the subscripts, so the above
permutations really correspond to the geometric symmetries −S ′1, S2 and T ′, respectively.

The base face F2 of Q is given by

F2 = {(0, 0, 0), (c,−d,−c), (0,−c− d,−c+ d), (c,−c, d)}, (6.12)

where the vertices are listed in cyclic order. Thus the faces are generally skew quadrangles.
Figure 6.2 shows the six faces of the polyhedron Q(1, 1) which contain o. They are

represented by circled lines or by dotted lines with small or large dots, respectively, such
that opposite faces are indicated in the same way. The vertex-figure of Q(1, 1) at o is a
skew hexagon given by a Petrie polygon of the cube.
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Figure 6.2: The six faces of the polyhedron Q(1, 1) containing o.

Now consider the set of (generally twenty-four) vectors

W :=
7⋃

i=0

Wi = {(±d,±c,±c), (±c,±d,±c), (±c,±c,±d)}. (6.13)

This is the vertex-set of a convex 3-polytope which is one of the following: a suitably trun-
cated octahedron or cube, with 24 vertices, if 0 < |c| < |d| or 0 < |d| < |c|, respectively; a
cube if c = ±d; an octahedron if c = 0; or a cuboctahedron if d = 0. Figure 6.3 illustrates
the case c = 1 and d = 4; shown are only the square faces of the truncated octahedron.
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If c, d 6= 0 and c 6= ±d, then each vector in W belongs to exactly two vertex-stars;
moreover, if two vertex-stars have a vector in common, then they intersect in precisely
two vectors, one being the negative of the other. In particular, the eight vertex-stars are
distinct as sets. In all other cases the vertex-stars coincide in pairs, namely we have

W0 = W4, W1 = W7, W2 = W6, W3 = W5. (6.14)

If c = ±d or c = 0, then they correspond to the Petrie polygons of the cube or octahedron,
respectively; if c = 0, they all coincide as sets of vectors. Finally, if d = 0, they are planar
and correspond to the four equatorial hexagons in the cuboctahedron.
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Figure 6.3: The points of W for c = 1 and d = 4.

Let Λ := Z[W ] denote the Z-module spanned by the vectors in W . Then each vector in
2Λ determines again a translation in H; in fact, we shall see that 2Λ is the full translation
subgroup T (H) of H. Moreover, by (4.4), 2Λ is a subset of the vertex-set V (Q) of the
polyhedron Q. In particular, we again have the following criterion for discreteness.

Lemma 6.2 H = H(c, d) is discrete if and only if c or d is zero or c and d are rational
multiples of each other.

Proof The proof of Lemma 5.2 carries over with appropriate changes. Now

2(d, 0, 0) = (d, c, c) + (d,−c,−c) ∈ Λ,
and, similarly, 2(c, 0, 0) ∈ Λ. In the discrete case, after rescaling (if need be), H is again
a subgroup of [4, 3, 4]. 2

Therefore, up to similarity, we may assume that c and d are integers with (c, d) = 1.
Again we explicitly allow c = 0 or d = 0. Then H is a subgroup of [4, 3, 4] and each vertex
of Q is in Z3. Moreover,

2Z3 ⊂ Λ ⊂ Z3,
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for the same reason as in the previous section. Now we have

Lemma 6.3 Let Λ be the lattice spanned by W . Then
a) Λ = Λ(1,1,0) if c is odd and d is even;
b) Λ = Λ(1,0,0) = Z3 if c is even and d is odd;
c) Λ = Λ(1,1,1) if c and d are odd.

Proof Reduce certain vectors modulo Λ and use the fact that 2Z3 ⊂ Λ. For example, in
the three cases for c and d, the vector (c, c, d) of W is equivalent to (1, 1, 0), (0, 0, 1) and
(1, 1, 1), respectively. Now appeal to symmetry. 2

Next we determine the vertex-set V (Q) of Q. We know from (4.4) that 2Λ ⊂ V (Q) ⊂
Λ, such that V (Q) is a union of cosets of Λ modulo 2Λ. Leaving aside the special cases
when c = 0, d = 0, or c = ±d (that is, c, d = ±1) for the moment, we now are tempted to
proceed as follows, but unfortunately the argument is flawed. There are at most eight such
cosets, and in each coset the vertex-stars at its vertices are necessarily the same (because
any two vertices are related by a translation). Since Q has altogether eight vertex-stars,
all eight cosets must actually occur and thus V (Q) = Λ. The trouble is that the argument
assumes vertex-faithfulness, that is, no vertex occurs with multiplicity. However, as we
shall see, in one parameter family the polyhedra have vertices of multiplicity 2, so only
four of the eight cosets occur. In fact, we have

Lemma 6.4 The vertex-set V (Q) of the polyhedron Q is given by
a) V (Q) =

⋃3
i=0 (xi + 2Λ(1,1,0)), with x0 := (0, 0, 0), x1 := (1, 0, 1), x2 := (1, 1, 0), and

x3 := (0, 1, 1), if c is odd and d ≡ 2 (mod 4);
b) V (Q) = Λ otherwise.

Proof Once again we generate new vertices as images of o under H and employ the
translations in 2Λ. In particular, once we find one representative vertex for a coset of Λ
modulo 2Λ, then the entire coset is a subset of V (Q). Obviously, o yields 2Λ itself.

If c is even and d is odd, the vertices (c,−d,−c) and (0,−c − d,−c + d) of F2 (see
(6.12)) are equivalent to (0, 1, 0) and (0, 1, 1) modulo 2Λ = 2Z3, respectively; their images
under 〈S2〉 also yield (1, 0, 0), (0, 0, 1), (1, 0, 1) and (1, 1, 0). Finally we obtain (1, 1, 1)
from oR = (−2c+ d,−d,−d), with R as in (6.8). Hence, V (Q) = Λ.

If c is odd and d is even, then the vertex (0,−c−d,−c+d) of F2, as well as its images
under 〈S2〉, give the coset representatives x1 = (1, 0, 1), x2 = (1, 1, 0) and x3 = (0, 1, 1)
modulo 2Λ = 2Λ(1,1,0). From the vertices in W0 we also obtain (−1, d, 1), (1,−1, d) and
(d, 1,−1) modulo 2Λ; these three coincide with the first three if d ≡ 2 (mod 4), but yield
(−1, 0, 1), (1,−1, 0) and (0, 1,−1) if d ≡ 0 (mod 4). The vertex oR = (−2c+ d,−d,−d),
with R as in (6.8), also contributes (2, 0, 0) if d ≡ 0 (mod 4), so that all eight cosets are
present in this case, proving that V (Q) = Λ. Finally, if d ≡ 2 (mod 4), the union of the
four cosets xi+2Λ(1,1,0), with i = 0, 1, 2, 3, is seen to be invariant under the two generators
S2 and T of H, and hence must be the full vertex-set V (Q), as it contains the base vertex.
In this case each vertex of Q is of multiplicity 2; we shall discuss this again below.

If both c and d are odd, then the vertices in W0 contribute the representatives
(−1, 1, 1), (1,−1, 1) and (1, 1,−1) modulo 2Λ = 2Λ(1,1,1), and the vertex (0,−c−d,−c+d)
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and its images under 〈S2〉 yield (2, 0, 0), (0, 2, 0) and (0, 0, 2). The eighth coset represen-
tative (1, 1, 1) is derived from (−2c+ d,−d,−d). Hence, V (Q) = Λ. 2

In the exceptional case when c is odd and d ≡ 2 (mod 4), each point x ∈ E3 taken by
a vertex is in fact occupied by exactly two vertices. Each vertex is assigned a vertex-star,
so there are always two vertex-stars positioned at x. Once we know the two vertex-stars
at one point, then we can determine them at any point by appealing to vertex-transitivity.
Consider the point x = (−2c+d,−d,−d) occupied by the vertex oR, with R as in (6.8). By
construction, x receives the vertex-star W4 = W0R

′. On the other hand, since −2c+d ≡ 0
(mod 4), the point x is equivalent to o modulo the translations in 2Λ = 2Λ(1,1,0), so x
must also receive the vertex-star W0. Hence both W0 and W4 occur at (−2c+ d,−d,−d).
Now, appealing to R once again we see that W0 and W4 must also be the vertex-stars at
o, the point occupied by the base vertex. Moreover, observe that the two vertex-stars at a
point taken by a vertex are always disjoint, so that there are twelve edges of Q emanating
from it.

We should point out here that a polyhedron Q(c, d) with c odd and d ≡ 2 (mod 4)
is not a faithful realization of its underlying abstract polyhedron, so in particular is not
a (faithful) geometric polyhedron or apeirohedron as defined in Sections 2 and 4. Each
such Q(c, d) is an infinite discrete realization and is geometrically chiral (as we shall see).

Next we determine the translations which map the polyhedron Q onto itself.

Lemma 6.5 Let c, d be integers with (c, d) = 1. The subgroup T (H) of all translations
in H is given by T (H) = 2Λ.

Proof The translates of the base vertex are again vertices of Q, so we certainly have

2Λ ⊂ T (H) = oT (H) ⊂ V (Q) ⊂ Λ.

Moreover, V (Q) is the union of either four or eight cosets of Λ modulo 2Λ; in particular,
V (Q) = Λ unless c is odd and d ≡ 2 (mod 4) (see Lemma 6.4a). Clearly, if two vertices
of Q are equivalent under a translation, then their vertex-stars or pairs of vertex-stars,
respectively, must be the same.

First consider the case c, d 6= 0 and c 6= ±d, when there are eight distinct vertex-stars.
If V (Q) consists of eight cosets of Λ modulo 2Λ, then each coset must uniquely determine
the vertex-star at its vertices, and no two cosets can be associated with the same vertex-
star. If V (Q) consists of only four cosets, then the same remains true for the pairs of
vertex-stars at the vertices. In any case, we must have T (H) = 2Λ; otherwise Q could
have at most four distinct vertex-stars.

If c = ±d = ±1, then 2Λ(1,1,1) ⊂ T (H) ⊂ Λ(1,1,1) = Λ. Bearing in mind that T (H) is
invariant under H0, particularly under S2 and T ′, we find that a translation group strictly
larger than 2Λ(1,1,1) would necessarily lead to a polyhedron with at most two distinct
vertex-stars; hence T (H) = 2Λ also in this case. For the remaining cases c = 0 and d = 0
we can refer to Theorem 6.12 and directly use the geometry of {4, 6 |4} and {4, 6}6 (the
Petrial of {6, 6}4). 2

We should mention that there is also a direct proof of Lemma 6.5. This considers the
factorization H = N · 〈S2〉, with N the normal closure of the generator T in H, and then

35



        

describes the elements of N . In particular, N is generated by the half-turns R0, . . . , R5,
where Ri is given by Ri := S−i2 TSi2. However, while instructive the details are rather
tedious, so we omit them here.

We now discuss an analogue of Theorem 5.8. Once again we color the vertices x of Q,
now with colors from the set C := {0, . . . , 7}. We consider the mapping

c′ : V (Q)/T (H) 7→ C

which associates with a coset x+T (H) a label i ∈ C as specified in Table 6.1 for its coset
representative, and then take the induced coloring mapping

c : V (Q) 7→ C

defined by (x)c := (x + T (H))c′. (If V (Q) is not a lattice, then V (Q)/T (H) simply
denotes the set of cosets of V (Q) modulo T (H); it is not a group in this case.) In effect,
c assigns to every vertex x the index i = (x)c (say) of its vertex-star Wi as its color. In
the exceptional case when points are doubly occupied by vertices of Q (that is, c is odd
and d ≡ 2 (mod 4)), this associates with such a point two colors, one for each vertex; in
fact, in the next to last column of Table 6.1 each representative occurs twice. Moreover,
when the eight vertex-stars of Q coincide in pairs (see (6.14)), then the eight assignments
of vertex-stars to cosets modulo T (H) also coincide in pairs.

Note that the vectors in a column of Table 6.1 represent the vertices

(0, 0, 0) = o, (−c, d, c) = oT1, (c,−c, d) = oT2, (d, c,−c) = oT3,
(−2c+ d,−d,−d) = oR, (0,−c− d,−c+ d) = oS2

1 ,
(−c− d,−c+ d, 0) = oS2

1S
2
2 , (−c+ d, 0,−c− d) = oS2

1S
4
2 ,

(6.15)

in this order, with R as in (6.8).

c, d odd, c, d odd, c odd, c odd, c even,
c ≡ d (mod 4) c 6≡ d (mod 4) d ≡ 0 (mod 4) d ≡ 2 (mod 4) d odd

0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
1 (−1, 1, 1) (1, 1,−1) (−1, 0, 1) (1, 0, 1) (0, 1, 0)
2 (1,−1, 1) (−1, 1, 1) (1,−1, 0) (1, 1, 0) (0, 0, 1)
3 (1, 1,−1) (1,−1, 1) (0, 1,−1) (0, 1, 1) (1, 0, 0)
4 (1, 1, 1) (1, 1, 1) (2, 0, 0) (0, 0, 0) (1, 1, 1)
5 (0, 2, 0) (0, 0, 2) (0, 1, 1) (0, 1, 1) (0, 1, 1)
6 (2, 0, 0) (0, 2, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
7 (0, 0, 2) (2, 0, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1)

Table 6.1: The colors i assigned to the cosets in V (Q)/T (H).

We summarize the above discussion in the following

Theorem 6.6 Let c and d be integers with (c, d) = 1. Let Q be the polyhedron associated
with H, and let V (Q) and T (H) be as in Lemmas 6.4 and 6.5, respectively. If x is a
vertex of Q, then x+W(x)c is the set of vertices of Q adjacent to x; that is, the vertex-star
at x is given by W(x)c. If c is odd and d ≡ 2 (mod 4), then every vertex is a double vertex.
In all other cases, every vertex is single.
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Next we discuss when the polyhedron has planar vertex-figures or faces.

Lemma 6.7 Let Q be the polyhedron associated with H. Then
a) Q has planar vertex-figures if and only if d = 0;
b) Q has planar faces if and only if c = 0.

Proof The polyhedron Q has planar vertex-figures if and only if the points in W0 lie in
a plane. Now the corresponding determinant is

∣∣∣∣∣∣

c −c d
c −d −c
d c −c

∣∣∣∣∣∣
= d (3c2 + d2).

Hence the points lie in a plane if and only if d = 0.
The vertices of the base face F2 of Q are (0, 0, 0), (c,−d,−c), (0,−c− d,−c+ d) and

(c,−c, d), in this order (see (6.12)). Hence F2 is planar if and only if (0,−c− d,−c + d)
is the sum of (c,−d,−c) and (c,−c, d); this gives the condition c = 0. 2

We now characterize the faces of the polyhedron. We only consider the case when Q
has eight distinct vertex-stars. Once again we associate with each face F of Q a sequence
ζ(F ) := (z1, . . . , z4) in W , defined up to cyclic permutation and reversal of order. If
F = {y1, . . . , y4} (say), with vertices y1, . . . , y4 in cyclic order, we set zi := yi+1 − yi for
i = 1, . . . , 4 (all indices are considered modulo 4); then

∑4
i=1 zi = o and

F = y + {o, z1, z1 + z2, z1 + z2 + z3},
with y := y1. If F = F2, with the vertices as in (6.12), then

z1 = (c,−d,−c), z2 = (−c,−c, d), z3 = (c, d, c), z4 = (−c, c,−d),

and z1, z2 ∈ W1, z2, z3 ∈ W5, z3, z4 ∈ W2 and z4, z1 ∈ W0; note that the subscripts of the
vertex-stars occurring here are just those of the cycle of 0 in the cycle representation for
S ′1 in (6.11). Moreover, zi · zi+1 = −c2 for each i. Observe that, if F = F2S for some
S ∈ H, then the vertex-stars occurring for ζ(F ) will be just those of the cycle of i, with
Wi = W0S

′, in the cycle representation for (S ′)−1S ′1S
′.

Accordingly we now define a sequence of vectors ζ := (z1, . . . , z4) in W to be admissible
if

(i) zi · zi+1 = −c2 for i = 1, . . . 4;
(ii) z1, z2 ∈ Wi, z2, z3 ∈ Wj, z3, z4 ∈ Wk and z4, z1 ∈ Wl, where i, j, k, l are

such that the cycle (i j k l) represents a face, in cyclic order, of the cube
in Figure 6.1.

(6.16)

Any cyclic permutation or reversal of order of the vectors in an admissible sequence gives
again an admissible sequence. Although the appearance is quite different, this is the exact
analogue of the definition in (5.15). In the previous section, the special group acts on a
tetrahedron instead of a cube (see (5.11)), so faces are necessarily triples of indices. In
the present context we must allow all faces of the cube of Figure 6.1, because their vertex
cycles are precisely the cycles which occur in the cycle representation of the conjugates
of S ′1 in H0.
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Theorem 6.8 Let c and d be non-zero integers with c 6= ±d and (c, d) = 1. The admissi-
ble sequences in W are precisely the sequences ζ(F ) associated with the faces F of the poly-
hedron Q. In particular, if ζ = (z1, . . . , z4) is an admissible sequence with indices i, j, k, l
as in (6.16), and if y is a vertex of Q colored l, then F = y + {o, z1, z1 + z2, z1 + z2 + z3}
is the vertex-set of a face of Q, and ζ = ζ(F ).

Proof We already know that the sequence associated with a face of Q is admissible. If
ζ(F2) = (z1, . . . , z4) is as above, then z1 ∈ W0 ∩W1, z2 ∈ W1 ∩W5, z3 ∈ W5 ∩W2 and
z4 ∈ W2∩W0, so the corresponding cycle is given by (0 1 5 2). Using (6.11) we see that the
cycles for ζ(F2S2) and ζ(F2S

2
2) are (0 2 7 3) and (0 3 6 1), respectively. These three cycles

represent the three faces of the cube in Figure 6.1 which contain the vertex labelled 0.
Now recall that the images of F2 under 〈S2〉 give all the faces of Q containing o, and that
0 is the color of o as a vertex of Q. But then we can appeal to transitivity and conclude
that the sequences ζ which are associated with the faces containing a given vertex of Q
colored l (say), must correspond to cycles which represent faces of the cube in Figure 6.1
containing the vertex labelled l.

Now let ζ = (z1, . . . , z4) be an admissible sequence with cycle (i j k l) as in (6.16); then
z1 ∈ Wl ∩Wi, z2 ∈ Wi ∩Wj, z3 ∈ Wj ∩Wk and z4 ∈ Wk ∩Wl. But each such intersection
of vertex-stars consists of a single vector and its negative, so it determines its vectors up
to sign. Once a vector in one intersection is chosen, then the others are determined by the
scalar product condition of (6.16). Hence ζ is determined by (i j k l) and a single vector,
for example, z1.

Now, if y is a vertex of Q colored l, then Wl is the vertex-star at y and the vectors
z1, z4 of Wl determine a face F ′ (say) of Q which has y as a vertex. Then ζ(F ′) is an
admissible sequence which contains z1, z4, and it has a cycle of indices which represents
a face of the cube in Figure 6.1 with vertex l. Since the sequences for the six faces of Q
with vertex y lead to the three cycles which contain l, the sequence associated with one
such face F (say) must have (i j k l) as its cycle, and F must be either F ′ itself or adjacent
to F ′. The two vectors of Wl which determine F thus include z1 or z4, or both. Hence
ζ(F ) is an admissible sequence with cycle (i j k l), and ζ(F ) includes z1 or z4. But then
ζ = ζ(F ), because an admissible sequence is determined by its cycle and a single vector.
Now the theorem follows. 2

We now compute the face centers of Q. Every face of Q must be equivalent modulo
T (H) = 2Λ to a face which contains a vertex from the list in (6.15) of vertex representa-
tives modulo T (H), and every center of a face must be equivalent to the center of such a
face. The face center of the base face F2 (see (6.12)) is given by

c(F2) = 1
2
(c,−c− d,−c+ d),

so every face center of Q must be a point in 1
2
Z3. The following lemma describes the full

set of face centers that occur. The details of the computation are omitted.

Lemma 6.9 Let Q be the polyhedron associated with H, and let Λ be as in Lemma 6.3.
Then the set of face centers of Q is the union of cosets of 1

2
Z3 modulo 2Λ. The cosets

which occur can be represented by the following vectors:
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a) ±1
2
(2,−1, 0), ±1

2
(2, 3, 0), all cyclic permutations of coordinates, if c and d are odd

and c+ d ≡ 0 (mod 4);
b) ±1

2
(1,−2, 0), ±1

2
(3, 2, 0), all cyclic permutations of coordinates, if c and d are odd

and c+ d ≡ 2 (mod 4);
c) ±1

2
(0, 1,−1), ±1

2
(2, 1,−1), all cyclic permutations of coordinates, if c is even and d

is odd;
d) ±1

2
(1, 1,−1), ±1

2
(1, 1, 3), all cyclic permutations of coordinates, if c is odd and d ≡ 0

(mod 4);
e) ±1

2
(1, 1,−3), if c ≡ ±1 (mod 8) and d ≡ 2 (mod 4);

f) ±1
2
(1, 1, 1), if c ≡ ±3 (mod 8) and d ≡ 2 (mod 4).

Note that the number of cosets occurring in Lemma 6.9 is 12 in each of the first four
cases, but is only 2 in the last two cases.

The face centers of Q = Q(c, d) are just the vertices of the dual polyhedron of type
{6, 4} denoted by Q∗ = Q(c, d)∗. Its face centers are the vertices of Q. This polyhedron
Q∗ can also be obtained by Wythoff’s construction applied to the same group H, but
with new generators S−1

2 , S−1
1 and initial (base) vertex

w := 1
2
(c,−c− d,−c+ d) = c(F2),

the fixed point of S−1
1 . Alternatively we could describe Q∗ in terms of the vertex-stars at

its vertices, but we shall not discuss this here in detail. Suffice it to say that the vertex
in the base edge of Q∗ distinct from w is given by wT , and that the orbit of wT under
〈S−1

1 〉 yields the vertices in the vertex-figure at w. This determines the vertex-star at w,
and then the remaining vertex-stars are just its images under H0.

We can also decide when two polyhedra Q(c, d) and Q(e, f) are affinely equivalent.
Once again we need not assume that the parameters are integers.

Lemma 6.10 Let c, d, e and f be real numbers, and let Q(c, d) and Q(e, f) be the poly-
hedra associated with c, d and e, f , respectively. Then Q(c, d) and Q(e, f) are affinely
equivalent if and only if (e, f) = s(c, d) or t(−c, d) for some real numbers s and t. More-
over, Q(c, d) and Q(e, f) are congruent if and only if this holds with s, t = ±1.

Proof We can argue as in the proof of Lemma 5.15. Suppose that we have Q(c, d)R =
Q(e, f) for some affine mapping R, and that oR = o and (c,−c, d)R = (e,−e, f). We can
prove as before that there are essentially only two choices for R. If the cyclic order of
the vertices in the vertex-figure at o is preserved by R (see (6.4)), then R is the identity
mapping, up to scaling (by s := e

c
if c 6= 0). On the other hand, if the order is reversed

by R, then R is the reflection in the plane ξ1 = ξ2 of E3, up to scaling by (t := e
c

if
c 6= 0). In particular, (e, f) = s(c, d) or t(−c, d), respectively, with s, t = ±1 in the case
of congruence. 2

Using Lemma 6.10 we now settle the question when a polyhedron Q(c, d) is chiral or
regular. We have

Theorem 6.11 The polyhedron Q(c, d) is geometrically chiral if c, d 6= 0, or geometrically
regular if c = 0 or d = 0.
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Proof By construction, each polyhedron Q(c, d) is either geometrically chiral or geomet-
rically regular. Suppose that Q(c, d) is geometrically regular. Then its symmetry group
must contain an element R which fixes the two vertices F0 := o and w := (c,−c, d) of
the base edge F1 and interchanges the two faces F2, F

′
2 containing F1. Now appeal to

the proof of Lemma 6.10 with e = c and f = d. Since R−1S2R = S−1
2 , the order of the

vertices in the vertex-figure is reversed, so R or −R must be the reflection in the plane
ξ1 = ξ2 given by

R: (ξ1, ξ2, ξ3) 7→ (ξ2, ξ1, ξ3). (6.17)

In particular, (c, d) = t(−c, d) with t = ±1. Hence either c = 0 or d = 0.
Conversely, let c = 0 or d = 0; then d = 1 or c = 1, respectively. Although we could

appeal to Theorem 6.12 below, we give a direct proof. Let R be the reflection in (6.17).
We show that R or −R, respectively, belongs to the symmetry group of Q(c, d) and maps
the base flag {F0, F1, F2} onto the adjacent flag {F0, F1, F

′
2}. In fact, if c = 0, we have

oR = o, wR = w, R−1TR = T and R−1S2R = S−1
2 , and hence also R−1S1R = S1S

2
2 and

R−1HR = H. But since

F ′2(S1S
2
2) = (F ′2T )S2 = F2S2 = F ′2,

we must have
F2R = (o〈S1〉)R = (oR)〈S1S

2
2 〉 = o〈S1S

2
2 〉 = F ′2,

as required. Moreover, if S ∈ H and FiS is any vertex, edge or face of Q(c, d), then
(FiS)R = (FiR)(R−1SR) is again a vertex, edge or face, so R maps Q(c, d) onto itself.
This settles the case c = 0. If d = 0, we can replace R by −R and argue in exactly the
same way. 2

For non-zero parameters c and d, the reflection R of (6.17) maps the polyhedron
Q(c, d) onto the polyhedron Q(−c, d), or rather the enantiomorphic image of Q(−c, d). In
fact, conjugation by R transforms the group H(c, d) with generators S1(c, d), S2 into the
new group H(−c, d) with generators S1(−c, d)S2

2 , S
−1
2 . But since oR = o, (c,−c, d)R =

(−c, c, d) and (o〈S1〉)R = o〈S1S
2
2 〉, the reflection R maps Q(c, d) onto Q(−c, d) and takes

the base flag {F0(c, d), F1(c, d), F2(c, d)} (say) ofQ(c, d) to {F0(−c, d), F1(−c, d), F ′2(−c, d)},
the flag adjacent to the base flag of Q(−c, d). In fact, the image Q(c, d)R is just the poly-
hedron obtained from H(−c, d) by Wythoff’s construction with generators S1(−c, d)S2

2 , S2

and initial vertex (−c, c, d). Observe that the mapping −R takes Q(c, d) to Q(c,−d), but
the latter is simply Q(−c, d) again.

Next we identify the two polyhedra Q(c, d) which are regular. We know from [18,
Theorem 7E15] that there are only two regular polyhedra of type {4, 6} in E3, namely
the Petrie-Coxeter polyhedron {4, 6 |4} (with planar faces and skew vertex-figures), and
{4, 6}6 (with skew faces and planar vertex-figures). The latter is the Petrial of the polyhe-
dron P (1,−1) = {6, 6}4 occurring in Theorem 5.17; its skew “square” faces are inscribed
in three thirds of the cubes of the cubical tessellation {4, 3, 4} of E3, such that the vertex-
figures are planar hexagons. We know from Lemma 6.7 that Q(0, 1) has planar faces and
that Q(1, 0) has planar vertex-figures. So we have

Theorem 6.12 Q(0, 1) = {4, 6 |4} and Q(1, 0) = {4, 6}6 are the only polyhedra Q(c, d)
which are regular. Their duals are Q(0, 1)∗ = {6, 4 |4} and Q(1, 0)∗ = {6, 4}6.
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The two elements (S1S
−1
2 )4 and (S2

1S
2
2)3 of H(c, d) are given by

(S1S
−1
2 )4 : x 7→ x+ 4c(0, 1, 0),

(S2
1S

2
2)3 : x 7→ x+ 2d(−1, 1,−1).

(6.18)

In particular, (S1S
−1
2 )4 = I if c = 0, and (S2

1S
2
2)3 = I if d = 0. These relations confirm

that Q(0, 1) has 2-holes of length 4, and that Q(1, 0) has Petrie polygons of length 3 (see
[18, p.193,196]). For non-zero parameters c and d, these elements are genuine translations.
Note that it is generally not true that Q(c, d) is the Petrial of some polyhedron P (a, b) (the
Petrial generally has infinite faces, but Q(c, d) does not); the only exception is Q(1, 0).

We conclude with an analogue of Theorem 5.18 about combinatorial isomorphism.

Theorem 6.13 Let c, d and e, f be pairs of relatively prime integers. Then the polyhedra
Q(c, d) and Q(e, f) are combinatorially isomorphic if and only if (e, f) = ±(c, d) or
(e, f) = ±(−c, d).

Proof We adapt the proof of Theorem 5.18. The same general argument (but with
R as in (6.17)) shows that, up to replacing e by −e, we may assume that there is an
isomorphism between Q(c, d) and Q(e, f) which maps the base flag of Q(c, d) to the base
flag of Q(e, f). Then there also is a group isomorphism µ : H(c, d) 7→ H(e, f) which maps
S1(c, d), S2 to S1(e, f), S2. In particular, µ maps translations to translations.

Now the two translations in (6.18) take the form

(S1(c, d)S−1
2 )4 = T (4ce2), (S1(c, d)2S2

2)3 = T (2d(−e1 + e2 − e3)), (6.19)

and similarly for the parameters e, f . Then,

(T (4e2)µ)c = T (4ce2)µ = T (4ee2) = T (4e2)e.

Hence, if c = 0, then also e = 0 and we are done. Let c 6= 0. Then T (4e2)µ = T (re2) for
some integer r, and thus T (cre2) = T (re2)c = T (4ee2). This yields the equation cr = 4e.
Moreover, we have T (4ei)µ = T (rei) for each i and therefore obtain the equation dr = 4f
from

T (4f(−e1 + e2 − e3)) = T (4d(−e1 + e2 − e3))µ
= (T (4e1)−1T (4e2)T (4e3)−1)dµ
= (T (re1)−1T (re2)T (re3)−1)d

= T (dr(−e1 + e2 − e3)).

Finally, bearing in mind that c, d and e, f are relatively prime, we must have r = ±4,
that is, (e, f) = ±(c, d). 2

We do not know if any polyhedron Q(c, d) other than Q(0, 1) and Q(1, 0) is combina-
torially regular, but we do know that none is geometrically regular.

7 Relationships among chiral polyhedra

In this final section, we briefly discuss relationships among the chiral polyhedra of Sec-
tions 5 and 6 (see Theorem 7.1) which are based on an analogue of the halving operation
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for regular polyhedra (see [18, p.197]). They were observed by Peter McMullen and are
reproduced here with his permission.

The halving operation η of [18] applies to an (abstract) regular polyhedron Q of type
{4, q} for some q > 3, and turns it into a self-dual regular polyhedron P := Qη of type
{q, q}. If Γ (Q) = 〈α0, α1, α2〉 (say), then Γ (P) = 〈ρ0, ρ1, ρ2〉 is the subgroup of Γ (Q) of
index at most 2 determined by

η : (α0, α1, α2) 7→ (α0α1α0, α2, α1) =: (ρ0, ρ1, ρ2).

The index is 2 if and only if the edge graph of Q is bipartite. Alternatively, in terms of
the generators β1 := α0α1, β2 := α1α2 of Γ+(Q) and σ1 := ρ0ρ1, σ2 := ρ1ρ2 of Γ+(P), the
same operation is given by

η : (β1, β2) 7→ (β2
1β2, β

−1
2 ) =: (σ1, σ2). (7.1)

Now, for a chiral polyhedron Q of type {4, q} with group Γ (Q) = 〈β1, β2〉, the halving
operation η is directly defined by (7.1). This will generally yield (except perhaps in a
few degenerate cases) a self-dual polyhedron P := Qη of type {q, q} with group Γ (P) =
〈σ1, σ2〉, which is either chiral or regular. Note that σ1σ2 = β2

1 is indeed an involution
because Q is of type {4, q}. Moreover, Γ (P) is again a subgroup of Γ (Q) of index at most
2, and β1 6∈ Γ (P) if and only if the index is 2. The self-duality of P can be verified as
follows.

We first conjugate by β1 to replace the generators σ1, σ2 for Γ (P) by the generators
σ2, (σ1σ

2
2)−1 for the conjugate subgroup β−1

1 Γ (P)β1 in Γ (Q) (in effect, this replaces P by
an isomorphic copy), and then obtain their images σ1σ

2
2, σ

−1
2 under the duality operation

δ of (2.3); but the latter are just the basic generators for Γ (P) associated with a flag
adjacent to the base flag (and determining the other enantiomorphic form of P), so P
must indeed be isomorphic to its dual. In fact, we have

β−1
1 σ1β1 = β−1

1 β2
1β2β1 = β1β2β1 = β−1

2 = σ2,
β−1

1 σ2β1 = β2
1(β1σ2β

−1
1 )β−2

1 = β2
1σ1β

−2
1 = β2β

−2
1 = σ−2

2 σ−1
1 = (σ1σ

2
2)−1.

Here the first equation also elucidates why Γ (P) will generally satisfy the intersection
property with respect to its generators σ1, σ2 (see [22]); in fact, since σ1 = β1σ2β

−1
1 , any

element in 〈σ1〉∩〈σ2〉 must necessarily fix both the base vertex F0 and the adjacent vertex
F0β

−1
1 of the original polyhedron Q, and hence must be trivial, except perhaps in a few

degenerate cases (when adjacent vertices are joined by more than one edge).
If Γ (P) is of index 2 in Γ (Q), we can recover the original polyhedron Q from its image

P = Qη by twisting with β1 (in the sense of [18, p.245]). In fact, β1 acts on Γ (P) by
conjugation and we can adjoin it to Γ (P) to recover Γ (Q); the corresponding twisting
operation is

κ : (σ1, σ2; β1) 7→ (β1, σ
−1
2 ) = (β1, β2). (7.2)

We now apply these considerations to the polyhedra Q(c, d) and P (a, b) of the pre-
vious sections. Let H(c, d) = 〈B1(c, d), B2〉 and G(a, b) = 〈S1(a, b), S2〉 be their groups
with generators as in (6.1), (6.2), (5.1) and (5.2), respectively; here we have renamed
the generators of H(c, d) to better distinguish them from those of G(a, b). Note that
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B2 = S2. In the geometric context it is more convenient to modify η by conjugating the
new generators of η by C := B1(c, d)B4

2 . The resulting operation η′ then takes the form

η′ : (B1(c, d), B2) 7→ (C−1B1(c, d)2B2C, C
−1B−1

2 C) = (S−1
2 , S1(a, b)−1), (7.3)

with a := −c+d and b := −c−d. But the pair of generators on the right is just the image
of the distinguished pair of generators S1(a, b), S2 of G(a, b) under the duality operation
δ of (2.3). Using Corollary 5.14 and (5.3) we therefore have

Q(c, d)η
′

= P (−c+ d,−c− d)∗ ∼= P (−c+ d,−c− d) = P (c− d, c+ d), (7.4)

where ∼= means congruence. Note that the parameters c − d, c + d are relatively prime
unless both c and d are odd; in the latter case they should be halved for classification
purposes (and then congruence replaced by similarity). Now the first part of the following
theorem follows.

Theorem 7.1 Let c and d be integers with (c, d) = 1. Then we have
a) Q(c, d)η ∼= P (c− d, c+ d),
b) (Q(c, d)η)κ = Q(c, d).

The first part of Theorem 7.1 implies that each polyhedron P (a, b) is the image under
η of a suitable polyhedron Q(c, d), once again up to rescaling. Moreover, as expected, η
pairs up the regular polyhedra among the P (a, b) and Q(c, d); in particular, we have

{4, 6 |4}η = Q(0, 1)η ∼= P (1,−1) = {6, 6}4,
{4, 6}η6 = Q(1, 0)η ∼= P (1, 1) = {6, 6 |3}

(see also [18, p.224]).
Under the original operation η, the two generators B1(c, d), B2 of H(c, d) are changed

to new generators B1(c, d)2B2, B
−1
2 whose product is B1(c, d)2. But

B1(c, d)2 = T1(−c+ d,−c− d),

with T1 as in (5.6), so the parameters for Q(c, d)η can be read off directly from η. This
also shows that the opposite vertex of o in the base face of Q(c, d) becomes the vertex of
the base edge of Q(c, d)η distinct from the base vertex o. The six edges of Q(c, d)η at o
are thus the diagonals containing o, of the six faces of Q(c, d) at o.

Finally, we know from the above that we can recover Q(c, d) from Q(c, d)η by twisting
with the generator B1(c, d) of H(c, d), that is, by applying κ. Note that B1(c, d) is not
contained in the group of Q(c, d)η, so the latter is indeed of index 2 in H(c, d). In fact,
the image B1(c, d)′ of B1(c, d) in the special group of H(c, d) is given by

B1(c, d)′: (ξ1, ξ2, ξ3) 7→ (−ξ1, ξ3,−ξ2)

(see (6.2)), so in particular does not belong to [3, 3]∗, with [3, 3]∗ as in (4.1); but the latter
is just the special group of Q(c, d)η.
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Grünbaum’s new regular polyhedra and their automorphism group. Aequationes
Math. 23 (1981), 252–265.

[9] A.W.M. Dress, A combinatorial theory of Grünbaum’s new regular polyhedra, II:
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