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Abstract 
 Fractal patterns represent an important class of aperiodic arrangements.  

Generating fractal structures by self-assembly is a major challenge for nanotechnology.  

The specificity of DNA sticky-ended interactions and the well-behaved structural nature 

of DNA parallelogram motifs has previously led to a protocol that appears likely to be 

capable of producing fractal constructions [A. Carbone & N.C. Seeman, A route to fractal 

DNA assembly, Natural Computing 1, 469-480, 2002.].  That protocol depends on gluing 

the set of tiles with special 'glue tiles' to produce the fractal structure.  It is possible to 

develop a fractal-assembly protocol that does not require the participation of gluing 

components.  When designed with similar DNA parallelogram motifs, the protocol 

involves sixteen specific tiles, sixteen closely related tiles, and a series of protecting 

groups that are designed to be removed by the introduction of specific strands into the 

solution. One novel aspect of the construction on the theoretical level is the interplay of 

both geometry and coding in tile design.  A second feature, related to the implementation, 

is the notion of generalized protecting groups. 

 
Introduction 
 

 In previous work (Carbone & Seeman, 2002), we have described a route to fractal 

assembly using tiles based on DNA parallelograms.  The target was to build a Sierpinski 

square (see Figure 1) through an iterative assembly process. Given a basic parallelogram-

shaped DNA tile (Mao et al., 1999) with an appropriate coding of the sides, the protocol 

was as follows: at step i=0, eight basic DNA tiles were used as building blocks and were 

assembled with the help of glue tiles (also constructed from DNA parallelograms) to 

form a “square with a hole in the middle” arrangement. The basis of the binding between 

tiles is the intermolecular Watson-Crick complementarity of DNA cohesive ends, used in 



biotechnology (Cohen et al., 1973), DNA nanotechnology (Seeman, 1982) and DNA-

based computation (Winfree, 1996).  The result was a DNA tile of larger dimension and 

with an appropriate coding of its sides. Step i+1 assembled eight DNA tiles obtained at 

step i with the help of glue tiles and produced tiles of increased size.  

 Here, we have sought to design a synthetic protocol that would avoid the use of 

gluing elements.  We describe how to assemble a Sierpinski square-like fractal starting 

from a set of 32 DNA parallelogram tiles, without using glues. The tiles are illustrated in 

Figures 2 and 3.  The physical nature of the tiles is that they consist of four DNA double 

helices; those with parallel helix axes (the red pair or the blue pair) lie in the same plane, 

but the other pair lie in a second plane, about 2 nm from the first plane.  The tiles are 

drawn as rhomboids, but are not restricted to equal distances between their vertices on 

both layers.  The vertices correspond to the crossover points of 4-arm immobile DNA 

junctions (Seeman, 1982); each of the four junctions consists of a red helix joined to a 

blue helix by strand connectivity.  A feature of the self-assembly is a coding on each edge 

of the parallelogram that involves the lengths of the helices, one long and one short.  The 

tiles naturally assort themselves into two groups, shown in Figures 2 and 3.  Above each 

group is a prototype tile, labeled T (Figure 2) or T (Figure 3).  The difference between 

the two groups is that the positions of the long red helix and the short red helix of the T 

group have been reversed in the T group, although the positions of the blue helices 

remain unchanged.  The tiles are all drawn in the same orientation, with the red helices 

vertical.  The acute angle in the lower left-hand corner has been labeled α and the obtuse 

angle in the upper left-hand corner has been labeled β, as an aid to follow the orientation 

of the tiles.  It is evident from Figures 2 and 3 that eight different extensions protrude 



from each tile. There are two possible extensions per side and each member of the pair 

has a different length, one being long and the other short.  In each tile, the long 

extensions are both on the same helix, as are the short extensions. The two lengths are 

fixed for all the tiles.   

 The parallelogram-like geometry of the tiles themselves is well-defined; indeed, 

periodic arrays of these tiles have been used to quantitate the angles at their branchpoints 

(Mao et al., 1999; Sha et al., 2000; Sha et al., 2002).  They share the structural integrity 

of their shape with DNA double crossover molecules (Li, et al., 1996), a system proposed 

by Winfree for use in algorithmic DNA assembly, including “Pascal triangles, mod 2” 

(Winfree, 1996).  In addition to their well-defined geometries, our tiles are characterized 

by a specific code for each side.  There are two basic coding labels that label the sides of 

the tiles, a and a* (see Figures 2 and 3), where a* is designated to be the complement of 

a in the Watson-Crick sense. 

  An important property of the well-structured nature of the tiles is that we 

can use both traditional Watson-Crick affinity and tile geometry to define their assembly 

properties.  We have pointed out previously (Li et al., 1996) that structural integrity is 

necessary for periodic constructions based on DNA sticky ends.  The same feature is 

even more important for algorithmic assemblies (Winfree, 1996, 2000), such as the one 

described here.  Indeed, these tiles are essentially Wang tiles: besides the coding, they 

carry geometrical information. Two tiles match if their sides are coded with opposite 

labels (i.e. one with a and the other with a*) and if their geometrical boundaries allow the 

fit for both helices at a point where they bond. 



 Tiles have been designated in groups labeled 1-6 in Figure 2.  The tiles labeled b, 

r and t contain two circled combining sites, both labeled a; these are the positions where 

they are designated to combine with other tiles in the assemblies.  Tile 1 can combine in 

any of its adjacent pairs of a sites, so they have not been labeled in Figure 2.  The b and r 

tiles contain one a and one a* site that are designated not to combine; the a* site is in a 

vertical position (between two red helices) in the b tiles and in a horizontal position 

(between two blue helices) in the r tiles.  The t tiles again have two a sites in their circled 

combining sites, but have two adjacent a* sites in both their non-combining sites.  The 1, 

2, 3, and 4 labels of b, r and t are the four circular permutations of the combining sites.  

In the following, we refer to tiles 1, 2, 3, and 4 as being of class 1, because of the 

adjacent nature of their a-containing combining sites.    In all there are 13 possible 

configurations of these tiles.  Tiles 5 and 6 have opposite combining edges that are 

labeled a*, and two others labeled a.  Tile 56 combines these features, with four a* sites 

that are not circled (as in tile 1), and any of its adjacent pairs can combine. In total, the 

number of tiles is 16.  As mentioned above, there are two versions of each of the 16 tiles.  

The other version is shown in Figure 3; these tiles are labeled as T.  The tiles in both 

Figures 2 and 3 are drawn with the red helices vertical.  It is clear that the tiles in Figure 3 

are identical to those in Figure 2, both in the locations of their combining sites and in the 

labeling of their edges.  The difference between the two tile types is that the positions of 

the long and short red helices, have been reversed in Figure 3:  The long helices are on 

the left in Figure 2 and the short helices are on the right; the long helices are on the right 

in Figure 3 and the short helices are on the left. 

Fractal layers 
 



 A fractal layer is a parallelogram fractal of dimension k+1 that is constructed in 

one step out of parallelogram fractals of dimension k used as building blocks. The tiles in 

Figures 2 and 3 have dimension 0. In the first stage of the construction, we combine the 

tiles of Figures 2 and 3 in such a way that physical boundaries as well as coding 

complementarity are satisfied. As seen in Figures 4 and 5, we assemble these tiles in a 

specified manner: we have chosen to illustrate explicitly the assembly of a few fractal 

layers of dimension 1, in all there are 32 of them, and the others are put together 

similarly. The assemblies that we generate “look like” the tiles of the set itself, both in 

coding and in geometrical shape; hence, there is a fractal relationship between the tile-

like units of successive dimensions. Take, for instance, the assembly of Figure 4. It 

illustrates a fractal layer representing tile 1 at dimension 1 (designated 1'). Tile 1 is 

constituted by four sides coded a, and by a long-short sequence of helices for each one of 

its sides. The codes along the sides of 1' are aaa, aaa, aaa,  aaa. The geometrical shape 

of 1' respects the geometrical properties of tile 1. That is, the upper side is a sequence of 

long-short-long-short-long-short helices going from left to right, the right vertical side is 

also a long-short-long-short-long-short sequence of helices reading from top to bottom, 

the bottom side is a long-short-long-short-long-short sequence of helices reading from 

left to right and the left vertical side is a long-short-long-short-long-short sequence of 

helices reading from top to bottom. The consistency of the coding and the geometry of 

fractal layers 5’ and 5' (Figure 5) can be checked easily. 

 If a zero-layer tile is among the T tiles in Figure 2, corner tiles of a first layer tile 

modeled on it will also be T tiles.  They will be joined together by T tiles from Figure 3.  

Likewise, if the zero-layer model tile is among the T tiles, its corner tiles will be T tiles, 

and they will be joined by T tiles.  We have organized the labeling of the tiles so that any 

given T tile of a given layer k, can be constructed easily by knowing the components of 

the T tile:  Switching T tiles (of dimension k-1) to T tiles and the T tiles to T tiles will 

generate the T tiles of dimension k.  For example, the left panel of Figure 4 shows tile 1', 



with 1 tiles at the corners, 5 tiles on the left and right sides and inverted 6 tiles on the top 

and bottom edges.  Likewise, the right panel of Figure 4 contains the 1' tile, with 1 tiles at 

the corners, 5 tiles on the left and right sides and inverted 6 tiles on the top and bottom 

edges.  The same point is evident in Figure 5, showing the 5' and 5' tiles. 

 One applies the same approach to generate fractal layers of dimension k >1.  For 

example, tile 5’’ is obtained by assembling tiles 1b’, 2b’, 3b’, 4b’, 5’, and 56'  for k=2 

(compare with Figure 5).  In general, fractal layers have sides coded either (a)3k
 or (a*)3k

, 

and geometrical shapes determined by 3k repeats of long-short helical motifs. In fact, 

iteration k defines an assembly of 3×3 tiles of dimension k-1 (with a gap in the center), 

and the sides of a tile of dimension k are coded either by a sequence (a)3k-1⋅(a)3k-1⋅ (a)3k-1  

=  (a)3k  
 or by a sequence (a*)3k-1⋅(a*)3k-1⋅ (a*)3k-1 = (a*)3k , where (a)3k  or (a*)3k  is a 

sequence made of 3k repeated a’s or a*’s.  The parallelogram shapes are respected, for all 

k>1. 
 

DNA Tiles Suitable for a Fractal Assembly 
 The strand structure of DNA parallelogram tiles suitable for implementing the 

appropriate coding and geometry of the tiles described in the introduction is shown in 

Figure 6.  The 8 helical extensions beyond the edges take different lengths according to 

the abstract description of the tile in question (see Figures 2 and 3). Helices are either 

long or short. The long helix of a side coded a, is constituted by a sticky-end with 

sequence λ, and the short helix of the same side has a sticky-end with sequence σ (Figure 

6). The complementary side a* is formed by a short helix with code λ* and by a long 

helix with code σ*. We set the sequence λ to be complementary to λ* and the sequence σ 

to be complementary to σ*. See Figure 6.  The distance that is the sum of λ and σ may be 

an integral multiple of DNA half-turns.  We will arbitrarily restrict this number to even 

multiples of half-turns, i.e., full turns of DNA.  This restriction lends another level of 

control over the construction, because tiles that turn upside down and bind (as, e.g., the 



top and bottom edges of tile 1b), would be misphased by a half-turn in their other helix.  

Thus, the helical nature of DNA has a component of rotational, as well as length control 

in it. 

 It is important to realize that our scheme is predicated on the notion that both 

sides of an edge will pair with another edge; a single interaction between a λ sticky end 

and a single σ* sticky end could result in an erroneous structure.  This is not an 

unfamiliar notion in nucleic acid hydrogen bonding, which avails itself of cooperativity 

in almost all of its aspects.  The stabilization that results from a second favorable 

interaction that can occur within a context where one interaction is already established 

clearly benefits from entropic gain, relative to a system that must join more molecules to 

achieve interactions characterized by the same individual free energies.  The bases 

themselves pair with two or three hydrogen bonds, and single hydrogen bonding 

interactions, unless otherwise supported by other structural features, are not regarded as 

major stabilizing elements.  The successful prototype XOR calculation performed 

recently (Mao et al., 2000) also requires that two separate double helical pairings occur 

successfully, in a context where a single one could result in an incorrect assembly.  

Nevertheless, as in all algorithmic assemblies, it is key that kinetic intermediates be 

eliminated by ensuring that equilibrium is reached for any particular reaction where 

competing alternatives exist.  It is likely that this system will be most effective if 

assemblies are formed at temperatures where double interactions compete effectively 

against single interactions. 

 As noted above, in the physical realization of a parallelogram tile, pairs of helices 

lie in two distinct parallel planes.  Our approach requires that there be no cross-reactivity 

between the two planes.  We must exclude mispairing between similar edges, such as the 

top of 1b and the right side of 2r, or the top of 2t and the right side of 4t.  The exclusion 

of pairing between the layers is accomplished readily by using 5' overhangs for the sticky 

ends on the helices in the upper plane, and 3' overhangs for the sticky ends on the helices 



in the lower plane; in Figure 6, the strand structure indicates that the upper plane contains 

the red helices, and the lower plane contains the blue helices; if acceptable to the target 

design, different lengths for the blue extensions and red extensions could also be used. 

 
Parallelogram Protection 

 It is a common practice in chemical synthesis (e.g., Caruthers, 1985), and even in 

DNA nanotechnology (Seeman, 1992; Zhang & Seeman, 1992) to direct assembly in the 

desired direction by using protecting groups.  The use of protecting groups prevents the 

occurrence of interactions of similar free energy to the target interactions; once the 

desired bonding has occurred, the protecting groups are removed.  To avoid the 

construction of potentially competitive, undesirable shapes during assembly in this 

system, it is necessary to protect the corners of the tiles during assembly. The purpose is 

to block the access to binding pairs of consecutive edges of a tile. We use a combination 

of several parallelograms forming corner-covers to protect corners. At the first stage of 

the assembly, protecting groups consist of 3 parallelograms, two of which bind to the two 

consecutive sites of a tile. A third parallelogram is used to join these two protecting 

parallelograms together. Figure 7 illustrates the four kinds of protecting groups for a tile: 

they correspond to all combinations of long-short helices that can lie on a corner of either 

shape, either an acute angle or an obtuse angle. In successive stages of the assembly, the 

length of the protecting groups might vary. Ideally one should ask for protecting groups 

that completely cover the two sides of the tile. In practice, it might be enough that only a 

short part of the sides is covered, to ensure that undesired binding is unstable. Proper 

control of the temperature during assembly might make short sides feasible.  

 Groups 1, 5 and 6 contain tiles whose corners, i.e. pairs of successive sides, have 

geometrically different shapes (this is a crucial feature of our set of tiles) and because of 

this we can design protecting groups that are corner specific for each tile. In Figure 7 we 

illustrate a complete set of different corner sides with specific shapes.  



 Protecting groups are to be put in solution along with tiles of a specific kind (that 

is, either 1 or 5 or 6) and they select, with no ambiguity, the appropriate binding site 

because of the geometry of the tile (see below and legend to Figure 7 for how the use of 

protecting strands makes selection depend on geometry only, avoiding coding 

discrimination between a/a* sites). The outcome assembly is then used for the assembly 

of tiles at a larger scale. Figure 9 illustrates the desired assembly of tiles 1 and 5, after the 

two incorrect options illustrated in Figure 8.  

 A consideration of the detailed nature of the protecting groups is key if the 

construction is not to get bogged down in complex syntheses.  Figure 10 illustrates the 

strand structure of a protecting tile, such as one of those shown in Figure 9.  The 

protecting group ties up the sticky ends of the tile on the bottom, just as those in Figure 9 

tie up those of the tile on the lower right.  The three parallelograms labeled 'P' form the 

corners of the protecting group, similar to 1.3 of Figure 7.  This is an example of an 

obtuse protecting group, but acute protecting groups are also necessary, as seen in Figure 

7.  The protected tile is labeled 'T'.  It seems possible to take a modular approach to 

protection by having the actual protection effected by strands that bind to the geometry-

enforcing large protecting group (ensuring that only the proper edges are protected) and 

to the tile to be protected.  These are shown in Figure 10 as four doubly colored single 

strands.  One part forms a bridge between the protecting group and the sticky end on the 

'T' tile, by forming base pairs with both.  The other part, colored differently, corresponds 

to a non-pairing extension of this strand, similar to the extensions used by Yurke et al. 

(2000) to remove strands from a DNA nanomechanical device.  Removal is achieved by 

adding the complete complement (optionally containing biotin) to the doubly colored 

strand, both the extension and the part paired to the larger units.  The system works by 

the complement binding to the extension and then invading the duplex formed by the 

other strand via a process known as branch migration.  Once the new duplex is formed, it 

can be removed by magnetic streptavidin beads that bind biotin (Yan et al., 2002).  This 



mechanism should allow the use of different extensions attached to the same parts of the 

strands that form duplex; this procedure would permit selective deprotection of 

complexes held together by the same sticky ends.  Such an approach would rely on 

careful control of the kinetics of the system, because it is predicated on kinetics, rather 

than equilibrium thermodynamics.  To produce protecting groups with the greatest 

generality, we have introduced a series of strands in Figure 10 that are colored orange and 

dark green.  These strands (whose sequences are all different), can bind to the generic 

protecting group, lending it the specificity to bind the bridge strands.  These strands are 

also removed by adding full complements. 

 Protection at higher dimensions using DNA suffers from the problem that more-

and-more complex protecting groups would need to be manufactured.  As noted above, it 

might be possible to protect only the corners of large fractal tiles without protecting the 

entire edge of the tile.  A way to enable this approach would be to use peptide nucleic 

acids (PNA) for the apparatus of the protecting group (Nielsen, et al. 1991).  PNA binds 

more tightly to DNA than DNA,  because its backbone is uncharged.  Thus, it should out-

compete other molecules available to displace it.  Insofar as is known, PNA behaves 

exactly the same as DNA, except for a slightly different twist, which needs to be 

considered, but is not an insurmountable problem on the single-stranded regions of the 

protecting groups. 
 
 

Fractal assembly in solution 
 

 Two tiles assemble along a side if three conditions are satisfied simultaneously: 

[1] The geometry of their sides fits (i.e. long extensions are opposite to short ones); [2] 

the coding of opposite extensions is complementary; and [3] the helices corresponding to 

opposite extensions lie on the same layer. Keeping this in mind, we will explain the 

assembly process, by considering the specific example of fractal layer 1’. All other 

assemblies follow an analogous schema. To assemble 1’, we take four vessels containing 



multiple copies of tile 1 and add into each one of them a protecting group for a specific 

corner of the tile. Because of the geometry of the sides of the tiles, with no ambiguity, a 

specific corner is chosen by the protecting group to assemble on the tile. The tiles with 

their corners protected are then mixed in new vessels with tiles 5 and 6, one type after the 

other, by respecting the arrangement illustrated in Figure 4, say going clockwise from the 

top-right tile 1 back to it. There is no ambiguity in the way that tiles 5 and 6 assemble to 

each tile 1 because of the geometry of their sides and of the coding. Both these conditions 

play a role here.  It is important to point out that there will be no interactions between two 

different copies of the same tile.  The non-pairing between layers, the different coding 

within the same layer, and the inability (noted above) of tiles to bind when upside down 

are the basis for this key condition.  

  Whenever the assembly asks for the use of intermediary tiles of type 56 or 56 that 

have four sites coded a*, then we need to be a bit more careful in assembling the fractal 

layer. This is because some ambiguity might appear in their assembly with tiles of type 1.  

Figure 8c illustrates an example that occurs in the assembly of fractal layer 5’:  To avoid 

the ambiguity coming from two different sites of 56, one needs to use protecting groups 

for tile 56 to avoid the undesired site. The intermediate tile is then put in a tube with tile 

3b equipped by its protection, and the assembly is formed. See Figure 9.  The protection 

on the intermediate tile 56 is then taken away to allow the completion of the fractal layer:  

Tile 2b hybridizes to tile 56 and so on. Here, the removal of the protection on 56 needs to 

be specific and one can achieve this as discussed at the end of section “Parallelogram 

protection”. 

 To conclude, let us notice that there are variations of tile 1 which have opposite 

sides made of helices lying on the same plane and coded a and a*. It might seem that 

such sides can glue to each other, but in fact their geometry does not allow this to happen, 

being one side the mirror image of the other. Variation 56 of tiles 5 and 6 has opposite 

helices with identical code. 
Discussion 

 



 In a fractal assembly, the tiles produced at larger scales should satisfy the 

properties of the basic tile boundaries. This means that the properties of the coding and of 

the geometrical shape of the boundaries (if any) should be passed on at larger scales. 

Given the Sierpinski square fractal, one could ask what is the minimum number of square 

tiles that can assemble uniquely into a desired shape when the only boundary conditions 

concern the coding.  The design of such individual tiles with “differently-labeled” sides is 

not at all obvious and it would be a challenge to verify that such a task is possible at all. 

We show that by combining geometrical shapes and coding we can build a fractal 

assembly with the 16 basic tiles in Figure 2 and their mates in Figure 3. The design of 

such a set of tiles and of suitable protections requires satisfying adequate closure 

conditions: a set of parallelogram tiles N ⊂ M is closed with respect to a property P if all 

tiles in N satisfy P and all tiles in M satisfying P are in N. For us, N is one of the sets 1, 5 

or 6 and the property P concerns the geometry of the boundaries (i.e. corners of tiles have 

geometrically different shapes) and the coding of their sides. The set of variations of tile 

1, for instance, is constituted by tiles with a fixed boundary shape, and where the coding 

is such that a pair of consecutive edges are labeled a, and the remaining two edges are 

labeled either a or a*. In a similar spirit, one defines protecting groups by requiring 

closure on the geometrical shape of pairs of consecutive edges. Using the notion of 

closure, the reader can formally show that fractals Xk of dimension k>1 sharing the 

characteristics (i.e. coding and geometrical shape) of a tile X in the set of basic tiles, can 

always be constructed. 

 We have noticed above that the lengths of the extensions can vary between the 

two layers of helices, to create differently shaped fractal layers, not just rhomboidal 

constructs.  As we have illustrated in a variety of assemblies, the only rotations required 

of the individual tiles are 180˚ rotations.  Consequently, the lengths of the two directions 

within the parallelogram are also independent of each other, so that the parallelograms 

themselves are not restricted to be rhomboids.  They may have any ratio of edges 

between their vertices compatible with an integral number of half-turns of DNA. 

 The way that we ensure there is no interaction between the two layers utilizes a 

chemical difference between the two 5' end and the 3' end.  Although the sequences are 

the same, the presence of material 5' or 3' to the overhangs prevents interaction between 



the two types of sticky ends.  It is important to realize that the 3' and 5' sticky ends are 

used in different directions, either horizontal or vertical but never mixed; this happens 

because the only rotations we use are 180˚ rotations perpendicular to the plane of the 

parallelograms.  If one were to regard these ends as being different, then we would not 

have a single label, a and its complement, a*, but in fact two different labels, a  and b 

and their complements a* and b*.  Initial experimental attempts to implement this system 

are likely to use only the 3' and 5' differences, without resorting to two different types of 

sequences; the extra level of control possibly available from a second coding word does 

not appear necessary.  However, if this system were to be extended to 3D, the differences 

between 5' and 3' sticky ends would not be enough.  A second (and perhaps for generality 

a third) type of coding would be required.  Related 3D fractal systems will be discussed 

elsewhere. 

 The interdomain angle found in Holliday junctions has been measured by AFM to 

be ~63˚ (Mao et al., 1999).  However, changing the sequence that flanks the site can 

decrease the angle by up to 20˚ (Sha et al., 2002).  The Bowtie junction (Sha et al., 1998; 

2000) is closely related to the Holliday junction, but its two crossover strands contain 5', 

5' and 3', 3' linkages, instead of the conventional 5', 3' linkages found in conventional 

DNA.  The Bowtie junction has an interdomain angle around -67˚ (113˚), which 

approximately changes the  α and β angles to their supplements, interconverting obtuse 

and acute angles.  Thus, a closely related shape is available from the scheme outlined 

here. 
 Recently, parallelogram tiles have been produced with helix axes lying in the 

same plane (Yan & Seeman, 2002). Their implementation in this context appears 

technically more complicated, because only a single double helical extension in each 

direction would exist.  As a result, it would not be possible to use the double-cohesion of 

two helices to enforce the fidelity of sticky ends.  The advantage of using “planar” 

parallelograms is that the complex combinatorial aspects of the solution decrease:  The 

number of tiles used is 16, the number of protecting corners is four and only two tile 

types are needed to act as protecting groups. 



 Fractal constructions can be thought of as a way to generate fixed geometrical 

shapes of controlled size. Winfree proposed a schema to build periodic arrays of size n×m 

by generating repeatedly the Boolean truth table for n entries until m rows of the table 

have been filled (Winfree, 1996, 2000). One would like to have a way to do the same 

with other shapes other than rectangles, such as triangles, hexagons, etc. Fractal assembly 

allows constructing fixed sizes that are powers of some value: for instance, for the 

Sierpinski fractal, the size of the squares is 3k, where k is the dimension.  We will discuss 

elsewhere the construction of fractal arrangements from other shapes. 

  A variety of periodic and aperiodic constructions have been proposed (Winfree, 

1996, 2000) and executed from the components of DNA nanotechnology.  Those reduced 

to practice include periodic arrays built from double crossover (DX) molecules (Winfree 

et al., 1998; Liu et al., 1999), triple crossover molecules (TX) (LaBean et al., 2000), 

conventional (Mao et al., 1999; Sha et al., 2002) and Bowtie parallelograms (Sha et al., 

2000), and an aperiodic assembly that performs a cumulative XOR calculation (Mao et 

al., 2000). All of these constructions use uniformly shaped tiles that rely exclusively on 

the specificity of sticky ended cohesion for their assembly.  The fractal assembly 

proposed here relies both on cohesion and on molecular shape (long and short extensions) 

to establish complementarity.  Although related to the geometrical constraints used in the 

cumulative XOR calculation, these geometrical determinants are fundamentally new, and 

are likely to present a new set of principles and problems in DNA nanotechnology. 
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Figure Legends 
Figure 1.  Sierpinski square fractal in ∇2. Its construction goes as follows. Let U denote 

the unit square [0,1]×[0,1] in ∇2. We can decompose U into 9 (closed) squares Ui in the 

obvious manner, so that Ui’s have disjoint interiors and side-length 1/3. Take U and 

replace it with the union of all the Ui’s except the one in the center of U to produce a set 

Ki which is the union of 8 squares. Apply this process to each of the squares and repeat 

the procedure indefinitely to get a sequence of compact sets Ki in the plane, where each 

Ki consists of 8i squares of length 3-i, and where these squares have disjoint interiors. The 

set K=∪i Ki is a compact subset of ∇2 called Sierpinski square fractal or Sierpinski 

carpet. In the paper we consider the finite approximations Ki of K. In the picture we see 

K4. The index i is called dimension of the fractal. 

Figure 2.  First Set of 16 Tiles Used in the Fractal Assembly. A prototype tile rhombus-

shaped tile labeled 'T' is shown at the top of the drawing.  It contains two red DNA 

helices above two blue DNA helices.  The upper blue helix and the left red helix contain 

long extensions going beyond the borders of the rhombus.  The lower blue helix and the 

right red helix contain short extensions beyond the border of the helix.  The upper left 

corner of the rhombus contains a β in the obtuse angle and the lower left corner of the 

rhombus contains an α in the acute angle to aid in orientation.  There are three basic 

families of tiles, called 1, 5 and 6, and their variations. Circles indicate the binding sites 

where the tiles are supposed to assemble. Tile 1 has four possible preferred pairs of sides 

(corresponding to the four corners), so none are listed. Tiles named 2, 3 and 4 are 

variations of 1, but where the pair of preferred sides changed.  Tiles 1, 2, 3 and 4 all pair 

through adjacent edges labeled a.  The tiles labeled b contain a vertical edge labeled a*, 

those labeled r contain a horizontal edge labeled a*, and those labeled t contain both. 

Tiles 5 and 6 are used as intermediary tiles during the assembly, because they contain 

opposite a* edges. Their variation, 56 is also shown. Notice that the sides coded a* in 5 

lie between red extensions; in 6 they lie between blue extensions. 



Figure 3.  The Second set of 16 Tiles Used in the Fractal Assembly.  These tiles are 

labeled analogously to those in Figure 2, except that their names are underlined; thus, the 

prototype tile is labeled 'T'.  The same conventions apply as in Figure 2.  The difference 

between the tiles in this figure and those in Figure 2 is that the positions of the red helices 

have been reversed; whereas the long helices are on the left and the short are on the right 

in that figure, in this drawing the long helices are on the right and the short helices are on 

the left.  The mirror image relationship between the red helices of the two tile types 

allows them to be combined, so that one type of tile is on the corners and the other type is 

on the edge, perhaps following a 180˚ rotation. 

Figure 4.  First Fractal Layer of Tiles 1 and 1.  The left panel contains tile 1' and the 

right panel contains tile 1'.  The boundaries of the 1' tile are coded by the same letters 

(i.e. triplets aaa) and the geometrical shape of the sides of the fractal tile consists of a 

repeat of the basic motif “long-short helices”.  Note that the corners are 1 tiles, but the 

edge tiles are 5 and 6 tiles.  The 6 tile has been rotated 180˚.  The right panel contains the 

1' tile.  The corners and edges have been replaced with the corresponding tile from the 

other group, with 1 tiles on the corners, and edges comprised of 5 and inverted 6 tiles.  

Figure 5.  First Fractal Layers of Basic Tiles 5 and 5.  Both the coding and the 

geometrical shape of the sides correspond to the characteristics of the 5 and 5 tiles. 

Figure 6.  The Strand Structure of the 6 Tile.  This drawing shows how DNA strands 

hybridize in a stable parallelogram configuration.  Arrowheads represent 3' ends.  Note 

that the sticky ends on the red helices contain 5' overhangs, and the sticky ends on the 

blue helices contain 3' overhangs.  The red helices are about 2 nm closer to the reader 

than the blue helices.  Sides coded a and a* correspond to short and long extensions 

coded σ, λ and λ*, σ* respectively, where λ, λ* and σ, σ* are complementary sequences.  

Note that some strands pass between layers.  Although not an issue here, the parallel-

strand representation for DNA used can lead to visual artifacts, such as apparent 5'-5' 



juxtapositions of sticky ends.  The way to imagine the actual strands is to picture them 

forming a zigzag path between the parallel strands. 

Figure 7.  Protecting Groups.  Two sets of protecting groups are shown schematically in 

the upper panel. Those that protect obtuse angles are labeled 1.1, 1.2, 1.3 and 1.4; those 

that protect acute angles are labeled 2.1, 2.2, 2.3 and 2.4.  Within each group, the 

differences have to do with the long/short features of the corner that is protected.  Note 

that the tips of the protecting groups are shown to be purple.  The purple extensions are 

used to construct long protections in successive fractal layers. To do this one uses extra 

tiles that are illustrated in the lower figure. The coding sequence associated with all long 

extensions is the same. The same holds for short extensions. In practical terms, a tile 

binds to a protecting group through protecting strands that will recognize the coding 

sequences of the protecting group and of the coding sequence of the tile, as illustrated in 

Figure 10. As a consequence, the geometrical shape of the protection is the only 

characteristic that discriminates tiles binding to the protecting groups, and this allows 

having 8 protecting groups instead of 32 (coming from all possible combinations of a/a* 

coding and shapes of two consecutive sites).  Protecting strands will be also employed for 

the 4 tiles used to elongate protecting groups on fractal layers of non-trivial dimension. 

Figure 8.  Possible Types of Mispairing.  (a)  An Impossible Mispair.  The different 

sticky ends on the two layers prevent this type of mispair, despite the appropriate 

geometrical fits of the extensions on the 1 and 56 tiles.  (b) A Feasible Assembly of Tiles 

3b and 6:  The geometrical shape, coding and planes of the helices match accordingly.  

However, this is an undesired pairing, because the top row combines a and a* extensions.  

(c) Tile 56 is Assembled with Tile 3b in Two Different Ways.  The one on the right is 

appropriate, but the lower interaction mixes extension types. 

Figure 9.  An Example of Protection.  This example shows how the inappropriate 

interaction shown in Figure 8c can be prevented by the presence of protecting group 1.2.  

Note, however, that the desired interaction is still feasible. 



Figure 10.  Generalized Protection.  The triple tile unit whose corner tiles are labeled 'P' 

forms the protecting group for the tile labeled 'T'.  It covers the sticky ends that should 

not react if the T tile is to act as a corner tile without other pairings that might adulterate 

the structure.  Note that the actual protection is accomplished by four short colored 

strands that have differently colored unpaired extensions.  The colored strand is 

complementary both to a target region on the protecting strand, and to a sticky end on the 

T tile.  These protecting strands are to be removed by Yurke et al.-type (2000) full 

complements that bind to the extensions and then remove the rest of the strand by branch 

migration.  Different extensions would allow for a standard protecting group that could 

be combined with the same sequence in different loci, and would enable the selective 

removal of particular protecting strands.  The orange-green strands increase the generality 

of the construction.  They bind to the protecting group on one side (the green side) and to 

the colored strands on the other side (the orange side).  Thus, generic protecting groups 

can be used in all cases.  The orange-green strands may be removed by the same 

techniques as the other strands. 
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