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1 Introduction

Abstract. We construct an explicit regulator mayp from Bloch’s Higher Chow
group complex to the Deligne complex of a complex algebraic variety X. We
define the Arakelov motivic complex as the cone of this map shifted by one. Its
last cohomology group is (a version of) the Arakelov Chow group defined by H.
Gillet and C. Soule.

We relate the Grassmannian n—logarithms (defined as in [G3]) to the geom-
etry of symmetric space SL,(C)/SU(n). For n == 2 we recover Lobachevsky's
formula expressing the volume of an ideal geodesic simplex in the hyperbolic
space via the dilogarithm. Using the relationship with symmetric spaces we con-
struct the Borel regulator on K3,_1(C) via the Crasstosnnian n—logarithms.

We study the Chow dilogarithm and prove a reciprocity law which strength-
ens Suslin’s reciprocity law for Milnor's group K on curves.

Our note [G5] can serve as an introduction to this paper.
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1. Beilinson’s conjectures on special values of L-functions. Let X be
a regular scheme. A.A. Beilinson [B1] defined the rational motivic cohomology
of X via Quillen’s algebralc K-theory of X by the following formula, where v is
the Adams filtration:

Hj (X, Q(n)) = Gr} Kzn—i(X) @ Q (1)
Let X be a regular complex algebraic variety. Beilinson defined the regulator
5+ Hju(X,Q(n)) — Hp{(X (<), R(n))

to the weight n Deligne cohomology of X (C).

Let X be a regular projective variety over a number field F. Denote by
L{R*(X),s) the L-function related to its i-dimensional cohomology. Beilinson
conjectured that for any integer n > 144/2 its special value at 3 = n is described,
up to a nonzero rational factor, by the regulator map

ra  HENX,Qn)) — HE (X ©g Ry, R(n)

to the weight n real Deligne cohomology of X, see {B1] and [RSS] for details.

This conjecture is fully established only when X = Spec(F) where F is a
number field. In this case the regulator coincides with the Borel regulator, and
the relation with special values of Dedekind zeta-functions was given by the
famous Borel theorem {Boj.

Although Beilinson’s conjectures are far from being proved, it is interesting
to see what kind of information about the special values of L-functions they sug-
gest. So we come to the problem of ezplicit calculation of Beilinson’s regulator.
This problem is already very interesting for the Borel regulator.

2. Regulator maps on motivic complexes and Arakelov motivic
cohomology. Beilinson [B2] and S. Lichtenbeum [L1] conjectured that the
weight n integral motivic cohomology of X should appear as the cohomology of
certain complexes I'(X:n), called the weight n motivic complexes:

Hiy(X, Z(n)) := H(T(X; 7))

These complexes are well defined as objects of the derived category.

The first motivic complexes satisfying Beilinson’s formula (1) were Bloch'’s
Higher Chow group complexes Z°*(X;n) [Bl1]. Later on A.A. Suslin and V.A.
Voevodsky defined several important versions of these complexes. For another
candidates for motivic complexes, called the polylogarithmic motivic complexes,
see [G1-2]. They are very explicit and the smallist among possible candidates,
however Beilinson’s formula (1) is far from being e<tablished for them.

The real Deligne cohomology are also cohomology of certain complexes. It
was suggested in {G5] and [G7] that the regulator map should be explicitly
defined on the level of complexes.



Let X be a regular variety over L. In chapter 2 we construct canonical
homomorphism of complexes

Bloch's weight n Higher Chow group complex Z*(X;n)of X —»  (2)

the weight n real Deligne complex C3{X (C);n) of X

This construction is a version of the one given in [G5]. The complex CH(X (C);n)
is the truncation T<zn of the complex proposed by Deligne more then twenty
years ago. The weight n Arakelov motivic complex T'%{X;n) is the cone of the
ma)> (2), shifted by ~1:

I%(X:n) = COI]G(Z'(X; n) 24 3 (X (C); n)) [~1] (3)

For a regular variety X over R the image of map (2) lies in the subcomplex

CH(X/rin) = Cp(X(C);n)" =

where F, is the De Rham involution provided by the action of complex conju-
gation. The weight n real Arakelov motivic complex is defined as

2 .
P3(X/ain) = Cone( 2*(X;in) 12 €2 X jmim) }[-1) 4)

For a regular variety X over a number field F we set
Lo(X/rin) := Cone(2*(X;n) — CH(X &g Rjpin) )[-1] (5)

The Arakelov motivic cohomology are cohomology of these complexes.

Our construction works equally well for the Suslin-Voevodsky versions of the
motivic complexes.

The regulator map on the polylogarithmic motivic complexes was defined in
[G7] explicitly via the classical polylogarithms. The Arakelov motivic complexes
constructed using regulator maps on different motivic complexes are supposed to
lead to the same object of the derived category. However a precise relationship
between the construction given in [G7] and the one in chapter 2 is not clear.

Higher Arakelov Chow groups. The last group of the complex C3H{X(C);n)
consists of closed distributions of certain type on X(C}. Replacing it by the
quotient modulo smooth closed forms of the same type we get the quotient
complex C3,(X(C};n). Changing C to C in (3) we define the weight n Higher
Arakelov Chow group complex. Its last cohomology group is isomorphic to the
Arakelov Chow group CH n(X {©)} as defined by Gillet and Soule.

It would be very interesting to generalize the Arakelov-Riemann—Roch the-
orem proved by Gillet and Soule to the case of Highar Arakelov Chow groups.

3. The Chow n-logarithm function. Let us describe the regulator map
(2) in the simplest case when X = Spec(C) is a point.



Let us choose in P™ a homogeneous coordinates (zp : ... : 2m). The union
of coordinate hyperplanes is a simplex L. Let A™ be the complement to the
hyperplane z; + ...+ zm = 2o in P™. The abelian group Z,(Spec(C); n} is freely
generated by the codimension n irreducible algebraic cycles in A™ intersecting
properly the faces of the simplex L. The intersection with codimension one faces
L; of L provide homomorphisms

d; : Z(Spec{C);n) —+ Z,_1(Spec(C);n); 9 := Zm:(—l)jaj
J=0

The weight n. Higher Chow group complex over Spec(C), written as a homolog-
ical complex, looks as follows:

o =2 Z5(Spec(C);n) -2 Z1(Spec(C);n) 2+ Zo(Spec(C);n)

The Deligne complex of a point reduces to the group R(n) := (27¢)"R. The
regulator map (2) boils down to a construction of a homomorphism

Zan-1(Spec(C);n) =5 R(n), such that P08 =0

It is provided by a function P, on the space of codimension n cycles in CP2"2
intersecting properly faces of a simplex L. This function, called the Chow n-
logarithm function, was constructed in [G5]. To recall its construction, ob-
serve that a codimension n cycle in P?"~1 — L can be thought of as an (n —
1)-dimensional variety X (a cycle) equipped with 2n — 1 rational functions
fiy .-, fan—1- These functions are obtained by restriction of the coordinate func-
tions x; /o to the cycle X. We define a natural (2n—2)-form ren—2(f1, .., fan-1)
on X(C) and set

Pn(X: f1y e fono1) = mi)IT™ /;qc) Peu—2(f1y s fan-1) (6}

4. An example; the Chow dilogarithm. Let f1, f, f3 be three arbitrary
rational functions on a complex curve X. Set

T2(fhf2af3) =

1 1
Al (5 log | fuldlog | ol A dlog] sl — 5 loglfildare fo A darg fs)

where Alts is the alternation of fi, fa, f3. Conrider the space of qguadruples
(X; f1, f2, f3). It is a union of finite dimensional algebraic varieties. The Chow
dilogarithm is a real function on its complex points defined by the formula

1
Qi

PoX; fr. fo, fa) = <O r2(f1. f2. fa)



The integral converges since the form r3(f1, f2, f3) has only logarithmic singu-
larities. The Chow dilogarithm provides a homomorphisin

ACX)* =R, fiAfaA far—= Po(X5 fi, fan fa) (7

Why dilogarithm appears in the name of the function P»? Recall the classical
dilogarithm

Z
Lig(z) = — f log(1 — 2)dlog z
0
It bas single valued cousin, the Bloch-Wigner function:

Lo(z) 1= ImLiz(z) + arg(l — 2) log

Z

The Chow dilogarithm is defined by a two-dimensional integral over X{C),
while L£3(z) is given by integral over a path on CP'. In chapter 6 we show
that nevertheless the Chow dilogarithm can be expressed by the function £y{z).
Here is how it works when X = CP!. For f € C(X) let v (f) be the order of
zero of f at x € X(C). Choose a point co on P!. Then

P?(Cpl;fla.fihf?o) = z ”ml(fl)vmg(fZ)vz- (fS)EZ(r(xlv:E?aISuoo)) (8)
z; ePHT)

A formula for the Chow dilogarithm on elliptic curves see in chapter 6.
The function £, satisfies Abel’s five term functional equation:

3
Z(——l)iﬁg(l‘l,...,'fl-,...,w5) =0 (9}
i=1

The Chow dilogarithm also satisfies functional equations. They appear as a
reformulation of the fact that the composition

Z4(Spec(C); 2) -2 Z3(Spec(Cr 2> T3 R(2)

is zero, Namely, let Y be an algebraic surface with four rational functions
g1, g4 on it. This data provides an element of Z4(Spec(C);2). To evaluate
the composition on this element we do the following. Take the divisor div(g:)
and restrict the other functions g; on it. Then applying the Chow dilogarithm
to the obtained data and taking the alternating sum over 1 < i < 4 we get
zero. In the special case when Y = CP? and divg; = {; - [5, where ly,...,l5 are
five lines in the plane, this functional equation plus (8) is equivalent to Abel’s
equation (9).

5. The Grassmannian n—logarithm and symmetric space SL,(C}/SU{n).
Restricting the Chow n-logarithm function to the »ubvariety of (n — 1)-planes
in CP?"~! in generic position to the simplex L we get the Grassmannian n-
logarithm function £&.



There is a natural bijection
{(n — 1)-planes in P?"~! in generic position with respect to a simplex L}/{G:, )27}

<—=> {Conﬁgurations of 2n generic hyperplanes in P"'l}

given by intersecting of an (n — 1)-plane k with the codimension one faces of L.

G

Using it we can view £¢ as a function on the configurations of 2n hyperplanes
in CP"~1. Applying the projective duality we can consider it as a function on
configurations of 2n points in CP?!,

In fact one can define the Grassmannian n-lngarithm £$(x,, ..., 22,) as a
function on configurations of arbitrary 2n points in CP™~?, see chapter 4. It is a
measurable function which is real analytic on generic configurations. It satisfies
the two functional equations

2n 2n
Z(_I)I'Cf(mﬂa '“1’2?1'1 “‘13:271) = Ov Z(_I)Jﬁf(yjlyov tiey ﬁja ---sy2n) =0
i=0 =0

(10)
In the second formula (yp, ..., y2n) is a configuration of 2n + 1 points in CP"~!
and (y;|yo, .-, ¥, - ¥2n) is a configuration of 2n points in CP"~! obtained by
projection from y;.

It follows from (8) that the Grassmannian dilogarithm is given by the Bloch-
Wigner function:
LS (21,00 24) = La(r(21, 0 24)) (11)

Abel’s five term equation coincides with (10). (The two functional equations
(10) are equivalent when n = 2}.

Lobachevsky discovered that the dilogarithm apsears in the computation of
volumes of geodesic simplices in the three dimensional hyperbolic space Hj. Let
I{z1, ..., 24) be the ideal geodesic simplex with vertices at the points z;,...,24 on
the absolute of H3. The absolute is naturally identified with CP!.



Lobachevsky’s formula relates its volume to the Bloch-Wigner function:

vol(I(zl, ...,z4)) = Ly(r(21y oy 24))

The volume function volI(z,...,z4) is invariant under the group SL,(C) of
isomoetries of Hz. So it depends only on cross ratic of the points z1,..., 24.
It satisfies the five term equation (9). Indeed, Z(—l)il(zl,...,’z},...,zﬁ) =@
By Bloch’s theorem [B12] any measurable function f(z} on C satisfying the five
term equation is proportional to £a2(z). So we get the formula up to a constant.

We generalize this picture as follows. CP"~! is realized as the smallest
boundary stratum of the symmetric space H,, :=. SL,(C)/SU(n). We define a
function (21, ..., ¥2,} on configurations of 2n peivts of the symmetric space.
The function ¥, is defined by an integral over CP"~! similar to {6). We show
that it can be naturally extended to a function ¥, or configurations of 2n
points in a compactification Hy, of the symmetric space. The Grassmannian n-
logarithm function turns out to be the value of the function ¢,, on configurations
of 2n points at the smallest boundary strata, which is identified with CP"~!.

Now let n = 2. Then SL,(C)/SU(2) is identified with the hyperbolic space.
We prove that i (z, %2, 73,24} is the volume of the geodesic simplex with
vertices at the points z, ..., z4. Restricting to the ideal geodesic simplices and
using the relation to the Grassmannian dilogarithm plus (11} we get a new proof
of Lobachevsky’s formula.

6. The Grassmannian n—logarithms and the Borel regulator. For
any point £ € CP*~! the function

c;ln—l(gh "'392‘-’!) = Ef(glzr ...,anﬂ!) (12)

is a measurable (2n - 1)-cocycle of the Lie group GL,(C}. Indeed, it is invariant
under the diagonal action of GL,(C) and the cocycle condition is just the first
functional equation for the function £¢. Different points x give canonically
cohomologous cocycles. However a priort it is not clear that the corresponding
cohomology class is non zero.

Let HZ"Y(GL,(C),R) be the space of measurable cohomology of the Lie
group L, (C}. It is known that

H(GLA(C), R) = Ag(b1, b3, .., b2n—1)



where boy—; € HZ~1(GL,(C),R) are certain canonical generators called the
Borel classes ([Bol]).

Theorem 1.1 The cohomology class of the Grassmannian cocycle (12) is a non
zero rational multiple of the Borel class bay_1.

For normalization of the Borel classes and precise relationship between the
Grassmannian polylogarithms and the Borel regulator see chapter 5, especially
sections 5.4 and 3.5.

The essential role in the proof plays the fact that the Grassmannian n-
logarithm function £S is a boundary value of the function ¥,,. The function
Eb—n(asl, .y Z25) I8 DOt continuous at certain boundary points, but always satisfies
the cocycle condition. So taking any point z € H,, we get a cocycle

Cr(gla oy G2nm1) = En(glma ey 92113:)

of the group GL,(C). Tts cohomology class does not depend on z. If # € H,, the
corresponding cocycle is smooth. We can differentiate it, getting a cohomology
class of the Lie algebra gl,,, and relate it to tt.2 Bocel class. On the other
hand taking 2 to be a point on the boundary stra*um CP*~! we recover the
Grassmannian cocycle (12). So we get the theorem.

Combining it with the technique developed in [G1-2] we get a simple explicit
construction of the Borel regulator

Kgn_]_(C) — R

in terms of the Grassmannian n-logarithms. The second functional equation
for £& plays an important role in the proof. Therefore, thanks to the Borel
theorem [Bo2], this allows to express the special values of Dedekind (—functions
at s = n via the Grassmannian n-logarithms.

The definition of the Higher Chow groups of a variety X is much simpler
then the definition of algebraic K-groups of X. The situation with the regulator
maps is similar. However relating the special values of the Dedekind ¢-functions
to motivic cohomology of the corresponding number fields we need to work with
the algebraic K-theory (or homology of GL,(F)) of number fields.
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2  Arakelov motivic complexes

1. The Higher Chow groups complex. A (non degenerate) simplex in P™
is an ordered collection of hyperplanes Ly, ..., L,, in generic position, i.e. with
empty intersection. Let us choose in P™ a simplex L and a generic hyperplane
H. We might think about this data as of 4 simplex in the m-dimensional affine
space A™ = P™ — H. For any two nondegenerate simplices in A™ there is a
unique affine transformation sending one simplex to the other.

Let I = (4y,...,%) and L; := L; N...NL;, . Le Z,,(X. n) be the free abelian
gronp generated by irreducible codimension n algebraic subvarieties in X x A™
which intersect properly (i.e. with the right codimension) all faces X x Lj.

Warning. We use the notation Z,,(X;n) for the group denoted Z™(X;m)
by Bloch. This allows us to use upper and lower indices to distinguish between
the homological and cohomological notations, see below.

For a given codimension 1 face L; of a simplex L in A™ the other faces L;
cut a simplex L= {LiN L;}, in L;. So the intersection with codimension 1
faces X x L; provides group homomorphisms

0 i 2 (X;n) — 21 (Xn); Ji= Z(_l}iaé

i==i}

Then 8% = 0, so (Z.(X;m);8) is a homological complex. Its homology are
Bloch’s Higher Chow groups. By the fundamental theorem of Bloch ([B11-2])

Hi(Z,(X;n) @ Q) = griKi(X) 2 Q
Let us cook up a cohomological complex setting
Z*(Xin) := Zyn_o(X;n)
Its cohomology provide a definition of the integral motivic cohomology of X:
Hiu(X,Z(n)) = HI(Z*(X;n))

Bloch’s theorem guarantees Beilinson's formula (1) for the rational motivie co-
homology.

2. The Beilinson—Deligne complex. Recall that an n-distribution on a
manifold X is a continuous linear functional on the space of (dimg X —n)-forms
with compact support. Denote by D% the space of all real n—distributions on X.
The De Rham complex of distributions (D%, d) is a resolution of the constant
sheaf R. The space A% of all smooth n-forms on X is a subspace of D%.

Let X be a regular variety over C. The n-th Beilinson-Deligne complex



R(n)p can be defined as a total complex associated with the following bicomplex:

(% 4 oy % .4 oy S ooy ) &Rn-1)

T 7w T 7n
ay — ot 5
Here R(n) := (271)"R and
Tn: D% @C ~ D& ®R(n - 1)
is the projection induced by the one C = R(n—~1)® R(n) — R(n—1). Further,
D% placed in degree 1 and (Q%,d) is the De Rham complex of holomorphic

forms with logarithmic singularities at infinity.
The Beilinson-Deligne complex R(n)p is quasiisomorphic to the complex

R(n) — Ox — Q% — 0% — .. — Q%!

3. The truncated Deligne complex. Let D% = DP? be the abelian
group of complex valued distributions of type (p,q) on X{C). Consider the
following cohomological bicomplex, where D™ is the subspace of the space
D™ of closed currents, and D°° is in degree 1:

Yo
280
pon-t &y pra-t By 8, protacd
a1 at gt
51 51 51
pet & pr % 8, prwn
b1 gt at
peo &, pro 8, & me-ic

Let Tof* be the total complex of this bicomplex. It is concentrated in degrees
[1,2n]. The complex CH{X(C);n} = Ch(n) is a subcomplex of the complex
Tot* defined as follows., Take the intersection of the part of the complex Tot®
coming from the n X n square in the diagram (and concentrated in degrees

10



[1,2n — 1]} with the complex of distributions with values in R(n —1). Consider
the subgroup Dg'y(n) C D™ of the R(n)-valued distributions of type (n,n).
They form a subcomplex in Tot* because 89 sends R(n — 1)-valued distributions
to R(n)-valued distributions. This is the complex Cp(rn). It is truncation of

the complex considered by Deligne.

Proposition 2.1 The complex Cp{n) is quasiisomorphic to the truncated Beilinson-
Deligne complez T<2nR{n)p.

Proof. We need the following general construction. Let f* : X* — Y* bea
morphism of complexes such that the map f* is injective for ¢ £ p and surjective
for i > p (and hence is an isomorphism for ¢ = p). Consider a complex

Z*:=  Cokerf<?[-1] -2 Kerf>?

where the differential D : Coker fP~! —— Ker f?*1[1] is defined via the following
diagram (the vertical sequences are exact):

0 0
1 1
0 0 KerfPt! —» Kerfrt?
4 1 1 4
XxXr—2 — Xr-1 —_ X 5  XPtl 4 xp+E
l 4 fPi= 4 l
yrr o yrl o yPr oy YR yei2
i R l } i
CokerfP~2 — Cokerfr~! 0
il il
0 0

Lemma 2.2 The complex Z* is canonically quas’:somorphic to Cone(X EAN

Y*).
Proof. Let
o~ ., _ dx p—2 dx p—1 dx
FepX®i= % XPT N Xl DK Imdy
Fop¥® = YP[Imdy 2% yrol B yre? &y

Then there is an exact sequence of complexes ) — T pX* — X* —
75>pX*® — 0. The.conditions on the maps f* iwply that

Tepf* 1 TepX® — TepY* s injective

Topf™ :sz}” — T>pY" s surjective

11




We get maps of complexes
Cone(FepX® — f*(F<pX*)) S Cone(X* —+ Y*) 25 Cone(Fop ¥Y* — Top¥®)

where « is injective and 3 is surjective. The complex Ker(5)/Im(a) looks as
follows:

0 =+ 0 = (7'Imé)/Im(dx) — KerfPt! o Kerfrt?
1 1 1 ) +
Cokerfr=2 — Cokerfr"! —  Im(dy)/fPIm(dx) — 0 — 0

Since the map f? : Im{dy)/Im(dx) — Im(dy )/ fPIm(dx) is an isomorphism it
is quasiisomorphic to Z*. The lemma is proved.
Applying the lemma to the morphism of complexes

Tot(D2™*) 2 D™* @ R(n — 1)

we see that the complex R(n)p is canonically quasiisomorphic to the following
complex:

{ R(n)-part of the |

: Dolbeaut complex:
i nn
Do
2m c%

ljn_-_l..O _______________ Dn—l,n—l

; R{n—1)—part of the |

Dolbeaut complex |

™ £0n-1

To compute the differential Dg~ """ (n— 1) — Dg™(n) we proceed as follows.
Take a € Dy~ "™ }(n - 1), s0 @ = (-1)""'@&. Then

de = da+8a = Ba+(-1)""0a = 2m,(8a)

Applying d = 8 + 0 again and taking the (n,~)-component we get 200(a).
Truncating this complex we obtain the proof of the proposition. (Note that
d® .= (471)~1 (8 — ), so dd® = (27i)~188.)

Now if X is a variety over R, then we set

CH(X min) = Cp(Xin)'=;  Hb(X i R(n)) := H (C;)(X/R;n)\)

12



where F, is the De Rham involution, i.e. the comy ssition of the involution Fy
on X (C) induced by the complex conjugation with the complex conjugation of
coefficients.

Theorem—Construction 2.3 a) There exists canonical homomorphism of com-
plezes

P*(n): Z*(X;n) — Cp{X;n)

b) If X is defined over R then the image of the map P*(n) lies in the sub-
compler C3(X /p;n)

To construct this homomorphism let us recall a remarkable differential (m — 1)-
form 7,1 (L; H) canonically attached to the pair (A™; L) = (P™— H, L) {[G5]).

4. The form r,_{(L;H). Let 1 be the canonical m-form in P™ - L
with logarithmic singularities at L. It represents a generator of Hf, (P™ — L)
defined over Z. Let us give its coordinate description. Choose a homogeneous
coordinates (zp : ... ! zy) in P™ such that L; is given by equation {z = 0}.
Then

Qp =dlogz/zo A ... Adlog 2, /20

The form 1, has periods in Z{m). So 7{Q2) is exact. However there is no
canonical choice of a primitive (m — 1)-form for it: the group (C*)™ acting on
CPP™ — L leaves the form invariant and acts non trivially on the primitives. But
if we consider a simplex L in the affine complex space A™ {or, what is the same,
choose an additicnal hyperplane H in CP™, which should be thought of as the
infinite hyperplane) then there is a canonical primitive.

To define the primitive the following construction is handy.

The homomorphism ry,,. Let X be a variety over C and fi,..., f, are m
complex-valued functions on X (C). We attach to them the (m — 1)-form

T‘m—l(fla'“afm) = (13)

Altp, Z ¢jmlog|fildloglfa| A ... Adloglfojial|. v diarg f2j42 A . Adiarg fm
iz0

Here ¢jm = mrryym—sy=ny7 20 Alty is the operation of alternation:

Alth(xls'--a xn) = Z (_l)la'F(:Ea(l)’---a-ro'(m))
GESm

Remark. The form (68) is a part of the cocycle representing the product
in real Deligne cohomology of 1-cocycles (log|fi|, dlog fi).

So Tm—1(f1,., fm) is an R(m — 1)-valued (m — 1)-form and it is easy to
check that )

drmr(f1s s f) = T (4108 1 A . A dlog f )

13



Theorem 2.4 The form rpm_1(f1,..., fm) defines a distribution on X(C), and
provides a group homomorphism

Fmot s APC(X)" — DD (m - 1) (14)

Proof. The fact that rp,,_; is a homomorphism from A™C{X)* to differential
(m — 1)-forms is clear from the definitions.

Lemma 2.5 For any rational functions fi,.., f.. on X the (m — 1)-form
Tm-1(fi A A f) defines o distribution on X(C), i.e. the integral

[ Pt (frs oo i) A
X(T)

converges for any smooth (2dimX — m + 1)-form w with compact support on
X(C).

Basic example. The integral [, log|z|dlog(z — a) A dlog(z — b) is diver-
gent at infinity, where all the functions z,z — @,z — 0 have a simple pole, since
Jolog 2| %48 is divergent (both near zero and infiviiy). However

4-/ioglzidloglz—-ai/\dlogiz - b=
c

/log|z|(dl0g(zma)/\dlog(z—b) + dlog(z—a)/\dlog(z—b))
C

is convergent: the divergent parts cancelled each other. In vy (f1, ..., fm ) such
divergences cancelled because of multiplicativity and skew-symmetry of 1 ,,_;.

Proof. Resolving singularities of X we may » swine that X is nonsingular.
We may suppose that the divisors of functions f; are disjoint because r,_; is a
homomorphism. Resolving singularities we reduce lemma, to the case when these
divisors have normal crossing. Qur statement is local, so we can assume that in
local coordinates 21, ..., 2, one has f; = 21, ..., fr = 2 and divf; for j > k does
not intersect the origin. After this the statement of lemma is obvious: each term
in (68) defines a distribution near the origin. For instance the worse possible
singularities has the term log|z;|dlog|z2| A ... Adlog|z] Aw where w is smooth
near the origin. Tt is clearly integrable with a smooth test form. The lemma is
proved.

Remark. In particular if dimgX = n the integral

[ Fan( 1o finir) (15)
X{(C)

is convergent.
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Choose a coordinate system i P™ as above such that H is given by by
{20z i = 20} Set
Tm—1{L; H) :== rm-1(21/20, ., 2m/ 20)

Here is a more invariant definition. Choose one of the faces of the simplex L,
say Lo. Consider simplex (H,Lq,...,Ly). Let t; be the rational function on
CP" such that (f;) = (L;} — (Lo) normalized by f;{{;) = 1, where l; is the vertex
of the simplex (H, Ly, ..., L,;) opposite to the face L;. Then f; = f; and

rm—l(L; H) = Tm—l(fla ey fm)

This form is skewsymmetric with respect to the permutation of the hyperplane
faces of the simplex L. One has

drpm—1(LyH) = m(82) in CP” - L

So a choice of an “infinite” hyperplane H C CP™ provides the form rp,.1(Z; H).
Example. If m = 1 then

A =P - {1}, L={0}u{x}, Qp=dlogz, m(dlogz)=dloglzl,

ro({0} U {oo}; {1}) = log|2|
A coordinate free description of the form rpm_1(L; H). Choose a volume form
voly, € detVih. Set A(vy, ..., vm) :=< V0L, 3 Ao Ay >E F™.

Lemma 2.6 For a configuration (Ig,...,lm} of m+1 vectors in generic position
Fnllos ooy b)Y = Z(-1)*’Ai¢jA(zo,...,E}, ki dm) € AFT (16)
i=0

does not depend on the choice of the volume form voly,.

Proof. See proof of lemma 3.1 in {G3].
For a point z € A™ — L let {;{z) be the vecto. 1rom z to the vertex [;, see
the picture.
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We get a canonical element
Smllo(2), -y Im(2)) € ATQA™ — L)*

If F = C applying the homomorphism r,, to this element we get a canonical
(m — 1)-form in CP™ — L. It coincides with 7.,y (L; H).

Example. If m = 1 and (Lo, Ly, H) = (0,00,1) then t = £ is an affine
coordinate on P! — {1} and

lo(t)

b(t) =~ L(t) = %1 o fillb(®),h(®) = 75 ==

z—1
Remark. The map z € A™ — L — fp(lo(2),...,in(2)) provides an isomor-
phism F,, : CH™(Spec(F),0) — KM (F); see [NS] where the isomorphism F,,
was presented in a bit different way.
For a subvariety ¥ C X we define the d-distribution 8y by setting

< dy,w >:x-/ w
Y(C)

If f is a rational function on X we set §(f) := daiv ;)

Let ¥ be a divisor in a complex variety X. Let gi,...,gn—1 be rational
functions on Y. They define an (n — 2)-form r,_a(g1 A ... A gn—1) on Y(C),
which, thanks to the lemma 2.5, defines an n-current r,_2{g1 A ... Agn—_1)dy on
X{C} denoted ¢(gr A ... A gn_1).

There is the residue homomorphism

Res: A"C(X)" — GBnyu)A"_IC(Y)‘v

given by the formula

A A fa= SO0 T oy (£) - frpy A A fipy A A fugy

i=1

Here is a more rigorous definition. Let K be a field with a discrete valuation
v and the residue field k,. The group of units I has a natural homomorphism
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U —+ kX, ur— % Anelement 7 € K* is prime if ord,7 = 1. There is a
homomorphism res, : A®K* — A" 'k} uniquely defined by the properties
(u; € U):

resy, (TAUL A Alip1) =T A+ - Alp—y and resy{uy A Aup) =0

It does not depend on the choice of «.

We set Res := 3 res, where the sum is over all valuations of the field C{X)
corresponding to the codimension one points of X.

The (n~ 1)-form r,,.1(L; H) provides an {n — 1)-distribution on CP". Recall
the simplex L; cut by L in the hyperplane L;, and H; = L; N H. Consider the
(n — 2)-form ry,—2(L;; H;) on the hyperplane L; as n-distribution in CP". We
denote it as rn_g(fi;H,-) by,

More generally, a current o on a divisor in X provides a current p(o) on X.

Lemma 2.7 a) Let fi, ..., fn be rationel functions on a variety X over C. Then

drn_1(fi A A fn) =

on (dlog Fi A Adlog fn) +omi cp(rn-zRes(h A A fn)) (17)
b) In particular one has
hid . ~~
drn_y (Ly H) = mn () + 2mi - Y _(=1)'rn_o(Ls; Hi)bu, (18)
i=0
Proof. The part b) follows immediately from a}. Using the formula
d(diarg z) = 2mid(z) := 2mi(dp — 0uc)

we get d(diarg f) = 2mid(f). The part a) follows from this.
5. The main construction. We have to construct a morphism of com-
plexes

—  ZY(Xin) — .. —  Z™N4X;n) — Z™Xn)
L PHn) A () L P (n)
0 — Dm-1) — .. — Dp -1 23 ppnn

Let Y € Z%"(X;n) be a codimension n cycle in X. By definition
PP (NY) = (2mi) by
Let us construct homomorphisms

P(zn—i) (n) . z2n—z‘(X;n) —_ D?}{,l(a_l(n -1, ¢t>0
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Denote by ma (resp. mx) the projection of X x A* to A* (resp. X). Let
k = 2dimY” — i -+ 1. Notice that

2dimX - k = 2(dimX +i - dimY) -i-1=2n—-i-1

So (2n — i — 1)-distributions are functionals on smooth k-forms with compact
support on X(C). Let w be such a k-form and ¥ ¢ Z**7*(X;n). Then we set

< PP ) (Y),w >i= (2mi)™? / wxw Amario1(L; H) (19)
Y{C)

Theorem 2.8 The integral (19) is convergent.

Proof. Let ¥ C X x P! be the closure of the cycle Y and 7x,7a the
corresponding projections from Y to X and P*. Then the form T w has compact
support on Y, s0, we can apply lemma 2.5. The theorem i3 proved.

Remark. We just proved that the product of distributions dy Amiri.1 (L; H)
makes sense and

PE-ip)(Y) = (2mi)" iy, (Oy A mhrima(L; H))

Since the form r;_i(L;H) is R(i — 1)-valued, for ¢ > 0 the distribution
P2=i(n)(Y) takes values in R(n — 1). Further, P YY) is obviously an R(n)-
valued distribution.

Let us show that for i > 0 the distribution P2 ~#(n)(¥) lies precisely in the
left bottom (n — 1) x (n — 1) square of the Dolbeault bicomplex. The integral
(19) is non zero only if 74w A miri.1(L; H) is of type

(dimY,dimY) = (dimX +¢ — n,dimX + i —n)

Since r;_1 (L; H) is an (i - 1)-form we see that the integral vanish if w is a form
of type (p,g) where p or g bigger then dimX + 1 —n. The statement follows.
Therefore we have constructed the maps P*(n).

Theorem 2.9 P*(n} is ¢ homomorphism of complezes.

Proof. One has

< PP i(n),w >= — < PHi(n), do >= —/ Fydw ATy (L H) =

[ mxe nduirea i) (20)
Y(Q)

We need the following lemma

Lemma 2.10 fy(c) whw Amim{fiL) = 0.
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Proof. We need the following obvious fact. Suppose A is a complex manifold
and B is a manifold. Let m4 (resp. mg) be the projection of A x B onto A
(resp. B). Let a (resp. 3) be a differential form on A x B (resp. B). Then
(mB)s(a AwEB) = (m8).{a) A B # 0 only if a is a form of type (dimA, dimA).

The form m;(Q) = 0 £, is a sum of forms of type (4,0) and (0, %) where
i > 0 by our assumption. Restricting the projection 7x to the generic part ¥°
of Y we get a fibration Y — 7x(Y?). If the dimension of the fiber is zero, the
integral vanish since ¢ > 0. If the dimension of the fiber is bigger then zero, it
vanish thanks to the argument above, since m;({11) of type (,0) and (0,%).

Applying lemma 2.7 to {20) we get the theorem tor ¢ > 0.

Since ro{f) = log | f|, the commutativity of the last square follows from the
formula

208 log |f| = 2mi(ép, — 6p,,) where (f)=Dp— Do

Theorem 2.9 is proved. Therefore we finished the proof of theorem—construction
2.3.

6. The Higher Arakelov Chow groups. Let X be a regular complex
variety. Denote by C(n) the quotient of the complex Cj(n) along the subgroup
n™Mn) € D™ (n) of closed smooth form of type (n,n) with values at R(n).

Consider the cone of the homomorphism P*(-:) shifted by —1:

2’(X;n} = C'o'ne(Z'(X;n) — 5{;()((@):?1)) [~1]

Definition 2.11 The Higher Arakelov Chow groups are

CH"(X;4) = H™ (2" (X;n)) (21)
Recall the Arakelov Chow groups defined by Gillet-Soule as follows:
CH"(X) =
_ {Z9iBetsze sy 22)
{(0,8u + dv); (divf, - log|f]), f € Y ),codim(Y) = n - 1}
Here Z is a divisor in X, f is a rational function on a divisor ¥ in X,
ge DR 1), (u,v)e (DA L@ Dt Rp(n — 1)
Proposition 2,12 E‘f‘fn(X;O) = C/'?In(X).
Proof. Let us look at the very right part of the complex 2'()( yn):
— Zn-l(Xin) — 22 (X;n)
IR LP

(Dn—Z,n—l @ Dn—l.n—2)n(n - 1)) (E_Q 'D;—l‘n_l(n -1y - 'D]E‘n(”)/AE,n(n
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Consider the very end of the Gersten complex on X:

I Acrr 2 [ ey — 2o(Xin)

YeX,_ 2 YeXn_1

where J is the tame symbol. It maps to the complex f‘(X ;n), i.e. to the top
row ~f the bicomplex above, as follows. Recall that Zo(X;n) = Z2*(X;n), so
the very right component of our map is provided by Jhis identification. Further,
a pair {Y; f) where Y is an irreducible codimension n — 1 subvariety of X maps
to the cycle (y, f(y)) C X x A!. Similarly any element in A2C(Y)* can be
represented as a linear combinations of elements 3. (Y f; A i) where ¥ is an
irreducible codimension n — 2 subvariety of X and f;, ¢; are rational functions
on Y such that divf; and divg; share no irreducible divisors. Then we send
(Y; fi A gi) to the cycle (y, fi(y), ¢:(y)) C X x A?. It is well known that this
way we get an isomorphism on the last two cohomology groups. Computing the
composition of this map with the homomorphism P*(n) we end up precisely
with the denominator in (22). The proposition is proved.

3 The Chow polylogarithms

Suppose X = Spec(C). Then P,(Y) := ,(,1)(Y) is a function on the space of all
codimension n cycles in P2"~! intersecting properly faces of the simplex L. It is
called the Chow polylogarithm function. For i > 0 all the distributions P,(f)(Y)
are zero. However modifying the construction of the previous chapter we get a
very interesting object, the Chow polylogarithm, even when X is a point. The
Chow polylogarithm function is the first component of the Chow polylogarithm.
One can define the Chow polylogarithm for an arlitiary variety X, but we spell
the details in the most interesting case when X is » point.

1 Chow polylogarithms [G5]. Recall that L is a simplex in PP, His a
hyperplane in generic position to L, and H; := HF N L;.

Let Z3(L) be the variety of all codimension ¢ effective algebraic cycles in
CPPT? which intersect properly, i.e. each irreducible component in the right
codimension, all faces of the simplex L. It is a union of infinite number of finite
dimensional complex algebraic varieties.

Example. CP"—L = (C*)" is an irreducible component of Z§(L) parametriz-
ing the irreducible subvarieties, i.e. points.

The intersection of a cycle with a codimension I fuce L; of the simplex L
provides a map

a; : Zg(L) g Zq_l(L,;;

Further, projection with the center at the vertex {; of L defines a map

by ZH(L) — Zg_l(LJ-)
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Theorem—Construction 3.1 For given g > 0 there is an ezplicitly constructed
chain of (g — p — 1)-distributions wi = wi(L; H) on 2}(L) such that

i) dwl(L, H) =m(Qy) (23)
pta
i) dwf(L;H) =3 (-1)ajwf_, (L; i) (24)
i=0
ptg+l
1) 3 (—1Ybwi(L ) =0 (25)
j=0

The restriction of Wi to the subvariety fg(L) of smooth cycles in generic position

with respect to the simplex L is a real-analytic differential (g —p—1) form.

For a given positive integer ¢ the collection {wf} is called the g-th Chow
polylogarithm.

The varieties 22(L) for p > 0 form a truncated simplicial variety 2J. The
conditions i) and ii) just mean that the sequence of forms w] is a 2¢-cocycle in
the bicomplex computing the Deligne cohomolegy H?4(Z{, Rp(q)).

Proof. We define w{ as the Radon transform n{the distribution r54.4-1(L; H)
in CP?*? over the family of cycles Y; parametrized hy ZJ(L). This means the
following. Consider the incidence variety:

Tp = {(x,£) € CP"* x ZI(L)C) such that « € ¥}

where Y is the cycle in CPP*? corresponding to £ € Z3(L). We get a double
bundle

T, C CPPH x Z3(L)(C)

T N T
CPrta ZIL)(©)
Then
wi = my Resp, 7] (2m1) "rpy o (L; H)

Observe that since rp..q(L; H) is a distribution on CPP*9, and hence 77154 o(L; H)

is a distribution on CPP*? x Z3(L)(C). The fact that this distribution can be

restricted to I, is a version of theorem 2.4, and is proved the same way. The

push forward o, of this distribution is well defined since 7 is a proper map.
The property i) is true by the very definition.

Lemma 3.2 E?:é(—l)jb;“-’g =0.
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Proof. Let s(z0,...,2n) = 2z1/20 A ... A z5/7. Lemma follows from the

identity
n-+1

N (1Y (20, 1 5y ooy Znp1) = 0
i=0
So we have iii). To check ii) observe that the push forward my, of distributions
commutes with the De Rham differential. The theorem is proved.
2. Properties of the Chow polylogarithia function. The function
Py = wi_ on 2] (L) is called the Chow g-logarithm function. It satisfies two
functional equations:

2q . 2q .
N (-DiaiP=0 Y (-1)7jPe =0
i=0 i=0

Theorem 3.3 Suppose that dimX = n and fi,..., fant1 are rational functions
on X. Then the integral

(27“';)1_" L(Q Tzn(fl, ...,fsz_,l)

does not change if we multiply one of the functions f; by a non zero constant.

Proof. Multiplying, say, f1 by A we see that the difference between the two
integrals is

log |/\| Z ag [ © Altgnd10g|f2| A Adlog Ifgkﬁ.li Adarg fap AL A darg f2ﬂ+1
. X

(26}

where ay are some rational constants (easy computable from (68)). We will

prove that for each k¥ the corresponding integral ir this sum is already zero.
Using the identity

(dlog|f2| + idarg f2) A ... A (dlog| fany1] + idarg fony1) =0

we can rewrite the integral

/ darg|fal A ... A darg fansa
X(C)

as a sum of similar integrals containing dlog|f:|. Our statement follows from

Proposition 3.4 Suppose that dimX =n. Thea

dAlte, (log | f2ldlog|fa| A ... Adlog|fak—1| A darg for A ... Adarg f2n+1) =

Alty, (dlog [f2| Ao Adlog|fox—1| Adarg fax A A da.rgfg,,H) (27)

in the sense of distributions.
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Proof. Since ddiarg f = 2mis(f), the left hand side is equal to the right
hand side plus the following terms concentrated on the divisors fag; = 0:

4 2(n—k+1)Altzn (5( Fons1) logifaldlog | f3A-..Adog | fax_1|Ad arg forA...Ad arg fg,,)
However all these additional terms vanish thanks to the following proposition.

Proposition 3.5 Suppose that dimX = n. Then for each 0 <j<n-1one
has

Alta, (dlog Val A o Adlog | fajoa| Adarg fojqa A A darg fzn) =0 (28

Alto, (dlog|fl| A . Adlog|fai| Adarg fajer A A dargfzn) = (29)
i H
WEJ'_)_-d,log|j"11 A ... Adlog| fanl
)

Proof. The idea is this. One has n equations
dlog fi A ... Adlog fan, =0

dlog|fi|Adlog fa A ... Adlog fan =0
............ (30)
dlog|fil A ... Adlog|fn_1| Adlog fn A ... Adlog fon =0

Taking imaginary part of each of them and alternating fi. ..., fan we get n linear
equations. Solving them we get the proposition. See the details in the Appendix
in [GZ].

Therefore the Chow polylogarithm function is invariant under the natural
action of the torus (C*)P*9 on Z(C). In particular it does not depend on the
choice of the hyperplane H. These statements are no longer true for the forms
wiforp<g—1.

4 The Grassmannian polylogarithms

1. Configurations of vectors and Grassmannians: a dictionary. Let X
be a G-set. We define configurations of m points of X as G-orbits in X™.

Example 1. If X := V is a vector space and G := GL(V') we get configura-
tions of vectors in V. A configuration of vectors {Iy,...,Im} is in generic position
if each k < dimV of the vectors are linearly independent.

Example 2. If X := P(V) is a projective space and G := PGL(V) we get
configurations (x, ..., 7 ) of m points in P(V). A configuration of points is in
generic position if each k < dimV of them generate a plane of dimension k-1

Let T,., be the quotient of the torus G5! by the diagonal subgroup
Gy, = (¢, .-, t).
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Lemma—Construction 4.1 i) There are canonical isomorphisms between the
following sets of geometric objects:

(a) Configurations of p+ g + 1 vectors in generic position in V.

(b) Isomorphism classes of triples {a projective space PPYY together with
o simplex L, an “infinite” hyperplane H in generic position te L, and a p-
dimensional plane in generic position to L (but not necessarily to H) }.

(¢} Isomorphism classes of triples { a vector space Vyig41, @ basts (eo, ..., €pyq)
of Vpig+1, and a p+ 1-dimensional subspace of Vpigy1 in generic position with
respect to the coordinate hyperplanes}.

i) The torus T,y acts naturally, and without stable points, on each of the
objects a), b), ¢), and the 1somorphisms above are compatible with this action.

Proof. i) {(a) —+ (c). Take the kernel of the linear map from Vp4,11 to Vj
sending e; to I;.

(¢) = (a). Take the quotient of Vj,y441/h along the given subspace h and
consider the images of the vectors (e, ..., €p44) there.

(¢) = (b). Let PP*9 := P(Vyyq41). Let A”'9 be the affine hyperplane
in Vpyet+1 passing through the ends of the basis vectors e;. Then APTT C
PP+e. The coordinate hyperplanes in Vp4q4+1 provide a simplex Lyiq € lP’f"'q.
The projectivization of a generic subspace h in V441 gives a p-plane A in
generic position with respect to this simplex. (Notice that we do not impose
any condition on the mutual location of H and h. For instance h may be inside
of H.)

{(b) — (c). The triple (PP*9, H, L) provides a unique up to an isomorphism
data {Vptq+1, §§0a ...,ep+q~)). Namely, the partial data (PPY9 H) provides us
with (Vpig41, H) where H is the subspace of Vpig1 projecting to H. Now the
vertices {; of the simplex L provide coordinate lines I; in V,4,41. Intersecting
these coordinate lines with a parallel shift of the subspace H we are getting a
point on each of the coordinate lines. By definition the endpoints of the basis
vectors e; are these points. Taking the subspace h in V1,41 projecting to a
given plane h in PP*¢ we get the desired correspondence.

ii} The torus Ty, ;4 acts on the configurations of vectors in a) as

(B0 tprgrt) (1) s bppgrr) — (Bl o tprgtilptort)

The torus Tpyq is identified with PP*? — L in b), and so acts naturally on the
data in b). The action on the data c) is similar. The lemma is proved.

If we use the description ¢) for the Grassma-izans then b; is obtained by
factorization along the coordinate axe < g; >.
__ Configurations of hyperplanes and torus quotients of Grassmannians. Let
G{ be the Grassmannian of p-planes in PP*? in generic position with respect to
a given simplex L.

Taking the Ty —orbits of the objects a) and b) in the lemma we arrive to
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Corollary 4.2 There is ¢ bijective correspondence
@; [Tpiq < = > {Configurations of p+ g + 1 generic hyperplanes in PP}
sending a p-plane h to the configuration (hN Lo,...,h N Lyyg) in h.

2. The Grassmannian and bi-Grassmannian polylogarithms. Let us
fix a positive integer ¢. The operations a; and b; from section 2.1 transforms
planes to planes. So we get the following diagram of varieties called the bi-
Grrssmannian G(g):

Glq) = 5ogm 5 g
I 4. l.l

- ~ - -
-+ G s &8 GE

Here the horizontal arrows are the arrows a; and the vertical ones are b;.

Remark. The bi-Grassmannian G(n) is not a (semi)bisimplicial scheme.
(It is a truncated semihypersimplicial scheme. Se+ 2.2.¢ in [G4]).

Let ¢7(g) be the restriction of the differential form wp to @g. The properties
i), ii) from theorem 3.1 are exactly the defining conditions for the single-valued
Grassmannian polylogarithm whose existence was coujectured in [HM], [BMS],
see also [GGL].

Let us extend these forms by zeto to the other rows of the bi-Grassmannian

G(q), ie. set yi**(g) = 0if ¢ > 0. Then the property iii) from theorem 3.1
guarantees that the forms 1,0‘”‘"( ) form a 2q cocycle in the bicomplex computing
the Deligne cohomology H24(G(q)e, R(g)p). It is called the bi-Grassmannian
n-logarithm. ( [G5)).

A sequence of multivalued analytic forms on Crassmannians satisfying con-
ditions similar to i), il) was defined in [HaM1], [HaM2]. Another construction
of the multivalued analytic Grassmannian polylogarithms was suggested in [G5]
in the more general setting of the multivalued Chow polylogarithm.

3. The Grassmannian n-logarithm function. By theorem 3.3 the Chow
polylogarithm function is invariant under the action of the torus (C*)2"~!, So
restricting it to the open Grassmannian G 1 C Zn 1 and using the leectlon

{(n — 1)-planes in P27~! in generic position with respect to a simplex L}/(G},)?" !

< —-> {Configurations of 2n generic hyperplanes in P"!}

we get a function on the configurations of 2n hy perplanes in CP™"~!, called the
(Grassmannian polylogarithm function £,
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The Grassmannian polylogarithm function has the following simple descrip-
tion on the language of configurations of hyperplanes. It is intersecting that in
this description we can work with any configurations of 2n hyperplanes, assum-
ing nothing about their mutual location.

Let hy, ..., han be arbitrary 2n hyperplanes in CP"~!. Choose an additional
hyperplane hg. Let f; be a rational function on CP™~! with divisor h; — hg. It
is d fined up to a scalar factor. Set

2n

LG (R, ..., han) = (2mi)} " [@ ran-1() (=17 fi Ao A Fi A A fan)

j=1

It is skewsymmetric by the definition. Notice that

= j " fi fe fan-1
2 : —1y . =2 A A n-
.f—_1( DA A f Aoe A fan fon A fon Ao h fon

So we can define LG (hy, ..., har) as follows: choos. ra.ional functions gy, .., gan-1
such that divg; = h; — hzn and put
L£E(hy, ..., han) = (zm)l*"[

i 17'211.--1(91: w1 G2n—1)

Remark. The function £§ is defined on the set of all configurations of
2n hyperplanes in CP™-!. However it is not even continuous on this set. It
is real analytic on the submanifold of generic configurations. Since we put no
restrictions on the hyperplanes k; the following theorem is stronger then theorem
3.1 in the case of linear subvarieties.

Theorem 4.3 The function LS has the following properties:
a) It does not depend on the choice of hyperpluue hg.
b) For any 2n + 1 hyperplanes in CP™ one has

2n+1 .
> (=1L (hy Nhty e by O hzatt) =0 (31)
et

¢) For any 2n + 1 hyperplanes in CP™~! one has

2n+1 ) "
Z('—1)J£g(h1)"'shj:---:h2n+1) =0 (32)

i=1

Proof. a) Choose another hyperplane hj. Take a rational function fo with
divisor hy — ho. Set f] = }% Then

an+1 . N 2n+1 . -
Z (=1 fL A e A S5 Ay Afan — Z (1 fIAAFIA L Af3 =0
i=1 i=1
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Indeed, substituting f! = }’% in titis formula we find that the only possible
nontrivial term fo A fi AL A ﬁ AA }‘; A ... A fan, vanish because it is symmetric
in i, 5.

b} Let g1, ..., g2n41 be rational functions on CP* with divg; == h; — hp. Then

2n+1

dr2,,( S (-1q A AT A ...gan) = (33)
i=1

2mid(f;)dfs A dfj Arana (Z(—l)jgl AGi A A A ---gzn+1)
i
(Notice that dloggy A ... Adlogg; A ... Adloggans: = 0 on CP*). Integrating
(33) over CP" we get b).
¢) is obvious: we apply re,,—1 to zero element. Theorem is proved.

4. P! - {0,00} as a special stratum in the configuration space of 2n
points in P". A special configuration is a configuration of 2n points

(lﬂa---aln—lamﬂa“‘amn—-l) (34)

in P*~! such that lg, ..., In..; are vertices of a simplex in P*! and m; is a point
on the edge l;l;41 of the simplex different from I; and I;, as on the picture.

Proposition 4.4 The set of special configurations of 2n points n P*! is
canonically identified with P'\{0, cc}.

P00} = { .- }
P

Proof. We define the generalized cross-ratio

Gl,

- -
T(EO’ "'Jﬂ"lumﬂa -“1mn—1) o F

27



as follows. Consider the one-dimensional subspaces L;, M; in the n-dimensional
vector space V projecting to the points I;,m; in P"~! respectively. The sub-
spaces L, M;, Li+1 generate a two dimensional subspace. Its quotient along M;
can be identified with L; as well as with L;+1. So we get a canonical linear map
M;:L; — Li;;. The composition of these maps (the “linear monodromy”)

—MQ o.. C’Hn——l 1Ly — Ly

is a multiplication by an element of F* called the generalized cross-ratio of the
special configuration (34).

Ly

It is clearly invariant under the cyclic permutation
o=~ ...=la_1 =l mMo—=my— ... =My -+ Mo

Notice that r(lg, ..., ln—1, Mg, ..., Mp—1 ) = 1if and -nly if the points mq, ..., Mn_;
belong to a hyperplane.

Let #i; be the point of intersection of the line I;l;4; with the hyperplane
passing through all the points m; except m;. Let r{xy,...,z4) be the cross
ration of the four points on P!. Then

T(l[)r “eiy lﬂ—l: Mg, vy Tnn—l) = T‘(Ei, l‘i+1 y Ty, ﬁii-{-l)

The special configurations and classical polylogarithms. Consider the config-
uration of 2n hyperplanes in P"~! given by the following equations in homoge-
neous coordinates zp ;... ¢ 21

=0 .., zZma=0, m=zn, un+zn=zn,

z2—23=0, .., 2Zpa—2p1=0, 2z,_1=az {35)

It admits the following interpretation. Recall that the classical polylogarithm
function Lin(z) can be defined by an iterated integral:

a
Lig(a) = dt OQEO,_,OEE:-[ gil./\“_/\.%l_
o 1-t ¢ t Ja. & Zn—1
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If a € (0,1] the simplex A, is defined by the equations
Ayi= {(z1, 2 ) ERYH 0l <2< <. €2y <a}

The faces of the simplex A, can be defined for arbitrary a. Then the codimen-
sion one faces {z; = 0} of the coordinate simplex and the codimension one faces
of the simplex A, form the configuration (35).

We can reorder hyperplanes of this configuration as follows:

=0, 5n=0, 2=z nt+mn=2z 2=0

zg=z3, 23=0, .. | zpa=0, zna=2z,_1, Zp_1=az

Applying the projective duality to this configuration of hyperplanes we get the
special configuration of 2n points in P"~! with the generalized cross ratio a.

The correspondence between the configuration (35) and the special configu-
ration of points is illustrated in the case n = 3 on the picture below.

1

Remark. It is amusing that the special configuration of 2n points in P*7!,
which is related to the classical n-logarithm by theorem 4.5 below, is constructed
using the geometry of the mixed motive corresponding to Li,_s(a).

5. Restriction of the Grassmannian n—logarithm to the special

stratum. The function Li,(z) has a remarkable single-valued version ([Z1],
[BD]):

Im (n: even)

n—1
Luz) = Fe (n:odd) (Zﬂklogklzwn.-k(z)), n>?2
k=0

ke
It is continuous on CP!. Here ;g%jf-:—l- =3 reo Bext, s0 B = 2—,§‘L where B, are

Bernoulli pumbers. For example £2(2) is the Bloch - Wigner function.
Let us consider the following medification of the function £,(z) proposed

by A. M. Levin in [Le]:

. Eﬂ(ﬂ?) =
(2n - 3) : ok (n —2)1(2r — 7. — 3)! .
(2n —2 Z @n =)k + 1)l —k - 2)!£n—k($)10g |z

)keven;nggn—Q
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For example £n(z) = Ln(z) for n < 3, but already L4(z) is different from L4(z).
A direct integration carried out in proposition 4.4.1 of [Le] shows that

_(27”:)11—1(__1)(13—1)(11—2)/25“(2;) =

n—1 n—2

/Gpu_l log |1 ~ z| H dlog |zi| A H dlog |z — 7i41| A dlog|zn-1 — @

i=1 i=1

This combined with proposition 5.3 below implies

Theorem 4.5 The value of the function LG on the special configuration (84)
is equal to

_(_l)n(n—l)/24n—1 m—-2 _IE ((1)
n—1 "
where a = r(lp, .-y ln—1, M0} <oy Mp—1).
Another proof in the case n = 2 see in section 6.7 below.

Conjecture 4.6 The Chow n-logarithm function can be expressed by the Grass-
mannian n-logarithm function.

Remark. Suppose that an element 3, {f{¥, .., /i, |} € K, | (C(X)) has
zero residues at all the divisors on an n-dimensional variety X over C. Then it
defines an element

a € g'rgn+1K2ﬂ+1(X) = E:EtzMn+1 (@(O)X;Q(Qﬂ- + ix)

Tts direct image to the point is an element

7o) € grY Kony1(SpecC) = Extl,(Q(0), Q(n))
Applying the regulators we see that the integral >, [ X(0) an( l(k), - éfl)Jrl)
coincides with the value of the Borel regulator on 7, () and so by results of the

next chapter is expressible by the Grassmannian n-logarithms. Conjecture 4.6
tells us that this should be true for eny element in K21, (C(X)).

5 Grassmannian polylogarithms, symmetric spaces

and Borel regulators
1. The function 7,. Let
H, := { positive definite Hermitian forms in C* } /RL = SL.(C)/SU(n)

= { positive definite Hermitian forms in C* with determinant = 1}

30



It is a symmetric space of rank n — 1. For example Hy = H3 is the hyperbolic
3-space. Replacing positive definite by non negative definite Hermitian forms
we get a compactification H, of the symmetric space H,.

Let G, be the subgroup of SLy(C) stabilizing the point £ € H, . A point
z defines a one dimensional vector space My:

re& H, — M, := {measures on CP*~! invariant under Gz}

Namely, a point z corresponds to a hermitian metric in V. This metric provides
the Fubini-Studi metric on CP"~! = P(V},). Moreover there is the Fubini-Studi
Kahler form on CP*~1 = P(V,); its imaginary par® is a sypmlectic form. Raising
it to (n — 1)-th power we get the Fubini-Studi volume form. The elements of
M, are the multiples of the Fubini-Studi volume form.

So H,, embeds to the projectivization of the space of all measures in CP?1.
Taking its closure we get a compactification of H,.

Let us choose for any point z € H, an invariant measure p, € M,. Then
fe/py is a real function on CP*~1.

Let g, ..., Tan_; be points of the symmetric space SL,,(C)/SU(n). Consider
the following funct{on

log|“i|dlog|gf-2—|f\.../\dlogiliw“—'l-l (36}
- p p

."“ZD Ly To

lbn(ﬂfo,---,xzn-:l) 2=[

wﬂ

2. General properties of the function ,. Let us study the properties of

integral (36) in a more general situation. Let X be an m-dimensional manifold.

For any m + 2 measures g, ..., #m+1 00 X such that EJ— are smooth functions
we can construct a differential m-form on X:

Folfto oo 1) = log|ﬂ|dlog|-#—2[ A /\(“Og'“—mﬂi
Ho Ho
Proposition 5.1 The integral
/XFm(uo Dt s ) (37)

satisfies the following properties:
1) Skew symmetry with respect to the permutations of p:.
2) Homogeneity:

/ Fm(Aofo © - f Amgifbmyl) = / Fml{fto * - ¢ i)
X X

3)Additivity: for any m + 3 measures p; on X one has

m+2

Z (_l)i /XFm(,uU S it tiipgn) =0

1=()
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4) Let g be o diffeomorphism of X. Then

/ Tmlg po * v 1) =f Fon (M0 ¢ oo 0 Mamte1)
X X

Proof. 1). Follows from log f - dlogg + logg Jlog f = d{log f - log g).
2) Using 1) we may assume A; = 1 for ¢ > 0. Then

/X(Fm(f\o.uo DHC et fimt) ~ T(lo T g s ) =

“log |\l f d(log £2(a10g 22| .. A dlog | <22 ) =

3) Taking into account the skewsymmetry of the integral we have to prove
that

Ao, msay {108 22(d10g 12| A ..n g 2221 =0 (ay

Let us write ﬁ—; = & /& Ej and substitute it to (38). Then the terms in (38) where
log "2 Z|dlog| L1{ A . A dlog| 222

will appear looks as follows:

Hm+2 | IJ'm+2 |

logi |dlog| /\dlg| 10gi |d10g| |/\ cAdlog|—

logl IdIogl‘ualA /\dlog|”m+2§+1og|“oﬁdlog' |/\ .Adlog |M2+2|
2

(The ﬁrst two terms comes from Alt(y . myo)Tm{p ... ,um+2) and the second
two from Alt(ga, . m+2)Tm(to : B2 1 ... ¢ pma2). The expression AltpyoFm{po
i T fme2) Provides no such terms if ¢ > 1).

4) Clear. The proposition is proved.
Recall the following general construction. Let X be a G-set and F a function
on X" satisfying

™"
> (~1)F(z1, ., Biyory 20} =0
i=1

Choose a point z € X. Then there is an (n ~ 1)-cocvcle of the group G:

A

fe{g1, - gn) == Flg1z, ..., gnZ)

Lemma 5.2 The cohomology class of the cocycle fr does not depend on x.
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Proof. The difference f, — f; is the coboundar of the (n — 2)-chain

n—1

hay (s gn-1) = 3 (=17 f{g12, 022, ..o, 05T, QoY Ght 1Ys oy Gnrl)  (39)

i=1

Here is the geometric picture leading to this formula. Consider the prism
Aé’f,‘..??g,,_l x AL given by product of the (n — 1)-simplex with vertices g1, ..., gn
by the 1-simplex with vertices (z,y). Decomposing its side face Ag,’f,__ _%,)g,,_l xAg,I,%,
intc a sum of simplices we come to the right hand side of (39). Then the terms
of the formula f, ~ f; — éhs,y correspond to the boundary faces of the prism.
Cutting the prism on simplices we see that the sum »f the terms corresponding
to the prism boundary is zero thanks to the cocycle relation. The lemma is
proved.

So for any z € H, ¥n{go®, ..., gan_-17) is a smooth (2n—1)-cocycle of GL,(C).

Remark. This cocycle is the restriction to GL,(C) of the Bott cocycle for
the group of diffeomorphisms of CP"~ !,

Let ho, ..., hon-1 be any hyperplanes in CP"™'. Recall that the Grassman-
nian n-logarithm is defined by

EE (ho, Ly h2n—1) = (27ri}1"" f . Tgn_,y(fl‘ Ve :f2n—1)
apn-

where f; is a rational function on CP™! with the divisor (h;) — (ho)-

Proposition 5.3 One has

—4)"H((n - 1)!)? et
b honet) =~ G e [ st A aosi

Proof. See proposition 6.2 in [ZhG].

3. The Grassmannian polylogarithm £& as the boundary value of
the function t,. We start from an explicit formula for the Fubini-Studi form.
Let P*! be the variety of all hyperplanes in P"*~!. Consider the incidence
divisor _

Dc Pl x P! D .= {(h,z)|z ¢ h}

where h is a hyperplane and z is a point in P*~1,

Let (zp : ... : Tn—1) be homogeneous coordinates in P!, Let
n—1 "
op(z,dz) = Z(—l)’:c,-dxg A Ade AL AdEa— = tgvol,
i=0

be the Leray from. Here vol, =dzg A ... Adzy-; ard E = 3 20,
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There is canonical differential (n — 1,n — 1)-form wp on Fr~! x F*~! — D
with a polar singularity at the divisor D. Namely, let z € V, and £ € V;]. Then

1 o(6,dE) Aau(z,dr)
YDIE et <gz>n

It is PGL,-invariant. A hermitian metric H in '}, provides an isomorphism

— zz==n—1
H:V, — V., and hence an isomorphism CP*~* — TP . The graph T'y
of this map does not intersect the incidence divisor D. Thus restricting the form
wp to Ty we get a volume form on cprL

. 1 on(z,dz) ANop(Z, dZ)
wrs(H) = (2rijn1 H(z,z)" (40)

It is clearly invariant under the group preserving the Hermitian form H. More-
over, it is the Fubini-Studi volume form: a proof can be obtained by using the
explicit formula for the Fubini-Studi Kahler form given in [Ar], complement 3.

One can realize CP"! as the smallest stratum of the boundary of H, .
Namely, for a hyperplane h € V;; let

Fy := { nonnegative definite hermitian forms inV,, = C"with kernel h} /R

The set of hermitian forms in V,, with the kernel h is isomorphic to RY , so F,
defines a point on the boundary of H,.

For any nonzero nonnegative definite hermitian form H one can define the
corresponding Fubini-Studi form by formula {40). It is a differential form with
singularities along the projectivization of kerne! of H. In particular if h is
a hyperplane then the degenerate hermitian form Fj provides the Lebesgue
measure on the affine space CP"~! — h. Indeed, if hg = {20 = 0} then (40)
specializes to

Zn-1

K

1 Z1 Zn-1
————d— A..Ad
(21‘l‘i)""1 20 A A zZ0

AN A
20

Denote by M, the one dimensional real vector space generated by this form.
For any hyperplane h in CP"~! let us choose a measure pup € M},

Proposition 5.4 For any 2n hyperplanes hq, ... han—1 in CP*7! the integral

(B, oo han—1) = f log £ dlog |E22) A .. A dlog[EREmt|  (41)
(pr-1 Hho Lhg Fho

is convergent and equals to

(—4)~" - (2miy"~} (2n)*nt (2;: 12)  £8(hg, . han-1)
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Proof Let hy,hs be hyperplanes in CP*~! a.d f be a rational function
such that (f) = (h1) — (ha). From the explicit description of M}, given above
we immediately see that

iho ng = A LF" (42)

Using this and theorem 2.4 we see that integral (41) is convergent. The second
statement follows from proposition 5.3 and (42). The proposition is proved.

More generally, take any 2n Hermitian forms Hy, ..., H,_1, possibly degen-
erate. For each of the forms H; consider the corresponding measure py, ( a
mui.iple of the Fubini-Studi form related to H;). Using convergence of the
integral (41) we can deduce that the integral

%(HQ,...,H%_I):[ 1og|"le |d1o g|“”=‘-1/\ Adlog Pt = (43)
-1 HH H

0 o

—nzn"l-/ log]Hl(z’f)hilo |H2(z |/\ .Adlo g|—Hzn—l{i—z)—i
pn-1 H ( H ( o(z, Z)

is also convergent. This enables us to extend 1 to the function 1j}n {zg,....,Ton—1)
on the configuration space of 2n points in H,_;. The function ¢, is discontin-
uous. For instance it is disconiinuous at the point z; = ... = xap—1 = F), for a
given hyperplane A in CP™1. It is however a smeoth function on an open part
of any given strata. We will keep the notation

qp‘n(hﬂy h’l‘n 1) - Fho:" ,Fh2“_|)

Applying lemma 5.2 to the case when X is H, and using only the fact that
the function ¢, (g, ..., Tan—1) is well defined for any 2n points in H, and satisfies
the cocycle condition for any 2n + 1 of them we get

Corollary 5.5 Let z € H, and h is a hyperplane in CP™"'. Then the coho-
mology classes of the following cocycles coincide:

Ynl(gox, ..., gan—1z)  and  Yalgoh, ..., gan—1h)

4. A normalization of the Borel class b,. Choose a hermitian metric in
Vi. Let e be the corresponding point of the symmetric space H,; its stabilizer
is a subgroup SU{n). One has

(aerm) ™" = a(SLa(©)/5U YO

There are well known canonical ring isomorphisms (see [B2] and references
there):

SU(n) .
(A.TE‘H”) erC= A.(SI'H'\'C})S[“ O =

H*(s11(C),C) & H3, (SU(n).C) £ H3,(SLa(0),C) (44)
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where H* is the Lie algebra cohomology, Hg,, is the topological cohomology.
The first isomorphism is obvious: T.H, ®g C = 5,{C}). The map

apR ! Ab(stn)““ <5 Hpr{SLA(C),Q)

sends an sl,-invariant exterior form on sl, to tue right-invariant, and hence
biinvariant differential form on SL,{C). Let us des:ribed the map

Bpr : Hpp(§L4(0),Q) — Hy,(SLA(0), C)

Let C' be a biinvariant, and hence closed, differential (2n — 1}—form on
SL,(C). Let us restrict it first to the Lie algebra, and then to the orthogo-
nal complement su(n)® to the Lie subalgebra su(n) C sl,{C). We identify the
R-vector spaces ToH, and su(n)*. The obtained exterior form on T,H, is re-
striction of an invariant differential form, denoted we, on the symmetric space
H,. It is a closed differential form.

For any ordered 2n points xy,..,22, in H,, there is a geodesic simplex
I(zy,...,%2p) in H,. It is constructed inductively o3 follows. Let I(z1,z2) be
the geodesic from z; to z;. The geodesics from x3 to the points of F(xy,x2)
form a geodesic triangle I(z;,z2,23). All the geodesics from z4 to the points of
the geodesic triangle I(z1, 75, 23) form a geodesic simplex I{x;, 22, x3,24}, and
so on. When the rank of the symmetric space is more then 1 (i.e. n > 2) the
geodesic simplex f(z, ..., z,) depends on the ordering of the vertices 1y, ..., z.

The differential (2n — 1)-form we on SL,{C)/SU(n) provides a volume of
the geodesic simplex:

VOICI(:L'I,...,J,‘gn) = [ wiC

Kz1,..m20)

For every 2n+1 points 21, ..., £2,41 the boundary of the simplex I{z;, ..., Z3pn+1)
is the alternated sum of the simplices I{z1,..., %, ..., Zons1). Since the form we
is closed, the Stokes theorem yields

2n41

> (—1)"[ we = / dwe =0 (45)
I(a":l,..-,fi,.,.,:ﬂzn.‘.ﬂ I(Il‘...,$2“+1)

=1

This just means that for a given point x the function volci{giz, ..., g2n2) is a
smooth {2n~1)-cocycle of the Lie group SL,{C}. It was considered by J.Dupont
[D]. By lemma 5.2 cocycles corresponding to difterent points z are canonically
cohomologous. The obtained cohomology class is Lie class Spr ([C]).

Remark. volc] (zg, ..., #an—1) is independent of the ordering of its vertices.
Indeed, consider 2n + 1 points (zg, 21, Zo, Z2, ..., T2n-1) and apply relation (45)).

The Betti cohomology of SL,(C). Recall that SU(n) is a retract of SL,(C).
It is well known that

HE (SU{n),Z) = H,

top

(8% x 8% x ... x 81 Z)= A*(B3, Bs, ..., Ban_1)

36



The restriction from SU(n) to SU(m) kills the classes Bgy_; for k > m. If
k < m it identifies the class By, for SU(n) witu the one for SU(m). The class
By, for SU(n} is provided by the fundamental cl.ss of the sphere §27~1 ¢ 7.
Namely, it is the pull back of the fundamental class under the map SU(n) —»
§*7=1 provided by a choice of point on §2"~!. This sphere has the orientation
induced by the one of C". Thus

7. Bn - Ker(HEJ:,_l(SU(ﬂ),Z) — HEJ;)_J'(SDT(H - 1)1 Z)) (46)

The transgression in the Leray spectral sequence for the universal SU(n)-bundle
EU(n) — BU(n) provides an isomorphism

H?™(BSU(n),7.)

Z-Bp — ——— "2 SV
" BociconH? - Hin—t

and identifies B, with the Chern class ¢, € H*™{BSU(n),Z) of the associated
vector bundle.

The De Rham cohomology of SL,(C). Consider the differential form
Dn = tr(g7'dg)*" " € Q" 1(SL) (47)

Its restriction to the subgroup SL,, is zero for m < n. It follows that the
cohomology class
[Dn] € Hp* (SLa, ©)

is a multiple of B,,. The Hodge considerations shows that [D,]} € (27i}"Q - B,.

Lemma 5.6 The differential form wp, is an R(n ~ 1) -valued form. In partic-
ular it provides a cohomology class

by = ﬁDR(Dn) € ann_l(SLn(C)ﬁR(n - 1))

Proof. An easy calculation shows that the value of the exterior form
an |Te]Hu on

(el,n + en.l) A i(el,n - en,l) A A (en-—i,n + en,'n*'\“ A zl('eﬂ—l,‘n - en,nvl) Aenn

is non zero, and obviously lies Q(n — 1).

On the other hand the values of the form wp_ lie in a one dimensional R-
vector space. Indeed, the space of su(n)-invariant real exterior (2n — 1)-forms
on the space of all hermitian n % n matrices, which have zero restriction to the
subspace of hermitian (n — 1) x (n — 1) matrices is one dimensional. The exterior
form wp, iT.n, Delongs to the complexification of this space. The lemma follows
from this.

We call the cohomology class provided by this lemma the Borel class, and
use it below to construct the Borel regulator.
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5. Comparison of the Grassmannian and Borel cohomology classes
of GL,(C). Let [C€] be the cohomology class of the (2n—1)—cocycle of GL(C)
provided by the Grassmannian n-logarithm. We want to compare it with the
Boret class.

Let us consider the following integral

an(Hly ey HZn.-l) =
H2n—l(z1_z-)

—pin=l / 4 (z_,E)ng(z_,E) A Ad- =

-1 (2,7) (2,%) (2,%)

where H; are arbitrary complex matrices and H,(z, Z} as the bilinear formin z,%

given by the matrix H;. We claim that it is a (2n — 1}-cocycle of the Lie algebra

gl (C), and it is obtained by differentiating of the group cocycle provided by
the function (43). We put these facts in the following framework.

If we restrict to the case when h; are hermitian matrices, integral (48) admits

the following interpretation. Let us construct a ~.ap

M, : CP™! — TOH,

(48)

which is a version of the moment map. For a point z € CP"~! the value of the
< M,(z),v > of the functional M(z) on a vector v € T, Hl, is defined as follows.
Let e(t) be a path in H,, such that e(0) = e and ¢ (0) = v. Then
d He(t) (z)
M = —1 -

< Me(z),v >i= - log e (2) |t=0
Choose coordinates zy,..., 2, in V, such that (2,Z) := |21]? + ... + |za]® cor-
responds to the point e. Then T H, is identified with the space of hermitian
matrices H. It follows from (40) that

H(z,%)

(2,%)

The map M. is clearly SU(n)-invariant. Its image is an SU{n)-orbit in T,'H,
isomorphic to CP™1.

We need the following general construction. Let V" be a real vector space
and M a compact subset of V which is a closure of a k-dimensional submanifold.
Any element w € A*V can be viewed as a k-form w on V*. Integrating it over
M we get an exterior form Cyr € AFV*. If M is a cone over M’ with the vertex
at the origin then f,, w = [, igw where E is tue Euler vector field on V.

Applying this construction to the cone over the orbit M, based at the origin
we get a SU(n)-invariant element Cy, € AZ" 1T} H,. It follows from {49) that
it is given by formula (48) multiplied by 2n.

Another invariant (2n — 1)-cocycle Cy, of the Lie algebra gln, considered by
Dynkin [Dy], is given by

< M (2),H >=n

(49)

1
Cn(Xl, aany in_,]_) = EAItgn_lTr(Xng...inwl) (50)
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Let [Cy] be the cohomology class of GL,{(C) corr~sponding to the cocycle Cy,.
Theorem 5.7 One has

S = (208)* 1027 (n — 1))
Co == (2n = 1)1 G

and the class [CS) is a non zero rational multiple of (Cy):

ning1) {n — D2 (n - 1)

] e A R

Proof. The second claim follows from the firs* using proposition 5.4.

Let us prove the first claim, The restriction of the cocycle C,, to the Lie
subalgebra gl,,_1 {C) equals to zero. This follows, for instance, from the Amitsur-
Levitsky theorem: for any nxn matrices A1, ..., 42, one has Alte, (A1, ..., 42n) =
0.

On the other hand the restriction of the cocycle Cn to the Lie subalgebra
of matrices {(a;;) where a1; = aj; = 0 is zero. Indeed, in this case the form we
integrate in (48) is a differential (2n — 2)-form in dzs, ..., dzp—1,dZs, ..., dZn 1
and thus it is zero. So thanks to (44} and (46) we conclude that the cocycle C,,
is propertional to C,.. To determine the proportionality coefficient we compute
the values of the both cocycle on a special element E,, € A>*~1gl,,. To write it
down denote by e; ; the elementary n X n matrix whose only nonzero entry is 1
on the (i, 7) place. Then

n—1

E, = /\ (ejnNenj)Nenn (51}

=1
A direct computation shows that
<Cu, Ep,>=1

Indeed, to get a non zero trace we have to multiply (n — 1) blocks en je;n, as
well a3 ey, », which can be inserted anywhere between these blocks. So there are
(n — 1}!n = n! possibilities.

Let us compute the value of the cocycle 5’,,, on E,.

Lemma 5.8 Integral (48) equals to

—nin-l Hi{z,2)dHy(z, ) A ... NdH2p_1(2,7)
A [ (77 52
Proof. By proposition 3.1 integral (48) equals to
—nir-l Hi(z,%2) Hy(z,7) Hypn1(2,%)
P _1* A A — = 53
e o e o .7) 5%
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One has
Hi(2,Z)  (2,Z)dH;(2,%) — Hi(z,7)d(2,%)

d =
(2,%) (2,2)?
Substituting
M instead of dH"(ziE) in {53)
(2,7) (2,%)

we get zero since H; and H; appear in a symmetric way and thus disappear
after the alternation. The lemma foliows.
Let us calculate integral (53) in the special case

Hﬂn—l(za‘_z—) = |zn|2a Hﬁk—l(zaﬂf) = ZkEﬂa H?k(zlf) = znzk
so that Hy A... A Hany = E,. We will restrict the integrand to the affine part

{#n = 1} and then perform the integration. Since iHy,_1(z,%) = 0on {2z, = 1}
and dzx A dzp = —2idxg A dy, we get

*(_1)!““%!"‘21 (“2?:)"'_1712"'_1 / dn_l.’ﬂdn_ly _
Cn

=1 Joor TF AP+ o+ [zn PP

_(—1) nelin (2?:)n—1n2n—lvo1(52n_3) 00 p2n—3 . _

2n—1 o (1+r2)m-17
ot (200) 10200 fop — 2\ 7!
_(_1)‘—2—()'—
m-D2n-D\n-1
since the volume of the sphere 52"~2 is %:—:;{—, and
[“’ rIn—ddr 1 /‘°° 2y _ 1 on — 2\ 7} (54)
o (I+rH)-1 7 2 [ (1+rP-1 7 2n-2\n-1

To get the last equality we integrate by parts:

/m iy 1 f°° -2 1 ’dr _
o (+7)2=1 7 2n-2J, (1 +r)2n-2 B

n—2 f% . 5 dr o (n=2)! 0 dr 1 271—2)—1
2n—2/0 TOAEETE T T g jo d+r)mtl T o~ l(n—l
Theorem 5.7 is proved.

6. Construction of the Borel regulator via Grassmannian polylog-
arithms. Let G be a group. The diagonal map A : ¢ — G x G provides a
homomorphism A, : H,(G) — H,(G x G). Recall that

PrimH,G = {r € H,(G)|A(z) =z@ 1+ 1R}
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Set Ag := A®Q. One has
K. (F)g = PrimH,GL{F)g = Prin 11, GL.(F)g

where the second isomorphism is provided by Suslin’s stabilization theorem,
The Borel regulator is a map

T‘TBlO . Kznwl(‘C)Q — R(TL - 1)

provided by pairing of the class b, € H**"1{GLyp-1(C),R(n — 1)) with the
subpace Kon_1(C)g C Hzn-1(GL3,1(C), Q).
Recall the Grassmannian complex Cy(n)

e =2 Cpne1(n) -5 Copn(n) 2+ . - Cy(n)
where C (n) is the free abelian group generated by configurations of k+1 vectors
(lo,..., 1%} in generic position in an n—dimensional vector space over a field F,
and d is given by the standard formula (see s. 3.1 in [G2]). The group Cx(n) is

in degree k. Since it is a homological resolution of the trivial GL,(F)-module
Z (see lemma 3.1 in [G2]), there is canonical homomorphism

‘Pgn—z : H2n—1{GLn(F)) — HZn—-l(C*(n))

Thanks to lemma 5.6 the Grassmannian n—logarithm function provides a homo-
morphism

LG Cona(n) — Rn —1); (o, lanc1) 7 8oy oy l2n 1) (55)

Thanks to the first (2n + 1)~term functional equation for LS, see (31), it is zero
on the subgroup dCan(n). So it induces a homomorphism

L8 Hyp 1 (Ci(n)) s R(n = 1);

Lemma 5.9 The composition £S o o8, _, coincides with the class [CE].

Proof. Standard, see [G4].

To construct the Borel regulator we extend, as in s. 3.10 of [G2], the class
[CE] to a class of GLy,—1(C). Let us recall the key steps.

Let Z[S]be the free abelian group generated by a set S. Let F' be a field.
Applying the covariant functor Z — Z[X(F)) w che bi-Grassmannian G(n)
(see 5. 4.2), and taking the alternating sum of th- obtained homomorphisms,

we get a bicomplex. Using lemma 4.1 we see that it looks as follows ([G2], s.
3.7

-4 Ca(2n-1)

]
: |
4y Conan+1) 2 L Cap(n)
i } !
e Conan) B Caaln) 5 2L Cn(n)
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In particular the bottom row is the stupid truncation of the Grassmannian com-
plex at the group Cn(n). The total complex of this bicomplex is a homological
complex, called the weight n bi~Grassmannian complex BC,(n). In particular
there is a homomorphism

Hyp1(Ci(n}) — Han1(BC.(n)) (56)
Tn [G1-2] we proved that there are homomorphisms
Pinet t Han1 (GLy(F)) = Hon1(BCu(n)), m2n
whose restriction to the subgroup GL,(F) coincides with the composition

(p;n—l

Hon-1(GLn(F)) 225" Han 1 (Ca(n) & Hana (BC.(n),
Let us extend homomorphism (55) to a homomorphism
Ef ! BCgﬂ..l(n) —— ]R(n - l)

by setting it zero on the groups Coy,—1{n+1) for i > 0. The second (2n—1)-term
functional equation for the Grassmannian n-logarithm function, see (32), just
means that the composition

(e
Con(n + 1) —> Cans (n) =2 R(n — 1),

where the first map is a vertical arrow in BC.(n), is zero. Therefore we get a
homomorphism
LE . Hyp 1(BC.(n)) — R(n - 1)
Corollary 5.10 One has
-2 b
061 — _(_pyntmenz (R DE ba
[Ca] (=1 2n-2)12 n

Proof. Indeed,
Altgn 1 Tr(Xy - .- Xano1) =< tr(g 7 dg)2" L X0 A A Xy >

|aln

So the claim follows from theorem 5.7 since, as it clear from comparison of
formulas (50) and (47), b, = n![C;]. The corollary is proved.

Theorem 5.11 The composition

Kanr(€) = PrimHan— (GLan1(C),Q) 725 (57)
£G
Hzn_l(BC.,(n)Q) —n> ]R(n bt ].)
equals to

2
o pamengz - DY gy
=1 n(2n - 2)E (58)
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Proof. Recall that restriction to GL, of the aap ¢~} coincides with the
map ¢%, ;. Therefore lemma 5.9 guarantees that vestriction to GLn(C) of the
composition of the last two arrows coincides with the map given by the class
[CS._)- So corollary 5.10 implies the theorem.

7. Comparing [D,] and B,,. The following result is not used below.

Theorem 5.12
D] = (2mi)"(2n - 1)B,

Proof. The transgression identifies the class B, with the Chern class of
the universal bundle over BG, where G = GL,(C). We will compute explicitly
transgression of the n-th component of the Ckorn character of the universal
vector bundle p: E — BG. Let A be a connectior sn E. Then the n-th Chern
class is represented by the 2n-form

where Fiy .= dA+ A A A is the curvature form.

Let ¢ : EG — B(G be the principal fibration associated with E. Then
the form g*c,(A) is exact. If dw = g*c,(A4) and F is a fiber of ¢ then w|r
is closed, its cohomology class is transgressive, and goes to [ca{A)]. To do the
computation we choose a connection Ag on BG v:aicu is flat in a neighbourhood
U of a point z € BG. It provides a trivialization of ‘1 bundle £ over U as well
ag a trivialization ¢ : EGly — G x U.

The bundle ¢*E has canonical trivialization. It provides a connection .4;
on ¢*E. So there are two connections, ¢* 4g and A4; on ¢*E. One has 4; =
g" Ao + g~ 'dg, where (g,u) = ¢(x). Let

Alt) == tA; + (1 = t)g* Ap = tg™ dg + ¢* Ao

It can be thought of as a connection on the lifting of the bundle ¢*E to EG x
[0,1]; here t € [0, 1]. The curvature F(t) of this connection is

F(t) = g~ 'dgdt + t*g ' dg Ay~ dy

The push forward of the form trF(t)" down to EG is a primitive for the form
trF};m - trFE(o). It is given (in ¢~ XU} by

1

1
trF()" = tr(g~tdg)?"?
/Or() i dg)

Theorem 5.12 is proved.
8. On the motivic nature of the Grassmannian n—logarithm func-
tions. According to the results of the previou. section understanding of the
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Borel regulator, and hence special values of the Dedekind ¢-functions, is re-
duced to study of properties of the Grassmannian n-logarithm function Ef.

Recall that a framed mixed Hodge-Tate structure has a natural R-valued
invariant, called the Lie period. Thus a variation of Hodge-Tate structures L
over a base X provides a period function LM on X(C).

Conjecture 5.13 There exists a variation L of framed mized Tate motives
over GR_, such thet:

2n ) n
Y (=il =0, S (-1BLY =0
i=0 j=0

and the Lie period LM of its Hodge realization satisfies

2n—1
L= L£8 =) (=) af P, (59)

i=0

where F, is a function on G_,(C).

b) The functional equations satisfying by LM essentially determine it: the
space of ali smooth/measurable functions satisfying these functional equations
is finite dimensional.

Remark. The function F, is obviously not determined by (59) - add a func-
tion coming from @24(@). Nevertheless we expect that there exists canonical
explicit choice for F},. Then formula {59} can bc cousidered as an explicit for-
mula for £* in terms of £5s.

Moreover we expect that there exists a canonical homotopy between the
Grassmannian n-logarithm (understood as a cocycle in the Deligne cohomol-
ogy of the bi-Grassmannian) and its “motivic” bi-Grassmannian counterpart.
Observe that the motivic bi-Grassmannian n-logarithm should have non trivial
components outside of the bottom line of the bi-Grassmannian, while the de-
fined above (or in [G5]) Grassmannian n-logarithm is concentrated entirely at
the bottom line. N

A variation of mixed Tate motives over G_, was constructed in [HaM].
However it is not clear how to relate it to the function £%,

Conjecture 5.13 is known for n = 2 and n = 3.

The n = 2 case follows from (11}, the well known motivic realization of the
dilogarithm, and Bloch’s theorem characterizing the Bloch-Wigner function by
Abel’s b—term equation it satisfies.

The n = 3 case of conjecture 5.13 follows from the results of [G1-2], [GZ] and
the motivic realization of the trilogarithm. In particular the part b) is given by
theorem 1.10 in [G1].

Examples. 1. n = 2. Then £ = £§.
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2. n = 3. The motivic Grassmannian trilogurithim function has been con-
structed in [G1-2] in terms of the classical trilogarithm function. Namely, one

has
A(lo,ll,ls)A(flJzyh)ﬂ(lzafo,ls))
A(lﬂy ll 1 l4)A(ll ¥ l?v tﬁ)A(lza [0, 13)
According to theorem 1.3 of [GZ] £{ is different from £§, and

1
LMLy, b)) = %Altaﬁs(

1
F3(l0, . l4) : §Alt5 (log |A(l(), [1,!2)' lOg IA(I]_ y 12, 33)1A(12,l3, l4)|)

3. If n > 3 then £ is different from £ since it is already so for the
restriction to the special configuration, see theorcm 4.5.

The space of the functional equations for the function £§ is smaller then
the one for £, see chapter 1.5 of [G3]. A similar situation is expected for all
n > 3.

The space of the functional equations for the motivic n-logarithm function
LM should provide an explicit construction of the weight n part of the motivie
Lie coalgebra of an arbitrary field F, as explained in s. 4.1 in [G6], taking into
account the following correction.

Correction. In s. 4.2 of [G6] the subgroup of the functional equations RE
is supposed to be defined as the subgroup of all functional equations for the
function £, not £§.

6 The Chow dilogarithm and a reciprocity law

The Chow dilogarithm provides a homomorphism A*C(X)}* — R given by

ANAS P S fnf) =g [ ) (6

In this section we show that the Chow dilogarithm can be expressed by the
function £2(z). The precise versions of this claim are discussed below.
1. The set up ([G1-2]). For any field F w. defined in [G1] the groups

Z[F]
Ra(F)’

Bo{F) =
and homomorphisms

On i Br(F) 4 By (F)®@ F*; {g}n+— {g}p-1®2, n2>3

52:82(F)'—)’A2F*, {w}y—»(l—x)/\w
There is a complex I'(F; n)

Bu(F) 2% B (F) @ F* 2 . B By(F) < An2F* 3 Anp
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where 6,({z}, ®Y) = {z}s-1 ® x A Y, called the weight n polylogarithmic
complex.

If K is a field with a discrete valuation v and the residue field &,, then there
is a homomorphism of complexes res, : T(K,n) — I'{k,,n — 1){—1] (see s. 14
of §1 in [G1]}. For example for n = 3 we have

By(K) = ByK)oKk* -2 AMK*
J res, ] res; (61)
Bylk,) 2 A%
Here res, ({x}2®y) is zero unless v(z) = 0. In the latter case it is res, ({z}20y) =
v(y){Z}2, where T denotes projection of z to the residue field of K.
Let X be a regular curve over an algebraically closed field & and F' := k(X)*.
Set Res := ), res, where res, is the residue homomorphism for the valuation

on F corresponding to a point x of X. For instan.e for n = 3 we get a morphism
of complexes

Bs(F) 2 By(F)eFr 2% ASP
| Res 4 Res
By(k) 2 A%

We will also need a more explicit version B2(F') of the group B;(F). Denote
by Ro(F) the subgroup of Z[P!(F')] generated by the elements

5
{0}, {0} and Y (-1)!{r(z1,....Es, ..., 75)}
=]

when (zy,...,25) run through all 5-tuple of distinct. points in P*(F). Define the
Bloch group B2(F) as
Z[P(F)]
By(F) := ————
2( ) R2(F)
One can show that Rz (F) C Ra(F). There is a map
i1 Ba(kYy — Bz(k)g (62)

Proposition 6.1 Let k be a number field. Then {62) is an isomorphism modulo
torsion.

Proof. The map ¢ is clearly surjective. The diagram
By(k) — Ba(k)
182 462

AZk* = A%
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is commutative. So we need only to show that .l 0 # 2 &€ Ba(k)g and &;(z) =
0, then i(z) # 0. This follows from the injectivity of the regulator map on
K3*(k)q. Indeed, by Suslin’s theorem for a field F one has K3 (F)g = Kerd,®
Q. Let us identify K" (C)g with this subgroup of B2(C)g. The restriction of
the dilogarithm map

Ba(k) — Ba(k) — (Z[Hom(k,©)] @ 2miR)Y,  {z}a — {2mila(0:(2))}

to the subgroup Kerd, ® Q gives the Borel regulator Ki"¢(k)g — R™ ([G1])
and thus injective by Borel’s theorem.

Remark. For any field & the rigidity conjecture for K¢ implies that the
map 7 should be an isomorphism, see [G1].

2. The strong reciprocity law.

Conjecture 6.2 Let X be a regular projective curve over an algebraically closed
field k and F = E(X)*. Then there exists a canonical homomorphism of groups
h: ASF* < Bo(k) satisfying the following two conditions:

a) h(k* A A*F*) = 0 and the disgram

Bs(F) & ByFyoF & AdF

Res | h !Res (63)

Ba(k) D2, A2
ts commutative.
b) If X is ¢ curve over C then

s [ A fnds) = La(hG A fon ) (64
me X(C)

Remarks. 1. b) follows easily if we have a functorial map h such that
Res = 84 o h, see theorem 6.10 below.

2. According to Suslin’s reciprocity law for the Milnor group K3(F) the
projection of Res(A*F*) C A%k* to Ka(k) is zern Since by Matsumoto's the-
orem K3(k} = Coker{d;), one has Res(A3F*} C Im(ds). However Ker(ds) is
nontrivial, so it is e priory unclear that we can lift naturally the map Res to a
map h. One of the reasons why we can do this is provided by (64).

We prove this conjecture in the following cases:

a). X = P!; we construct ezplicitly a reciprocity homomorphism f : A3F* —
By (k) in theorem 6.5.

b). X is an elliptic curve over an algebraically closed field; we construct
ezplicitly a reciprocity homomorphism h : A*F* — By (k) in theorem 6.14.

c). k=0, X is any curve; see theorem 6.12.

In the cases a) and b) the homomorphism h satisfy the following additional
property. Let F' = k(X)) and k is not necessarily ulgebraically closed. Let &' be
the field of definition of the divisors (f1), (f2), (f3). Then h(fiAfaA f3) € By(k').
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Conjecture 6.3 Let X be a projective reqular curve over an algebraically closed
field k and F := k(X). Then the homomorphism

Res: T'(F;n} — T(k;n — 1)[-1]
s homotopic to zero.

Lemma 6.4 Assume that we have a map h such that h(k* A A2F*) = 0 and
Res = §2 o h. Then hod3 = Res.

Proof. The image of the group By (F) ® F'* under the map h o é5 belongs to
the subgroup Kerd;. Since h(k* AA2F*) = 0 one has hods = Res on Ba(F) @ k*.
Any element of k(X)* can be connected via a curve to a constant. This together
with the rigidity of Kerd, (built in the definition of the group Ba(k)) implies
the result.

8. The X =P! case. Recall that v,(f) is the order of zero of f € k(X) at
x. Choose a point o on P!.

Theorem 6.5 Assume that k = k. Then the map h : A*(k(P'))* — Bs(k)
given by the formula

WMAANFAf) = D v (e, (Fa)vss (f3) {r(2r, 22, 25, 00) )2

z,€PYk)
satisfies all the conditions of conjecture 6.2 modulo 6-torsion.

Proof. Let us show that A is independent of che choice of oo, i.e.

Z Vg, (fl)v-'ﬂz (f2)v2'3 (f3){7'(.’ﬂ1 ,L2,T3, G)}z S B2(k)

i €PYk)

does not depend on ¢. Indeed, the 5-term relation for the 5-tuple of points
(21,22, 23,a,b) gives

D v (F1)veg (fo)ay (fa) ({r(21, 22, 23, @) }2 — {r(@1, 72, 75, b)}2) =

;P k}

Z Vo (f1)0z2, (f2)ve, (f3) Lalr{zy, 22, a,b) }o~r{z1, 23, 0, B) o +{r (22, 23, 0, b)}2)
z;EP{k)

Fach of these 3 terms vanishes because Zmeﬂn( K U(f) = 0.

Proposition 6.6 Let k = k. Then modulo 6-torsion

MA=-HAFAg = > v{g{f(a))

zeP{k)
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Proof. Using linearity with respect to ¢ and projective invariance of the
cross—ratio we see that it is sufficient to prove the identity for ¢ = t. Then it
boils down to

> vn (1= Hue(H{r(z1,22,0,00)}2 = {f(0)}2 — {f(o0)}a  (65)

z; €PUk)

Lemma 6.7 Applying 6, to both parts of (65) we get the same result modulo
6-te "sion.

Proof. Choose a coordinate t on P! such that f(oc) = 1. Then

[Iia =)™ B];(b, - )7
¢ = 11— f(t 66
) = I, (s = 1) f)= “k(ck—t) (66)
Observe that {f(co)}2 = 0 modulo 6-torsion. The left hand side equals
Y- va (= P (P /eade = (67)
z; €P(k}
> Biaibifaits = Y mader/ata — > vedbiferte =
Applying &, to it we get
b Q; — Cg Cy b bj
Zﬁgaa ij a—:*Z’Ykai'T/\a—i“Z’kﬁ; o /\a=
Zﬁja"‘b' /\ai+Za,—7k © @ /\ck+27kﬁj -Ck/\bj +
l_-[ {a: - b;) H {ai — by)™ B H(at - Ck
b 3 Vi
Z ITila: — Ck)"“‘ Z ITx(er — b )*" Z CED

Using (66) we see that the second line equals modulo 2-torsion to
i Bi [I{a: - Ck -
—Zi(l—f(a,-))/\ag'Jrzj:f(bj)/\bj Zﬂ(b — /\ P+ BA]]a

The first two terms are zero since f(a;) = 0 and j(b;) = 1. The third term
equals to —B A[] ¢]* since, as it follows from (66),

n(a"l' - ck)ai =B
[1(b; ~ cx)?
On the other hand to

B bﬁJ X
S0 = 0~ 7O 10 = ri o [
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which matches the expression we got for the left hand side. The lemma is
proved.

To prove the proposition it remains to use the standard rigidity argument.
Namely, we need to show that the identity is valiZ for some particular f, which
is easy, or use proposition 6.8 plus injectivity of the regulator on K3(Q)g. The
proposition is proved.

Now let us prove the key fact, Res = d; o h. We need to show that for any
3 rotional functions fi, fa, fz on P!

Z res;(fi A fa A fa) =

z€PL(k)

5( > v (F)ve (F2)0uy (o) {r (e, 22, 74, 00)}2) (68)
z;€PY(k)

The both parts are obviously homomorphisms from A3F* to A2k* which are
zero on k*AA®F*. (The last property for the map 3 res, is provided by the Weil
reciprocity law). We normalize the cross ratio of four points on the projective
line by r(00,0,1,z) = z. So it suffices to check the formula on elements

z—a z=-b z—¢
2 A 2 A 2

z—ay z-b z—-q

In this case it follows from

@2-C) -6 a-0
§ = e
2({T(0-2)b21 02100)}) 62 (bQ — C2) b‘), —C2 h b2 —C2

It remains to prove the following proposition.

Proposition 6.8

PaPh frifafa) = D vay (f1)omy (fa)vag (fa)La(r(21, 73, 75, 00))

z€PH(C)

Proof. We immediately reduce the statement to the situation when f; =
1-2,fy =2, f3 =z — a which is a particular case of the following lemma

Lemma 6.9 Let X be an arbitrary curve over C. Then

fm n(l-HAfrg) == 3 ul9) L2(f(a))

z€X (0

Proof. For functions f(z) and g{(z) on X(C) set

a(f, g) = log| fldlog|g| — log|gldlog | f]
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Consider the following 1-form on X (C)

Lo(fldargg - :}a(l — f, 1 oglg| (69)
It defines a current. We claim that its derivative is equal to:
2w La2(f)o(g) +r2((1 - f)ANFAQ) (70)
Using d{dargg) = 27 - 6{g) and
dls(z) = —log |l — z|darg 2 + log |z|d arg(1 — z) (71)

we see that the differential of the current (69) equals to

2Lo(f)8la) + (-log|L - fldarg f +log|idarg(l ~ /)) A dargg+

1 2
3 (log |1~ fld1og|f| ~log| fIdlog |1~ fI) Adlog|g|~ 5 log lg|-dlog |1~ /| Adlos ]
Since dlog(1 — f) Adlog f = 0 we have

dlog|l ~ f|Adlog|f| = darg(l — f) A darg f

Using this and writing r2(f1 A fa A f3) as

(log | fildlog|fa| Adlog|fs) + cyclic permutations)

| =

—(log|fi|darg(f2) Adarg f3 + cyclic permutations)

we come to (70). Integrating we get the lemma. The theorem is proved.

4. Expressing the Chow dilogarithms via the classical one. Let
7Y =+ S be a family of curves over a base S over C and fy, f3, fa € C(Y)*.
We get a function at the generic point of S. Its value at s € S is given by the
Chow dilogarithm Py(Y'*; f2, f3, f§), where Y* is the fiber of = at 5. Denote it
by P2AY = S: f1, fo. fa)-

Theorem 6.10 a) Let 7 : Y — S be a family of ~: vves over a base S over C.
Then there are rational functions ; on S such that

PoY = Si f1, fa f3) = D La(pis))

b) Let k = C(S), X is the generic fiber of @, and F = k(X). Suppose that
there exists @ map h : ASF* — By(k) such that Res = 8y 0 h. Then

dPo(Y = S, fi. fa, fa) = dLa(h(f1, fo. f3)) (72)
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Proof. a) We use the existence of the transfer map on K3 to reduce the
statement to the case X = P

Choose a projection p : X — P'. We may suppose without loss of generality
that p is a (ramified) Galois covering with the Galois group G. Indeed, let

1Y —+ X be such a covering that its compositic:. with p is a Galois covering.
Indeed,

1
degp

Then 3 ,cc9"{f1.f2, fa} € p kKM ((P1)). It coincides with p* of the
trz_msfgr of_ the element {f1,f2, fa} € KM(F). This means that there exist
59,8, sl € k(P') and g;, h; € K(X) such that

Po(Y — S;pi 1,01 f2.01 f3) =

Po(X — S;pt fr,01 f2, 01 fs)

S hafanfay—p Y sP AP sl =S g ngiak;  (73)
geQ i J

Therefore

1 iy (@)
PoY = 8 f1.fo fa) = r@‘lzpz(lpl x § = 8;s”, sl s+

D Pa(P' x S - S;(1-g;5) Agj Ahy)
i

It remains to use lemma 6.9 and proposition 6.8. The part a) of the theorem is
proved,
b) We need the following lemma.

Lemma 6.11
doPo(Y = i fu, fou f3) = (2m) 71 Al (va(f2) log | fo (2)|dy ag fy(2))  (74)
Proof. Using ddlog f = 2nid(f) we get an equality of 3-currents on YV

dr?(flafzsfii) =

dfy  dfy  dfs
s (f NZEA ) +om - Al (3(f) og ul)ldarg fo(2)  (79)

The second term in (75) is a 1-form on the divisor £ := U2_, div(f;) considered
as a 3-current on Y. This 1-form is the composition of the residue map

res : A*C(Y ) — [ A*C(x)
Xen

with the map
r1: A2C(X)* — A'(Spec(C(X))), fAg— —2r(log|f|darg g—log|g|d arg f)
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The push forward of the first term in (75) vanish (since the fibers are complex
curves the push down of any (3,0)-form to S is zero). Integrating the second
3-current in (75} along the fibers of ¥ we get (74). The lemma is proved.

According to lemma 6.11 and formula (71) for dL,, and using Res = dy 0 h
we get the proof of the part b) of the theorem.

Remark The function £3(z) is continuous on CP!. Therefore part a) of the
theorem implies that the function Po(Y — S; f1, f2, f3) can be extended to a
continuous function on §,

4. Conjecture 6.2 for k = Q.

Theorem 6.12 Let X be a regular projective curve_over Q and F := Q(X)*.
Then there ezists a homomorphism h : A3F* - By (Q) ® Q as in conjecture 6.2
such that for any embedding o : Q = C one has

3 fo OB BN = (o fin D) ()

2mi X(

Proof. It is similar to the proof of theorem 6.10. Choose a projection
p: X — P'. We may suppose that p is a Galois covering with the Galois group
G. Indeed, let p; : Y = X be such a covering that its composition with p is a
Galois covering. Setting

RN fa A o) = h(éﬁ DA Fa A o))

we may suppose that p is Galois, o
Then > o 9" {f1, 2, fs} € p*REM((P1)). So there exist sgz),sg),s(;}, €
k(P') and g;, h; € k(X) such that (73) holds. Set

GL AU A fa i f3) =3 RS AP Asf) 457 5 {gi@) e valhy)

T ozeX(Q

Lemma 6.13 Suppose 5.(1 — fi) A fiAgi =0 in ASQ(X)*. Then

Z Z ve(g:)  {f{z)}2 =0 in the group By(TQ).

i ozeXx(Q)

This lemma implies that h is well defined. Indeed, suppose that we have a
different presentation

St {ffafs = S F AT AT + 3 (-G A G AR
gEG i J

We need to show that

(5 A A5 -3 s ns sl ) (77)
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S v (r)gi (@)} ~ 3 va(B){Gi(@)}2 = 0

There exist a;,b; € k{P') such that modulo &* A A%k(P!) one has
Zsl /\s2 /\s Zs?)Aséi)/\sg)—z(l—aj)/\aj/\bj=0

According to theorem 6.5 the homomorphism A for P! annihilates the left hand
side. On the other hand

. (Z :-g-{li) /\E{;) /\Eg') _ ng} A ng‘) AS:(;’})_

Y A-GIAG AR+ (1=g)Ag; Aby=0
j 7

Using lemma 6.13 we get (77). To get (80) we u:: theorem 6.10 and notice that

PoY = Sifr,far f3) = 1/m - Pa(Z — SipLf1,pl fo,p1 f) (78)

Proof of lemnma 6.13. For a regular curve X over an algebraically closed
field & there is a commutative diagram

B(P g F* % A3F~
res | J res

Bak) R Z[X (k) 2 A2 @ Z[X(k)]

Thus for any point x of the curve X the element 3, v;(g:) - {fi(2)}2 lies in
Kerdy. Therefore it defines an element v, € K3(Q)g.

For any embedding o : Q < C the value of the Borel regulator on o(y;) is
equal to 3 .y va{gi) - L2(a(fi{z))). So by lemma 6.9 the value of the Borel
regulator on ) o{v;) is equal to 2 - f 5, r2(3 ;{1 - fi) A fi A g:) and hence it
is zero by our assumption. So Borel’s theorem implies that the element is also
Zero.

A similar argument using lemma 6.13 shows that the homomorphism h does
not depend on the choice of the (finite) Galois cxt-nsion of Q(P!) containing
the field Q(X).

6. Explicit formulas for the reciprocity homomorphism h and the
Chow dilogarithm in the case of an elliptic curve. Let E be an elliptic
curve. We want to calculate the integral | E© r2(f1 A fo A f3). Let us suppose
that E is realized as a plane curve. Then any rational function f on E can be
written as a ratio of products of linear homogeneous functions:

bl
lk+1 Y O
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So it is enough to calculate the integral fE(C) ra(ly floAlaflp Als/lp) where l; are
linear functions in homogeneous coordinates. We will do this in a more general
setting.

Notations. Let X be a plane algebraic curve and I; linear functions in homo-
geneous coordinates. Denote by L; the line [; = 0 in P2, Let D; be the divisor
LinX. Set l;; := Ly 0 L;. For three points a,b,c and a divisor D = ¥ n;(z;)
on a line we will use the following notation (see fig.2):

{r{a,b,e,D}}2 = Z ni{r(e,b,c,zi)}2

Theorem 6.14 Let E be an elliptic curve over an algebraically closed field k.
Then there exists a homomorphism of groups h : ASF* — Ba(k) such that for
any linear homogeneous functions ly, ..., I3 one has

3
h{lflo Alaflo Alaflo) = =Y (=147 (lio, . . i3, Do) }a (79)

i==0

and which satisfy all the properties of conjecture 6.2. In particular, if k = C
then
Pa(Bi fu A fo A fo) = Lo (L A fa 1 £3) (80)

Proof. Suppose we have four generic lines Lo, Ly, L3, Ly in P2. Any two of
them, say Ly and Ly, provide a canonical rational function (lg/l;) on P? with
the divisor (Lg) — (L;) normalized by the condition that its value at the point
{23 is equal to 1.
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Lemma 6.15 ¢) On the line L3 one has (I /lo) + (l2/lp) = 1.
b) G = — (/1)

Proof. Let m be a point on the line Ly. Then

{ti/lo)(m) = r(loz, b3, baa, m}; (l2/lo)(m) = r(los, l2a, 13, ™) (81)

This gives a). It follows from this that if the point m approaches to the point
loa then $:20) vends to —1. This implies b).

Io/lg

Lemma 6.16 For any plane curve X one has

> rese (1 /10) A (1a/1o) A (a/lo)) = =& (> o1 rllio, - b, Di)}2)
i=0

zeX

Proof. Let us compute first the residues at the divisors Dy, Dy, Dy using
part a) of lemma 6.15. For example the residue at x € D, is equal to

ve((h/lo)) - (la/lo) (=) A (Is/lo)(z) = v (11 / ko)) - (1 = (I3 /lo)(z)) A (ls /o) (2)

81

C a1 /10)) - (r(tis.hios bz, w2 = v (o)) - {rlio, iz, s, 2}

It remains to compute the residues on the line Lg. According to part b) of
lemma 6.15 one has

(h/lo) A(lz/lo) A3 /lo) = —(lo/L) A U2 /L)) A (I3 /1)
Using this we reduce the calculation to the previous case.

Proposition 6.17 Let E be an elliptic curve over an algebraically closed field
k. Then formula (79) provides o well defined homomorphism of groups h :
A2F* = By(k).

Proof. Let D := 3} . n;(z;) be a divisor of a rational function f on E. To
decompose it into a fraction of products of linear homogeneous functions /; we
proceed as follows. Let {;, (resp. [;) be a linear homogeneous equation of the
line in P? through the points z and y on E (resp. # and —z). The divisor of
the function [, /l; is (z) + (y) — (z + y) — (0). X D = (z) + (y) + Dy, we write
f=leyllasy [0 (f') =(0) + (z + y) + D1. After a finite number of such
steps we get a desired decomposition.
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There are the following relations

. $+ya . :B Y+
z:+y :n+y+z ly+z z+yt+z

= a constant

One can prove that they generate all the retutisns between the functions
Ly y/lcty- So h is well defined if it annihilates the following expression:

F(z,y,2;lo,12,13) :=( zy, tory / : ”“)Auz/zo)/\(zg/zo)
bevy latyrz! lyss lotyts

It follows from lemma 6.16 that é:(F(z,y, z;lg,12,13)) = 0. Thus according to
the definition of the group By (k) it is enough to check that h(F(z',y', 2’1o, 13, I5)) =
0 for a certain triple of points (z', 3, z'). It is easy to see that h(F(a,a,a;lo,ls,13)) =
0 since then the first factor in F is a constant. The proposition is proved.

Proposition 6.18 Let X be an algebraic curve i~ P2 over C and ly, ..., 13 linear
homogeneous functions on C2. Then one has (using *he notations defined above)

3

L(Q Tz(l]_/lo A l2/l{] A 13/10) =27 Z( 1)1E2{7‘(J,0, t3,19 ) (82)

i=0

Proof. It follows from lemma 6.16 and theorem 6.10 that the differentials
of the both parts coincide. So its difference is a constant. To show that this
constant is zero we deform X to a union of lines in P?. Using proposition 6.8
one sees that formula (82) is valid when X is a line in P2.
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7 Appendix: on volumes of simplices in sym-
metric spaces

1. Volumes of hyperbolic geodesic simplices as boundary integrals.
A point y of the n-dimensional hyperbolic space H,, defines a one dimensional
space M, of volume forms on the absolute H,. It consists of the volume
forms invariant under the action of the isotropy group of y. We write them as
foll»ws. Let zy,..., 2,41 be the coordinates in a vector space V41 and Q{z) =
z}+ ...+ 22~z ;. Then H, can be realized as the projectivization of the
cone Q{x) < 0, and its boundary is the projectivization of the cone Q(x) = 0.
Choose a point y € H,. Lifting ¥ to a vector y' € V.41 we have the following
volume form on the boundary 8H,,:

5(Q (@) an i (¥, dr)
(g7t

If y belongs to the boundary 8H,, this formula provides a space M, of singular
volume forms on the absolute; they are invariant under the isotropy group of y.

Let us choose for any point y such a volume form y,,. For two points z,y
the ratio p,/p, is a nonzero function on the absolute.

Let I{yg, ..., yn) be the geodesic simplex with vertices at ¥y, ..., ¥, where the
points y; could be on the absolute. Denote by voll(yg,...,yn) the volume of
this simplex with respect to the invariant volume form in 7, normalized by the
following condition: if we realize the hyperbolic space as the interior of the unit
ball y? + ... + ¥2 < 1 then the volume form resiricied to the tangent space at
the origin (0,...,0) is dyy A ... A dyn.

Theorem 7.1 For any hyperbolic geodesic simplex I{yo,...,yn) one has

— 1) vol(g™ 1
(n — 1)"vol( )-vou(yo,...,yn):/ log |22 |dlog |22 | A ... A dlog |22 |
n H,, Hyo Byo Hyo
(83)

Let ¢(yo,...,4n) be the function defined by the right hand side of (83).
Thanks to property 2) of proposition 5.1 it does not depend on the choice of
invariant volume forms g,

Proposition 7.2 The function ¢ (yo, ..., Yn) has tne following properties:

1) It is a smooth function on the vertices y;.

2) Equals to zero if three of the vertices belong to the same geodesic.

8) Additive with respect to cutting of a simplez, i.e. if yo,...,yn are such
points that v, y1, Y. are on the same geodesic, y, between yo and y2, then

(Y0, Y2, oos Ynt1) = @Yo, Y1, Y30 s Ynt1) T @Y1, Y25 oy Ynta )

4) Invariant under the action of the symmetry group SO(n,1}.
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Proof. 1) This is clear.

2) Let us realize the hyperbolic space as the intarior part of the unit ball
in R*. Consider the geodesic ! passing through the center of the ball in the
vertical direction. The subgroup SO(n — 1) C SO(n, 1) preserves pointwise this
geodesic. So for any point y on the geodesic the invariant volume form g, is
invariant under the action of the group S0O{n —1). The quotient of 8H,, under
the action of SO(n — 1) is given by the projection p : dH,, — R onto the
vertical axis. Take three points y;,y2, ys on the geodesic. Then ﬁ—:f and ﬁ—:ill are

lifted from the line R. Therefore dlog I%ﬁ—[ Adlog |§13—| = 0. So for a degenerate
14 L)Y

simplex (yo, ..., ¥») one has

log|ﬁy—“-|dlog|ﬁ1"~“-[ /\dlog]y-’f'i| AL -\dlogw—y—"l =0
My Hyr n Hy,

It remains to mention the skewsymmetry of the integral (83). The property 2)
is proved.

3) Follows from 2) and the additivity property from proposition {5.1).

4) This is clear from 4) of proposition (5.1). The proposition is proved.

The leading term of the Taylor expansion of the function o(yo,¥1, ..., ¥n)
when yq is fixed and y1, ..., yn are near yo provides an exterior n-form in T, H,,
denoted @y, (Y1,...,Ys), ¥; € TyyHn. Let us compare it with the volume form
Voly, (Y1, ..., Yy} in Ty H,, normalized as before theorem ?7.

Lemma 7.3 ¢y, (Y1, .., Ya) = 2= v0l(S71) - Vol (Y1, ..., Ya).

Proof. Below we abuse notations by writing y for '. One has py, /py, =

L)—r( 23" g,

y1.T)m T

_ _1yn (yla"z) (y212’) (yna"‘c)
Plyos - yn) = (n =1) fav{,. 108 g, ) 14108 g,y - M 1By, oy
Thus
ou(Yis o Ya) = (n— 1)"[8% (Y1, 2)d 22, 2) A oo A d(Y, 2)

To do the computation of this integral we may suppose that y = (0,...,0,1),
Y= 8%_, 50 (Y;, ) = x;. Then the last integral equals to

_1yn
(n— 1)“[ Tidry A . Adey, = (n—nl)——vol(S"“l}
Sn—l

where S™~! is the sphere z7 + ... + 22 = 1. The lemma follows.
Proof of theorem 7.1. Lei us suppose first that the points z; are inside
of the hyperbolic space.
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The function (g, ..., z,) defines an n-density ¢ on #H,. Namely, to define
the integral ¢ over a simplex M one has to subdivide it on small simplices
and take the sum of the functions ¢ corresponding to their vertices. When the
simplices are getting smaller the limit exists and i< by definition f,, @. Here
we used the properties 1) - 3). More precisely 1) and 2) implies that ¢ defines
an additive volume form in H,, and 3) (together with 1)) guarantee that this
volume form is o-additive.

The skewsymmetry property implies that & is actually a differential n-form.
It is invariant under the action of the group SO(n,1). Therefore it is propor-
tional to the standard volume form.

Now suppose that vertices x; can be on the absolute. Then it is easy to see
that the corresponding integral (37) is still convergent. Moreover, if the vertices
of the geodesic simplex are in generic position then it is a continuous function of
the vertices. This implies that the volume of an 1deal geodesic simplex is finite
(which is, of course, an elementary fact) and coincides with the corresponding
integral (83).

A completely similar results are valid for the complex n-dimensional hy-
perbolic space Hpc == {|z1] + ... + |zn|* < 1}, z € C, and the quaternionic
hyperbolic space Hay := {|g1]| + .- + gn|* < 1} (g are quaternions). Indeed,
a point z in each of these spaces defines an invariant volume form pu, on the
boundary.

2. Calculation of volume of a three dimensional ideal geocdesic
simplex. If n = 3 the absolute can be identified with CP!. So

fou(z)=2z—a

and for the ideal simplex with vertices at the points cc,0,1,a on the absolute
we get

vol({{oc,0,1,8)) = 303-/ (log |z|ldlog |1 -z —log|1—z|dlog|z|)Adlog ]z —a| =
Gpl

3cs - f (lbg |z|d arg(l - 2) — log |1 — z|darg(z)) A darg(z — a)
Pl
because dlog(z — 1) A dlog(z -- ¢} = 0. Here log f = log|f| + i arg(f). Using
dlo{z) = log|zldarg(l — z) — log|i — z|d arg(z)

we rewrite the last integral as
3¢5 - / dly(z} Adarg(z — a) (84)
Pt

Computing the differential in the sense of distributions we get

d(La(z)darg(z — a)) = 27 - L2(2)8(z — a)dxdy + dL2(2) A darg(z — a)
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So the integral of the right hand side over CP! is zero, i.e. the integral (84) is
equal to —6mey - La(a). (3 = ~1/67).

3. Volumes of geodesic simplices in SL,(T)/SU{n). Recall the invari-
ant differential (2rn — 1)-form wp, in H,.

Question. Is it true that

volp, ({{zo, ..., Tap—1)) = constant x ¥, (xg, ..., Tan—1) (85)

One can show following the lines of 5. 7.1 that the positive answer to this
question is equivalent to the following statement: if zp, 21,22 are on the same
geodesic then Y, (zg,...,Zon—1) = 0.

4. Another approach to Grassmannian polylogarithms. The fol-
lowing construction was suggested to the auth.. during the Fall of 1989, in-
dependently, by M. Kontsevich and by J. Neko.r. A hyperplane A in an
n-dimensional complex vector space V' determines an arrow in the space of
degenerate non negative definite hermitian forms in V consisting of the forms
with the kernel h. Let hi,..., ko, be hyperplanes in V. Let C(hq,..., ho,) be
projectivization of the convex hull of the arrays corresponding to these hyper-
planes. It is a simplex in H,,. The idea is to integrate the form wp_ over this
simplex. If n = 2 this construction provides an ideal geodesic simplex in the
Caley realization of the hyperbolic space, given by the interior part of a ball
in RP®. However the convergence of this integral for n > 2 has not been es-
tablished yet, although it does not seem to be a very difficult problem. If the
integral is convergent, we get a function on configurations of 2n hyperplanes in
CP™~L. Tt would be very interesting to investigate chis construction further and
compare it with our construction of the Grassmannian polylogarithms.

5. A (2n — 1)-cocycle of GL{C). Consider the infinite dimensional vec-
tor space with a given basis e;,...,em,.... The group GL{C) is the group of
automorphisms of this space moving only finite number of basis vectors.

Let us describe the restriction of the cocycle to the subgroup GL,+n(C)
acting on the subspace generated by first n + m vectors. Take 2n elements
g1, ..-gap of this group. Consider the corresponding 2n m + 1-tuples of vectors:

gl(en"-'aen+m)s sy g2ﬂ(€ wy - ’en+m)

The set of all (m + 1)-tuples of vectors form a vector space. Let Ag,_; be the
standard simplex 232:1 A; = 1. Consider the set C/* C As,_; consisting of
{/\1, very /\2,1) that

n

Z/\i . gi(em ---;en+m)

=1

is an (m + 1)-tuples of vectors nof in generic position. It is a cycle of codimen-
sion n. The Chow polylogarithm function evaluated on it provides the desired
{measurable) cocycle.
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The cocycle property follows from the functional equation for the Chow
polylogarithm and the following general fact. The set of those (A1, ..., Azns1)
that 3~ X;-gi(en, ..., €a4m) is an (m+ 1)-tuples of vertors net in generic position
is also of cadimension n.

The construction is consistent with the restriction just by definition.

Problem. Show that the cohomology class of this cocycle is nontrivial and
proportional to the Borel class.
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