Abstract
| We explore the parameter space of the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, the Higgs mixing parameter mu and the pseudoscalar Higgs mass m_A, which are calculated in the CMSSM, are free in the NUHM model. We incorporate accelerator and dark matter constraints in determining allowed regions of the (mu, m_A), (mu, M_2) and (m_{1/2}, m_0) planes for selected choices of the other NUHM parameters. In the examples studied, we find that the LSP mass cannot be reduced far below its limit in the CMSSM, whereas m_A may be as small as allowed by LEP for large tan \beta. We present in Appendices details of the calculations of neutralino-slepton, chargino-slepton and neutralino-sneutrino coannihilation needed in our exploration of the NUHM. |