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For a diatomic molecule, when the Dunham coe�cients Y20 is negative, all fea-

tures of potential-energy curve can be reproduced. When Y20 is positive, it is not

possible to reproduce all features of the potential-energy curve. However, turning

points for some lower vibrational states can be obtained.

Classical left- and right-hand turning points, rmin and rmax, respectively, of

Rydberg-Klein-Rees (RKR) potential-energy curve, for a diatomic molecule, are

given by (Rydberg, 1931, 1933; Klein, 1932; Rees, 1947)

rmin = (f=g + f2)1=2 � f; rmax = (f=g + f2)1=2 + f;

where the Klein integrals f and g are de�ned as (Chandra et al., 1996)

f(cm) =
� h

8�2�c

�1=2 Z t

��

[U � E(v; J)]�1=2ds (1)

and

g(cm�1) =
�8�2�c

h

�1=2 Z t

��

@E

@[J(J + 1)]
[U � E(v; J)]�1=2ds (2)

where

s = v +
1

2
; t = v0 +

1

2
;

h the Planck constant, c the speed of light in vacuum, � the reduced mass of the

molecule, v the vibrational quantum number, and v0 the vibrational quantum num-

ber of the level (with the rotational quantum number J = 0) for which the turning

points are to be calculated. The energy of the vib-rotational levels, in a diatomic

molecule, can be expressed as
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Yij
�
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1

2

�ih
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ij
: (3)

Here, Yij are referred to Dunham coe�cients. The Dunham coe�cient Y10 corre-

sponds to the vibrational frequency of the molecule, and the Dunham coe�cient

Y01 is inversely proportional to the moment of inertia of the molecule about an axis

perpendicular to the axis of the molecule and passing through the centre-of-mass of

the molecule. Obviously, the Dunham coe�cients Y10 and Y01 can never be negative.

The energy of the level with the vibrational quantum number v0, and the rotational

quantum number J = 0, is given by

U =
X
i=0

Yi0t
i: (4)

In a large number of molecules, the energy U = 0 when v0 = �1=2 (i.e., t = 0).

However, in some molecules, U = Y00 when v0 = �1=2. (The value of Y00 may a�ect

the results, but does not change the general behavior of the results.) Note that the

lower limit of the integrals in the eqs. (1) and (2), following Kaiser (1970), has been

taken as ��, where � is the root of the equation

X
i=0

Yi0(��)
i = 0: (5)

For a large number of molecules, the value of the Dunham coe�cient Y00 is zero,

and then the lower limit of the integrals in the eqs. (1) and (2) becomes the same

(i.e., zero) as used earlier (Klein, 1932; Rees, 1947).

With the advent of the high speed computers, the turning points of the poten-

tial energy curve can be obtained to great accuracy. But one cannot and should not

forget about the basic requirements, which can only be derived analytically. Lab-

oratory spectra of diatomic molecules are generally �tted in terms of the Dunham

coe�cients, which are later on used in the calculation of the potential energy curve.

While �tting the laboratory spectrum, one way get any sign (positive or negative)

for the Dunham coe�cients Y20 and Y11. The purpose of the present investigation

is to discuss analytically the repercussions of the signs of Y20 and Y11.

The f and g can be expressed as

f =
1

2
(rmax � rmin); g =

1

2
(

1

rmin
�

1

rmax
):

Hence, the requirement for the shape of the potential-energy curve is that both f

and g, and their gradients, @f=@U and @g=@U , must be positive.

Before the development of the numerical techniques around 1963 analytical ex-

pressions for f and g (Rees, 1947) were in use for a long time to get rid of the
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singularity at the upper limit of the integrals in eqs. (1) and (2). For a limited num-

ber of Dunham coe�cients, Y00, Y10, Y20, Y01, and Y11, the f and g can be obtained

analytically. The expressions for f and g are found to depend on the sign of Y20.

When Y20 has a negative value, the expressions for f and g are given by

f(cm) =
� h

8�2�c(�Y20)

�1=2
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#
(6)

and
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When the Y20 has a positive value, the expressions for f and g are given by
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(9)

However, the expressions for the gradients of f and g are found not to depend on

the sign of Y20, and are given by

@f
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� h
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The gradients of the turning points are given by
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For negative values of the Y20, the Y11 may be positive as well as negative. Here,

the gradients, @f=@U , @g=@U , and @rmax=@U are always positive, and the gradient

@rmin=@U is always negative, up to the dissociation limit, when f (the half-width

of the potential-energy curve) becomes in�nite at the energy

U = Y00 +
Y 2
10

4(�Y20)
; (14)

which corresponds to the vibrational quantum number

v0m =
Y10 + Y20
2(�Y20)

: (15)

This value of the energy U , for the quadratic case, may be taken equal to the

dissociation energy of the molecule. For example, by using the Dunham coe�cients

for CO given by Farrenq et al. (1991), the value of the dissociation energy comes

out to be 88578 cm�1, which is within 2.3 % of the real value, 90674 cm�1. In

order to have a large value of v0m, the value of (-Y20) should be much smaller than

that of Y10. For CO, here, the value of v
0

m is 81. It shows that the turning points,

corresponding to the negative values of the Y20, satisfy all the requirements for the

shape of the potential-energy curve. Hence, all the features of the potential-energy

curve can be reproduced when Y20 is negative.

For positive values of the Y20, both @f=@U and @g=@U are always positive when

Y11 is positive, but when Y11 is negative, @g=@U becomes negative for the higher

levels. Further, (i) when the value of Y11 is negative, the value of rmin starts to

increase after some vibrational quantum number, (ii) when the value of Y11 is posi-

tive, the value of rimax starts to decrease after some vibrational quantum number.

Moreover, the value of f , corresponding to the positive value of Y20, is always �nite

(never becomes in�nite) with the largest value

f(cm) =
� h

8�2�cY20

�1=2�
2
: (16)

In order to show these e�ects explicitly, let us consider the Dunham coe�cients

for the A1�+ state of 7LiH molecule, Y00 = 7.26 cm�1, Y10 = 236.4717 cm�1, Y20 =

26.8514 cm�1, Y01 = 2.8418 cm�1, and Y11 = 0.025116 cm�1. The calculated values

of the the turning points are given in the columns 3 and 4 of Table 1. Obviously,

after v = 27, the value of rmax starts to decrease. When we changed the sign of

Y11 (i.e., we took Y11 = - 0.025116 cm�1), the values of the turning points are given

in the columns 5 and 6 of Table 1. Now the value of rmin starts to increase after v

= 13. Obviously, when Y20 is positive, it is not possible to get all turning points of

the potential-energy curve up to the dissociation limit.
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Finally, it can be concluded that when the Dunham coe�cient Y20 is negative, all

the features of the potential-energy curve can be obtained. But when Y20 is positive,

it is not possible to reproduce all the features of the potential-energy curve. However,

the turning points for some lower vibrational states can be obtained. Thus, while

�tting the observed spectrum, one should take care that the �tting is done in such

a fashion that proper sign of Y20 is obtained. Otherwise it would lead to a situation

where it would not be possible to obtain a proper potential energy curve for the

molecule.
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Table 1: Values of the turning points when Y20 is positive

Y11 = 0.025116 Y11 = - 0.025116

v0 U(cm�1) rmin(�A) rmax(�A) rmin(�A) rmax(�A)

0 132.21 2.224598 3.017344 2.231891 3.024638
1 422.38 2.035308 3.278936 2.057169 3.300797
2 766.26 1.935193 3.428936 1.971198 3.464941
3 1163.84 1.868788 3.530786 1.918671 3.580669
4 1615.12 1.820051 3.605113 1.883635 3.668697
5 2120.11 1.781999 3.661729 1.859161 3.738891
6 2678.80 1.750990 3.706121 1.841645 3.796775
7 3291.19 1.724906 3.741664 1.828991 3.845749
8 3957.28 1.702416 3.770573 1.819888 3.888045
9 4677.08 1.682642 3.794367 1.813472 3.925197
10 5450.58 1.664976 3.814134 1.809143 3.958301
11 6277.78 1.648982 3.830669 1.806476 3.988163
12 7158.69 1.634343 3.844571 1.805159 4.015388
13 8093.30 1.620816 3.856301 1.804956 4.040442
14 9081.61 1.608218 3.866218 1.805688 4.063689
15 10123.62 1.596404 3.874607 1.807216 4.085419
16 11219.34 1.585259 3.881697 1.809427 4.105865
17 12368.76 1.574693 3.887674 1.812235 4.125215
18 13571.88 1.564629 3.892690 1.815567 4.143628
19 14828.70 1.555007 3.896874 1.819364 4.161232
20 16139.23 1.545775 3.900331 1.823580 4.178136
21 17503.46 1.536890 3.903150 1.828173 4.194433
22 18921.39 1.528316 3.905407 1.833109 4.210201
23 20393.03 1.520022 3.907168 1.838361 4.225507
24 21918.37 1.511983 3.908488 1.843906 4.240410
25 23497.41 1.504175 3.909415 1.849721 4.254961
26 25130.16 1.496578 3.909991 1.855791 4.269204
27 26816.60 1.489175 3.910252 1.862100 4.283176
28 28556.75 1.481952 3.910231 1.868635 4.296914
29 30350.61 1.474895 3.909955 1.875387 4.310447
30 32198.16 1.467992 3.909450 1.882344 4.323803
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