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We define a simple scale-dependent effective action and derive the exact RG-flow equation it obeys.
We then use the Vilkovisky-De Witt geometrical approach to improve the previous definition and
obtain a reparametrization-invariant RG-flow equation. When extended to gauge theories, our
procedure provides a manifestly gauge-invariant, exact RG-flow equation.
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The idea of renormalization, originally introduced
to remove infinities from perturbative calculations, has
evolved into a powerful tool that helps understanding
the global behaviour of quantum and statistical systems
under changes of the observation scale [1,2].

The search for new, non-perturbative methods to han-
dle problems out of the reach of perturbation theory has
prompted in recent years a renewed and growing inter-
est [3–7] in the “old” subject [1,8] of “exact” renormal-
ization group (RG) equations. One typically defines a
scale-dependent effective action, Γk, which interpolates
between the classical (bare) action S at k = Λ (the UV
cutoff) and the effective action Γ at k = 0. The free term
is modified by the introduction of a suitable (but largely
arbitrary) cutoff function that effectively kills the contri-
bution to the functional integral from momenta below the
running scale k. The implementation of such a procedure
for gauge theories poses however a major problem: the
presence of the cutoff function prevents the possibility of
defining a gauge invariant Γk (see [9] for earlier attempts
to circumvent this problem).

In this letter we present a new definition of Γk and
derive the exact RG-flow equation it obeys by follow-
ing the spirit of Ref. [1,8], i.e. with the help of direct
integration over successive shells of degrees of freedom.
For the pourposes of the present work, the main advan-
tage of our procedure is that it can be extended in a
very natural way through the geometrical approach pio-
neered by Vilkovisky and De Witt [10,11] (see also [12])
in order to define a gauge-invariant, more generally a
reparametrization-invariant (see below), scale-dependent
effective action.

To illustrate our procedure, and to set up the tools
for our following analysis, we begin by defining Γk for
a simple scalar field theory. If Λ is the UV cutoff, we
introduce the notation φΛ

0 for the field, to indicate that
it contains “modes” in the range [0, Λ], and write the
classical (bare) action as S[φΛ

0 ]. For any given scale k, we
divide φΛ

0 into the “low-frequency” and “high-frequency”
components, φk

0 and φΛ
k respectively, where φk

0 contains
the modes φp with 0 < p < k, and φΛ

k those in the range
[k, Λ]. Even though for the scalar theory it is always

possible to define the RG flow in Fourier space, it is well
known that the notion of RG flow is much more general.
Neither k nor Λ must necessarily have the meaning of
momenta (this observation is important for the following
where we have to implement a gauge invariant flow for
gauge theories).

Let us now introduce the notion of “shell”, described
by δk, denote the fields φk−δk

0 , φk
k−δk and φΛ

k by φ
<
, φ

S

and φ
>
, respectively, and use de Witt’s [11] condensed

notation whereby an index such as i denotes all indices
(Fourier, Lorentz, spinor, space-time coordinate x, . . . ).
Repeated indices will denote summation over internal in-
dices as well as integration over space-time (or momenta).
The components of φ

S
and φ

>
will be indicated by φs

and φa (same for φ̄), and differentiation w.r.t. any φi

(φ̄i) by a comma followed by the index i. Later on we
will also use A, B, . . . to denote fields with components
in the slightly larger interval [k − δk, Λ].

The effective action Γ[φ̄], a functional of the “classical”
(or “mean”) fields φ̄, can be defined as the solution of the
functional-integral equation:

e−Γ[φ̄] =
∫

[Dφ]e−S[φ]+(φi−φ̄i)Γ[φ̄],i . (1)

The scale-dependent generalization of (1) that we pro-
pose to use, and later generalize, is simply obtained from
(1) after inserting under the integral a product of δ-
functions, Πk

0δ(φp − φ̄p), i.e.:

e−Γk[φ̄] =
∫

[Dφ
>
]e−S[φ̄< ,φ> ]+(φa−φ̄a)Γk[φ̄],a . (2)

This very natural definition of a scale-dependent effec-
tive action clearly interpolates between the classical and
the quantum action, ΓΛ[φ̄] = S[φ̄] and Γ0[φ̄] = Γ[φ̄], and
can be obtained by a partial Legendre transform [13] of
a functional Wk[φ̄k

0 , JΛ
k ] in which the low-frequency fields

φ̄k
0 are kept as parameters, while the high frequency de-

grees of freedom are Legendre-transformed.
We now derive some identities that will be useful in

the following. By differentiating Γk in Eq.(2) w.r.t. φ̄a,
we find (for a non-singular 2nd-derivative matrix of Γk)

1



< φa >= φ̄a , (3)

where the average is computed with the weight in Eq.
(2). Thus, as we expect, φ̄a is the mean value of φa.
Differentiating Eq.(3) w.r.t. φ̄s we get:

< S(φ̄
<
, φ̄

S
, φ

>
),s(φa − φ̄a) >

= Γk, sb < (φb − φ̄b)(φa − φ̄a) >= Γk, sb(Γk,ba)−1 , (4)

where −(Γk,ba)−1 is the propagator for modes above the
shell. A second useful relation comes from differentiating
Γk w.r.t. φ̄s:

< S(φ̄< , φ̄S , φ>),s >= Γk, s . (5)

Finally, differentiating Γk once more w.r.t. φ̄s, and mak-
ing use of Eq.(4), we obtain the relation:

< S,ss′ > − < S,sS,s′ > + < S,s >< S,s′ >

= Γk, ss′ − Γk, sa(Γk,ab)−1Γk, bs′ . (6)

Let us consider now the effective action Γk at a slightly
lower scale k − δk. From Eq.(2) we have :

e−Γk−δk[φ̄Λ
0 ] =

∫
[Dφ

S
]e(φs−φ̄s)Γk−δk, seY , (7)

where

eY =
∫

[Dφ> ]e−S[φ̄< ,φ
S

,φ> ]+(φa−φ̄a)·Γk−δk,a . (8)

We are interested in computing the difference between
Γk and Γk−δk to O(δk) and thus start expanding to first
order Γk−δk,a around Γk,a in Eq.(7). At the same time
we expand S[φ̄< , φS , φ> ] around φS = φ̄S . Denoting the
fluctuations (φs− φ̄s) and (φa− φ̄a) by ηs and ηa respec-
tively, we get :

eY = e−Γk < e−[S,sηs+ 1
2S,ss′η

sηs′+...+δk
∂Γk,a

∂k ηa] > , (9)

where the (omitted) arguments of S,s and S,ss′ are
[φ̄

<
, φ̄

S
, φ

>
].

Following the classic arguments of [8], we know that,
in order to collect all terms up to O(δk), we only need
to keep terms up to O((ηs)2), and thus we neglect the
ellipses. The r.h.s. of Eq.(9) can be now computed using
the identity〈

e−f
〉

= e−<f>+ 1
2 (<f2>−<f>2)+O(f3). (10)

Thanks to (3), the last term in (9) can only contribute
O((δk)2), so we also neglect this term. Then, with the
help of the relations (5) and (6), we immediately compute
the r.h.s. of Eq.(9) and find that (7) becomes :

e−Γk−δk = e−Γk

∫
[Dη

S
]e∆Γk, sηs− 1

2Kss′η
sηs′

, (11)

where ∆Γk, s = Γk−δk, s − Γk, s and Kss′ is nothing but
the r.h.s. of Eq.(6), i.e. :

Kss′ = Γk, ss′ − Γk, sa(Γk,ab)−1Γk, bs′ . (12)

As ∆Γk, s is O(δk), it would contribute an O((δk)2)
term after performing the gaussian integral. Neglecting
again this higher order term, we finally find that the dif-
ference between Γk−δk and Γk (evaluated at the same
values of their arguments) consists, to O(δk), of just a
determinant, i.e.

Γk−δk = Γk +
1
2
Tr ln Kss′ . (13)

Using standard properties of determinants, Eq. (13) can
be rewritten in a form that will be more useful for our
subsequent generalizations, i.e.

Γk−δk − Γk =
1
2
ln
(

detΓk,AB

detΓk,ab

)
, (14)

where we recall that the indices A, B span the region
[k − δk, Λ] (see [14] for a different rederivation of (14),
equation that appeared in a previous version of this pa-
per).

Let us now discuss how one can extend our results to
the general case, including gauge theories. It was first
noted by Vilkovisky [10] that the usual definition of the
effective action, Eq.(1), is in general not invariant under
a reparametrization of the classical fields. Obviously this
holds true also for our definition (2) of Γk at any scale k.
He also pointed out that, in the case of gauge theories, the
gauge dependence of the off-shell effective action is just
a manifestation of such a reparametrization dependence.

The origin of the problem can be seen easily from the
definition of the effective action (1). Let us think of (field)
configuration space as a manifold M endowed with a
metric gij and assume that Γ, like S is a scalar field
on M. While the functional integration measure can be
made reparametrization invariant through the introduc-
tion of a

√
g, the second term in the exponential has bad

transformation properties since the gradient is a covari-
ant vector while the “coordinate difference” (φ − φ̄) is a
contravariant vector only for very trivial (flat) spaces. In
the case of gauge theories there is an additional compli-
cation coming from the fact that the physical space is the
quotient space M/G (G is the gauge group) rather than
M.

Vilkovisky and De Witt have shown that a meaning-
ful definition of the effective action can be given also in
the general (curved) case in terms of geodesic normal
fields, σi[ϕ∗, φ], based at a point ϕ∗ in M [10,11]. The
σi[ϕ∗, φ] are the components of a vector tangent at ϕ∗
to the geodesic from ϕ∗ to φ. Its length is the distance
between the two points along the geodesic itself. Under
coordinate transformations σi[ϕ∗, φ] transforms as a vec-
tor at ϕ∗ and as a scalar at φ. A useful property of the σ
fields is that any scalar function A[φ] can be expanded in
a covariant Taylor series [10,11] (the semicolon denotes
covariant derivatives w.r.t. φ) :
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A[φ] ≡ A[ϕ∗, σ] =
∞∑

n=0

1
n!

A ; a1··· an [ϕ∗]σa1 · · ·σan . (15)

As emphasized before, the definitions of the upper space,
of the shell, and of the lower space are completely gen-
eral and can be obtained with the help of any mode de-
composition of the fields. From now on we denote by
λ these generic modes. As before we introduce the no-
tation σi = (σ

<
, σ

S
, σ

>
). The submanifold spanned by

σ> we denote by M> and the one spanned by (σS , σ>)
by M≥ . The metric in σ coordinates is related to the
original metric by

ĝ
lm

(ϕ∗, σ) =
∂φi

∂σl

∂φj

∂σm
g

ij
(φ) . (16)

The induced metric on M
>

(M≥) is just the restriction
of ĝ

lm
to the appropriate set of indices, ĝ

ab
(ĝ

AB
).

Given the arbitrary coordinates (fields) φi, the base
point ϕ∗, and the gaussian normal coordinates σi in M,
we can now define, following [11], the scale (i.e. λ)-
dependent effective action, Γ̂λ, as :

e−Γ̂λ[ϕ∗,σ̄] =
∫

[Dσ
>
]
√

ĝ e−S+(σa−σ̄a)Γ̂λ[ϕ∗,σ̄],a , (17)

where ĝ = det ĝ
ab

. S is the classical action expanded as
in (15), where, as in the analogous Eq.(2), the σ

<
are

replaced by the mean values σ̄
<

: S = S[ϕ∗; σ̄<
, σ

S
, σ

>
].

Since ϕ∗ is kept fixed, the steps that lead from Eq.(2) to
the RG equation (14) can be repeated (with slight mod-
ifications due to the presence of the non-trivial metric)
and we get:

Γ̂
λ−δλ

[ϕ∗, σ̄] = Γ̂
λ
[ϕ∗, σ̄] +

1
2
ln

(
detΓ̂λ,A

B

detΓ̂λ,a
b

)
, (18)

where the indices are raised with the help of the corre-
sponding induced metrics on each submanifold∗.

We now wish to rewrite Eq.(18) in general coordinates.
Define:

Γ
λ
[ϕ∗, φ̄] = Γ̂

λ
[ϕ∗, σ(ϕ∗, φ̄)] = Γ̂

λ
[ϕ∗, σ̄] . (19)

It is rather straightforward, though tedious, to connect
the partial derivatives of Γ̂ with respect to the σ̄’s to the
partial covariant derivatives of Γ with respect to the φ̄’s
(both taken, of course, at fixed ϕ∗). Consider first these
relations at the level of the full effective actions Γ̂ and Γ.

For the first derivatives the result is simply:

Γ,i = Dk
i Γ̂,k , (20)

∗To be precise in Eq. (18) the determinants of the metrics
appear under an expectation value sign rather than being
computed at the expectation value of the field. We expect
the difference to be insignificant.

where, following [11], we have introduced:

Dk
i =

∂σ̄k

∂φ̄i
. (21)

The bi-vector Dk
i has the property that, once contracted

with a covariant vector at ϕ∗, converts it into a covariant
vector at φ̄, as exemplified indeed in (20).

The relation connecting second derivatives can be put
in the form:

Γ̂,kl = (D−1)i
k(D−1)j

l Γ̄ij , (22)

where

Γ̄ij ≡ Γ;ij − σl
;ij(D

−1)k
l Γ,k (23)

is a second-rank tensor at φ̄. The quantity σl
;ij has a

covariant expansion [11] in the distance between ϕ∗ and
φ̄.

The above formulae can be easily generalized to the
case in which the derivatives are restricted to lie on the
M

>
(orM≥) manifold. Indeed the derivatives of Γ̂λ with

respect to σ̄a will be related to the derivatives of Γλ with
respect to generic coordinates ξa on M

>
by exactly the

same formulae (20), (22) where now:

Da
b =

∂σ̄a

∂ξb
. (24)

Using Eq. (16) we obtain our final result:

Γ
λ−δλ

[ϕ∗, φ̄] = Γ
λ
[ϕ∗, φ̄] +

1
2
ln
(

detΓ̄λ A
B

detΓ̄λ a
b

)
, (25)

where indices and covariant derivatives are all now de-
fined in terms of the induced metrics (16) on the relevant
submanifold.

Let us see now how the previous steps can be repeated
in the case of a gauge theory. As it was shown by Vilko-
visky and DeWitt [10,11], we first need to reduce the
gauge theory to a “non-gauge” one. Let us indicate as
before by M the field space, by φi the gauge fields, with
gij the associated metric, by σm a complete set of gauge-
invariant coordinates, and by Ri

α the generators of the
gauge transformations:

δφi = Ri
αdεα , (26)

where εα are coordinates on the gauge orbits. The metric
decomposes into the block diagonal form [15]

ds2 = hmndσmdσn + γαβdεαdεβ , γαβ = Ri
αg

ij
Rj

β , (27)

where

hmn =
∂φi

∂σm

∂φj

∂σn
Πij , (28)

and we defined the projector on physical orbit space
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Πj
i = δj

i − gikRk
αγαβRj

β . (29)

Although the σm were so far arbitrary, we used an im-
portant result of [10] to take them as gaussian normal
coordinates both in the induced metric hmn and in the
full space (provided geodesics are defined, in the latter,
with respect to Vilkovisky’s connection [10]).

Instead of using εα to parametrize points on orbits one
can start with the “gauge fixing” coordinates χα and
write the definition of the effective action a la Faddeev-
Popov:

e−Γ[ϕ∗,φ̄] =
∫

[Dφi]
√

gδ(χα) det
(

∂χα

∂εβ

)
·

e−S(φ)+(σm−σ̄m)D−1
m

nΓ,n . (30)

Changing integration variables to σm, εα we get

e−Γ̂[ϕ∗,σ̄] =
∫

[Dσm][Dεα]
√

h
√

γδ(χα) det
(

∂χα

∂εβ

)
·

e−S(φ∗,σ)+(σm−σ̄m)Γ̂,m

=
∫

[Dσm]
√

he−S̃(φ∗,σ)+(σm−σ̄m)Γ̂,m , (31)

where

S̃ = S − 1
2
ln det(γ) . (32)

With the gauge effective action written in this form we
can directly apply the procedure followed from (17) to
(18) and obtain, as before,

Γ̂
λ−δλ

[ϕ∗, σ̄] = Γ̂
λ
[ϕ∗, σ̄] +

1
2
ln

(
det Γ̂λ,A

B

det Γ̂λ,a b

)
. (33)

We can now repeat the steps (19)-(25) and, following
[10–12], write (33) in arbitrary coordinates φ̄ as

Γ
λ−δλ

[ϕ∗, φ̄] = Γ
λ
[ϕ∗, φ̄] +

1
2
ln

[
det(P≥ΠΓ̄ΠP≥)
det(P

>
ΠΓ̄ΠP

>
)

]
, (34)

where Γ̄ is defined as in (23) but in terms of the original
connection, Π stands for the projector on the physical
space (29), and P

>
(P≥) is a projector on M

>
(M≥).

Eq.(34) is our desired gauge-invariant RG-flow equa-
tion for Γλ[ϕ∗, φ̄]. We believe, instead, that no such a
closed RG-equation holds for the original Vilkovisky-De
Witt effective action Γ

V DW
[φ̄] ≡ Γ[φ̄, φ̄]. This is proba-

bly related to the fact that, unlike Γ[ϕ∗, φ̄], ΓV DW [φ̄] does
not generate 1PI vertex functions [11,15].

As a first application of (34) we can compute the one-
loop effective action at ϕ∗ = φ̄ to compare it with [12].
Within this approximation we have to set Γ̄ij = S;ij in-
side the brackets in (34) and then integrate the evolution
from λ = Λ to λ = 0. Using ΓΛ = S̃, together with (32),
we get:

Γ0 = S +
1
2
ln

det(Πk
i Sl

;kΠj
l )

det γ
, (35)

in agreement with the one-loop result of [12].
Beyond one-loop, our evolution equations should be

useful in a variety of problems pertaining to non-abelian
gauge theories and to quantum gravity. In practice, one
will necessarily have to resort to some form of truncation
of Γk, so that our exact equations become approximate
RG-flow equations for a finite set of gauge-invariant low-
energy parameters. We plan to come back soon to these
applications elsewhere.
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