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Abstract

In this note, we will show that no nonuniform lattice of SO(n; 1)(n � 4) is the fundamental

group of a quasi-compact K�ahler manifold.
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1 Introduction and statement of the result

It is well known that a general �nitely presented group is not necessarily the fundamental group

of a compact K�ahler manifold [15]. It is very interesting to know if an abstract group can or

cannot be the fundamental group of a compact K�ahler or quasi-compact K�ahler manifold (by a

quasi-compact K�ahler manifold we mean a manifold obtained from a compact K�ahler manifold

by deleting a normal crossing divisor). In the paper [3], Carlson and Toledo showed that no

cocompact lattice in SO(n; 1)(n � 3) is the fundamental group of a compact K�ahler manifold.

In this note, we will consider the nonuniform lattices' case in SO(n; 1)(n � 4). Especially, we

will show the following:

Theorem 1 Let � be a nonuniform lattice of SO(n; 1)(n � 4), i.e. � n SO(n; 1)=SO(n) is

noncompact and of �nite volume with respect to the standard symmetric Riemannian metric.

Let M be any compact K�ahler manifold and let D be any normal crossing divisor of M . Denote

M nD by M . Then �, as an abstract group, is not isomorphic to �1(M).

Remark. If M is a quasi-projective variety, then by Hironaka's theorem [5], topologically, M

is just a smooth projective variety minus a normal crossing divisor. So, one has that a nonuni-

form lattice in SO(n; 1)(n � 4) cannot be the fundamental group of any quasi-projective variety.

The idea of the proof is to use in�nite energy harmonic maps theory due to Jost and Zuo

[8, 9]. So, this note can also be considered as an application of Jost-Zuo's theory on the existence

of in�nite energy harmonic maps. Assuming that � is isomorphic to �1(M), by [8, 9], one gets a

pluriharmonic map u from M (with an appropriate complete K�ahler metric with �nite volume

and bounded curvature, see the next section for details) to �nSO(n; 1)=SO(n) (with the standard
symmetric Riemannian metric), which is possibly of in�nite energy and induces an isomorphism

from �1(M) to �. Then, a deep analysis [6, 7, 9, 11, 12] of this map shows that there exists a

holomorphic foliation on M . So, one obtains that the map u factors by a holomorphic map from

M to a Riemann surface S. This leads to a contradiction.

2 On Jost-Zuo's harmonic maps of in�nte energy

In this section, we recall the existence and some basic facts on Jost-Zuo's in�nite energy harmonic

maps.

LetM be a compact K�ahler manifold with a �xed K�ahler metric !0, D be a �xed divisor with

(at worst) normal crossing condition and D =
Sp
i=1Di. Here, Di are irreducible components

of D. One may also assume that each irreducible component Di is free from self intersections.

Thus, at each intersction point, precisely two components of D meet. Denote M nD by M .

Let �i (i = 1; 2; � � � ; p) be a de�ning section of Di in O(M; [Di]), which satis�es j�ij � 1 for

a certain Hermitian metric of [Di] and de�nes a holomorphic coordinate system in each small
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disk transversal to Di. So, one can get a �bration of a small neighborhood, say j�ij � Æ � 1, of

Di by small holomophic disks which meet Di transversally. Similarly, for the boundary of such

a small neighborhood, denoted by �Æ
i , one also gets a �bration by circles. The intersection of

two such boundaries is �bered by tori.

Corresponding to the above de�ning sections �i, one can de�ne a complete K�ahler metric on

M as follows,

g := �
p�1
2

pX

i=1

@@(�(j�ij)logjlogj�ij2j) + c!0jM ;

where � is a suitable C1 cut-o� function on [0;1), so that �(s) is identical to one on [0; �)

and to zero on [2�;1), for suÆciently small � � 0 and c is taken suÆciently large, so that g is

positive de�nite. Then g is a K�ahler metric. One can show that (M; g) is complete and has �nite

volume [2]. In fact, when restricted to small holomorphic disks transversal to D, this metric

looks like the Poincar�e metric on the punctured disk (D�; z)

�
p�1
2

@@log(�logjzj2) =
p�1
2

1

jzj2(logjzj2)2dz ^ dz:

In the sequel, unless stated otherwise, we always assume that M is endowed with this complete

metric g with �nite volume.

Let N be a globally symmetric space of noncompact type, its isometry group denoted by

I(N). Given a reduced representation (for its de�nition, see [8, 9])

� : �1(M)! I(N);

one wants to get a �-equivariant harmonic map from the universal covering of M to N . The

diÆculty arises since the representation � may map some small loops around D to some hy-

perbolic or quasi-hyperbolic elements (for their de�nitions, also see [9]) in I(N). This is why a

�-equivariant harmonic map, if it exists, may have in�nite energy (here, we use the above metric

g to compute the energy).

Now, we can state Jost-Zuo's theorem on the existence of a �-equivariant pluriharmonic map,

which may be of in�nite energy, as follows:

Theorem 2 Let M , N , I(N) and � as above. Then there exists a �-equivariant pluriharmonic

map u from the universal covering M 0 of M with the above metric g to N with the standard

symmetric metric.

For simplicity of notation, we shall consider u in the sequel as a map from M to Y :=

N=�(�1(M)), although Y , in general, may be singular (but in which we want to apply it, Y is

smooth ). Let w 2 Di be a regular point of D. Near w, one can choose a coordinate system

(z1; z2) on M such that z1 parametrizes small holomorphic discs, which meet Di transversally

near w, z2 parametrizes Di (of course, z
2 will have more than one component if the complex
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dimension of M is greater than 2. In the following, the index 2 will stand for all those z2-

directions together), and z1 = 0 on a small neighborhood of w in Di and z2(w) = 0. Then, one

has some derivative estimates of u (see p.481 of [9]):

j @u
@z1

(z1; z2)jg �
c

jz1j ; j @u
@z2

(z1; z2)jg � c;

where c is some positive constant. If w is a singular point of D, i.e.,a point at which two

irreducible components of D meet, similar estimates can be obtained. One may use � :=
Qp

i=1 �i

to replace the above coordinate component z1. Then, one can get that in the �-direction, the

derivative of u behaves like 1

j�j
, whereas in directions normal to �, it is bounded.

3 Some properties of the in�nite energy harmonic map

In this section, we shall show that the rank of the harmonic map u in the previous section has

a serious restriction if N = SO(n; 1)=SO(n). In the following, our exposition is slightly general,

which is not restricted to the case of SO(n; 1) only.

Let M be as in the previous section with the constructed K�ahler metric g, the corresponding

K�ahler form of which is denoted by

! =

p�1
2

mX

�;�=1

g
��
dz� ^ dz�

where m = dimCM and (z1; z2; � � � ; zm) is a local coordinate system of M . Let Y = �(�1(M)) n
G=K a locally symmetric space of noncompact type (it may be singular, but in the case where

we want to apply the result, it is smooth). Here, G is a semisimple Lie group, K is a maximal

compact subgroup of G (for standard references see [4]). Let g be the Lie algebra of G and t the

Lie algebra of K, then one has the Cartan decomposition g = t+ p such that [p; p] � t; [t; p] � p.

Denote by p
C the complexi�cation of p. One can then identify the complexi�cation of the tangent

space at any point of Y with p
C . This is unique up to the right action of K and the left action

of �(�1(M)). Since these actions preserve all relevant structures, we may regard df(T 1;0
x M) as

a subspace of pC , for any map f : M ! Y and any point x 2 M . Introduce a local coordinate

system (u1; u2; � � � ; un) on Y .

As in [13], we introduce a symmetric (2; 0)-tensor � related to the map u

�(X;Y ) =< @u(X); @u(Y ) >; X; Y 2 T 1;0
x M;

which can be locally written as
Pm

�;�=1 ���dz
�
dz� . Now, we compute its iterated divergence.

By the divergence formula, one has a (1; 0)-form �

�� = g����;

where (g�) represents the inverse of (g�) and "," denotes the covariant derivative. Then,

taking the divergence of � again, one obtains by a direct computation [13]

Æ� = (jD00@uj2 � g��gÆRiklmu
i
�u

k
u

l

�
um
Æ
)
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where Æ is the codi�erential, Riklm is the curvature tensor of Y , and D00@u is the (0, 1)-type

covariant derivative of @u, which is locally written as

(D00@u)i
��

= ui
��

+ �ijku
j
�u

k

�
:

Here �ijk are the Christo�el symbols of Y . Then, Jost-Zuo's argument (see p.482 of [9]) shows

that the two sides of the above formula are zero pointwise. It should be pointed out that the

estimates of the derivatives of u near the divisor D given in the previous section are essential in

this reasoning. In particular, using the curvature conditions of Y , one obtains that

D00@u = 0; g��gÆRiklmu
i
�u

k
u

l

�
um
Æ
= 0:

Note that the above �rst formula just represents the pluriharmonicity of u. Taking the orthog-

onal frame e1; e2; � � � ; em; e1; e2; � � � ; em on M , one has

g��gÆRiklmu
i
�u

k
u

l

�
um
Æ

= < R(@u(e�); @u(e�))@u(e�); @u(e�) >

= � < [@u(e�); @u(e�)]; [@u(e�); @u(e�)] >

So, [@u(e�); @u(e�)] = 0 for all � and �. Thus, one has that if one identi�es @u(T 1;0
x M) with

a subspace of p
C , then @u(T 1;0

x M) is an abelian subspace of p
C . Therefore, dimC@u(T

1;0
x M)

should not be greater than the rank of Y . If one applies this assertion to the present case, i.e.,

G = SO(n; 1), one obtains

Lemma 1 Let u : M ! Y be the pluriharmonic map as in the previous section. Assume

Y = �(�1(M)) n SO(n; 1)=SO(n). Then u has real rank at most 2.

4 The proof of Theorem 1

In this section, we will give the proof of Theorem 1. Let � be a nonuniform lattice of SO(n; 1)(n �
3); i:e:;� n SO(n; 1)=SO(n) is noncompact and of �nite volume with respect to the standard

symmetric Riemannian metric. Let M be any compact K�ahler manifold, D be any normal

crossing divisor ofM . DenoteM nD byM . Assume that as abstract groups, �1(M) is isomorphic

to �. We will derive a contradiction. Therefore, the proof of Theorem 1 is completed.

By Jost-Zuo's theorem, we get a pluriharmonic map u : (M; g) ! � n SO(n; 1)=SO(n) =
�nHn

R, which, by the above assumption, induces an isomorphism from �1(M) to �. The lemma

in the previous section tells us that this map is of real rank at most 2. So, one has two cases:

1) the real codimension of the �bres of u is generically equal to 1; 2) the real codimension

of the �bres of u is generically equal to 2. In the �rst case, one gets a map from M to S1,

which gives an isomorphism between the fundamental groups of M and S1. However, this

is impossible, since a lattice of SO(n; 1) can never be Z. So, the remaining is to show that
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another case is also impossible. We will adopt the argument of Jost-Yau [6, 7]. To this end,

we embed SO(n; 1)=SO(n) isometrically into some complex hyperbolic space Hn
C . From now

on, we assume that u is a pluriharmonic map into some complex hyperbolic space Hn
C and its

real rank is 2 generically. Introduce local complex coordinates (z1; z2; � � � ; zm)(m = dimCM)

on M and (u1; u2; � � � ; un) on � n Hn
C and denote the Christo�el symbols of � n Hn

C by ��� ,

�; �;  = 1; 2; � � � ; n. Similar to the previous section, as a consequence of Siu's Bochner type

identity [14] and the argument of [9] (using the strong negativity of the curvature tensor of Hn
C),

we obtain

Dj@iu
� = u�

zizj
+ ���u

�

zi
u


zj
= 0; for all �; i; j

and

u�
zi
u
�

zj
� u�

zj
u
�

zi
= 0; for all �; �; i; j:

Then, the argument of Jost-Yau [6, 7] shows that there exists a holomorphic foliation F on

a Zariski open subset of M , on the leaves of which u is constant. Arguments of Mok (see

Proposition (2.2.1) of [11]) imply that F can be extended as a holomorphic foliation to M n V
for some complex analytic variety V of complex codimension at least 2. Then, the study of

[12] (see Proposition (2.2) of [12]) shows that this extended foliation actually de�nes an open

analytic equivalence relation, still denoted by F , onM , and the quotient ofM by F , denoted by

S, is an irreducible complex space of complex dimension 1, by a result of Kaup [10]. Therefore,

one obtains a factorisaton of u as follows:

M
u�! � nHn

R(� � nHn
C)

# � l 1Hn
R

S
h�! � nHn

R(� � nHn
C)

where � is holomorphic by the construction of S and h is harmonic, since u is pluriharmonic.

By the above assumption, u� : �1(M) ! � is an isomorphism, so �� : �1(M) ! �1(S) is

injective. Therefore, �, as a subgroup of �1(S) acts freely on the universal covering of S, which

is either complex plane or unit disk. Thus, the cohomological dimension of � is at most 2 (see

[1]). However, the cohomological dimension of � is in fact n � 1, which is at least 3 by the

assumption. Thus, we get a contradiction. The proof is completed.
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