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ABSTRACT

Well logs consist of measurements of physical properties such as radioac-
tivity, density and acoustic velocity made in the subsurface within a borehole.
The objective is to describe rock type alternations along a well based on the
indirect well log observations. Two major strata are recognized from seis-
mic imaging of the reservoir, and rock types and associated rock alternations
within the two strata are studied separately and compared using the well log
data.

Rock type is modeled by a hidden Markov chain in a Bayesian framework,
and we explore the posterior probability distributions for the rock type se-
quence and the Markov transition matrices conditional on observations in the
well. Estimates of hyperparameters for the Markov transition probabilities
and parameters of the measurement are obtained by iteratively maximizing
the marginal likelihood. Gibbs sampling is an important tool both as part of
this estimation scheme and when exploring the posterior probability distri-
butions. We use parametric bootstrap to integrate parameter uncertainty in
the posterior distributions for rock types and the Markov transition matrices.
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The posterior distributions for the two strata show di�erences important for
reservoir exploitation.

Keywords: hidden Markov models, well logs, marginal likelihood estima-
tion, Gibbs sampling, imputation, sequence stratigraphy
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1. INTRODUCTION AND SUMMARY

The alternation, with depth, of sedimentary rock types [facies] plays an
important role in the assessment of petroleum reservoirs. Di�erent alter-
nation styles correspond to di�erent ancient depositional, burial and dia-
genetic (processes related to chemistry, pressure and temperature) environ-
ments forming the rock layers. Information on the rock type alternations can
be obtained indirectly from measurements [well logs] made along the length
of drilled wells. We examine well log data from a productive North Sea
reservoir, the Glitne �eld in Figure 1. These data are a trivariate sequence of
radioactivity (gamma ray), density and sonic velocity (M modulus) measure-
ments taken every 15cm at depths between 2150m and 2350m, and displayed
in Figure 2a). The 200m zone is divided into upper and lower strata based
on external seismic information as shown in Figure 2b). These strata reect
major geological horizons separating the rocks. The well log measurements
are informative regarding rock type at the locations where they are taken.
For example, high gamma ray counts within the borehole may be indicative
of shale, a non-oil bearing rock. The goals are to use the data to assign one
of three rock types [sand, shale and sand/shale mix] to each measurement
depth, to statistically characterize the rock type alternations separately for
each of the two strata, and to compare the alternation statistics for the two
strata.

Section 2 describes a hierarchical Markov chain model for the hidden rock
type alternations, with a prior distribution model for the transition matrix
of the Markov chain. This is followed by a description of the measurement
model that is conditional on the underlying rock type. The measurement
model is represented by a trivariate Gaussian distribution where the mean
values depend on unknown parameters linked to the underlying rock type and
known covariates, and where the covariances depend on the underlying rock
types. We also examine the possibility of an autocorrelated measurement
term that is not related to rock type. The objective is to compute posterior
distributions for the underlying rock type sequence and the Markov transition
matrix, given the measurement data.

Section 3 describes our approach for approximating these posterior distri-
butions. First, we maximize the marginal likelihood of the data, alternating
between estimation of the prior distribution hyperparameters of the Markov
transition matrix and estimation of the Gaussian distribution parameters of
the measurement model. We then indicate how to sample from the implied
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posterior distributions for the hidden Markov chain and its transition matrix.
Section 4 describes the application of our modeling procedures to the

North Sea data. Posterior distributions for the rock alternations and Markov
transition matrix are computed for each of the two strata. A parametric
bootstrap scheme studies the uncertainty of the estimated parameters and
we attempt to integrate this uncertainty in the posterior distributions. The
two strata show interesting di�erences that are interpreted in the context
of the application. This can give valuable information about the way the
reservoir was formed through geologic time.

Traditionally geologists have described and understood the di�erent al-
ternation styles of rock types, but only qualitatively. It has been relatively
diÆcult to capture the geological knowledge in a quantitative framework
suitable for statistical analysis. The hidden Markov chain formulation can
be used to compare rock type transition probabilities in di�erent strata.
The hidden Markov model also provides a way to generate what are called
'pseudo-logs', i.e., well logs that are statistically similar to the observed log.
These 'pseudo-logs' are important inputs for modeling the expected distribu-
tion and uncertainty of seismic signatures between wells where no logs exist.
Quantitative analysis of rock distributions in reservoirs has become more im-
portant recently, see e.g. Malinverno (1997), Chen and Hiscott (1999) and
Avseth et al. (2001). However, few of them study facies transition or facies
correlation in time(space). One exception is Deshpande et al. (1997) who
estimated the geological correlation along a well using methods from spectral
theory on the continuous data directly, without working with categorical rock
attributes. Others are Harbaugh and Bonham-Carter (1970) and Weissman
and Fogg (1999) who studied Markov transition probabilities along wells us-
ing classi�ed rock type values as data, and hence not taking into account the
uncertainty of the classi�cation.

2. HIERARCHICAL MARKOV CHAIN MODEL

A hierarchical Markov model is proposed for the rock types in the well,
with the two strata modeled independently. Figure 3 illustrates the idea
for one of the strata with y being the trivariate well log measurements, X
being the rock type, P being the Markov transition matrix, and parameters
� and � being hyperparameters for the Markov transition probabilities and
parameters of the measurement, respectively.
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Let X = fXt; t = 1; : : : ; Tg be categorical variables, with Xt being the
rock type (facies) at depth t. X represents the facies at every 15cm along
the well, and each Xt takes on one of d values, where d = 3 in this study
with possible rock types being fsand; shale;mixedg. X = (X1; : : : ; XT ) is
assumed to be a hidden Markov chain with d�d stationary transition matrix
P = fPij; i = 1; : : : ; d; j = 1; : : : ; dg, where Pij = Pr(Xt = jjXt�1 = i) are
the one step facies transition probabilities with

Pd
j=1 Pij = 1 for all i. The

initial state of the Markov chain, x0, is �xed. The probability distribution of
X given P is hence;

f(xjp) = px0x1 : : : pxT�1xT (1)

and this is illustrated with an arrow from P to X in Figure 3. The Markov
chain models dependency in the alternating rock types along the well, and
in this way maybe captures some of the depositional and burial processes. A
Bayesian approach is used and the rows of the rock type transition matrix, P ,
denoted P i; i = 1; : : : ; d are modeled by independent Dirichlet distributions;

f(pj�) = f(p
1
; : : : ; p

d
j�) =

dY
i=1

f(p
i
j�i) (2)

f(p
i
j�i) = Dirichlet(�i1; : : : ; �id) (3)

=
�(�i)Qd

j=1 �(�ij)
p�i1�1
i1 : : : (1�

d�1X
j=1

pij)
�id�1

with � = f�ij, i; j = 1; : : : ; d, being the matrix of prior parameters (hyperpa-
rameters), and �i =

Pd
j=1 �ij. In this study �i = � for all i, and � measures

the expected (prior) variability in the Markov transition probabilities. Larger
values of � indicate less prior variability. The Dirichlet prior relationship is
illustrated in Figure 3 with an arrow going from � to P .

Given the hidden Markov sequence X, the well log data y = fyt; t =
1; : : : ; Tg, with yt = (y1t ; y

2
t ; y

3
t ), are modeled as a sequence of Gaussian ran-

dom vectors with mean and covariance parameters depending on X. Let
f(yjx; �) denote the conditional distribution of y given the Markov chain
sequence X and the measurement parameters �.

The mean values of the well log data are modeled on a regression form
since covariates, depth and pressure, are available. Radioactivity, gamma
ray,  = ft : t = 1; : : : ; Tg, is assumed to be a constant function of depth
and pressure. Density, � = f�t : t = 1; : : : ; Tg, is an exponential function of
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depth. Sonic velocity, M modulus, m = fmt : t = 1; : : : ; Tg, is linear in the
third root of pressure, see Mavko et al. (1995). This gives:

[ytjxt = k] =

2
64

tjxt = k
log(C � �t)jxt = k

mtjxt = k

3
75 =

0
B@

�k
h�t �

�
k

hmt �
m
k

1
CA+ vt(x) (4)

where h�t = [1; st] with st being depth at (time) point t, hmt = q
1=3
t with

qt being pressure at (time) point t, and with C being a known constant
given by the mineralogy, and with �k , �

�
k and �

m
k being unknown parameters

depending on the rock type k. The mean vector from equation 4 is then �t;k =
(�k ; h

�
t �

�
k; h

m
t �

m
k ), depending only on the facies k and covariates at time t. The

noise term vt(x) is assumed to be Gaussian, and can in principle depend on
more categorical values than just the one at time t. In a situation with
uncorrelated measurement noise, the measurements at di�erent depths are
uncorrelated, and then vt(x) � �(vt; 0;�k) with the variance term depending
only on the facies Xt = k. Denote by � = (�1 ; : : : ; �

m
d ;�1; : : : ;�d) the

parameters of the measurement process in this case.
Often the case, however, measurements are correlated due to slow uctu-

ations(lags) in the measurement equipment and because measurements are
not made pointwise, but rather integrated over a sliding window. Assume
that the vt(x) terms are correlated according to an autoregressive model of
order one, AR(1):

vt(x) = 	vt�1(x) + �xt�1;xt t = 1; : : : ; T (5)

where the �k;ls are uncorrelated and distributed as �(�k;l; 0;�l), with k and
l being the categorical values at subsequent time points. Denote by � =
(�1 ; : : : ; �

m
d ;�1; : : : ;�d;	) the measurement parameters in this case.

The posterior distribution of the rock type sequence and the Markov
transition probabilities conditional on the data y and the parameters � =
(�; �) is given by:

f(x; pjy; �) =
f(yjx; �)f(xjp)f(pj�)

f(yj�)
(6)

Figure 3, with equation 1, 2 and 4, fully speci�es the model in equation 6,
but because of high dimensionality it is not directly available.
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3. METHODOLOGY

The objective is to characterize, separately for each stratum, the posterior
distributions of the rock types X and Markov transition matrix P conditional
on the data y and the parameters � = (�; �) given by equation 6. An
important part of this is to �nd a good estimate of �. Note that � contains two
very di�erent sets of parameters; � contains the hyperparameters of the prior
distribution for the Markov transition probabilities, � contains parameters
of the measurement process. The marginal likelihood of � equals;

l(�; y) =
X
x

Z
p
f(yjx; �)f(xjp)f(pj�) dp (7)

which requires the sum over dT possible Markov chains x, and hence seems
unavailable, making the maximum likelihood estimate of � impossible to �nd
directly. Even numerical optimization is unfeasible, since the function to be
optimized cannot be written out in an analytical form.

This original likelihood problem is split into two simpler problems below,
and the two steps are studied separately. An iterative scheme alternating
between the steps is proposed. In the �rst step the hidden Markov chain
X = x is �xed. Doing so, the marginal likelihood with respect to the Dirichlet
hyperparameter � can be maximized. In the second step the uncertainty in
the Markov transition matrix P is ignored, and P = p is �xed. Then the
marginal likelihood with respect to the measurement parameters � can be
maximized. The two steps are iterated.

3.1 Estimation of the Dirichlet hyperparameters

Consider �rst the case with categorical Markov chain values X = x �xed
as data instead of the observed values y, see e.g. Maritz (1989) and MacKay
and Peto (1995). Categorical values x can be regared as latent variables,
missing data, and in this �rst part they are assumed known. The data y and
the measurement parameters � in Figure 3 are hence ignored. The marginal
likelihood is then available and equals;

l(�; x) =
Z
p
f(xjp)f(pj�) dp =

dY
i=1

�(�i)Qd
j=1 �(�ij)

Qd
j=1 �(nij + �ij)

�(ni + �i)
(8)

where n = fnij; i = 1; : : : ; d; j = 1; : : : ; dg are transition frequencies of the
Markov chain x = (x1; : : : ; xT ), and ni =

Pd
j=1 nij is the number of transitions
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from state i; i = 1; : : : ; d. One property of the � function is that �(m+1) =
m�(m). Using this the log likelihood equals:

L(�; x) = log(l(�; x)) (9)

=
dX

i=1

(
dX

j=1

nijX
k=1

log(�ij + nij � k)�
niX
k=1

log(�i + ni � k))

Setting the derivatives of the log likelihood function in equation 9 equal to 0
gives the maximum marginal likelihood equations. For all j = 1; : : : ; d and
i = 1; : : : ; d:

nijX
k=1

1

�ij + nij � k
=

niX
k=1

1

�i + ni � k
(10)

With the constraints �i =
Pd

j=1 �ij = � given after equation 3, equation 10
gives a unique marginal likelihood solution for �.

If �ij + nij is large an approximation to equation 10 is given by:

bX
k=a

1

k
�
Z b+ 1

2

a� 1

2

1

x
dx = log(

b+ 1
2

a� 1
2

) (11)

The likelihood equations in equation 10 are hence approximated by, for i; j =
1; : : : ; d;

�ij + nij �
1
2

�ij �
1
2

=
�i + ni �

1
2

�i �
1
2

(12)

Or, for i = 1; : : : ; d:

0
B@
ni � ni1 : : : �ni1
: : : : : : : : :
1 : : : 1

1
CA
0
B@
�i1

: : :
�id

1
CA =

1

2

0
B@
ni � ni1
: : :
2�

1
CA (13)

where the constraint �i =
Pd

j=1 �ij = � has been added. Updating the �
estimate by the linear system in equation 13 is much faster than the numerical
optimization required in equation 10.

3.2 Estimation of measurement parameters, uncorrelated noise

Consider next the case with Markov transition matrix P = p �xed, see e.g.
Baum et al. (1970) and Leroux and Puterman (1992). The hyperparameters

9



� in Figure 3 is hence ignored. The marginal likelihood of the data y is
analytically available in this case and equals;

l(�; y; p) =
TY
t=1

f(ytjyt�1; : : : ; y1; p) (14)

Assuming that the measurements are conditionally independent given x;

f(yjx) =
TY
t=1

f(ytjxt) (15)

the terms in equation 14 are given by;

f(ytjyt�1; : : : ; y1; p) =
dX

k=1

�(yt;�t;k;�k)Pr(Xt = kjyt�1; : : : ; y1; �; p) (16)

where Pr(Xt = kjyt�1; : : : ; y1; �; p) can be calculated recursively through
forward(prediction and �ltering) equations;

Pr(Xt = kjyt�1; : : : ; y1; �; p) =
dX

j=1

PjkPr(Xt�1 = jjyt�1; : : : ; y1; �; p) (17)

Pr(Xt�1 = jjyt�1; : : : ; y1; �; p) (18)

=
�(yt�1;�t;j;�j)Pr(Xt�1 = jjyt�2; : : : ; y1; �; p)Pd
j=1 �(yt�1;�t;j;�j)Pr(Xt�1 = jjyt�2; : : : ; y1; �; p)

with initial values Pr(X1 = kjy0; �; p) = Px0k; k = 1; : : : ; d. The weights in
equation 16, Pr(Xt = kjyt�1; : : : ; y1; �; p), are in this way a function of both
the �xed Markov transition matrix p and of the measurement parameters �.
Equation 14 can be optimized by inserting p and the current estimate of � to
obtain the weights, and next maximizing the likelihood function in equation
14 numerically to get an updated estimate of �, keeping the weights �xed.

An alternative approach, see e.g. Leroux and Puterman (1992), is to
impute �t;k = Pr(Xt = kjyT ; : : : ; y1; �; p) as an estimate of the indicator
I(Xt = k) at each time point, instead of Pr(Xt = kjyt�1; : : : ; y1; �; p) in
equation 14 and 16. �t;k is the best estimate of the categorical value based
on data y, the �xed p and the current estimate of �. This gives the following
marginal likelihood for �:

l(�; y; p) =
TY
t=1

�t;k�(yt;�t;k;�k) k = 1; : : : ; d (19)
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�t;k is calculated through forward and backward(smoothing) equations sim-
ilar to the ones in equation 17 and 18, see Divijver (1985). Maximization of
equation 19 with respect to � gives the following updated marginal likelihood
estimates for �:

�k =

PT
t=1�t;ky

1
tPT

t=1�t;k

k = 1; : : : ; d (20)

��k = (
TX
t=1

�t;kh
�
th

�
t
0)�1

TX
t=1

�t;kh
�
t y

2
t k = 1; : : : ; d

�mk = (
TX
t=1

�t;kh
m
t h

m
t
0)�1

TX
t=1

�t;kh
m
t y

3
t k = 1; : : : ; d

�k =

PT
t=1�t;k(yt � �t;k)(yt � �t;k)

0PT
t=1�t;k

k = 1; : : : ; d (21)

The advantage of imputing �t;k as in equation 19 compared to imputing
Pr(Xtjyt�1; : : : ; y1; �; p) in equation 14 and 16 is that the estimates given
by equation 20 and 21 are analytically available, and hence much faster to
calculate.

3.3 Estimation of measurement parameters, correlated noise

Consider again the case with Markov transition matrix P = p �xed, but
assume now that the measurements are no longer conditionally independent.
A standard way to accomodate AR(1) measurement noise, as given in equa-
tion 5, into the model is to work with an augmented state of the underlying
Markov chain values Gt = (Xt; Xt�1), see Schweppe (1973) and Brockwell
and Davis (1995). A new transformed measurement can be de�ned as:

[ztjgt] = yt � 	yt�1 = �t;xt � �t�1;xt�1 + �gt t = 1; : : : ; T (22)

and z = fzt; t = 1; : : : ; Tg are conditionally independent given the augmented
states G = (G1; : : : ; GT ). Conditional independence is convenient in the
imputation step and the Gibbs sampler. The Gt value is of dimension d

2, and
the value �t;k;l = Pr(Gt = (k; l)jzT ; : : : ; z1; �; p) is imputed as an estimate
of I(Gt = (k; l)) = I(Xt = l; Xt�1 = k) in the estimation scheme. An
augmented version of the Markov transition matrix, Paug, of size d

2� d2 can
be de�ned from P as follows:

P aug
(i;j);(k;l) =

(
pkl if k = j
0 else

(23)
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�t;k;l is hence calculated from P aug and �(z;�t;k� �t�1;l;�k) directly through
forward and backward equations like in equation 17 and 18, but now in d2

dimensions. Pr(Xt = ljz; p; �) =
Pd

l=1 Pr(Xt = l; Xt�1 = kjz; p; �) is the
marginal probability �t;k. Estimates of the �t;k related parameters from
equation 20 are still unbiased with this extension. �l and  values are esti-
mated simultanously:

�l =

PT
t=1

Pd
k=1�t;l;k(zt � (�t;l �	�t�1;k))(zt � (�t;l � 	�t�1;k))

0PT
t=1

Pd
k=1�t;k;l

l = 1; : : : ; d

(24)

TX
t=1

dX
k=1

dX
l=1

�t;k;l�
�1
l 	(yt�1 � �t�1;k)(yt�1 � �t�1;k)

0 (25)

=
TX
t=1

dX
k=1

dX
l=1

�t;k;l�
�1
l (yt � �t;l)(yt�1 � �t�1;k)

0

3.4 Iterative marginal likelihood maximization

Note that equation 10 is independent of the measurement parameters �,
and similarly that equation 19 is independent of the Dirichlet hyperparam-
eters �. This separates the original full optimization in equation 7 into two
simpler problems that can be solved. An iterative way to maximize the orig-
inal likelihood in equation 7 is to alternate between updating � by equation
10 and updating � by equation 20 and 21 (uncorrelated measurement noise)
or equation 20, 24 and 25 (correlated measurement noise). The maximiza-
tions are initiated by imputing values for the rock type sequence x and the
Markov transition matrix p. Imputed values of x and p are obtained from
Gibbs sampling, see e.g. Robert et al. (1993) and Ryden and Titterington
(1998). The Gibbs sampling algorithm keeps parameters � and � �xed at the
current estimates, and samples iteratively from the full conditional distribu-
tions of P and X, f(pjx; �) and f(xjy; p; �), respectively. For uncorrelated
noise these full conditionals are given by:

f(p
i
jx; �) = Dirichlet(�i1 + ni1; : : : ; �id + nid) i = 1; : : : ; d (26)

Pr(Xt = kjxct ; y; p; �) = C�(yt;�t;k;�k)Pkxt+1Pxt�1k t = 1; : : : ; T
(27)

where xct = (x1; : : : ; xt�1; xt+1; : : : ; xT ) and C a normalizing constant. With
correlated measurement noise the full conditoinal for P remains the same as
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in equation 26, whereas X is sampled from;

Pr(Xt = kjz; xct ; �; p) = CPkxt+1Pxt�1k�(zt;�t;k �  �t�1;xt�1 ;�k) (28)

�(zt+1;�t+1;xt+1 �  �t;k;�xt+1) t = 1; : : : ; T

where C again is a normalizing constant. The burn in time of the Gibbs
sampler is short since the parameter values change only slightly from iteration
to iteration of the estimation procedure. Algorithmically the methodology
goes as follows:

ALGORITHM:

1. Choose starting values, �1 = (�1; �1), i = 1

2. Iterate until convergence:

� Fix (x; p) from the Gibbs sampler output with parameters �i and
�i.

� Calculate �i+1 from x using equation 10 or 13.

� Impute �t;k; t = 1; : : : ; T; k = 1; : : : ; d or �t;k;l; t = 1; : : : ; T; k =
1; : : : ; d; l = 1; : : : ; d from p, y and �i, and calculate �i+1 from y
and the �t;k's using equation 20 and 21 (uncorrelated noise) or
from y and the �t;k;l's using equation 20, 24 and 25 (correlated
noise).

� Set i = i+ 1.

The procedure has a avor of the Expectation Maximization(EM) algo-
rithm to it, see Dempster et al. (1977), and to stochastic EM, see Wei and
Tanner (1990) and Nielsen (2000). However, the method presented above
works as close to the original marginal likelihood in equation 7 as possible.
Imputing categorical rock types x directly to update the measurement pa-
rameter � estimates is faster than the above approach, but one level down
from the marginal likelihood in equation 14 and 16 with x summed out.
Similarly, imputing the Markov transition matrix p directly to update the
� estimate is faster than the approach above, but one level down from the
marginal likelihood in equation 8 where p is integrated out.

�1; �2; : : : is a chain of outputs from the algorithm above. With the sim-
ilarity of EM and stochastic EM noted, the chain should converge to a dis-
tribution around the maximum marginal likelihood estimate from equation
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7. No proof of this convergence is provided here, but plots of evidence are
presented with the example below. A rigorous proof should probably follow
the theory and methods on stochastic EM or EM, see e.g. Dempster et al.
(1977), Ip and Diebolt (1996) and Nielsen (2000).

The original EM idea is to impute the conditional expectation or MAP
values of (x; p). In stochastic EM it is also common to impute a sample of
(x; p), see Ip and Diebolt (1996). When a Gibbs sampler is used, several
samples are available for a small amount of extra computational time, and
hence the MAP estimate or the expectation probably works better.

The algorithm above is iterated until the marginal likelihood in equation 7
converges. Estimates of the marginal likelihood are obtained from the Gibbs
output. Let (x1; p1); : : : ; (xN ; pN) be realizations from the Gibbs sampler,
and (x?; p?) a �xed point. The Gibbs stopper, see Yu and Tanner (1999),
estimates the posterior density at (x?; p?) by:

f̂(x?; p?jy; �) =
1

N

NX
i=1

K((x?; p?)j(xi; pi)) (29)

where K((x?; p?)j(xi; pi)) is the transition density of the Gibbs sampler de-
�ned in equation 27 and 26 from state (xi; pi) to state (x?; p?);

K((x?; p?)j(xi; pi)) = f(p?jxi; �)f(x?jy; p?; �) (30)

The estimate of the posterior at the point (x?; p?) is then used to estimate
the marginal likelihood in equation 7 by the following formula:

l̂(�; y) =
f(yjx?; �)f(x?jp?)f(p?j�)

f̂(x?; p?jy; �)
(31)

The chosen point (x?; p?) does not really matter for the marginal likelihood
calculation since it cancels, but preferable a point with large probability mass
is chosen, for example the MAP value or results from an initial classi�cation
of the facies values. For more on marginal likelihood estimation from the
Gibbs or Metropolis-Hastings output, see e.g. Chib (1995), Chib (2001) and
Han and Carlin (2001).

Starting values �1 are provided from prior knowledge. In some cases an
initial classi�cation of the rock types X exists from earlier studies on the same
data set. Such initial results are maybe not taking any sort of dependency
into account, but nevertheless summarize the experience given in the �eld
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and on the particular case study. �1 is then calculated directly from equation
10 with X equal to the initial classi�cation. �1 is calculated from equation 20
and 21 with �t;k = I(Xt = k) in this initial phase (uncorrelated measurement
noise), or from equation 20, 24 and 25 with �t;k;l = I(Gt = (k; l)) in this
initial phase (correlated measurement noise) .

3.5 Exploring the posterior distributions of (P;X)
Conditional on the well log data y and �xed parameters from the esti-

mation scheme, the posterior distribution of P and X is explored by Gibbs
sampling. (In the example below we propose a parametric bootstrap strategy
to integrate parameter uncertainty in the posterior distribution for (P;X),
instead of using �xed values of �.) Markov transition matrix P and facies
sequence values X are sampled from the full conditional distributions in
equation 26 and 28, respectively. As a �xed, best estimate of �, we can use
the mean of the � values after convergence (n0 iterations) of the iterative
marginal likelihood estimates;

�̂ =
1

n

n0+nX
i=n0+1

�i (32)

where �̂ = (�̂; �̂).
Samples from the Gibbs sampler, (P 1; X1); : : : ; (PN ; XN), are approxi-

mately from the conditional distribution in equation 6. Associated samples
from the posterior distribution of functionals de�ned from the Markov tran-
sition matrix P are easily generated. For each sample P i, i = 1; : : : ; N , an
associated sample from the posterior distribution of the stationary distribu-
tion or relative proportions, � = (�1; : : : ; �d) is given by the relation;

� = �P (33)

Similarly a sample from the posterior distribution of the sojourn times or
mean thicknesses, u = (u1; : : : ; ud), in the di�erent states is given by the
relation;

ui =
Æ

1� Pii
i = 1; : : : ; d (34)

where Æ is the spacing in the well log measurements. Samples from the
posterior distrbution of standardized jump probabilities, qij are given by the
relation;

qij =
pij=�jP
k 6=i pik=�k

i = 1; : : : ; d j 6= i (35)
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Hence, samples from the posterior distribution of P automatically give sam-
ples from the posterior distribution of the stationary distribution, sojourn
times and normalized jump probabilities.

4. RESULTS

Trivariate observations of gamma ray (radioactivity), density and M mod-
ulus (sonic velocity) at every 15cm along the well are plotted in Figure 2a).
Two stratigraphic sequences, s1 and s2, are assumed to represent di�er-
ent depositional environments, and are hence studied independently. The
boundary between the two strata is well de�ned from seismic data and con-
sidered �xed in this study. Avseth et al. (2001) studied the data from a rock
physics perspective, and calculated relative rock type proportions in the well
based on classi�ed facies logs. This study is an extension of Avseth et al.
(2001) in which we attempt to explore the posterior distribution for Markov
transition matrix P and rock type sequence X conditional on the available
data as outlined in section 3. Facies is split into three categories (d = 3);
(1)sand, (2)mixed; sandy shales and shaly sands, and (3)shale, and focus
is on Markov type alternations between the three facies within both strata.
Statistical estimates of Markov transitions for rock types in the well, with
associated uncertainty could give valuable inputs to geologists.

Autocorrelated measurement noise inputs are modeled as in equation 5.
The di�erent data sources, gamma ray, density and M modulus, were found
to be uncorrelated, and only the diagonal elements of covariance matrices
�1; : : : ;�d and autocorrelation matrix 	 were modeled. The well log mea-
surements are of length T = 590 in stratum s1 and T = 720 in stratum s2.
An initial facies classi�cation exists from Avseth et al. (2001), and this is
used to �nd starting values for the parameters � and � as described in section
3.4, and provides reference variables (x?; p?) used in the marginal likelihood
estimation. � from equation 13 is �xed at 100 for both strata. The results did
not seem sensitive to the choice of �. In the imputation part of the algorithm,
a Gibbs sampler as in equation 26 and 28 was run for 200 iterations. The
MAP estimate of (x; p) from the last 100 iterations was picked, and imputed
in the estimation algorithm.

Figure 4a) shows the scaled marginal likelihood estimate as a function
of iteration number for stratigraphic sequence s2. It looks like the marginal
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likelihood estimate converges after 10�15 iterations and shows random uc-
tuations after that. Figure 4b)-f) shows some parameter values for stratum
s2 as a function of iteration number. These plots show similar convergence
and uctuations as in the likelihood plot in Figure 4a).

Figure 5a)-c) shows the �nal mean value estimates �t;k for k = 1; 2; 3 in
the Gaussian distribution on a regression form plotted versus depth (dashed)
as given in equation 4. Also plotted in Figure 5 are the observed measure-
ments (solid). This is plotted for both strata, and there are jumps at the
sequence boundary. The mean parameter values for various facies follow the
data fairly well, and the levels are most separated for the gamma ray data.
This indicates that gamma ray is the best classi�er for facies. Figure 5d)
shows the �nal iteration MAP value for facies in both strata as a function
of depth. Shale tends to occur when gamma ray observations are large, but
due to the Markov dependency, the facies values show a smoother nature.

Table 1 shows the �nal iteration MAP solution of the Markov transition
matrix for both strata. This is displayed with the sojourn times, u from
equation 34, on the diagonal, and the standardized jump probabilities, qij
from equation 35, on the o� diagonal. Stratum s1 has signi�cantly thicker
shale beds and thinner sand beds than stratum s2 as seen from the diagonal
elements. Further, the jump probabilities in stratum s1 appears to be more
uniform than in stratum s2. In stratum s2 the rock type sequence almost
always goes through the mixed state, and rarely jumps directly from shale to
sand or sand to shale. Stratum s2 hence seems more structured than stratum
s1.

In order to validate the method and to study the parameter uncertainty,
we do a parametric bootstrap study. Given the parameter estimates from
equation 32, a resampling strategy is carried out based on the hierarchical
model in Figure 3. This is done for both strata. Algorithmically;

� For i = 1; : : : ; B:

1. Draw Markov transition matrix P �i conditional on the Dirichlet
distribution speci�ed by parameter �̂.

2. Draw a Markov chain of rock types X�i = (X�i
1 ; : : : ; X

�i
T ), condi-

tional on the Markov transition matrix P �i.

3. Draw data y�i, with y�it = (�it ; �
�i
t ; m

�i
t ), t = 1; : : : ; T , conditional

on the Markov chain X�i and the measurement parameters �̂.
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4. Maximize the marginal likelihood of y�i to obtain �̂�i.

Bootstrap samples �̂�1; : : : ; �̂�B represent the distribution of the original
marginal likeihood estimates �̂. In this study we used B = 25. Figure
6 displays the bootstrap samples of the � parameter. Samples from both
sequences s1 ( Figure 6a)-c) ) and s2 ( Figure 6d)-f) ) show a small variability,
and indicate that the diagonal elements of the Markov chain are most likely.
Values are clustered close to the original � estimates and this gives evidence
to the estimation approach. Table 2 shows the original � estimates obtained
by maximizing the marginal likelihood of data y, with the �rst quartile,
the median and the third quartile estimated from the 25 bootstrap samples
from the above scheme. The variability seems small for the � parameters,
larger for the �� and small for the �m parameters. For all these parameters,
however, the original estimates fall within or just outside the �rst and third
quartiles. For the standard deviation parameters (�), the bootstrap samples
appear to spread out at larger values than the parameters estimated from
the well log data. The original estimate from y fall below the �rst quartile
more often than one would expect. Maybe there is signi�cant skewness in the
probability distributions for these parameters, or maybe there is a bias in the
maximum marginal likelihood estimates that should have been corrected for.
It could also be the result of slower convergence of the estimation approach
for the variance parameters. The autocorrelation parameter  appears to be
distributed around the original value, maybe somewhat in the upper tails of
the distribution.

In the following we attempt to include the distributional properties of the
parameter values when exploring the posterior distribution of Markov tran-
sition matrix P and rock type sequence X. For each of the ��i, i = 1; : : : ; B
values, (P;X) are sampled from the conditional distribution given the well
log measurements y using Gibbs sampling as described in section 3. Each
Gibbs sampler is run for 200 iterations, and every 10th sample from the last
100 iterations are picked out. This gives 10 � 25 samples (B = 25) from
the posterior distribution of (P;X). The Gibbs output represents the pos-
terior distribution of P and X conditional on data y, and functionals of P
like those described in section 3.5 are particularly interesting in this study.
In Figure 7 the stationary distribution � = (�1; �2; �3) from equation 33 is
plotted for stratum s1(left) and stratum s2(right) in a ternary plot. Strati-
graphic sequence s1 contains more shales and less sand and mixed than se-
quence s2. Figure 8 shows estimated probability densities for sojourn times
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u = (u1; u2; u3) from equation 34 in states sand( Figure 8a) ), mixed( Figure
8b) ) and shale( Figure 8c) ) for stratum s1(solid) and stratum s2(dashed).
The sojourn times in sand are smaller and the sojourn times in shale larger
for stratum s1. Figure 9 shows samples of the standardized jump proba-
bilities from mixed to shale given from equation 35 for both strata. The
samples are sorted before plotting, and presented as a quantile-quantile plot.
Values from sequence s1 are on the �rst(x) axis and values from sequence
s2 are on the second(y) axis. The jump probabilities are larger for stratum
s2. Figure 9 also indicates a larger variability in the jump probabilities for
sequence s1. Samples of standardized jump probabilities in Figure 9 go from
approximately 0:2� 0:7 for strata s1, and only from approximately 0:5� 0:8
for strata s2.

The main result is that stratum s1 has more shales and less sand than
stratum s2, and that the thicknesses of shale beds are thinner in stratigraphic
sequence s2. In other words s1 has more �ne grained sediments (shales) and
less coarse grained sediments (sands) than s2. Results also indicate that
sequence s1 is less structured than sequence s2. The MAP estimate in Table
1 shows that jumps from shale to sand and sand to shale are extremely rare
in stratum 2, the rock type sequence most commonly goes through the mixed
state. Also, in Figure 9 the standardized jump probabilities from mixed to
shale, q23 are larger and show less variability for stratum s2. This jump
probability indicates a trend of going from coarser to �ner material (�ning
upwards) and is often recognized in well organized deposits.

Sequence stratigraphy is commonly used to limit zones of sea level low
or highstands, see Miall (2000). In this dataset s1 is believed to represent a
relatively high sea level, whereas sequence s2 represents a relative lowstand
in sea level. Deposits in sequence s2 are because of this expected to be richer
in coarse grained materials like sand, and also to be more organized in its
rock type alternations. The physical explanation for this is based on uid
ow dynamics, and that ow is more structured in shallow waters, since it
is closer to the shoreline. This explains the above results physically, but this
study further quanti�es this by the Markov transition matrix probability dis-
tributions. The Markov transition matrix can give geologists a quantitative
indicator of burial trends in various depositisional systems.

5. CONCLUDING REMARKS
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This paper attempts to quantify geological attributes, with associated
uncertainty levels, from indirect well log measurements. Well logs are mea-
surements of radioactivity, density and sonic velocity, and these are infor-
mative regaring rock type. Seismic imaging of the earth are used to split
the domain of interest into two strata that are believed to represent di�er-
ent depositional environments. The two stratigraphic sequences are studied
separately and compared. We model the rock sequence along the well and
the rock type alternations in a hierarchical Markov chain setting. The rock
types are modeled as a hidden Markov chain, with the indirect measure-
ments distributed as Gaussian variables with parameters depending on the
rock type. Autocorrelated measurement noise is possible in the model. We
explore the posterior distribution of the underlying rock types and the gov-
erning Markov transition matrix conditional on the well log data. Within
the hierarchical framework a methodology is outlined for estimating hyper-
parameters and measurement parameters by iterative marginal likelihood
maximization. Gibbs sampling and imputation are important parts of the
iterative scheme. Bootstrap methods are used to validate the method and
to integrate the uncertainty of the estimated parameters in the posterior
distribution for Markov transition probabilities and rock types.

Results show that the two strata are di�erent in rock distributions and
rock alternations, and we explain how this could be related to sea level
changes in ancient times like indicated by e.g., Miall (2000). Geologists
have studied trends in sediment burial and diagenesis (processes of chemical,
pressure and temperature reactions) qualitatively. The Markov transition
matrix is a quantitative tool to better understand and analyze these di�er-
ent trends. Distributional aspects of the Markov chain goes beyond modeling
of just facies proportions. Functionals of the transition matrix, such as so-
journ times and standardized jump probabilities, with associated uncertainty
levels, give more insight to the phenomenon. The hidden Markov model can
also be suitable for generating synthetic well logs, consistent with the geologic
environment, which can again be used as an input to study the statistical
properties of seismic signatures away from wells.

The Markov model is certainly not the only model for continuous well
log measurements, and others may be more valuable. Extensions to the
approach include for example more re�ned measurement models or more
complex models for deposition and burial of rocks, possibly taking more geo-
logical knowledge into account. Regarding alternative or extended estimation
and sampling schemes could also be of interest.
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Table 1: MAP estimates of the transition probabilities for stratas s1 and s2.
The diagonal elements are given as sojourn times in meters, the o� diagonals
are normalized jump probabilities.

P s1

sand mixed shale
sand 1.9m 0.94 0.06
mixed 0.39 0.5m 0.61
shale 0.62 0.38 2.8m

P s2

sand mixed shale
sand 2.7m 0.99 0.01
mixed 0.29 0.9m 0.71
shale 0.01 0.99 1.1m
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Table 2: Parameter estimates from marginal likelihood maximization, �̂, and
bootstrap estimates of the parameter uncertainty given as 1st quartile, me-
dian and 3rd quartile estimates for both stratigraphic sequences. Facies 1 is
sand, facies 2 is mixed and facies 3 is shale.

s1:�̂ s1:�̂:25 s1:�̂:5 s1:�̂:75 s2:�̂ s2:�̂:25 s2:�̂:5 s2:�̂:75
Facies 1 � 66 64.1 65.0 66.8 62 62.2 63.3 64.6
Facies 2 � 72 67.7 68.4 71.2 70 69.9 70.1 70.2
Facies 3 � 76 75.3 75.8 76.1 81 80.9 81.0 81.4
Facies 1 ��(1) -0.4 -137 49 276 0.46 -71 1.5 70
Facies 2 ��(1) -0.4 -98 -0.2 69 1.47 -5 6 14
Facies 3 ��(1) 4.7 -45 21 96 -2.5 -18 5 33
Facies 1 ��(2) 0.2 -94 34 190 0.8 -45 0 45
Facies 2 ��(2) 0.3 -66 1.4 48 1.5 -3 4 10
Facies 3 ��(2) 3.7 -29 15 66 -0.96 -11 4 21
Facies 1 �m 69 62 68 78 86 79 87 96
Facies 2 �m 79 70 76 83 83 83 84 87
Facies 3 �m 62 59 66 71 82 80 82 84
Facies 1 � 1.7 1.4 1.5 1.9 1.6 2.3 2.5 2.9
Facies 2 � 3.1 2.5 3.3 3.7 3.0 2.6 3.1 3.3
Facies 3 � 3.3 3.6 3.9 4.2 4.6 4.7 5.6 5.9
Facies 1 �� 0.20 0.28 0.30 0.33 0.11 0.14 0.17 0.25
Facies 2 �� 0.10 0.14 0.20 0.26 0.13 0.24 0.33 0.40
Facies 3 �� 0.17 0.20 0.28 0.34 0.31 0.40 0.60 0.81
Facies 1 �m 0.63 0.89 0.95 1.04 0.36 0.31 0.44 0.54
Facies 2 �m 1.44 1.40 1.58 1.67 1.37 1.41 1.62 1.67
Facies 3 �m 0.71 0.89 0.95 1.00 0.83 1.14 1.26 1.40
  0.92 0.84 0.87 0.89 0.87 0.70 0.78 0.83
 � 0.90 0.85 0.87 0.90 0.88 0.86 0.87 0.88
 m 0.95 0.92 0.94 0.96 0.95 0.93 0.95 0.96
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FIGURE CAPTIONS

Figure 1: Location of the Glitne Field in the North Sea.

Figure 2: a) Well observations of  ray, density and M modulus, b) Seismic
section from the Glitne �eld with a well indicated. Stratigraphic sequences
s1 and s2 are shown with two deeper sequences.

Figure 3: Relations between variables, parameters and data. Observa-
tions y are de�ned from Markov chain X and measurement parameters �, X
is de�ned from the Markov transition matrix P , and P is de�ned from the
hyperparameters �.

Figure 4: Convergence of iterative estimation scheme. All attributes plot-
ted as a function of iteration number. a) Estimate of the marginal likelihood.
b) �11. c) �12. d) �

. e) � . f) 	. Convergence appears to take place af-
ter 10 � 20 iterations. Fluctuations are due to the stochastic nature of the
algorithm.

Figure 5: a)-c) Estimated mean values for the measurements in all three
facies in both stratas(dashed), with the observed values(solid) as a function
of depth. a)  ray. b) density. c) velocity. d) MAP estimate for facies as a
function of depth. Large values of  ray result in shale, small values in sand.

Figure 6: Estimated variability of the � parameters. a) �1 for s1. b) �2
for s1. c) �3 for s1. d) �1 for s2. e) �2 for s2. f) �3 for s2. The variability
appears small, and diagonal elements of � are large.

Figure 7: Ternary plot of stationary probabilities in the di�erent facies
classes for s1(left) and s2(right). Stratum s1 has more of shales(class 3) and
less of mixed(class 2) and sand(class 1) than stratum s2.

Figure 8: Estimated probability densities for the sojourn times of s1(solid)
and s2(dashed). a) sand. b) mixed. c) shale. Sojourn times in shale are
larger for stratum s1. Sojourn times in sand are smaller for stratum s1.

Figure 9: Quantile-quantile plot of standardized jump probabilities from
mixed to shale. Values for stratum s1 are plotted on the �rst axis, values for
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stratum s2 on the second axis. Stratum s1 have smaller jump probabilities
from mixed to shale, and a larger variability.
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