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PREFACE 

The work that finally conduced to this thesis has been carried out during a fourteen months stage 

at CERN (European Organization for Nuclear Research), in the framework of the Large Hadron 

Collider (LHC) project, now under construction. 

I was hosted by the MMS group, which is in charge of the construction of the superconducting 

dipoles and quadrupoles of the LHC. My supervisor was Walter Scandale, activity leader of the 

magnet quality in the MMS group. My co-supervisor was Ezio Todesco, also working in the 

magnet quality section. My home supervisor was Professor Rebora, from the DIMEC 

(Dipartimento di Meccanica e Costruzione delle Macchine). 

My thesis was in part computational and in part experimental. My activity was related for two 

third of the time to the structural analysis of the dipole, performed with finite element models and 

for one third to experimentation with the aim of characterizing some crucial dipole components 

in terms of mechanical and thermal properties. 

I was working at CERN in Geneva, but for my experimental activity I had collaboration with the 

EPFL (Ecole Politecnique Federale de Lausanne), where some measurements were carried out 

with the help of scientists of the IMAC (Institute de Mesure et Analyse des Contraintes). 

The main goal of my thesis was to find correlation between geometry of the magnet and the 

harmonic contents of the magnetic field generated in the inner aperture. The reason of this 

analysis was that of determining optimal tolerances for the dipole construction. 

The results of my thesis are the following: 

- Improvement of the existing FEM model for structural analysis of the dipole 

- Experimental determination of the mechanical properties of the superconducting coil 

- Determination of tolerances for the collar and the coil sizes. 
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1 INTRODUCTION 

In the Large Hadron Collider, the new circular accelerator under construction at CERN 

(European Organization for Nuclear Research), superconducting magnets generate the high 

magnetic field necessary to bend and focus particle beams. For high-energy accelerators like the 

LHC, high particle beam intensity and high luminosity represent the most demanding 

achievements. In addition, a high magnetic field quality is required to assure stable particle 

trajectories thus allowing to reach the desired beam intensity. 

In particular, in the main LHC magnets (dipoles), used to bend the particle into the desired 

circular orbit, the ideal field distribution should be perfectly constant. More realistically, any 

multipolar component must be kept small, within values determined by beam stability studies. 

Indeed, magnetic field generated by superconducting magnets is affected by errors with respect to 

the ideal one. The field quality depends on many factors, like design geometry, induced currents 

effect, iron saturation and geometry errors during fabrication. In a superconducting magnet, the 

shape and the position of the conductors mainly determine the magnetic field distribution 

Nominal geometry demands a certain disposition of the superconducting cables in the magnet 

cross section in operating conditions, i.e. after assembly and cool-down at 1,9 K. If nominal 

geometry is respected, all the multipole values (harmonics) should be sufficiently small to avoid 

detrimental effects for beam stability. 

Field harmonics have systematic components, which are identical in all dipoles, and random 

ones, which vary from dipole to dipole. Systematic harmonics are due to coil design or to 

systematic errors during production. Instead, random errors are due to tolerances on dipole 

components and on assembly procedure. 

In this thesis we analyze the problem of the field quality in the main LHC dipoles concentrating 

our attention on the effects of geometry design and errors. To evaluate these effects, structural 

studies on the dipole cross section are requested. They must provide an estimate of the conductor 

positions in operational conditions. These estimates are obtained with a finite element model 

developed with the ANSYS code, in which the geometry of the dipole and the 
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thermomechanical properties of the components have to be described. Specific experiments are 

needed in order to quantify the mechanical properties, since the materials involved are non-

standard. In fact, coils are built up using superconducting cables, wrapped by polyimide tapes, 

and copper spacers, therefore they can be considered as composites. 

Magnetic field components, describing the field distribution, result from the harmonic analysis 

around the axis of the magnet. To obtain the field shape a magnetostatic code developed at 

CERN, ROXIE, is used. In our specific case, the output of the mechanical FEM model provides 

the description of the conductor position, which is used as the input for the magnetostatic 

computations. Indeed, no available program allows to compute with the required precision both 

the mechanical deformations and the magnetic field shape. 

Existing FEM models have been used to evaluate the structural behavior of the magnet, but they 

could not evaluate the cable displacement with a precision of the order of some tenths of 

millimeter, required for a good estimate of the field shape harmonics. An estimate of field shape 

has been made using a "rigid" model of the coils, where conductor blocks are rigidly translated. 

While a rough estimate can thus be obtained, such a model does not take into account the 

displacements of the individual conductors nor the block deformations, therefore it is insufficient 

[1]. 

The usual way to calculate the effect of geometry error on the field quality is to change one by 

one the geometrical parameters of the model and to evaluate the consequent effect on field shape. 

In this way, one can build sensitivity matrices, which focus the relation between geometrical 

parameters and field components. This method permits to identify the area of the magnet with a 

paramount influence on field quality hence to specify in the most reasonable manner the 

tolerances for the mechanical components. 

A more global manner to investigate the influence of mechanical tolerances on field shape 

consists in varying the geometrical parameters all together, selecting the variations on the base of 

the expected statistical distribution. This method is usually quoted as Monte Carlo simulation and 

allows validating the compatibility of the tolerances selected for the various components. 
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In this thesis, we will describe the improvements made on the finite element model of the dipole 

cross-section, the corresponding mechanical tests used to determine the material properties and 

the results of the analyses performed using the new model. 

In Chapter 2, a description of the LHC layout and of the magnets is given and the problem of the 

field quality is treated. In Chapter 3, the mechanical model built up with the FEM code, its 

structure and the material properties values inserted in it are presented. A brief description of the 

model used to compute the magnetic field, built up with the magnetostatic code, is given at the 

end of the same chapter. In Chapter 4, all the measurements taken to evaluate the material 

properties are discussed, together with the computations used to extrapolate useful data. In 

particular, coil Young modulus and prestress loss from warm to cold temperature are treated, 

giving also a brief description of the tools used to make such measurements. In Chapter 5, results 

of the computations made using the model are reported, both for simple parametric analysis and 

for Monte Carlo simulation. Practical consequences on the field quality correction procedures are 

given too. In the last chapter, some conclusions are drawn. In the Appendix A and B, technical 

problems related to the finite element modelization are shown. 
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2 THE CERN-LHC PROJECT AND ITS MAGNET 

2.1 The Large Hadron Collider 

The Large Hadron Collider is a circular accelerator under construction at CERN (European 

Laboratory for Particle Physics). It will take the place of LEP (Large Electron Positron collider), 

inside the 27 Km underground tunnel in the Geneva area. The LHC is designed to collide protons 

at high center-of-mass energy (14 TeV), but it will also be able to collide heavy nuclei (Pb-Pb) 

[4]. 

Goals for the LHC accelerator are a high particle energy and a high number of observable 

objects, the so-called "physic reach" of the collider. 

A high magnetic field is required to give high-energy particles the necessary curvature. 

Superconducting technology in magnet construction, providing a much higher magnetic field and 

a reduction of operating costs, has been chosen [5]. Other three accelerators in the world already 

use this technique: Tevatron, at FNAL (Fermi National Accelerators Laboratory), HERA, at 

DESY (Deutsches Elektronen-Synchrotron) and RHIC (Relativistic Heavy Ion Collider) at 

Brookhaven. 

In the Large Hadron Collider, particles will run in a ring with ultra-high vacuum (10-9 bar), where 

a sequence of superconducting cavities will accelerate them up to 7 TeV and magnetic field will 

bend them along the nominal trajectories. This field will be mostly dipolar and the main magnets 

inside the accelerator will be superconducting dipoles. 

The force applied on every single particle running inside the accelerator is given by the Lorentz 

equation: 

BvqEqF ×+=                                                             (2.1) 

where: 

q = particle electrical charge; 
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E  = time dependent electrical field (sinusoidal); 

v  = particle speed; 

B  = magnetic field. 

This force has two different components, the first one depending on the electrical field, the 

second one on the magnetic field. Inside the cavities, only the tangential component depending 

from the energy is present, while inside magnets there is only the radial component that gives 

particle trajectory the necessary curvature. To keep the particles on the circular orbit, the 

magnetic field inside dipoles must satisfy: 

qR
pB = ,                                                              (2.2) 

where p is the momentum of the particle. 

Employing high field superconducting magnets, with an operation dipole field of 8.3 T, the LHC 

will be able to collide protons at 7 TeV/c and heavy nuclei at 1150 TeV/c. Superconductors for 

such a high magnetic field should retain a large current density in a high field region. Niobium 

titanium (NbTi) conductors are adequate for the purpose provided they are cooled down at the 

very low temperature of 1.9 K with superfluid helium. Thin filaments are used to reduce as much 

as possible the persistent currents which distort the magnetic field, especially at the injection of 

the particles, when the field is 0.54 T, namely sixteen times lower than the top field [6]. 

The number of events during particle collision is directly proportional to the luminosity. 

Providing a high luminosity, it is possible to increase the so called “physic-reach” of the collider, 

namely the mass of observable objects, for the given proton energy. Since particles are grouped 

in about 3000 bunches, i.e. clouds of about 1011 protons each, before being injected in the LHC, 

while defining the following dimension we refer it to a bunched beam. The luminosity for such a 

beam is given by: 

yx

fkNL
σπσ4

2

= ,                                                             (2.3) 

with: 

 

5



f = particle revolution frequency; 

k = number of bunches per beam; 

N = number of particles per bunch; 

σx, σy = beam radii at the collision point expressed in r.m.s. value of the transverse spatial 

distributions, assumed to be gaussian. 

LHC will provide a luminosity of 1034 cm-1s-2 for proton-proton collisions and a value of 1027 cm-

1s-2 for heavy ion physics. There are two principal limits for luminosity. The first comes from the 

beam-beam interaction, due to the action on the particles of one beam produced by the 

electromagnetic field of the other beam. The other finds its origins in the interaction of the beam 

with the vacuum chamber walls, which produces a destabilizing effect when the beam current 

exceeds a given limit. They can be reduced by a strong feedback system. 

High energy and luminosity are somehow correlated. To obtain high energy a high magnetic field 

is requested. Superconducting technology employed for such a goal takes to non-negligible errors 

on the magnetic field. If the field is different from the ideal dipolar one, at injection, where the 

beam has a large size, non-linear effects generate a particle dispersion and an emittance increase. 

Particle loss must be controlled using a collimation system, to avoid magnet overheating and 

consequent transition to normal condition status of the conductors. Emittance increase indeed, 

can not be controlled and cause a luminosity loss when the beam has reached the requested high 

energy. 

For such reasons, field quality is a problem of utmost importance in superconducting magnets. In 

LHC dipoles, the relative deviation from the ideal dipole field should not exceed a few parts in 

10-4. Moreover, it is not trivial to maintain such a high precision. 

While in resistive magnets, field quality is defined by the shape of polar expansions in the 

ferromagnetic sheets and by iron yoke shape, in superconducting magnets, current lines can be 

assimilated to conductors, from whose positions field quality depends. This is the reason why the 

arrangements of current conductors and the precision of coil geometry are of utmost importance 

for the LHC magnetic field quality [6]. 
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2.2 Accelerator layout and experiments 

Particles are injected inside the LHC by a system constituted by four different machines (see 

Figure 2.1). The first beam is produced inside a Linac (Linear proton accelerator) at 50 MeV and 

it is sent to the PS (Proton Synchrotron) Booster, where it is accelerated to 1.4 GeV. After this 

procedure, protons are grouped in packets (called bunches) of 102 particles at 25 GeV, each one 

7.5 m distant from the other. 

 

Figure 2.1: LHC layout 
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Three trains of 81 packets of particles each are transferred to the SPS. Here the beam is 

accelerated to 450 GeV and sent to the LHC. Twelve cycles of SPS are necessary to obtain two 

proton beams rotating in opposite directions. The LHC structure shows a succession of eight arcs 

separated by eight straight sections (IR). Each straight zone is approximately 500 m long and is 

used for experimental insertions or different utilities for the accelerator (see Figure 2.2). 

 

 

Figure 2.2: Experiments for the LHC 
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In correspondence to point 1 (ATLAS) and point 5 (CMS) there are two high-luminosity 

insertions. Two other experimental insertions are located at point 2 (ALICE Pb ions) and point 8 

(B physics). These latter straight sections also contain the injection systems. 

The beams, which are 194 mm distant one from the other along the most of the path, cross from 

one ring to the other only at these four locations. Two beam collimator systems, using only 

classical magnets, are placed at insertion 3 and 7. Insertion 4 contains the Radio Frequency 

systems, separated for the two beams, used to accelerate beam particles. The straight section at 

point 6 contains the beam dump insertion, where remaining particles are ejected after collision 

[4]. 

Each of the eight arcs is composed of 23 arc cells, giving a total arc length of 2456.160 m. Two 

identical half cells compose each single arc-cell (see Figure 2.3). The single cell consists of a 

string of three 14.3 m twin-aperture dipoles and one 3.10 m quadrupole. The separation between 

the dipoles is 1.46 m, which includes 520 mm for connections between the cryostats, while the 

quadrupole is 2.42 m distant from the dipoles. Sextupoles and decapoles are located on the right 

and left side of the cell. On the left side of the quadrupole assembly, there are a beam position 

monitor (BPM) and an octupole, and on its right side a combined sextupole/dipole corrector. 

 

 

Figure 2.3: Cell scheme 

Inside the LHC, superconducting magnets aligned with a precision of 0.3 mm are used to bend 

particle trajectories, and to stabilize them. Namely: 

• Dipoles create the main vertical magnetic field, perpendicular to the particle direction, used to 

deflect particle motions to circular trajectories. 
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• Quadrupoles produce a field that is null in the center of the vacuum chamber and linearly 

dependent from the distance to the center, whose purpose is to focus the beam. Quadrupoles 

have focusing effect only in one plane, whilst they defocus in the orthogonal one (Figure 2.4). 

For this reason, a sequence of quadrupole focusing on one plane, dipole and quadrupole 

focusing on the orthogonal plane is developed. The overall problem is focusing on both 

planes. 

• Sextupoles create a null field in the center, quadratic proportional to the distance, used to 

control chromaticity effects. These effects are errors that are induced by the quadrupoles 

focusing power and depend on small variations in the particle energy. 

• Octupoles make the tune dependent on the amplitude, which is exploited to improve the 

stability [4]. 
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Figure 2.4: Quadrupole cross section 
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2.3 The magnets 

The three large accelerators already mentioned, i.e. Tevatron, HERA and RHIC, use magnets 

built with NbTi superconductors, working at a temperature of about 4.2 K. To reach this 

temperature superfluid helium is used [4]. 

Since the LHC operational field (8.33 T) is quite higher than in Tevatron, HERA and RHIC (4, 5 

and 3.45 T respectively), in this case it is not possible to use the same technology. To tolerate 

such a high field, NbTi superconductors have to be cooled down at about 2 K. This technique has 

already been successfully applied to the French Tokamak TORESUPRA in operation at 

Cadarache. 

Since helium takes the so-called superfluid state below 2.17 K, working at 1.9 K, below the 

lambda point of helium, a very low viscosity is reached. Thanks to this property, it is possible to 

make the helium circulating inside the magnet in a uniform way and it permit a drastic reduction 

of the helium flow through magnets. Moreover, if the pressure is maintained at 1.6 mbar, helium 

provides also a very large specifics heat (4000 J/kg K). 

On the other hand, the enthalpy of all metallic parts and in particular of the superconducting 

cables is reduced by an order of magnitude cooling down between 4 k and 1.9 K, with a 

consequent temperature rise for a given deposit of energy. For this reason, particular care must be 

taken in limiting conductor motion. In fact, the magnetic field generates Lorentz forces on the 

conductors, which are proportional to the square of magnetic field intensity (B). Moreover, the 

stored electromagnetic energy increases with it. This is why strong force-retaining structures and 

elaborate quench protection systems are of the most importance for superconducting magnets. 

Proton-proton colliders require two separate beam channels with fields equal in strength but 

opposite in directions. For the LHC, the compact `two-in-one' design is adopted, whereby the two 

beam channels and their corresponding sets of coils are inserted in a unique structure and in a 

single cryostat [7]. 
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2.4 The main dipole 

2.4.1 General description 
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Figure 2.5: Main dipole cross section 

The design of LHC main dipole is based on a twin aperture structure clamped by a unique force 

retaining structure. Coils of opposite polarity are inserted in each aperture. Axes distance between 

the two centers of the apertures is 194.52 mm (Figure 2.5). Coils, whose inner diameter is 56 mm 

measured at 293 K, are made by NbTi superconductors operating in superfluid helium at 1.9 K 

[7]. 
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Two winding layers of cables, divided into six blocks compose the coils. Wedge-shaped copper 

spacers are also inserted between blocks of conductors to produce the desired field quality. To 

avoid conductors moving under the action of electromagnetic forces, coils are clamped by 

stainless steel collars, iron yoke and a shrinking cylinder. They form the force containment 

structure, giving the necessary azimuthal prestress to the coils. 

The whole part of the magnet included inside the shrinking cylinder (i.e. the cold mass, see 

Figure 2.6) is cooled down to 1.9 K and is kept at this temperature while working with superfluid 

helium circulating inside. The cold mass also contains correction sextupoles and decapoles, 

mounted on both the end of the dipole. 

 

 

Figure 2.6: Cold mass longitudinal section. 

The cold mass is installed inside a cryostat, whose main components are a radiation shield, a 

thermal screen and the outer cylindrical wall of the vacuum vessel. The shield, cooled by 5-20 K 

helium, is used to reduce heat load on the cryogenic system. To close the cold mass, two end 
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covers are welded to the shrinking cylinder. They leave a passage for the beam vacuum 

chambers, a heat exchanger tube, and two pipes containing the main and the auxiliary electrical 

connections. The cryostat is supported by three feet made of composite material. The central one 

is fixed to the vacuum vessel, while the others can move on rollers to follow thermal contractions 

and expansions. The cold mass is bent to a 2700 m radius of curvature to match the beam paths 

[5]. 

2.4.2 The superconducting cables 

On the transverse cross-section of LHC dipole coils, it is possible to see two layers of cables 

distributed in six blocks for each quadrant (see Figure 2.7). Cables have a trapezoidal shape, with 

angles of 1÷4 degrees between bases and oblique sides. These angles, called “keystoning” angles, 

are used to reproduce the shape of an arc in cable position, in order to have a more stable 

structure. They also provide more degrees of freedom in packing cables into blocks. 

 

 

Figure 2.7: Cable distribution inside coil quadrant 
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Each cable is composed of a certain number of strands, 28 for the inner coil cables (each one with 

a diameter of 1.065 mm), 36 for the outer ones (diameter of 0.825 mm). Niobium-Titanium 

filaments inserted in a copper matrix form each strand. Filaments inside strands have a diameter 

of 7 µm (inner layer) and 6 µm (outer layer): this is in fact the better size to optimize field quality 

at the injection. Moreover, the lower is the filament size, the higher is the current it can carry. 

Different dimensions for inner and outer layers come out from the desired grading of current 

density, calculated for optimum use of the superconducting material. The copper matrix has first 

the function of a mechanical structure. Furthermore, it has a protective function on thin filaments 

in case of overheating [8]. 

A superconductor stays in the superconducting state when the temperature, the magnetic field, 

and the current density are below their critical surface. If this condition is not verified, for 

instance if temperature increases due to friction caused by conductor motion under the influence 

of Lorentz forces, the magnet “quenches”. A quench is the transition from the superconducting to 

the normal state. 

Since niobium titanium superconductors have high resistivity in the normal state, copper serves 

as an electrical by-pass. In fact, it can take over current from filaments when they are in normal 

state, avoiding damages on the superconducting material. To avoid superconductors overheating 

and consequent damage in case of quench, it is also necessary to stop current delivering. The 

maximum temperature Tmax reached by the conductor after quench depends on the time employed 

to stop current and on the inductance of the cable itself. For the LHC dipoles, it is necessary not 

to reach a temperature higher than 300 K, and for this reason current delivering should stop in a 

time shorter than 1 second. Because of the inductance L that characterizes the magnet, current 

reduction creates inside the coils a difference of potential of this value: 

dt
dILV = .                                                         (2.4) 

To avoid electrical discharges, which could destroy the coils, cables are electrically insulated 

with three layers of polyimide tape, coated with an epoxy adhesive (see Figure 2.8)[5]. 

The first two layers are bent to be superposed one to the other for half of the cable, to guarantee 

necessary insulation. The last layer is constituted of a tape with an adhesive surface on the 

 

15



external face spiral winded with a spacing of 2 mm, to permit helium circulation. Adhesive is 

used to glue cables in blocks. 

 

 

Figure 2.8: Polyimide tape layers on cables. 

2.4.3 The coils 

The coil is shaped to make the best use of a superconducting cable and to produce a dipole field 

of the best possible homogeneity over the whole range of its operational excitation. The 

conductor distribution in one coil quadrant was shown in Figure 2.7. 

During operation, coils are heated by particles deviating from the nominal trajectory, synchrotron 

radiation and beam image current intercepted by the beam screen. An additional dynamic heat 

load results from losses during magnet ramping. This heat increases the superconductor 

temperature, which reduces the magnet-operating range. Particular care has therefore to be taken 

to provide cable insulation sufficiently porous to let the superfluid helium carry away the heat. To 

avoid short-circuits the insulation must also be robust, in order not to break during winding and 

curing. 
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Satisfactory shapes were determined using the approach of the minimum strain energy, in 

combination with empirical methods. Coils composed of two constant thickness layers with 

graded current density have been chosen. The two layers are joined together in the part of the 

inner cable that crosses over from the inner to the outer layer (ramp-splice) and are soldered to 

the outer layer cable. 

To stabilize and reinforce the coil leads, copper strips are soldered to the superconducting cable. 

The amount of copper complies with the permitted maximum temperature and the discharge time 

of the system. The coil layers are radially separated by an insulating material. It is a perforated 

glass-epoxy spacer, used to provide channels for circulation of the cooling helium. The ground 

insulation is composed of superposed polyimide film layers and includes quench protection 

heaters. A slotted fiberglass epoxy net is the adopted solution. The coils require additional 

insulation between poles and for the collars sitting at ground potential (Figure 2.9). The ground 

insulation is composed of several polyimide film layers, cut azimuthally and longitudinally for 

reasons of assembly. 

 

 

Figure 2.9: Coil protective and insulating sheets between coil layers. 
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Besides its electrical scope of preventing shorts from coil to coil and from coil to ground, it also 

has the mechanical role of providing good slip surfaces. They are necessary during collaring, 

such that both azimuthal and radial preloads are adequately distributed between coils and collars, 

to avoid the deterioration of the insulation. 

Quench heaters are placed between the outer coil layers and the insulation to ground. They 

consist of stainless-steel strips, with about half of the length intermittently copper-clad (0.25 m 

with copper cladding alternating with 0.25 m without copper cladding). In case of quench, they 

rapidly heat up the conductors through the thermal barrier of the insulation. 

Coil protection sheets, located between the outer layer ground insulation and the inner collar 

surface, prevent damage due to contact with the serrated edges of collars. Moreover, the coil 

protection sheets help to avoid wrap breakdown and provide a continuous support to the 

conductors. A good slip surface between the collars and protection sheets is provided by coating 

the sheet with dry lubricant. 

Collaring shims, made of fiberglass, are located at the layer poles. The inner one is inserted in a 

stainless steel support called shim retainer. Shims are used to prevent damage due to collar 

contact during compression and to better distribute the azimuthal stress between the two layers of 

the coil. 

After winding, each coil layer is heated in a curing mould, where the adhesive polymerizes. The 

mould should have a mechanical precision of ± 10 µm, because it gives coils their final 

dimension and shape. Winding and copper wedges are first heated at 130 0C, under a pressure of 

about 10 MPa. After a certain time, the pressure is increased up to 80÷100 MPa and temperature 

rises up to 190 0C whilst the coils are compressed in a certain size shape. External insulation 

layers are glued one to the other thanks to polymerization and, once at room temperature, it helps 

coils maintain a compact if not rigid structure [9]. 

2.4.4 The mechanical structure 

The mechanical structure of the dipoles is designed to withstand the high forces generated in the 

magnet during operation and to limit as much as possible the coil deformation over the range of 

operation. Materials used for the most highly stressed components have, therefore, a high load-
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bearing capacity, high elastic moduli, good fatigue endurance and a good behavior at cryogenic 

temperatures down to 1.9 K. The coil support structure is formed by: 

• Austenitic steel collars with two apertures. The collars are made of 3 mm thick high-strength 

stainless steel sheet. Coils are assembled inside the collars in a press at room temperature, so 

that, when force is released, an azimuthal compression prestress of about 60-70 MPa is 

present on them.  

• An iron yoke split into two at the vertical symmetry plane of the twin-aperture magnet. The 

gap between the two parts is closed by the cylinder during assembling. The yoke is made of 6 

mm thick low-carbon-steel laminations. 

• An austenitic steel outer cylinder. This part is welded under pression around the iron yoke in 

such a way that the required pre-stress is applied to the half-yokes. 

When current is given to the coils, they must be compressed to avoid any sudden movement of 

the conductors. Displacements and deformations of the coils must be limited as much as possible 

to have the most stable magnetic field. The necessary stiffness of the whole structure is 

guaranteed by: 

• the welding of the cylinder; 

• a good contact between the iron yoke and the collars. 

All component dimensions, materials, imposed pre-stress and gap dimension must be carefully 

determined. Coils have to be compressed, but it is also important not to force too much, in order 

to avoid creep of the insulation and of the copper. Except for a short time during collaring 

operation, stress inside the coils should always be under 100 MPa. This solicitation happens 

when, inside a 15 m long press, collars are forced around coils to obtain an average compression 

of about 70 MPa both on the inner and the outer layer. Figure 2.10 show collars clamped on coils. 

During the collaring process, the compression of the coils can be 40-65% higher than the final 

required value depending on the method used to apply the load of the press. In fact, once the 

press force is released, the compressed coils expand the collars and part of the pre-stress is 

therefore lost. The shrinking cylinder is welded around the iron yoke, with a tensile stress of 

about 150 MPa. The greatest part of the force exerted by the shrinking cylinder is applied to the 

collar/coil assembly, that is a little deformed by it. To avoid a dangerous overloading of cables 
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and insulation, a slot in the collar post is foreseen so that it behaves as a spring, releasing the 

pressure at room temperature, tracking the coil deformation, and shrinking during cooling and 

energizing. 

 

 

Figure 2.10: Coil and collars assembly. 

During excitation, the iron gap stays closed and there is practically no change in the outer 

cylinder stress. The outward electromagnetic force (1700 N per mm length, per quadrant for a 8 T 

field) is shared between the collars and the outer structure. The radial deformation in the median 

plane of the collared coils at this field excitation is about 0.04 mm.  

Something different happens to the coil ends, thanks to the bending of blocks of cables. The ends 

are mounted inside the collars with much lower pre-stress (around 20-30 MPa in the azimuthal 

direction). In this region, part of the iron yoke is replaced by non-magnetic material in order to 

decrease the field. The longitudinal resultant electromagnetic force is partly transmitted from the 
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coils to the collars, yoke, and cylinder by friction. The remaining part directly loads the thick end 

plate. 

2.5 MAGNETIC FIELD QUALITY 

Considering LHC magnet dimensions, we can notice that their length is considerably bigger than 

their aperture, so that conductors run parallel to the beam over the longest part of the magnet. 

Therefore, it is possible to consider the magnetic field as essentially two-dimensional and apply 

to the magnetic field the study reported in reference [10]. 

To study the magnetic field inside the magnet, we consider a cylindrical coordinate system in the 

center of the aperture, with the z-axis along the axe of the magnet. We suppose to have a current, 

positioned in the center of the reference coordinate system, which is flowing exactly along z-axis 

in its positive direction. 

We can write the magnetic field generated by this current, creating concentric circles around the 

axis, in a generic point distant r from the z-axis: 

r
I

B
π

µ
ϑ 2

0= ,                                                         (2.5) 

where: 

µ0 = permeability of the dielectric, 

I = current density. 

The vector potential generated by this current has only a z component: 
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where the quantity l is only an arbitrary number, introduced here to make the argument of the 

logarithm dimensionless. Taking the radial derivative, we obtain: 
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If we now assume that the current filament is again parallel to the z axe, but it is not situated in 

the center of the aperture, as in Figure 2.11, the equation changes a little. 

 

Figure 2.11: Reference coordinate system and positions of current and magnetic field. 

A filament placed in a generic position (r = a, θ = ϕ), in the r,θ plane, generates a magnetic field 

whose potential vector is: 
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The only difference is that we have to put R, i.e. the distance between the current and the point 

where we want to calculate the field, instead of r. 
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If we consider the case in which r < a, it is useful to write the logarithm of R/a in this way: 
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Using the Taylor expansion of the logarithm: 
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we obtain the vector potential and the field components: 
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A single current line along the z axe creates a magnetic field with any order of multipoles. For 

our use, we are interested in specific configurations of the field, which can be obtained working 

on current distribution on the plane. 

If we consider a series of different cables, arranged along the z axe to cover a cylinder surface of 

radius a, we can calculate the field generated by this configuration. It is possible to obtain a pure 

multipolar field of order n = m, only if the current distribution, given as a function of the 

azimuthal angle ϕ, has this behavior: 

( ) ( )ϕϕ mII cos0= .                                                (2.13) 

This statement is easily verifiable by computing the integration of the vector potential in 2π: 
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The integral is null for m = n, so the series remain with only one term: 
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These fields are the so-called “normal multipole” fields. If we rotate the current distribution by an 

angle of π / 2m, we obtain a sin (mϕ) distribution, leading to “skew multipole” fields. A skew 
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dipole, for instance, has a horizontal field. Skew components are usually quite undesirable inside 

circular accelerators. 

It is not a trivial problem to create a current distribution with perfect cos(mϕ) dependence using 

superconducting cables with constant cross section. The field quality obtained with different 

configurations is expressed in terms of the coefficient of the Fourier series expansion of the field 

in the aperture, at a reference radius. For this purpose, we can describe the field with the so-called 

general multipole expansion. Reference radius has usually to be in the same order as the 

maximum deviation of the protons from the center axis of the magnet (ususally 2/3 of the magnet 

aperture). For LHC dipoles, a reference radius r0 = 17 mm is considered. Multipolar expansion 

can be written as follow [10]: 
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Expressing the magnetic field as a complex function, it is possible to write: 
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where: 

r0 = reference radius; 

Bref = magnitude of the main field at reference radius. (Bref = B1, for dipoles, for instance); 

bn = normal multipole coefficients; 

an = skew multipole coefficients. 

Having chosen Bref as explained above, the main coefficient remains normalized to unit: b1 = 1 

for dipoles, b2 = 1 for quadrupoles, etc. Remaining components, for a good magnet, should be 

very small, typically an,bn ≅ 10-4. The measure unit for multipolar coefficients is the unit of 

multipole (1⋅10-4). 
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From the multipolar expansion equation, we can see how the conductor distribution for LHC has 

been chosen. Let us consider a symmetry distribution of cables, where, for each current +I, 

situated at an angle ϕ, other three currents are present: +I at -ϕ, -I at π-ϕ, -I at π+ϕ (see Figure 

2.12). The potential vector results: 
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Therefore, from a symmetry distribution, we can only obtain normal multipoles and not skew 

ones. Moreover, only odd values of n appear. 

The current distribution corresponding to a perfect dipole, as already shown, is I(ϕ) = I0cosϕ. We 

can think to create this distribution using a single cylinder, of small thickness, inside which 

conductors receive a different current corresponding to their position with respect to the mid-

plane. Having cables with uniform current supply, it is easier to simulate a cosϕ distribution 

using a different density of cables inside the cylinder. The simplest current shell arrangement 

with dipole symmetry is shown in Figure 2.12. We assume a constant current density J and 

compute the vector potential inside the coil: 
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φ1 = limiting angle of the current shell; 

a1, a2 = internal and external radii of the current shell. 

 

Figure 2.12: Dipolar symmetry current lines and shells. 
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For a thin current shell, with a thickness ∆a=a2-a1<<a=1/2(a1+a2), the expression reduces to: 
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The magnitude of the field of multipole order n is: 
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Choosing a limiting angle φl = 600 the sextupole term n =3 vanishes. Then the first non-vanishing 

higher multipole is the decapole n= 5. For typical coil dimensions the ratio: 
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is a few percent, two orders of magnitude larger than its tolerance. A single-layer current shell 

arrangement with constant current density is therefore too rough an approximation for a dipole 

coil. With two current shells, the sextupole and the decapole can both be made to vanish by 

choosing a limiting angle of about 720 in the inner and 360 in the outer layer. 

It is possible, once the base geometry has been decided, to optimize the conductors distribution 

and the blocks positions to avoid certain components in the magnetic field or to permit some of 

them. In LHC dipoles, six blocks geometry has been chosen. Each block having two degrees of 

freedom in the plane, there are twelve parameters to be used to optimize the field. Copper wedges 

and blocks are disposed in such a way as to create a dipole field but also some other components 

are allowed. The multipolar components, intentionally present in the nominal field or not, 

describe the perturbations with respect to the ideal dipole field. They are due to different reasons: 

• design geometry, optimized to contrast the effects of persistent currents; 

• eddy currents; 

• iron yoke influence; 

• fabrication tolerances of the different components and tooling used to assemble them. 
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While the first are multipoles which respect at least the symmetry given by the horizontal mid-

plane, the second and third may present components which do not respect any symmetry and are 

responsible for any skew components appearing in the apertures. All components may be 

systematic, although in a series fabrication every effort will be made to keep them as small as 

possible. Systematic multipole errors represent the average of the measured field components in 

different magnets. Random errors indeed, represent the standard deviations of the measured 

multipoles [11]. 

Table 2.1: Expected multipole performance at injection and at 8.4 T (in units of 10-4 relative field error at 

17 mm) 

At injection, 0.58 T At nominal operation, 8.4 T 

Mean Random Mean Random 
N 

Norm 

bn 

skew 

an 

Norm 

σ [bn] 

skew 

σ [an] 

Norm 

bn 

Skew 

an 

norm 

σ [bn] 

skew 

σ [an] 

2 ±0.85 ±0.5 0.7 1.7 1.7±0.9 ±0.5 0.7 1.7

3 -10.4±0.9 ±0.9 1.4 0.4 1.4±0.9 ±0.9 1.7 0.4

4 ±0.98 ±0.98 0.5 0.5 ±0.98 ±0.98 0.5 0.5

5 1.5±0.4 ±4.2 0.7 0.3 0.5±0.4 ±4.2 0.4 0.3

6 -0.06 0.0 0.3 0.1 -0.07 0.0 0.085 0.15

7 -0.6 0.0 0.2 0.2 0.1 0.0 0.2 0.07

8 0 0.0 0.2 0.2 0 0.0 0.04 0.08

9 0.4 0.0 0.2 0.3 -0.07 0.0 0.07 0.07

10 0 0.0 0.2 0.2 0 0.0 0.0 0.0

11 1.6 0.0 0.2 0.2 1.6 0.0 0.0 0.0
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In the next chapters, we will show how to evaluate random errors on multipolar components 

using a finite element model of the magnet, which is able to compute deformations and stresses 

in correspondence of different load and geometry cases. The spread to be expected for all random 

multipoles is given in Table 2.1. Here, multipole components are obtained by scaling the random 

errors of HERA, RHIC and LHC prototypes measured magnets to the dimensions of the LHC 

main dipoles. Multipoles are expressed in relative field errors in 10-4 at the reference radius Rref = 

17 mm, both at magnet excitation corresponding to beam injection and at nominal operation. In 

the following paragraph, we will analyze the different reasons for multipole component errors 

with respect to the nominal field. 

Persistent magnetization currents are the source of severe field distortions at low excitation of a 

superconducting accelerator magnet [10]. There are different types of induced currents: 

• eddy currents between different strands inside a single cable; 

• coupling currents between different filaments inside a strand; 

• magnetization currents inside individual filaments. 

The latter are the only ones that can be considered truly persistent currents, whilst eddy and 

coupling currents tend to decay exponentially with a time constant below a second. Persistent 

currents, indeed, can be considered long living. They are currents induced in the superconducting 

filaments by field variations and, contrary to normal conductors where they are rapidly reduced 

by resistance, they circulate as long as the superconductor is kept below its critical temperature. 

Persistent current errors affect all field multipole components allowed by the symmetry 

configuration of the magnet, including the fundamental one. Their importance decreases with 

excitation, but they are particularly disturbing at low field level and especially at injection. At 

injection, the multipoles created by persistent currents in the filaments (mainly sextupole, b3, and 

decapole, b5) are very large. When raising the current these perturbations die away. They also 

depend on the previous powering of the magnet and vary with time and, therefore, require a 

careful study of the magnetic excitation cycle. Persistent currents are proportional to the effective 

diameter of the superconducting filaments, so they have to be as thin as possible, to comply with 

economy and quality of production. 
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Eddy currents indeed occur during field sweep in multistrand conductors, both inside the strands, 

mainly due to coupling between filaments, and between the strands. They distort the magnetic 

field, and their effects depend on the geometrical and electrical characteristic of strands and 

cables (matrix and inter-strand resistance, cable aspect ratio, distribution of superconducting 

filaments). 

Another source of errors in the magnetic field components is due to the effect of iron yoke 

magnetization. Its influence can be analyzed using the method of image currents, provided the 

iron is not saturated and the permeability µ is uniform. 

 

 

Figure 2.13: Magnetic flux as design. 

Indeed, in the LHC cold dipoles, iron saturates in a significant way in its center part. Therefore, 

the permeability dependence on position leads to the necessity of finite element codes to compute 

the field pattern. With iron saturation, the dependence of dipole field B1 on current I is no longer 

linear. During the energy ramp, multipoles caused by iron yoke saturation will appear. These 

consist of sextupole and decapole components, but also of quadrupole, octupole, and higher-order 
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components induced by the two-in-one geometry. The yoke magnetic design was aimed at 

keeping these multipoles and especially their variation over the whole range of excitation, to a 

minimum, while reaching at the same time the highest possible dipole field. Figure 2.13 shows 

the flux plot as computed for the coil collar yoke assembly [3]. 

Other sources of errors in the multipolar field are due to geometry production errors on the 

magnet components and assembly procedures. As already seen, field quality strictly depends on 

conductor positioning inside the magnet. The induced errors can be computed at design stage 

from the known possible or imposed manufacturing tolerances. Sensitivity matrices can be 

computed for displacements of single conductors or for conductor blocks, to obtain a relation 

between geometry variations and field components. This theme will be discussed in the next 

chapter. 
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3 MECHANICAL AND MAGNETIC MODELS OF THE 

DIPOLE 

3.1 The mechanical finite element model 

To build up a model of the cross section of the dipole, the finite element code ANSYS has been 

used. Finite element methods are approximation to continuum problems, such that [12]: 

• continuum is divided into a finite number of parts (elements), whose behavior can be 

described by a finite number of material properties; 

• the solution of the complete system is given as an assembly of its elements, and follows 

exactly the same rules as those applicable to standard discrete problems. 

We used a two dimensional model where all the areas have been modeled with the same kind of 

structural solid elements, i.e. PLANE42. We used them with the plane strain option, since dipoles 

are much longer than their transversal dimension. Thickness parameter has been used to permit 

the modeling of the two layers of collars (see 3.1.2). Each area is given the appropriate material 

properties, i.e. Young modulus, Poisson modulus and thermal expansion coefficient, for both 

room and low temperature. Contact between surfaces of different components has been described 

using CONTACT52 elements, which will be discussed in the next paragraphs. Contact elements 

also have the function of loading the model, using their interference values (see 3.1.4). 

Only one quarter of the dipole is modeled, because the cross section has two perpendicular axes 

of symmetry. Boundary conditions have been put on symmetry axes. The model is used to 

compute the field of deformations and the stresses at warm and at cold temperature, i.e., 293 K 

and 1.9 K. 

3.1.1 The coils 

The coils are modeled taking into account their two principal components, i.e., superconducting 

cables and copper wedges. Different areas describe conductor blocks and copper spacers. Due to 
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the geometry and to the different components of the blocks (see section 1.2), their elastic 

modulus is not constant, and varies according to the load. The most influencing factors that 

causes such a behavior are the presence of kapton (polyimide film) layers around conductors and 

the presence of empty spaces between conductors and insulation. Kapton in fact, can be 

compressed until a certain load reacting in a soft manner. Once reached certain compression, 

layers become denser, previously empty spaces are filled with kapton, and surfaces do not slide 

as before one over the other. At this moment, the elastic modulus of the coils become higher and 

the reacting force increases respect to the imposed displacements. Such a nonlinear behavior has 

to be taken into account to correctly evaluate the conductor displacements and their position at 

working conditions. In particular, it is crucial to determine the correct elasticity curve in the 

tangential direction, where the main stresses are applied. 

A specific tool is used to measure coils elastic behavior (see chapter 3.2), from which a set of 

stress/displacement data is obtained. As explained in Appendix A [13], a stress/strain curve is 

fitted from those data and inserted into the model to describe coil material behavior at room 

temperature. Also at cold (1.9 K), a curve describes coils answer to solicitation, but in this case 

its slope is smaller than the previous one. Physical explanation of such assumption, which seems 

not in agreement with the measured properties, will be given in Chapter 4. In theory in fact, once 

cooled down, the coil becomes more rigid and the Young modulus should be higher than the 

room temperature one. 

The coefficient of thermal expansion has also to be involved in the material properties. For both 

the inner and the outer layers, the same value has been assumed, i.e.: 

( ) 3293

9.1
1018 −⋅±=∫ dTTα                                                         (3.1) 

Being the thermal gradient of about 300 K, the average thermal expansion coefficient is α = 2.7 

⋅10-5. This value is interpreted by the FEM code ANSYS as mean value [14]. 

Poisson's ratio is set at a value of 0.2, because of the influence of kapton, which leads to some 

decrease respect to the 0.3 value typical for metallic materials. 

 

 

32



 

Figure 3.1: Coils areas modeled in ANSYS. 

Copper wedges areas are divided into four pieces along the radial direction (see Figure 3.1), to 

count also the insulation layer contribution in the elastic moduli computation. Each zone of the 

copper is given a material property depending on the proportion between copper and insulation 

thickness. The resulting Young modulus is given by equation (3.2). 

1221

21

lElE
lEE

E tot
eq +

= .                                                         (3.2) 

In (3.2): 

E1 = 136000 MPa (293 K), 150000 MPa (1.9 K), copper elastic modulus; 

E2 = 3000 MPa (293 K), 4500 MPa (1.9 K), insulation layer elastic modulus; 

l1, l2 = copper and insulation thickness; 
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ltot = l1+l2. 

Poisson's ratio is set to ν = 0.3, as usual for metallic materials. Average thermal expansion 

coefficient is taken from literature and is given a value of α  = 1.1⋅10-5. 

Coils dimensions are determined taking care of the conditions for which nominal geometry has 

been defined. Nominal lengths in azimuthal direction in fact, are given for a coil having a 

tangential prestress of about 40 MPa at 1.9 K. To recover this conditions, longer coils are defined 

in the model at room temperature and in absence of solicitations. These values are optimized 

using a code called ANSIA [15], which automatically evaluates the deformation and the coil 

length increase at room temperature needed to recover the nominal length at cold. 

3.1.2 The collars 

 

Figure 3.2: One layer model of the collar in ANSYS. 
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The collars are built up with austenitic steel sheets. Collars layers are superposed one to the other 

to create packs, assembled using little pins. Each layer is composed of two different parts, the so-

called "long-collar" and the "short-collar". The "long-collar" contains the holes where to put the 

bars used to lock the collars around the coils. The short one has indeed a pure filling function. 

Different layers of collars are assembled putting alternatively the long collars on the upper part 

and on the lower part of the magnet. In our model, we have two layers of collars, the first one 

composed by two pieces, whose contact is simulated using contact elements, the second one 

composed only by one piece (see Figure 3.2). 

Each collar layer is given a thickness of 0.5 mm, while all the other components of the dipole are 

modeled with PLANE42 elements 1 mm thick. In this way, the assembling effects of the two 

collars of the same layer and the presence of different layers are taken into account. 

The presence of different sheets creates a particular stress distribution in the collars, which, in 

correspondence of the mid-plane, tend to be opened by the compressed coils. In Figure 3.3, long 

and short collar interaction in correspondence of the mid-plane is shown. Boundary conditions to 

give the two layers the same displacements in x direction and the opposite in y direction in 

correspondence of the mid-plane are imposed. 

 

-∆y

∆x

Long collar

Short collar
∆y
∆x

A

B Locking rod

 

Figure 3.3: Long and short collars interaction on the mid-plane.  

Austenitic steel properties are reported in Table 3.1. They are given without specification of 

direction, since material is isotropic. 
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Table 3.1: Collars material properties. 

Austenitic steel 1.9 K 293 K 
Young modulus E 210000 MPa 190000 MPa 

Expansion coefficient α 0.9⋅10-5 
Poisson's modulus ν 0.3 

 

3.1.3 The yoke and the cylinder 

 

Figure 3.4: Assembled model of the LHC dipole. 

On the outer part of collars, the iron yoke (3) is positioned and blocked by the cylinder (4) 

soldered around it. Between them, in correspondence of the vertical axe of symmetry, an iron 

insert (5) is put. In Table 3.2 and in Table 3.3, yoke and cylinder material properties input in the 

model are listed. 
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Table 3.2: Iron yoke material properties. 

Iron yoke 1.9 K 293 K 
Young modulus E 225000 MPa 210000 MPa 

Expansion coefficient α 0.7⋅10-5 
Poisson's modulus ν 0.3 

Table 3.3: Shrinking cylinder material properties. 

Shrinking cylinder 1.9 K 293 K 
Young modulus E 209000 MPa 195000 MPa 

Expansion coefficient α 1.0⋅10-5 
Poisson's modulus ν 0.3 

 

The insert has essentially a filling function and its presence helps the assembling. Iron insert 

material properties are listed in Table 3.4. 

Table 3.4: Iron insert material properties. 

Shrinking cylinder 1.9 K 293 K 
Young modulus E 209000 MPa 195000 MPa 

Expansion coefficient α 1.0⋅10-5 
Poisson's modulus ν 0.3 

 

3.1.4 The contact interfaces 

Interfaces between all the surfaces of the magnet components have been modeled using contact 

elements. In ANSYS there are different types of contact elements, used to simulate different 

situations (i.e. contact between points, between points and surfaces, between surfaces) [14]. In 

our model of the dipole, the problem of interaction between components of the magnet, which are 

not glued but only assembled with pins, has been solved using Contac52 ANSYS elements. 

These elements represent two surfaces, which may maintain or break physical contact and may 

slide relative to each other. This element is capable of supporting only compression in the 
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direction normal to the surfaces and shear (Coulomb friction) in the tangential direction. 

Everywhere in our model, we choose not to model any friction, assuming that its effect is 

negligible. The zone where it could have more influence, i.e., between coils and collars, some 

kapton layers are positioned to permit gliding. 

Contac elements assume as surfaces in contact the two ideal planes perpendicular to their 

direction (see Figure 3.5, IJ direction), so one must build them up exactly perpendicular to the 

real surfaces in contact. 

 

 

Figure 3.5: Contac52 reaction directions. 

Even a few degrees error in the construction gives a mistake in the transmission of forces 

between the two materials that may be relevant (see Appendix B). These elements react as 

springs in their normal direction, the answer to solicitation being directly proportional to their 

deformation and to their normal stiffness. We need to separate two different cases in order to 

define the value of this stiffness. This is because in the model of the magnet we simulate both 

direct and indirect contact between two surfaces, i.e., the contact between two surfaces without 

any interlayer or with the presence of some filling material not explicitly modeled. 

In the first case contact elements have to transfer forces between the two surfaces and must avoid 

penetration between bodies, possible in FEM code, but not in reality. For this reason, we 
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establish a small value (dmax ≈ 10-4 mm) for maximum accepted compenetration. This entity can 

be written as a function of the pressure applied (P), the area on which each element insists (A) 

and the contact element stiffness (K). 

K
APd ⋅

=                                                                 (3.3) 

Imposing d < dmax, we obtain an estimate for the minimum normal stiffness (Kmin) useful to 

contain the compenetration under the maximum allowed: 

maxd
APK ⋅

= ,                                                             (3.4) 

where A is the area on which the element insist. Usually, we will obtain values of K with an order 

of magnitude between 104 and 108 [MPa⋅m]. 

In the second case, there is not a direct contact between two sliding surfaces, but contact elements 

are used to simulate the presence of thin layers of different materials, not explicitly modeled, i.e. 

shims, ground insulation, quench heaters. This situation happens in all the zones between coils 

and collars and in the zone between the inner and the outer coil. In this case, we have to take in 

account filling materials deformation under loading. One has to define an equivalent Young 

modulus (Eeq) for all the materials simulated, treating them as series springs. If there are three 

materials to be considered, the modulus becomes: 

321

323121

EEE
EEEEEEEeq

++
=                                             (3.5) 

and we calculate K as follow: 

h
AE

K eq= ,                                                   (3.6) 

where: 

A = area on which every contact element insist; 

h = length of the contact element; 

Eeq = Young elastic equivalent modulus 
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Since it is always necessary to know on which area the contact elements transfer the pressure to 

evaluate Kn, a uniform distribution has been given to nodes along the lines. In this way, the only 

two contact elements that insist on different size areas are the first and the last of each set of 

contact. For these two elements, the area is one half respect to the others and also K is set equal to 

the half of the one calculated for this zone of contact. 

Let us now show the values of the contact element stiffness calculated for our model. Macros 

have been computed to automatically calculate these values, on the base of the two equations 

(3.4) and (3.6). They are given in input respectively the maximum permitted compenetration and 

the estimated pressure in the first case, the equivalent Young modulus in the second one. The 

latter is given both for warm temperature and for cold temperature. Macros create contact 

elements automatically in zone defined by four keypoints, two belonging to one surface and the 

others to the facing one. 

 

 

Figure 3.6: Different zones of contact between coils and collars. 
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Interface between coils and collars has been modeled using contact elements to simulate the 

behavior of the insulation layers, the quench heaters and the shims, which are not explicitly 

modeled. Contact elements length corresponds to their total thickness in each zone in study. All 

the zones interested by this kind of contact element are shown in Figure 3.6. In Table 3.5, filling 

materials with their thickness and their Young moduli are listed for each zone. 

Table 3.5: Filling materials thickness and Young moduli. 

Zone Filling material  
Thickness 

[mm] 

E at 1.9 K 

[MPa] 

E at 293 K 

[MPa] 

1 

Shim retainer - Austenitic Steel 

Shim - EP GC 3# 

Insulation sheets - Polyimide 

Interlayer 

0.6 

0.4 

0.5 

0.5 

215000 

20000 

4500 

7500 

190000 

20000 

3000 

6000 

2 
Inter layer 

Insulation sheets - Polyimide 

Shim retainer - Austenitic steel 

0.5 

0.5 

0.3 

7500 

4500 

215000 

6000 

3000 

190000 

3 
Coil protection sheet - Austenitic steel 

Shim - EP GC 3# 

Insulation sheets - Polyimide 

0.3 

1.0 

1.2 

215000 

20000 

4500 

190000 

20000 

3000 

4 Coil protection sheet - Austenitic steel 

Insulation sheets - Polyimide 

0.6 

0.7 

214000 

4500 

190000 

3000 

5 Interlayer 0.5 7500 6000 

 

In Table 3.6, the calculated equivalent Young moduli corresponding to each sandwich are listed, 

for both room and cold temperature. 
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Table 3.6: Equivalent Young moduli for contact zones between coils and collars. 

N Zone of contact 
Eeq at 1.9 K 

[MPa] 

Eeq at 293 K 

[MPa] 

1 inner coil /collar - radial 10000 7300 

2 inner coil /collar - azimuthal 7300 5200 

3 outer coil/collar - radial 7900 5500 

4 outer coil /collar - azimuthal 8200 5500 

5 inner coil/outer coil 9500 6000 

 

The "initial status" of the elements has also to be considered. In fact, contact elements can be 

initially preloaded in the normal direction or they can be given a gap specification. Test made on 

simple models had shown that giving an interference to contact elements means simulating a 

different dimension of one of the two surfaces in contact, so that the spring is already loaded at 

the beginning of the calculation (see Appendix B).  

Regarding interference properties, in zones 1 and 3 of Figure 3.6, these values represent shims 

thickness and can be varied to obtain certain prestress in the coils or to simulate different shapes 

of the collar, as it will be shown in chapter 4. All in the other zones, interference is set to 0. This 

will provide a simple gliding behavior between the two surfaces in contact. 

In the other zones of interface, i.e., between collars, between collars and rods, between cylinder 

and yoke, etc., contact elements only have to simulate interaction between the two surfaces, 

avoiding any friction and compenetration. 

3.2 The magnetic model 

To evaluate the magnetic field components corresponding to the configurations studied, the 

magnetostatic code ROXIE [3] has been used. ROXIE (Routine for the Optimization of magnet 

X-section, Inverse field calculation and coil End design) is a code developed at CERN to 
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optimize LHC coils and yokes design. The program consists of procedures for the geometrical 

optimization of the coil cross section, for magnetic field calculation and inverse problem solving. 

Block position is calculated with respect to the initial status of the coil, described by the number 

of conductors per block, the type of conductor used, the inner and the outer radii of the coil and 

the angular position of blocks itself. Each conductor is given a certain current density value, 

different from zone to zone of the same conductor, depending on the number of strands in that 

zone. Once determined the nominal geometry, it is possible to assign component rotational or 

translational displacements. This option has not been used in our computations, since component 

deformations have been evaluated thorough the ANSYS calculations. 

To transfer ANSYS deformations into ROXIE [3], it is necessary to extrapolate from ANSYS 

output the single cable displacements, which can be given as ROXIE input. ROXIE indeed, is 

able to give single conductors a certain displacements, as shown in Figure 3.7, where conductor 

number 27 has been shifted by 2 mm to the center of the aperture. 

 

 

Figure 3.7: Example of deformed geometry in ROXIE. 
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The finite element code used to evaluate deformation presents some differences on data 

treatment. First of all, ANSYS undeformed coil is longer than nominal one, as explained in 

3.1.1, moreover, the ANSYS output results are not given with respect to each cable, but for each 

node of the model mesh. For this reason, it is necessary to calculate a correspondence between 

node displacements and cable displacements. Looking at the undeformed geometry in ANSYS, 

in each block modeled, nodes corresponding to conductor position have been listed. They 

correspond to each conductor medium thickness, as shown in Figure 3.8. For each of these nodes, 

displacements under loading have been evaluated. In some cases, if nodes were not exactly 

corresponding to midpoints, a linear interpolation has been done between the two nearest nodes. 

 

 

Figure 3.8: Reference points for data transfer between ANSYS and ROXIE. 

Once evaluated displacements with respect to ANSYS unloaded geometry, they have to be 
reduced to ROXIE nominal geometry. For this purpose, final positions of these points is 
evaluated and displacements inserted in ROXIE correspond to the difference between this 
geometry and the ROXIE nominal one. 
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4 MECHANICAL PROPERTIES MEASUREMENTS 

4.1 Capacitive force transducers 

Capacitive force transducers have been developed at CERN to measure the stress inside magnets, 

both at room and at cold temperature [16]. Their behavior is based on the well known relation 

(4.1): 

δ
εSC = .                                                                (4.1) 

which gives the value of the capacitance C for a simple electrostatic transducer, constituted of 

two electrodes of area S. Between the electrodes, made by two plane sheets, a dielectric material 

with δ thickness and ε electric permittivity is inserted. 

When an external pressure is there applied, if the elastic modulus of the dielectric is much smaller 

than the modulus of the electrodes, the capacitance changes with respect to this relation: 







 −

=

E

SC
σδ

ε

1
,                                                 (4.2) 

where σ is the applied stress and E is the dielectric Young modulus. Factors that may influence 

Eq. (4.2) are the mechanical properties of the dielectric and its boundary conditions. 

Deformations of the dielectric in orthogonal direction with respect to the load application, due to 

Poisson's moduli value, can be avoided by applying an hydrostatic stress. This condition is 

obtained by gluing the layers of the gauge one to the other. In this way, electrodes work not only 

with electrical purpose, but also as containment structure for the dielectric. 

The gauge consists of a sandwich of stainless steel foils interleaved with polyimide films glued 

together (see Figure 4.1). Stainless steel 316LN has been chosen for the electrodes for two 

reasons: gauges have to support, without plastic deformation, high pressures and they have to 

work inside magnets without interfering with the magnetic field. For this purpose, non-magnetic 
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stainless steel is required. Moreover, to better support high pressures, layers used for building 

gages are usually pre-plastified under a load of about 200 MPa. 

 

0.5 mm

Kapton film 25µmStainless steel foil 50 µm
M610 bond

100 mm

16 mm

External protection layer
of Kapton film 50 µm

Connections

 

Figure 4.1: Capacitive force transducer. 

The dielectric is chosen on the base of its elastic modulus and its electrical permittivity, from 

which gauge sensitivity directly depends. For magnet measurement gauges, kapton tapes were 

chosen as dielectric material. To glue the whole device, a special high-performance epoxy resin is 

used (Micro-Measurements, M610). Its best properties are the good elongation capacity and the 

possibility of operating in a temperature range between 1.9 K and 430 K. 

Gauges are fabricated in two steps: first components are prepared and cut. Then, they are 

superposed one to the other. After assembling, the sandwich of components is cured in a mould at 

1400 C during 2 hours. After curing, the dielectric layers, kept a little bit wider than electrodes to 

facilitate manufacturing, are cut precisely to electrodes dimension. Once fabricated, the gauge 

needs to be pre-cycled at a pressure 20% higher than the operating one, during a certain number 

of thermal cycles in liquid nitrogen. 

Before use, gauges have to be calibrated. They are given a loading curve up to about 100 MPa 

and in the meantime, capacitance is measured. The output curves pressure/ capacitance show a 

small non-linearity at the very beginning of the load and some hysteresis during load-releasing 
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cycles. These effect are in general small, and even with a linear approximation the error is of 

about 5% over a range of pressure up to 200 MPa. 

Fringe capacitance of the wires and the connections must be taken in account while measuring. 

For gauges working at 77 K, the zero of the calibration curve results shifted of a about 800 pF 

compared to the zero at 300 K. This is the Apparent Capacitance value (AC). It is due essentially 

to the change of permittivity of the polyimide at cold temperature and to the thermal contraction 

after cooling. Sensitivity of the transducers is reduced of the 30% because of this effect when 

gauges are cooled. 

 

 

Figure 4.2: Schematic layout of the data acquisition system. 

Usually it is necessary to acquire data from several capacitive probes at the same time. For this 

purpose, a data acquisition system with multichannel, driven by a PC, was developed for a series 

of magnet tests at CERN. A schematic structure of the system is shown in Figure 4.2. Through 

the GPIB interface, a program written in LabView activates one channel each time in scan 

mode. Data are stored into the PC. After each scan, the data is transformed into pressure in a table 

format, according to the individual calibrations of the various transducers connected to the 

system. 
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4.2 Coils elasticity curve 

Experimental data relative to the coil elasticity curve have been worked out in the CERN Short 

Dipoles laboratory through a mechanical test where the coils are compressed at room temperature 

(293 K). The coils are put inside a press, made up of two rigid blocks of steel, the upper one 

moved by an hydraulic system, the lower one fixed to a basement. A rigid mould dimensioned as 

coils nominal shape (see Figure 4.3) is positioned on the lower block.  

Between the mould and the section of the coil that is tested, a thin layer of kapton is inserted, to 

permit better slide of the two surfaces and to avoid a non-uniform stress distribution. On the 

mobile block, in correspondence of the press mid-plane, displacement sensors are soldered, 

whilst, in correspondence of the zone where coils will be in contact with the upper block, 

capacitive force transducers, described in 4.1, used to measure pressure are glued. 

 

coils capacitive force
transducers

displacement sensors
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Figure 4.3: Coils elastic modulus measuring press. 

Coils are positioned, only one for each measurement, inside the mould. During the test, the upper 

block displacement, assumed equal to the coil azimuthal contraction, is measured simultaneously 

to the pressure data acquisition, in steps of load determined by manual feed on the hydraulic 

system. Gauges indeed, give pressure values interpolated along the coils compressed section. 

A series of measurements has been taken both on the inner and on the outer coil separately. 

During each measure, a loading/unloading cycle has been applied whose maximum value has 

been increased of 20 MPa from one cycle to the sequent one. The first compression cycle runs 

from zero to about 40 MPa, the last runs from zero to about 100 MPa. In this way, all the coil 

range of solicitation is covered by our tests. Each load case is evaluated twice. 

Resulting data come out in the form of a table and of a plot, containing the pressure applied and 

the correspondent displacements measured both for loading and unloading steps. The 

experimental data examined in our computations are shown in Figure 4.4, Figure 4.5, Figure 4.6 

and in Figure 4.7, for each one of the two cases measured for the same maximum load. 

All data corresponding to a cycle have been fitted using two polynomial curves of the second 

order, one for the loading data and one for the unloading ones. Fitting curves are different for 

loading and unloading because of the hysteresis presented by coil answer to solicitation. Curves 

are built up starting from data corresponding to a pressure of more than 5 MPa. This is because, 

under this value of solicitation, we are not interested in the deformation field. Fitting curves are 

drawn on Figure 4.4, Figure 4.5, Figure 4.6 and in Figure 4.7: continuous lines correspond to 

loading and dotted lines correspond to unloading, while dots correspond to acquisition points. 

The zero of the graphics depends on the calibration of the acquisition system. Coils dimension in 

azimuthal direction is not well defined in absence of loading, because of the different components 

which are not glued but only compressed and heated into a press before assembling (see 2.3.1.3). 

For this reason, the acquisition system has been calibrated such in a way that measured 

displacements are null when coils are loaded with a pressure of approximately 50 MPa. 
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Figure 4.4: Inner coil experimental data, sets for two loading cycles with maximum value of 40 MPa and 

other two with a maximum value of 60 MPa. Continuous line: loading fitted curve. Dotted line: unloading 

fitted curve. 
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Figure 4.5: Inner coil experimental data, sets for two loading cycles with maximum value of 80 MPa and 

two other with a maximum value of 100 MPa. Continuous lines: loading fitted curve. Dotted lines: 

unloading fitted curves. 
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Figure 4.6: Outer coil experimental data, sets for two loading cycles with maximum value of 40 MPa and 

two other with a maximum value of 60 MPa. Continuous line: loading fitted curve. Dotted line: unloading 

fitted curve. 
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Figure 4.7: Outer coil experimental data, sets for two loading cycles with maximum value of 80 MPa and 

two other with a maximum value of 100 MPa. Continuous line: loading fitted curve. Dotted line: 

unloading fitted curve. 
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To extrapolate the Young modulus of the coil blocks from these data, it is necessary to 

postprocess them. First, a best fit is made on both the ascending and the descending curves, using 

a second order polynomial curve. In this way, for each loading cycle, two fitting curves are 

obtained. In Table 4.1and in Table 4.2, their coefficients are given, analyzing two different 

experimental cases for each load. They represent the following relation: 

cbdad ++= 2σ                                                (4.3) 

where σ is the applied stress and d is the measured displacement. 

We carry out the fit on displacements instead of on the deformation: in fact, in order to evaluate 

the deformation one has to fix a coil length d0 at 0 MPa, that is difficult to evaluate with great 

precision. One can overcome this problem according with the following strategy. We assume that 

copper wedges are uncompressible and the deformation reads: 

l
dd 0−

=ε                                                           (4.4) 

where d is the measured displacement and, d0 is the unknown coil length at 0 MPa and l is the 

blocks azimuthal nominal length. 

One can work out the relation between the elastic modulus and the applied stress. The Young 

modulus is defined as the first derivative of the σ (ε) curve and can be calculated either directly 

as the slope of the straight line connecting two consecutive measurements, or evaluating the first 

derivative of the fitting curve. We use this second method, which leads to more precise numerical 

estimates. 

Taking into account the expression of the deformation as a function of the displacement (4.4), the 

derivative of the (4.3) results: 

( ) bladlbadld
dd

dE +=+⋅=
∂
∂
⋅

∂
∂

== 22
ε

σ
ε
σ .                      (4.5) 

In order to derive a relation between E and σ, we write the deformation as a function of the 

elastic modulus 
a

b
al
Ed

22
−=  and then substituting this expression inside (4.3), we obtain: 
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Therefore E as a function of σ reads:  
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As it is possible to see in Table 4.1 and in Table 4.2, (last columns), the quantity 







− c

a
b
4

2

  has 

values representing a few per cent of the usual working values of σ (≈ 40÷80 MPa). Moreover, 

these values are not physical since they are negative. Therefore, it is reasonable to assume that E 

(σ = 0) = 0 and therefore 0
4

2

=







− c

a
b

 : 

σalE 2=                                                               (4.8) 

In this way, we obtain an estimate of the Young modulus without using the coil length d0, which 

is very difficult to measure. 

If in Eq.(4.8) we take into account the relation 
F
σε = , we can write: 

σε
ε
σ FF

d
dE 22 ===                                                       (4.9) 

Examining the data in Table 4.1 and in Table 4.2, it is interesting to notice that, while all loading 

curves can be perfectly superposed one to the other, unloading curves do not seem so correlated. 

Indeed, the correspondence also of these curves is shown. We can say that unloading curves 

result shifted of a certain amount if we increase the maximum load value in the cycle. This shift 
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is probably due to a certain plastic deformation of the coil components and to an hysteresis 

behavior of the coils. 

Table 4.1: Inner coil measurements interpolation curve coefficients. 

INNER COIL 

LOADING CURVE UNLOADING CURVE  

Max 

load 
a b c c

a
b

−
4

2

 a b c c
a

b
−

4

2

 

[MPa] 





2mm
MPa

 







mm
MPa  [MPa] [MPa] 





2mm
MPa







mm
MPa

[MPa] [MPa] 

40 245 326 110 -2 377 426 124 -3 

40 230 315 109 -1 374 424 124 -4 

60 225 309 107 -1 360 395 112 -4 

60 224 312 109 0 350 390 112 -4 

80 225 305 105 -1 361 378 104 -5 

80 231 311 106 -2 321 353 101 -4 

100 210 293 103 0 324 339 93 -5 

100 209 292 103 -1 332 348 95 -4 

 

Analyzing the data relative to the coefficient a, we can evaluate the averages and their errors for 

both inner and outer layers and for loading and unloading curves. The analysis of Figure 4.4 to 

Figure 4.7, and of the data in Table 4.1and Table 4.2, shows that the curves for different maximal 

loading are approximately the same. 

The plots of the obtained experimental σ (Et) curves are given in Figure 4.8 and Figure 4.9. 

Therefore we assume that there are only two curves σ (ε), one for loading and one for unloading 

for each coil layer. 

 

 

56



Table 4.2: Outer coil measurements interpolation curve coefficients 

OUTER COIL 

LOADING CURVE UNLOADING CURVE Max 

load 

[MPa] 

a b c c
a

b
−

4

2

 a b c c
a

b
−

4

2

 

[MPa] 





2mm
MPa







mm
MPa  [MPa] [MPa] 





2mm
MPa







mm
MPa [MPa] [MPa] 

40 139 198 72 -2 175 216 69 -2 

40 145 204 74 -1 178 220 71 -3 

60 142 200 72 -2 184 214 65 -3 

60 142 201 72 -1 186 216 66 -3 

80 139 197 72 -1 190 209 62 -4 

80 140 199 72 -1 184 206 61 -4 

100 130 192 71 -1 239 228 60 -6 

 

The data for the estimates of a and F are given in Table 4.3, where 2 sigmas are taken for the 

error (97.7 % of confidence level). 

Table 4.3: Fitting curves coefficient a: average and sigma values. 

 INNER COIL OUTER COIL 

 Loading Unloading Loading Unloading 

a average  

[MPa/mm2] 
225 350 140 182 

a sigma 

[MPa/mm2] 
11 20 4 5 

F [MPa] 2.3⋅105 3.6⋅105 2.6⋅105 3.4⋅105 
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The analysis of Table 4.3 also shows that both inner and outer layers have approximately the 

same behavior, within the experimental errors. The elastic modulus varies from about 6500MPa 

to about 10500 MPa in the range of the coil solicitation (30÷80 MPa). One can also verify that 

the coils result harder during unloading. This is why, once certain compression is given, spaces 

between conductors are filled by kapton, which moreover stops gliding after some compression 

and add resistance to more deformations. In this case, even if the pressure is released, certain 

deformation remains and the elastic modulus results bigger than the correspondent one at the 

same value of stress but on the loading curve. 

 

 

Figure 4.8: Inner coil experimental relations between E and σ. 
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If we connect all the experimental data with a line, the shape obtained is that one of a typical 

hysteresis cycle. It is not trivial to implement these experimental data and the so evaluated 

material properties inside the finite element model. A first approximation is made deciding to use 

the data relative to the unloading curve. This is because, in our model, we always start calculation 

from the dipole already assembled. What we study in fact, is the position of cables and the 

component stress after assembling the dipole or after cooling. Both in these cases, the coil stress 

decreases, for materials relaxing after compression and for the thermal contraction too in the cold 

case. A way of implementing the elastic curve inside the finite element model is shown in 

Appendix A [10]. 
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Figure 4.9: Outer coil experimental relations between E and σ. 

4.3 Coils prestress at room and at cryogenic temperature 

Coils stress measurements on short models of the LHC dipoles have been done at CERN by the 

Short Dipole Section of the LHC/MMS group [2]. 

Table 4.4: Prestress measurements on the coils 

PRESTRESS MEASUREMENTS 

After collaring  

[MPa] 

After yoking 

[MPa] 

At cold 1.9K  

[MPa] 
Inner Outer Inner Outer Inner Outer 

Magnet model 

100 122 109 133 42 60 v2 re-collared with SS collars 

100 122 94 105 36 47 v4 without support from the yoke 

86 104 92 110 38 48 Re-collared with mixed collars (Al+SS) 

69 94 77 101 28 47 SS, 6-blocks 

58 63 66 71 26 24 v2, , re-collared, with a less pre-stress 

88 97 93 103 38 43  

88 97 93 103 33 38 v4 without axial support (no bullets) 

58 74 66 80 23 30 SS, 6-blocks 

58 69 64 76 27 35 Re-collared with 0.15-mm shims more 

62 78 72 87 28 32 Re-assembled: all ferromagnetic yoke 

54 73 62 80 26 30 V2, Re-collared on the bore tube 

70 94 74 97 30 37 v1, only inner layer ULTEM spacers 

50 57 62 68 21 23 SS, 6-blocks, ULTEM spacers 

59 82 66 86 18 31 SS, 6-blocks, Apica 
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59 82 66 86 15 29 V1+ 50kN/bullet (instead 15kN before) 

 

Capacitive force transducers described in 4.1 have been put inside the magnet, between collars 

and coils, in correspondence of the collars "noses". Measurements are taken both at room 

temperature after collaring and after yoking, and at cold. The data relative to several magnet 

models are given in Table 4.4. 

Analyzing such measurements, it is possible to find a law that connects the prestress on the coils 

after assembling at room temperature with the ones at cold temperature. 

Stainless steel collars
prestress measurements on the coils in tangential direction

after yoking vs. at cold
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Figure 4.10: Inner and outer coil stresses after yoking and at cold: experimental data and linear 

interpolation. 
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Looking at Figure 4.10, we can notice that the relation between cold and warm measurements can 

be fitted with a linear curve: 

( )BA wc −= σσ ,                                                     (4.10) 

with: 

A ≅ 0.55±0.09 

B ≅ (20±10) MPa. 

Both errors correspond to two sigmas. 

The analysis of these data provides a way to check the agreement with the measured coefficient 

of thermal expansion of the coils. Moreover, it is possible to give estimates of coils Young 

modulus at cold temperature. 

4.3.1 Check of the contraction coefficient of the coils 

Experimental data show that a prestress of 0 MPa at cold temperature is reached for a coil 

compressed at warm temperature of around 20 MPa (see Eq. (4.10)). From these data, one can 

estimate the thermal contraction coefficient of the coils. In fact, in this load case the coil length 

compression at warm temperature must be equal to the thermal contraction. 

00000 kwkwbwbwccwkkwbbw lllll εεααα +=−+ ,                              (4.11) 

where: 

lbw0 = blocks azimuthal length at warm temperature in absence of loading; 

lkw0 = copper wedges azimuthal length at warm temperature in absence of loading; 

lcw0 = collars azimuthal length at warm temperature in absence of loading; 

αb = coils thermal expansion coefficient; 

αk = 3.3⋅10-3 = copper wedges thermal expansion coefficient, interpolated on 292 K; 

αc = 2.6⋅10-3 = collars thermal expansion, interpolated on 292 K; 

εbw = blocks deformation at warm temperature; 

εkw = copper wedges deformation at warm temperature. 
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In Table 4.5, length values are reported for both the inner and the outer coil. 

 

Table 4.5: Warm temperature components azimuthal lengths. 

 lcw0 [mm] lbw0 [mm] lkw0 [mm] 

Inner coil 46.2 32.1 14.1 
Outer coil 48.7 43.5 5.2 

 

One can derive αb from (4.11): 

321
0

0

0

00
bbb

bw

kw
kwbw

bw

kwkcwc
b l

l
l

ll
αααεε

αα
α ++=++

−
=                   (4.12) 

We separately calculate the contributes of the different terms in (4.12). The first term (αb1), 

depending on the thermal expansion coefficients, can be evaluated for both inner and outer coils 

using the constant values given above. It results: 

αb1 (inner coil) = 2.3⋅10-3; 

αb1 (outer coil) = 2.5⋅10-3. 

To calculate the second (αb2) and the third (αb3) terms values, we first have to write blocks and 

copper wedges deformations as functions of their elastic modulus (E) and of the applied stress (σ 

= 20 ± 10 MPa). For copper wedges, whose Young modulus is a constant (100000 MPa), we 

obtain: 

3102.0 −⋅==
kw

kw E
σε .                                             (4.13) 

Contribution of the second term results: 

αb2 (inner coil) = 0.09⋅10-3; 

αb2 (outer coil) = 0.02⋅10-3. 
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For blocks, whose elastic modulus is given by Eq. (4.9), using the definition of elastic modulus, 

i.e., 
ε
σ
∂
∂

=E , we can derive and substitute the Eq. (4.9) in it, obtaining: 

bw
bw F

σε =                                                               (4.14) 

The experimental value of Fbw is 3.6⋅105. 

From Eq. (4.14), we obtain the error estimate: 

31.006.025.0
2
1

=+=
∆

+
∆

=
∆

bw

bw

bw

bw

l
l

σ
σ

ε
ε

                            (4.15) 

where ∆ are the errors on the measured values. Therefore, the third term contribution is: 

αb3 = εbw = (7.5+2.3) 10-3                                              (4.16) 

Evaluation of αb can be done neglecting the second term, two orders of magnitude smaller that 

the others. We get: 

αb (inner coil) = (9.8±2.3) ⋅10-3; 

αb (outer coil) = (10±2.3) ⋅10-3. 

Neglecting the second term, it means that copper wedges deformation is negligible with respect 

to blocks one. It can be demonstrated that this is true for all the cases treated. For sake of 

simplicity, in the following, this term will be left out in the computation of the coil deformations. 

4.3.2 Modeling the prestress loss from room to cryogenic temperature 

We want now to calculate a theoretical relation between the stress/strain curve at cold and at 

warm temperature for the coils and to compare it with the experimental one. First, we assume that 

the relation between ε and σ is linear for all the components, conductors blocks included and that 

collar deformations are negligible both at warm and at cold temperature. This is because collar 

elastic modulus is much bigger than coils one. Therefore, we can write: 
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bw

w

bwo

bwbwo
bw El

ll σ
ε =

−
= ;                                                 (4.17 a) 

bc

c

bco

bcbco
bc El

ll σ
ε =

−
= ;                                                   (4.17 b) 

0≅=
+−

=
cw

w

cwo

cwcwo
cw El

ll σ
ε ;                                            (4.17 c) 

0≅=
+−

=
cc

c

cco

cccco
cc El

ll σ
ε ;                                            (4.17 d) 

where relations a and b are written for the blocks, whilst relations c and d are written for the 

collar. From these expression, we obtain blocks and collar azimuthal lengths under compression 

once supposed known the relation between σ and E from experimental data. 









−=

bw

w
bwbw E

ll
σ

10                                                  (4.18 a) 









−=

bc

c
bcbc E

ll
σ

10                                                  (4.18 b) 

0cwcw ll =                                                           (4.18 c) 

0cccc ll =                                                           (4.18 d) 

Due to thermal expansion, the coils and collars unloaded lengths (at cold and at warm 

temperature) are given by: 

( )bbcbw ll α+= 100                                                  (4.19 a) 

( )ccccw ll α+= 100                                                  (4.19 b) 

Substituting the (4.19 a) into the (4.18 a) and the (4.19 b) into the (4.18 c), we obtain: 

( ) bw
bw

w
bbc l

E
l =








−+
σα 110                                          (4.20 a) 
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( ) cwccc ll =+α10                                                  (4.20 b) 

We neglect, as already explained, the influence of copper wedges, so that we can assume that 

blocks dimension under loading is equal to collar dimension, both at cold and at warm 

temperature. 

ccbc ll =                                                        (4.21 a) 

cwbw ll =                                                        (4.21 b) 

From these relations, we can equate the first term of (4.20 a) with the first term of (4.20 b) and 

the second term of (4.18 b) with the second term of (4.18 d) obtaining: 

( ) ( ccco
bw

w
bbco l

E
l α

σ
α +=








−+ 111 )                                       (4.22 a) 

00 1 cc
bc

c
bc l

E
l =








−
σ

                                                    (4.22 b) 

Dividing Eq. (4.21 b) by Eq. (4.21 a), we get: 

( ) ( ) 







++=




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
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bw

w
b EE

σ
α

σ
α 1111 .                                      (4.23) 

In Eq. (4.22), we can make a simplification, considering only the first order terms of the 

products. In fact, having all the terms an order of magnitude of 10-3, the products between them 

become three orders of magnitude smaller (10-6). Thanks to this simplification, we get: 

bc

c
c

bw

w
b EE

σ
α

σ
α −=− .                                                       (4.24) 

And, consequently: 

bc

c

bw

w
cb EE

σσ
αα −=− .                                                   (4.25) 

Reordering the terms, we obtain: 
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bc

c

bw

w
cb EE

σσαα −=− .                                                      (4.26) 

Writing the stress at cold as a function of that one at warm: 

( ) bccbw
bw

bc
c E

E
E

αασσ −−= .                                            (4.27) 

It follows that the ratio between blocks elastic moduli at cold and at warm temperature should be 

equal to 0.55 to satisfy the relation find out examining the experimental data (4.10), but an elastic 

modulus that results bigger at warm than at cold temperature has not physical meaning. Indeed, 

after cooling, coil material becomes more rigid and the modulus consequently increases, so that 

the ratio should be bigger than one. For this reason, this ratio can be consider valid only if we 

suppose linear the relation between ε and σ relative to the blocks. In the following, we will show 

that this paradox comes out from the linear approximation of the σ (ε) curve. The ratio between 

Young moduli in fact becomes bigger than 1, as expected, if the nonlinear behavior of the coils is 

taken into account. 

Now, we consider in the computation of the elastic moduli the experimental laws, still neglecting 

the influence of collar deformations: 

bw

w

bwo

bwbwo
bw Fl

ll σ
ε =

−
=                                                         (4.28 a) 
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ε                                                    (4.28 c) 

0≅=
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=
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cccco
cc El

ll σ
ε                                                     (4.28 d) 

If one extrapolates lengths of collar and blocks under no load, one gets: 
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

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bwbw F
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10                                                      (4.29 a) 


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
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



−=

bc

c
bcbc F

ll σ
10                                                     (4.29 b) 

0cwcw ll =                                                               (4.29 c) 

0cccc ll =                                                                (4.29 d) 

Calling the thermal contraction relations, Eq. (4.18 a) and Eq. (4.18 b), substituting into the Eq. 

(4.28 a) and into the Eq. (4.28 c), one obtains: 

( ) 









−+=

bw

w
bbcbw F

ll σ
α 110                                           (4.30 a) 

( )ccccw ll α+= 10                                                     (4.30 b) 

In this calculation too, we assume that copper wedges deformations are negligible, so that (4.21 

a) and (4.21 b) are still valid. For this, we can equate the second terms of (4.30 a) and of (4.30 b), 

and the second terms of (4.29 b) and (4.29 d). We obtain: 
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Dividing term by term, one obtains: 

( ) ( ) 









−+=










−+

bc

c
c

bw

w
b FF

σ
α

σ
α 1111                                     (4.32) 
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Reordering the terms and squaring, we obtain: 
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Now, we impose, as in Eq. 4.3.1, a zero coil prestress at cold temperature. In this case, we have: 

bwcbw F2)( αασ −=                                                     (4.36) 

from which we obtain: 

bw

w
cb F

σ
αα +=                                                    (4.37) 

σw = 20±10 MPa 

Fbw = 3.6⋅105; 

αc = 2.6⋅10-3 

One obtains also in this case αb =10⋅10-3. Let us now derive the slope of the relation cw σσ / . One 

has to derive the expression of σc with respect to σw and then to impose the experimental results 

w

c

σ
σ

∂
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≅ 0.55. 
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We can now use this relation to derive Fbc: 
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It is then possible to calculate the ratio between Fbc and Fbw. For a warm prestress of 80 MPa, this 

value becomes 1.08. We can now calculate, on this base, the ratio between the Young modulus at 

warm and at cold temperature. We remember the relations already given: 

bw

w
bw F

σ
ε                                                                 (4.28 a) 

cw

c
bc F

σ
ε =                                                                 (4.28 b) 

From them, squaring, one can deduce: 

bwbww F2εσ =                                                           (4.40 a) 

bcbcc F2εσ =                                                             (4.40 b) 

from which: 
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The ratio between the two Young moduli is: 
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In this way, we can see that the real ratio between cold and warm Young moduli is more than 

one, as expected from physical considerations. It our simulation model, the ratio will be 1. 
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5 RESULTS OF THE FINITE ELEMENT MODEL OF 

THE DIPOLE 

5.1 General remarks 

The finite element model of the dipole cross section built up with ANSYS (see section 3) has 

been used to evaluate stress loading and displacements. All calculations have been done at 

cryogenic temperature (1.9 K), fixing the coil azimuthal prestress at 40 MPa. The most important 

goal is to know the position of coil cables, from which field components depend. We evaluate the 

cable displacements and corresponding multipoles at injection conditions, that is the most critical 

for field quality, omitting the force of Lorentz effects on the cables.  

The induced deformations found with ANSYS are post-processed by a set of “ad hoc” 

developed programs, called ANSIA [15], that transforms the displacements file into an input file 

readable by ROXIE [3], the magnetostatic code. Input files for ANSIA are: 

• the ROXIE file containing the nominal geometry; 

• the ANSYS output file containing the coil node positions at nominal geometry; 

• the ANSYS output file containing the coil node positions in the test case (depending on the 

coil length used); 

• the file containing ANSYS node numbers corresponding to conductor blocks vertexes; 

• the ANSYS output file containing the coil node displacements. 

ANSIA produces the ROXIE input files describing undeformed and deformed geometry. These 

files are input in ROXIE, which computes the magnetic field and the multipolar components 

induced by deformations (see Chapter 4.3). Results are used to find the effect of coil 

deformations on the multipolar components (see Eq.2.17) in the magnetic field. Moreover, the 

influence of coil length and collar shapes on the field quality is evaluated.  

In each calculation, resulting multipolar components are compared to nominal values, i.e. the 

ideal magnetic field component values expected for the nominal geometry without any 
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construction error. Expected multipoles result from a process of optimization where the cross 

section of the magnet is designed as to minimize the effect of persistent currents (see Chapter 

2.3). Effects of parameter variation and of dimensional variations within mechanical tolerances 

on field quality are always expressed in terms of the error with respect to the nominal field. 

Multipolar coefficient nominal values are reported in Table 5.1. 

Table 5.1: Nominal values of the geometrical multipole components at injection. Units of 10-4 at the 

reference radius Rref  = 17 mm 

Normal 

components 
Values 

b2 4.25 

b3 7.32 

b4 0.01 

b5 -1.05 

b6 0.00 

b7 0.63 

b8 0.00 

b9 0.10 

b10 0.00 

b11 0.61 

b12 0.00 

b13 0.08 

b14 0.00 

b15 0.03 

b16 0.00 

b17 -0.05 
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5.2 ANSYS output results 

Since we are mostly interested in displacements and stress solicitations for coils, we used a polar 

coordinate system centered in the geometrical center of the aperture to analyze the results. 

ANSYS output gives plots and list of values, from which it is possible to evaluate the stress and 

the displacement distribution in azimuthal and radial direction. The stresses and displacements 

values are given for each node where the solution is calculated. 

 

Figure 5.1: Stress distribution of the coils in radial direction for ¼ aperture cross section. Calculations at 

1.9 K, average tangential prestress -40 MPa.  
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As shown in Figure 5.1, the radial stress has a uniform distribution except for the contact zone 

between the inner coil and outer coil copper wedge. The maximum value of the coil stress is -30 

MPa, i.e. compression stress, whilst there are some tension peaks around the pins and on the 

collar, at the top corner in front of the external coil. 

Looking at Figure 5.2, we can see that in the azimuthal direction the stress has a uniform 

distribution along the whole coil length, with an average of –40 MPa. Both coils have zones of 

higher stress, in their inner part and in correspondence of the outer coil copper wedge. 

 

 

Figure 5.2: Stress distribution for the coils in azimuthal direction for ¼ aperture cross section. Calculation 

at 1.9 K, average tangential prestress -40 MPa. 
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The coil deformation is a field of 2D vectors that is evaluated on a finite set of nodes in the 

magnet cross section and then interpolated to give a surface distribution over all the areas. In 

Figure 5.3 and Figure 5.4, the distributions of displacements in the coil are shown. 

Along the radial direction, displacement values stay between -0.4 mm and -0.08 mm, with the 

inner part less deformed. In the tangential direction, displacements vary between -0.3 mm on the 

top of the coils to -0.02 mm on the bottom, next to the mid-plane, where displacements are not 

permitted by boundary conditions. 

 

 

Figure 5.3: Displacements distribution in the radial direction on ¼ of the coil cross section. 
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Figure 5.4: Displacements distribution along the tangential direction 

5.3 Decomposition of displacements 

Since the deformation field is rather smooth, we propose to parameterize it with a low order 

Taylor and Fourier series. In this way, all the information relative to the deformations can be 

reduced to a few coefficients, thus simplifying the analysis of the relation between deformation 

and multipoles. We numerically estimate the influence of single deformation modes on the 

multipoles, thus identifying the most dangerous [17]. 

Deformations are implemented in ROXIE as rigid movements of conductor blocks. For this 

reason, we consider a field deformation defined over the four radii (r1, r2, r3, r4) = (28, 43.4, 43.9, 

59.3) mm that surround the inner and the outer layer of the coils. The field then depends on the 
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discrete variable ri and on the continuous angular variable ϕ. Deformations are then decomposed 

into a radial dr(ri, ϕ) and a tangential dp(ri, ϕ) component.  

 

 

 

Figure 5.5: Plot of radial deformations for each of the four coils contours, stainless steel collars. Dots, 

ANSYS values. Lines, series approximation. 
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Radial deformations are well described using the first terms of an even Fourier series in the 

azimuthal variable ϕ.  

∑
=

=
K

k
iki kardr

0
, )cos(),( ϕϕ                                             (5,1) 

Here the index i runs over the four concentric circles that surround inner and outer coils, and k 

run over the modes. The mode zero (a0,i) gives rise to a contraction or to a dilatation of the coil; 

the mode one (a1,i) produces an horizontal shift in the coil, whilst higher order modes correspond 

to radial waves of deformation with decreasing period. The up-down symmetry is responsible for 

the absence of sine terms in the Fourier series.Tangential deformations are also well 

approximated by the first terms of an odd Taylor series in each half of the aperture: 
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,),( ϕϕϕ            i=1,4       ϕ∈ [π/2, 3π/2].               (5,3) 

The zero modes (b0,i and c0,i) correspond to tangential compression or dilatation, uniform along 

the azimuth. Higher order modes correspond to tangential waves of compression and dilatations. 

Also in this case, the up-down symmetry implies the presence of odd terms only. 

In Figure 5.5 and in Figure 5.6, we show the radial and tangential deformations evaluated through 

ANSYS (dots) and the series approximation (solid lines) with seven radial modes and two 

tangential modes (K=6 and J=1). If the displacements evaluated with ANSYS are replaced by 

the interpolated field, the resulting multipoles agree with the ANSYS results (see Table 5.2, last 

two rows). 

This means that low order Taylor and Fourier series can take into account the part of the 

deformation that are relevant to evaluate multipoles. Each mode contributing to the multipoles is 

given in Table 5.2. In this table and in the following ones, the multipole component variations are 

expressed as the difference between the calculated and the nominal components at the injection. 

The convention adopted gives values as follow: 
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nomicalcii bbb ,, −=∆ .                                                   (5,4) 

For symmetry reason, even radial modes only contribute to odd multipoles and odd radial modes 

to even multipoles. 

 

 

Figure 5.6: Plot of tangent deformations for each of the four coils contours, stainless steel collars. Dots: 

ANSYS values. Lines: series approximation. 
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Table 5.2: Contribution of radial and tangent modes to the multipole components variations induced by 

deformation, total effect of 7 radial and 2 tangential modes, and comparison with ANSYS results. Values 

are given in units of 10-4 at Rref =17 mm. 

 ∆b2 ∆b3 ∆b5 ∆b7 

Radial     

k=0 0.00 0.10 -0.06 0.01 

k=1 0.03 0.00 0.00 0.00 

k=2 0.00 -3.14 0.18 -0.04 

k=3 0.08 0.00 0.00 0.00 

k=4 0.00 0.53 0.69 0.01 

k=5 0.00 0.00 0.00 0.00 

k=6 0.00 0.02 -0.05 -0.07 

Tangential     

j=0 0.05 -0.24 -0.06 -0.02 

j=1 -0.01 0.01 0.02 0.00 

Total 0.15 -2.73 0.72 -0.11 

ANSYS 0.16 -2.79 0.73 -0.12 

 

One can distinguish two main effects. 

• The radial deformations of order 2 (i.e. circles are deformed into ellipses, see Figure 5.7) have 

a strong effect on the sextupole (∆b3 ≅ -3 units) and on the decapole (∆b5 ≅ 0.2 units). 

• Radial deformation of order 4 yields to 0.5 units of b3 and 0.7 units of b5. 
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Figure 5.7: Plot of radial deformations, mode 2, in Cartesian coordinates. Undeformed circle (solid line) 

versus deformed circle (dotted line). 

Simulations have also shown that the radial and tangential deformations are rather well 

decoupled. In Table 5.2 the effect of the tangential modes seems to be very limited, giving only 

some contribution to b3. This is because, in our computations, we fixed the initial coil length to 

an optimal value that allows recovering the nominal length after deformations, at 1.9 K. Indeed, 

an non-optimized coil length produces a tangential deformation that strongly affects the field 

multipoles. In this case, tangent deformations due to coil length different from the nominal one 

have a large influence on b3, b5, and b7. Simulations show that a 0.1 mm longer coil, starting from 

a non-optimized dimension, gives rise to about -3 units of sextupole and 0.5 of decapole. 

Therefore, the determination of the exact coil length under manufacturing forces and at cold is 

crucial to obtain a correct estimate of the absolute value of the multipoles. 
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The contributions of other deformation modes are not very relevant, giving rise to multipole 

shifts of less than 0.1 units. In particular, the following effects are negligible: 

• The effect of the first order tangential mode (tangential waves of compression and dilatation, 

see Table 5.2, mode j = 1) is negligible. 

• The radial mode of order zero, i.e. the radial shrinkage due to low temperature, is negligible 

(see Table 5.2, mode k = 0). 

• Odd radial modes, i.e. modes related to left-right asymmetries are very low. Therefore, 

deformations have negligible effect on even multipoles (see Table 5.2, mode k = 1,3,5). 

This theme will be better discussed later, in 5.4.3, where parametrical analysis of coil length is 

explained. 

5.4 MECHANICAL TOLERANCES 

5.4.1 General remarks on the problem 

Mechanical pieces are always affected by errors with respect to their nominal geometry, due to 

the machining process. For LHC dipole magnet components, the nominal tolerances have been 

determined essentially by mechanical stability requirements [18]. Indeed, it is useful to know the 

effects of these tolerances on field quality. If they are too large, it is possible that the field quality 

is not good enough for the particle beam stability. On the other hand, tight tolerances correspond 

to high production costs and bring the construction process close to the limits of present 

manufacturing techniques. Knowing the influence of the effects of coils and collars dimensions 

errors on the field quality, is interesting for two reasons: 

• possibility to relax tolerances and to reduce production costs; 

• chance to take field quality corrective actions modifying only some magnet components even 

after the magnet is built. 

In the next paragraph, different methods to evaluate these effects will be described and simulation 

results will be shown. 
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5.4.2 Methods to evaluate tolerances effects on field quality 

Tolerance effects on field quality can be evaluated in different ways, taking into account coils 

and collar deformations induced by assemblage and cooling or reducing displacements to simple 

rigid movements of the cables blocks. A first estimation can be done considering only this rigid 

motion [19]. In this way, it is possible to treat variations in the tangential dimensions of coils and 

errors on the inner radial part of the collars, i.e. the so-called nose. Nevertheless, using a rigid 

model it is not possible to evaluate geometry errors on the inner arcs of collars that instead will 

cause real coil deformations. Anyway, a first estimation of the effects of coil length variation was 

done using this simplified method. Radial and azimuthal positions of each block of 

superconducting cables were varied in an independent manner, using a Gaussian distribution 

around the nominal positions, with an appropriate value of standard deviation. 

If we want to give a more precise evaluation of the effects of collar deformations, of the coils 

different behavior under compression and of the geometry error in circular zone, we have to 

create a model that is able to calculate deformations [20]. We have built up a model using the 

finite element code ANSYS, described in chapter 3. In principle, in order to change the 

geometry of a component in the model, one should define a new position for the corresponding 

keypoint, i.e. vertexes of uniform material areas inside the model. In some cases, e.g. for the 

collars keypoints, this procedure is not straightforward, since a variation in the keypoints position 

would influence also the geometry of other components, that is defined in terms of the collar 

internal surface. In such cases, it is convenient to use the interference property of the contact 

elements instead, already treated in 3.3.3. 

Dimensional variations of coil components (blocks of cables and copper wedges) are simulated 

applying a real change on the geometry design in the finite element model, where all the nominal 

dimensions are inserted as parameters. This is the best solution, because with keypoints 

movement it is possible to maintain the required precision both in deformation results and in 

stress values. Using contact elements interference indeed, some errors occur in evaluating local 

displacements without the necessary precautions. 

Tolerances on collar geometry are simulated using the interference property of contact elements, 

on boundary surfaces between coils and collars (see 3.2.3.2). In this zone of the model, contact 
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elements are used to reproduce the effects of the presence of insulation layers and shims, which 

are not explicitly modeled. As already seen in 3.2.3.2, contact elements react like linear springs, 

transmitting a force directly proportional to their normal stiffness K, estimated according to: 

h
AE

K eq= ,                                                          (5,5) 

where A is the area on which the single contact element insist, Eeq is the elastic modulus of all 

material layers inserted between coils and collars and h is the element length. If contact elements 

are given a certain interference value, it means that the spring is pre-loaded and transfers a 

normal force to the two surfaces in contact, even if no external load is applied. Giving a higher or 

lower interference value for contact elements between coils and collars, we obtain a transmitted 

force that is higher or lower for the surfaces that are in contact. Obviously, the force will still be 

proportional to the element stiffness. Assuming that the error made incrementing this force and 

not moving keypoints of the collars to add steel has negligible influence on the stress values, as 

seen in 3.2.3.2, we can simulate a collar geometry different from the nominal one.  

In principle, the geometrical deviation from the nominal design of dipole components, like 

collars, copper wedges, or superconducting blocks, can have any shape. In practice, the 

production process limits the possible geometry errors. Analyzing the measurements of the 

available components, we decided to use shapes of the following type. 

• We assume that straight lines of the design are preserved and only the end-points of each 

segment can be displaced, within tolerances, in the same direction (line shift) or in opposite 

direction (line tilt), see Figure 5.8. 

• When arcs of circumference are considered, we assume that the circular shape is preserved 

and that only the arc end-points can move, within tolerances, in the same direction (shift) or 

in the opposite direction (tilt), see Figure 5.8. 

• Shifts are considered positive when in this way components to which shift is applied result 

smaller, while tilt are considered positive when the rotation is counter clockwise on the right 

part of the aperture and clockwise on the left part. 
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Figure 5.8: Positive shift (left), positive tilt (right). 

In a tilt or in a shift the end-points are displaced of the same amount in equal or in opposite 

directions, respectively. Errors are given a Gaussian distribution, centered on the nominal 

dimension. The specified tolerances are assumed to represent 3·σ of this Gaussian distribution. 

For each zone of study, we launched a loop of a certain number of calculations, with different 

interference or parameter values. Nominal geometry corresponds to the central case for both 

collar and coil studies, where the errors have the same probability to be of positive or negative 

sign with respect to the nominal geometry.  

Some calculations have to be done defining the coil length. Coil nominal dimension is in fact 

defined at 1.9 K and under a 40 MPa compression, but its azimuthal length at room temperature 

and in absence of stress can be obtained with the ANSYS model itself. 

A first calculation is made starting with nominal dimension at room temperature, without stress. 

Tangential deformation due to assembly and cool down is measured. Than, this value is added to 

the nominal length to obtain a coil that correspond to project dimensions once assembled and 

cooled down. This coil dimension represents the central case in each set of calculations.  
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 Five cases are taken for each simulation to cover a range wide enough to prove linear behavior 

of the function which correlates geometry errors and multipolar coefficients, but also to maintain 

reasonable working machine time. Interference values vary from nominal value -0.1 mm to 

nominal value +0.1 mm. This range has been chosen because it permits to cover a much wider 

range than the tolerance on collar dimensions.  

Since our model contains only one quarter of the cold mass cross section, we can only describe 

shape errors with an inherent up-down symmetry, inducing normal multipoles in the magnetic 

field. In real life however, skew multipoles will appear, because of the up-down tolerances, and 

normal and skew harmonics are expected to have the same order of magnitude.  

5.4.3 Tolerances on coils 

In order to model the tolerances on the coils one has to carefully analyze the industrial process 

that gives rise to the construction of the coils. We have already discussed in section 2.2.1.3 the 

coil components and their assemblage. Tolerances on the coil components are the sequent: 

• The azimuthal length of the copper wedges can be between 0 and 50 µm longer than the 

nominal value. 

• The thickness of each conductor can vary in the range ± 6 µm. This implies that the inner coil 

length, containing 15 conductors, can vary by ± 90 µm, and the outer coil length, made by 25 

conductors, can vary by ± 150 µm. 

• The polyimide insulation has a thickness uncertainty of ± 5 %, inducing a total uncertainty of 

± 180 µm for the inner coil and of ± 300 µm in the outer coil. 

Summing all these tolerances, the global variation of the coil azimuthal length is of several tenths 

of millimeters. Indeed, a much lower tolerance is required on this dimension (± 20 µm), after the 

curing process. In practice, the tolerance of the azimuthal coil length after curing is only 

determined by the tolerances of the curing mould, since all the component uncertainties are 

smoothed down by the compression and the heating of the polyimide insulating film. It is 

reasonable to assume that the copper wedges preserve the original azimuthal length, since they 

are rather rigid. We also assume that the blocks are deformed proportionally to the number of 

conductors, until they recover the assumed value of the azimuthal coil length. In these conditions 
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the uncertainty of the insulating film and of the conductors are in practice, ineffective. 

Summarizing, we used the following tolerances for the cured coil: 

• Azimuthal coil length: ± 20 µm. 

• Azimuthal copper wedge length: 0 to 25 µm. 

In addition to that, we always considered a perfect four-fold symmetry in the coil shape for each 

dipole aperture, to simplify our simulations.  

An estimation of the calculated effects is given in Table 5.3, where sensitivities of multipoles to a 

shift of + 0.1 mm on the coils length is given. In the first rows results are given for simple 

variations on the single coils (internal or external), whilst in the last row combined effects on the 

two coils are presented. 

Table 5.3: Multipoles variations for coils 0.1 mm longer with respect to the nominal geometry. 

 b3 b5 b7 

Inner coil -2.22 0.41 -0.14 

Outer coil -1.36 0.05 0.02 

Both coils -3.59 0.47 0.12 

 

Because of the restrictive hypothesis on the symmetry of the model, we can study variations of 

the odd normal multipoles only. Even multipoles (b2n), arising from left/right asymmetry can be 

estimated by a geometric average, according to (5,6). 

12122 −+ ⋅= nn bbb
n

.                                                  (5,6) 

The geometric average must be used instead of the arithmetic one since the main dependence of 

multipoles on the order n is a power law. 
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5.4.4 Tolerances on collars 

The collar tolerance zones of study are split in straight or circular parts labeled as shown in 

Figure 5.9. Simulations show that the effect of tolerances on the external part of the collar 

(9,10,11) have a very limited effect on the coil deformations, as expected. On the other hand, 

regions 1 to 8, which correspond to the internal part of the collar, strongly influence the coil 

deformation and therefore field quality. 

 

 

Figure 5.9: Schematic representation of the one-half collar. The numbers indicate the area affected by 

mechanical tolerances. 

A shift or a tilt in these regions may produce a sizeable change of the field-shape multipoles, 

because these surfaces are the ones nearest to the cables, from whose position the field depends. 

In the following, we will concentrate our analysis on these parts, analyzing each of them 

separately. 
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We first present the data relative to the sensitivity, i.e. the variations in each one of the multipoles 

due to a tilt or a shift of 0.1 mm in each of the regions 1 to 8. An estimate of the sensitivity to this 

effect is given in Table 5.3 and in Table 5.4. Here, variations of the lowest order harmonics, from 

b2 to b5, are quoted for a shift or a tilt respectively, in the appropriate areas. Again, we give the 

variation in the multipoles due to an error in the collar shape with respect to the nominal field 

components already presented in Table 5.1. 

Table 5.4: Variation of the multipoles in units of 10-4 at RREF = 17 mm, induced by a shift of 0.1 mm on the 

internal collar. 

Shift region b2 b3 b4 b5 

1 1.1 0.5 -0.2 -0.1 

2 -1.0 0.6 0.2 -0.1 

3 1.2 0.6 0.1 0.0 

4 -1.2 0.7 -0.1 0.0 

5 0.5 0.9 0.3 -0.1 

6 -0.5 0.9 -0.3 -0.1 

7 -2.2 -0.9 -0.1 0.1 

8 2.2 -1.0 0.1 0.0 

 

As we can see in Table 5.4 and in Table 5.5, positive collar shifts and tilts on symmetrical parts 

of collar (such as zones 1 and 2), produce effects according to previous symmetry considerations 

(see section 2.3). Even multipolar components are equal in absolute value but opposite in sign for 

symmetric zones of the collar, whilst odd ones are equal both in value and in sign. 

The induced multipoles vary almost linearly with the shape errors in the range ± 0.1 mm, 

considered in our calculations. This is shown, for instance, in Figure 5.10, where the low order 

harmonics b2 to b5 are plotted as a function of the inner left collar-nose size (region 2). In the 
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same Figure, we also show the difference of behavior between our model (solid lines) and a 

model (dotted lines) where all the effect of the tolerances is rigidly transmitted to the coil, 

without taking into account deformations. The latter are results taken out using the "rigid" model, 

already quoted in 5.4.2. 

Table 5.5: Variation of the multipoles in units of 10-4 at RREF = 17 mm, induced by a tilt of 0.1 mm on the 

internal collar. 

Tilt region b2 b3 b4 b5 

1 -0.4 -0.2 0.02 0.2 

2 0.4 -0.2 -0.03 0.2 

3 0.04 0.02 -0.01 0.0 

4 -0.06 0.04 0.01 0.0 

5 0.4 0.7 0.3 0.1 

6 -0.4 0.7 -0.3 -0.1 

7 -0.4 -0.7 -0.4 -0.1 

8 0.5 -0.7 0.4 -0.2 

 

The previous results can be used both to relax mechanical tolerances and to identify corrective 

actions on field quality. New mechanical tolerances will permit the use of components already 

built but not satisfying the old ones, more restrictive. This will also reduce production costs. 

Corrective actions indeed, are based on the use of different thickness shims between the coils and 

the collar nose or even in the collar cavity, along the curved zone of the collars. They will be 

useful especially after magnet construction, when, measuring the field, errors will have to be 

corrected. Knowing the effects on single components of different geometric errors, it will be 

possible to make corrections only on some of them, maintaining the pieces already built, just 
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disassembling the magnet. However, this is not a trivial task, since one has to avoid stress 

variations in excess of ± 5 MPa, to preserve the optimum stress window of the layers. 

 

 

 

Figure 5.10: Multipoles versus shift of the inner left collar-nose (region 2). 

 

91



5.5 Monte Carlo analysis 

5.5.1 Estimate of several tolerances effects 

In the previous section, we calculated the effects of single tolerances; indeed, different tolerances 

all act together and it is important to find their effect on field quality. It is possible, in fact, that 

some geometry error, summed to another, give an effect that is different from the algebraic sum 

of their previously calculated effect. To evaluate this phenomenon, it is possible to adopt 

different approaches. Let's write the shift induced on multipole bn by an error tj in the j zone of 

the profile according to the equation: 

jnjn tAb =∆ .                                                               (5,7) 

In equation (5,7), A is the sensitivity matrix filled with values of Tables 3.3 and 3.4 for the collar 

zones and Table 5.3 for coil length. In a linear approximation, the error distribution for the 

component bn is given by: 

∑ ⋅=
j

jnjn Ab τσ )(                                                     (5,8) 

where: 

τj = error tj  sigma (1/3 tolerance range). 

Using this approximation, we do not take into account the possibility of self-compensating errors, 

i.e. we overestimate the total tolerance error. Because of that, it is better to calculate the sigma of 

each multipole as a sum in quadrature of the single tolerance contributes: 

22)( j
j

njn Ab τσ ∑ ⋅= .                                                  (5,9) 

To have a better precision and also to take into account error distribution, we used a Monte Carlo 

method to evaluate real tolerance effects. 
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5.5.2 Monte Carlo method 

Monte Carlo method is based on the use of sequences of random numbers to contemporary vary 

all the involved parameters and to study their combined effect on the controlled quantities, in our 

case the multipolar components [22]. The physical system has to be described by probability 

density functions. In our case, we assume Gaussian distributions. We analyze separately the 

effect of tolerances on different zones of magnet components and afterwards all the zones were 

put together, to have a complete view. For each case, a file containing random numbers is used to 

distribute the errors. Random numbers, created with a routine implemented at CERN, have a 

Gaussian distribution around zero, with 3σ = 1. Each parameter is given a value equal to its 

nominal one to which the tolerance multiplied by a random number is added. In this way, the 

errors distribution becomes a gaussian one, centered on the nominal value, truncated at 3σ, 

corresponding to the maximum allowed dimension. For each calculation loop, correlations 

between multipoles were calculated, according to the equation (5,10). 

( )( )
( ) ( )∑ ∑

∑
−−

−−
=

22
jjii

jjii

bbbb

bbbb
r .                                        (5,10) 

Here, bi and bj are the multipolar coefficient for which correlation has to be calculated, ib and 

jb are the medium values of them. Correlation indicates how well the couples of points (bi, bj) 

approximate a line. Its value can vary between -1 and +1, giving a good result if it is next to ± 1, 

saying that multipoles are not correlated if r ≈ 0 [23]. 

5.5.3 Application to coils length 

We use Monte Carlo simulation to study 100 different coil realizations with shape errors within 

tolerances. First, we studied separately the tolerances on copper wedges and on cable blocks. 

Tolerances applied were: 

• ±0.025 mm on copper wedges; 

• ±0.020 mm on cables blocks. 
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The results are given in Table 5.6. In the first row, copper wedges dimensional variations within 

tolerances are reported. In the second line, coil blocks dimension variation effects are examined. 

The total r.m.s variation of the multipoles is clearly within the target values considered tolerable 

for the stability of the circulating beam in the LHC reported in the last row [24]. 

Table 5.6: R.M.S. variation of the multipoles in units of 10-4 at RREF = 17 mm, estimated by 100 seeds 

Monte Carlo simulation for coil tolerances. 

Shape error b2 b3 b4 b5 

Copper wedge - 0.21 - 0.05 

Coil length - 0.06 - 0.02 

All coil - 0.22 - 0.05 

Target values - 1.50 0.50 0.70 

 

In addition, because of the asymmetric tolerance of the copper wedge thickness, the average 

sextupole decreases by 0.7 units and the average decapole by 0.1 units at RREF = 17 mm. No 

correlation is found between the harmonics of different orders evaluating copper wedge and 

copper wedge plus coil length variations together, whilst, studying coil length variations, a 

certain correlation is found between b3, b5, b7 and b9. 

5.5.4 Application to collar tolerances 

For collar tolerance studies, we also used the Monte Carlo method to simulate the simultaneous 

action of all possible shape errors. We consider the following tolerances: 

• ± 10 µm on the nose (shapes 1, 2, 3 and 4 in Figure 5.9) 

• 0 to 40 µm on the collar cavity (shapes 5, 6, 7, 8) 

• ± 20 µm on the external collar (shapes 9, 10, 11). 

For each shape, we consider errors with a Gaussian distribution truncated at 3·σ, where ± 3·σ, 

covers the whole tolerance. We consider 100 realizations of the possible error configurations, 
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generated by 100 different seeds, we apply them to our numerical model of the dipole and 

evaluate the statistical properties of the induced shown in Table 5.7. The induced multipoles are 

within the specifications. In particular, the multipoles are at least an order of magnitude smaller 

than the target considered tolerable for the stability of the circulating beam in the LHC. 

Table 5.7: R.M.S. variation of the multipoles in units of 10-4 at RREF = 17 mm, estimated by 100 seeds 

Monte Carlo simulation for collar tolerances. 

Shape error b2 b3 b4 b5 

1,2,3,4 0.06 0.03 0.01 0.00 

5,6,7,8 0.14 0.10 0.03 0.02 

9,10,11 0.01 0.02 0.00 0.00 

all tolerances 0.16 0.16 0.04 0.03 

Target values - 1.50 0.50 0.70 

 

This is particularly important, since other effects, like the random fluctuation due to the persistent 

currents and to the iron magnetization, are not yet included. The multipoles resulting from the 

Monte Carlo simulation are well approximated (within less that 50 % discrepancy) by the 

quadratic sum of the multipoles induced by tolerances of the individual regions of the collar. The 

most sensitive area is the circular part of the cavity, i.e. the regions 5, 6, 7 and 8 of Figure 5.9. 

The distributions of the geometric multipoles for the 100 seed Monte Carlo simulations are very 

close to a Gaussian distribution, centered on the nominal values. 

We also analyzed correlation between harmonics of various orders. For collars calculations, the 

correlation is strong between the allowed multipoles b3, b5 and b7, and negligible between the 

other harmonics. Correlation values are reported in Table 5.8. 

The results of these calculations have been used to re-evaluate the tolerances for collar drawings. 

The initial requirements, used in our simulation, were very demanding, difficult, and costly to be 

obtained in a consistent manner over mass production. The situation can be substantially 
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improved by relaxing the collar tolerances. Scaling the results of Table 5.7, we can verify that 

there are no detrimental consequences on field quality when geometrical tolerances of regions 1 

to 8 become ± 25 µm and those of regions 9 to 11 become ± 40 µm. 

 

Table 5.8: Correlation between multipoles for all collar tolerances. 

2 1.0               

3 -0.1 1.0              

4 0.5 0.0 1.0             

5 0.1 -0.9 0.1 1.0            

6 -0.6 0.0 -0.6 0.0 1.0           

7 -0.1 1.0 -0.1 -1.0 0.0 1.0          

8 0.7 0.0 0.8 0.0 -0.9 0.0 1.0         

9 -0.1 1.0 0.0 -0.9 0.0 0.9 0.0 1.0        

10 0.2 -0.1 -0.1 0.2 0.3 -0.1 -0.3 -0.1 1.0       

11 0.0 0.1 0.0 0.2 0.1 -0.1 0.0 0.1 0.1 1.0      

12 0.8 -0.2 0.7 0.3 -0.8 -0.3 0.9 -0.2 -0.1 0.0 1.0     

13 -0.1 0.9 -0.1 -1.0 -0.1 0.9 0.0 0.9 0.0 0.0 -0.1 1.0    

14 -0.5 -0.2 -0.8 0.2 0.9 -0.3 -0.9 -0.2 0.3 0.1 -0.8 -0.3 1.0   

15 0.1 -1.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 -0.2 0.1 -1.0 0.0 1.0  

16 -0.5 -0.5 -0.3 0.5 0.5 -0.5 -0.5 -0.5 -0.4 -0.1 -0.6 -0.6 0.3 0.5 1.0 

17 -0.1 0.3 0.1 -0.2 0.1 0.2 0.0 0.2 0.0 0.1 0.0 0.0 0.0 -0.3 0.0 

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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6 CONCLUSIONS 

The subject of this thesis work has been the analysis of the structural behavior of the LHC 

superconducting dipoles and its influence on the magnetic field quality. The main goal was to 

develop a predictive model of the magnet cross section behavior both at room and at cryogenic 

temperature. In superconducting magnets, field shape errors mostly depend on conductor 

positions. For this reason, a model that is capable to compute displacements with a precision of 

10 µm has been requested.  

The finite element code ANSYS has been used to build up a two-dimensional structural model 

of the dipole cross-section. The pre-existent FEM model, originally used to perform the structural 

analysis, has been modified and improved in order to describe in a realistic way the structural 

behavior and to reach the required precision on deformation evaluation. 

Experimental measurements have been taken to determine the material properties of the magnet 

principal components. The typical feature we had to take into account was the non-linear 

dependence of the stress versus strain for the coil materials, essential to obtain the required 

precision on the estimate of conductor displacements. Mechanical test results have been used to 

describe the non-linear behavior of the dipole components under stress both at warm and at 

cryogenic temperature. A law to describe the loss of prestress observed in mid-plane of the coils 

after cooling has been deduced analyzing stress measurements, taken both at 293 K and at 1.9 K. 

Interfaces between components have been modeled in ANSYS using contact elements. In some 

cases, i.e., on the interfaces between coils and collars, contact elements have also been used to 

simulate material layers not explicitly modeled. This feature, already present in the pre-existent 

FEM model, has been improved. Some numerical tests have been developed to check the 

analytical model of the contact. Thanks to the results obtained, contact elements properties have 

been updated to better reproduce the deformed geometry of the magnet and macros have also 

been created, which automatically calculate the elements properties with respect to the zone of 

contact. 
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Deformations evaluated with structural calculations have been input in ROXIE, a program 

developed at CERN to compute the magnetic field components. The complete model has been 

validated by testing it against measurement data, and it has been used to study the effect of 

geometry errors during manufacturing and their influence on the field quality. 

First, deformations calculated on the model have been decomposed in power series, so that it has 

been possible to describe deformations with a few modes and to check their influence on the field 

components. Then, a parametrical analysis has been done. The geometry variations with stronger 

influence on the magnetic field, essentially corresponding to internal collars and coils 

dimensions, have been identified. Such dimensions have been varied one by one in a range 

around the nominal values. Each calculation has provided a table containing the sensitivities of 

the different multipolar components to that parameter variation. 

Single parameter sensitivity evaluation is a first stage to give a description of the combined effect 

that one will find on magnet components. To analyze these effects, a Monte Carlo simulation has 

been performed overall the set of parameters. In this calculation, all the parameters have been 

simultaneously varied in a range corresponding to the planned mechanical tolerances. Parameter 

values have been varied in a random manner over 100 different runs. In this way, a realistic 

simulation of the possible construction errors on magnet components is obtained. 

The results of such analyses have been used to redefine the mechanical tolerances already 

specified. In particular, it has been possible to relax the requirements for both collar radial and 

azimuthal dimension. Furthermore, the possibility to take corrective actions on the magnet field 

after construction has been identified. Since the effects of tolerances on single multipoles are 

known, corrective actions on the magnets after assembly can be taken, for instance by simply 

varying the insulation layers between coils and collars. 
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APPENDIX A 

THE ELASTIC CURVE 

Using the finite elements code ANSYS a first order modelisation of the coil behavior consists in 

using a constant elasticity modulus, the tangent one, that is worked out from experimental data. 

In this case, we obtain an overestimate of the displacements for low stresses and an underestimate 

for high stresses. This kind of approximation reproduces the average behavior of the coils. Since 

field quality is very sensitive to coil displacements, one should aim at having a more precise 

description of the stress strain curve in the model. In the next paragraph, we show how to 

implement a stress-strain relation that is different from the linear one [10]. 

 

Figure 1: ANSYS model for non-linear behavior tests 
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First, we take a simplified model, whose analytical solution for deformed geometry under 

compression is known, using it as a benchmark to check the accuracy of the numerical results. 

The model consists of a two-dimensional (x, y) parallelepiped compressed by a uniform pressure 

on its top face (see Figure 1). We use PLANE42 elements, which are 2D structural solid elements 

with the plane strain option (i.e., strain along z is zero) [11]. These are the same elements used to 

model the whole dipole model. 

The stress-strain data are inserted in a table using the command “tb, melas”, where “melas” 

indicates a Multilinear Elastic Material (see ANSYS commands list at the end of the paragraph). 

Its behavior option describes a conservative response in which unloading follows the same stress-

strain path as loading and the material behavior is isotropic. This is not the optimum for coils 

modeling, since radial and azimuthal stress-strain behaviors are different. Anyway, this feature 

allows one to implement the correct stress-strain relation for the azimuthal direction. An error in 

the radial direction will be performed, but this is less relevant for our analysis. 

We evaluated the displacements in correspondence of 40 different loads between 0 and 100 MPa. 

We then evaluated the strain according the relation (A.1). 

y

y
y l

u

0

=ε                                                                             (A.1) 

where :            yε = strain along y axe, 

                        = displacement for the evaluated point along x direction, yu

                        = starting position in y direction for the evaluated point. yl0

The same values can be obtained directly from the ANSYS post processing asking for the total 

strain (EPTO) in y direction. Indeed, it must be pointed out the elastic strain (EPEL) does not 

give the expected results. 

We plotted the resulting strains versus the pressure applied and, as we can see in Figure 2, we 

obtained exactly the same curve given in input. 
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Figure 2: Input and output stress-strain curves for the parallelepiped model 

We then implemented the curve on the complete model of the dipole. Both for the inner and the 

outer coils we input the same stress-strain curve, obtained by a fitting of the experimental data 

with a second order polynomial. Calculations are carried out at room temperature. 

It is not straightforward to calculate an analytical solution for such geometry; moreover, due to 

coil shape (arc sections) we cannot evaluate the elastic strain simply dividing the displacements 

by the initial azimuthal length of the coil. However, since we are using a finite element model, it 

is indeed possible to consider the problem applied to a single element as a linear one, since the 

curvature radius is large enough with respect to the element dimension and circular shape can be 

neglected.  

We get displacements in azimuthal direction in correspondence of the nodes of twelve elements, 

positioned in the geometrical center of the conductor blocks, both for right and left coils. For 

each element, we calculate the strain dividing the difference between the upper and the lower 
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node displacements by their initial distance. Every calculation is made for six different load 

cases, so that we can cover more or less the whole coil stress working range. In Figure 3, the 

input curve and the output results are plotted. 
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Figure 3: Whole dipole model input and output stress-strain curves 

The plot shows a perfect agreement between the input data and the output given by ANSYS. As a 

consequence of such tests, the non-linear behavior of the coils has been implemented in the 

dipole model for both warm and cold calculations. 

 

 

 

 

ANSYS INPUT FILE FOR THE PARALLELEPIPED MODEL  
!                MULTILINEAR ELASTICITY 
! initializing constants 
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r=2 
h=10 
load=100            ! 100  MPa 
npas=40             ! number of load steps 
 
/prep7  
tref,0 
! geometry creation 
k,1,0,0 
k,2,r,0 
k,3,r,h 
k,4,0,h 
 
l,1,2,4 
l,2,3,20 
l,3,4,4 
l,4,1,20 
 
a,1,2,3,4 
 
! elements 
et,1,42 
keyopt,1,1,1 
keyopt,1,3,3 
r,1,1 
 
! material properties 
tb,melas,1,1,13 
mp,ex,1,100000 
tbpt,defi,0,0 
tbpt,defi,1.6667e-3,2 
tbpt,defi,2.5e-3,5 
tbpt,defi,4e-3,10 
tbpt,defi,6.6667e-3,20 
tbpt,defi,7.8947e-3,30 
tbpt,defi,9.3023e-3,40 
tbpt,defi,10.6383e-3,50 
tbpt,defi,12e-3,60 
tbpt,defi,13.3333e-3,70 
tbpt,defi,14.2857e-3,80 
tbpt,defi,15.3846e-3,90 
tbpt,defi,16.3934e-3,100 
tbplot,melas,1 
 
! mesh 
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asel,all 
aatt,1,1,1 
amesh,all 
 
! constraints   
 nsel,all 
nsel,s,loc,y,0     
d,all,uy   
d,all,ux 
nsel,s,,,all 
fini 
 
! solution 
/solu 
 
! loading  
incr=load/npas 
 
*do,i,1,npas 
car=incr*i 
nsel,s,loc,y,h 
sf,all,pres,car 
nsel,s,,,all 
nsub,2,10,1 
autots,on 
outres,all,all 
solve 
 
! postprocessing 
/post1 
nsel,s,,,28                     
/output,ris_ex,out,,append 
nlist,all                                             ! print all nodes and coordinates 
prnsol,u,comp                                  ! prints displacements 
prnsol,epel,comp                             ! prints elastic strain  
prns,epto,comp                                ! prints total strain  
/out 
allsel 
/solu 
*enddo 
finish 
/eof 
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APPENDIX B 

TESTS FOR PROPERTIES COMPUTATION OF THE CONTACT 

ELEMENTS 

In the finite element model of the LHC dipole, the load is given by contact elements. For this 

reason, a series of tests on contact elements behavior has been done to analyze the influence of 

their properties and of their response. 

A contact element is characterized by two nodes, two stiffnesses (KN and KS), an initial gap or 

interference (GAP), and an initial element status (START) [11]. First, stiffnesses must be defined 

as seen in Chapter 3.1.4, taking care of the different kinds of contact we have to represent (with 

or without an inner layer). 

The initial gap defines the gap size (if positive) or the displacement interference (if negative) 

[11]. Most of the dipole model contact elements are given an interference value to simulate the 

under pressure assembly of the magnet. Moreover, interference values have been used during 

parametric analysis to simulate mechanical tolerances. Two simple models can show that 

increasing the interference of the contact elements between two surfaces has the same 

consequences than enlarging one of the two surfaces in contact. 

 

Figure 1: simple model to evaluate interference influence 
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In Figure 1, the first model is represent, where two different materials are assembled in a 

sandwich, being the inner one (material number 2) softer that the other. In the second model 

indeed, material 2 is substituted by contact elements. Both the models are blocked in y direction 

by constraints. The load is applied in the first model increasing the dimension of one of the 

blocks and maintaining the dimension between constraints equal to a nominal dimension, in the 

second model simply increasing the interference value of the contact elements. Different 

calculations have been done (see Table 1), where, for four different nodes, placed at the top and 

at the bottom of each block, displacements and stresses along the y direction are listed. Loads 

vary from -0.01mm to -0.04 mm. 

 

Table 1: Simulation results for parallelepiped models to test interferences 

sy uy Position y sy uy Position y
[mm] [MPa} [mm] [mm] [MPa} [mm] [mm]

1 -33 0.000 0.00 -33 0.000 0.00
2 -33 -0.003 10.00 -33 -0.003 10.00
3 -33 -0.007 10.99 -33 0.003 11.00
4 -33 -0.010 21.00 -33 0.000 21.00
1 -67 0.000 0.00 -67 0.000 0.00
2 -67 -0.007 9.99 -67 -0.007 9.99
3 -67 -0.013 10.99 -67 0.007 11.01
4 -67 -0.020 21.00 -67 0.000 21.00
1 -100 0.000 0.00 -100 0.000 0.00
2 -100 -0.010 9.99 -100 -0.010 9.99
3 -100 -0.020 10.98 -100 0.010 11.01
4 -100 -0.030 21.00 -100 0.000 21.00
1 -133 0.000 0.00 -133 0.000 0.00
2 -133 -0.013 9.99 -133 -0.013 9.99
3 -133 -0.027 10.97 -133 0.013 11.01
4 -133 -0.040 21.00 -133 0.000 21.00

-0.03

-0.04

SANDWICH MODEL CONTACT ELEMENT MODELINT. NODE

-0.01

-0.02

 

 

 

It is immediate to see that both the model built up using the contact elements and the other one 

give the same results in terms of stresses and final position of the nodes. Using the contact 

elements indeed, we did not have to modify the initial geometry of the model, but we simply 
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increased the interferences, whose values are reported in the first column, to pass from one load 

case to the other. 

Contact elements can afterwards make easier the mechanical tolerances simulation, but there is 

still another factor to be considered. Contact elements must be positioned such in a way to be 

perpendicular to both the surfaces in contact. Otherwise, the transmission of the stresses is not 

uniform and total, as it should be in a direction that is normal to the surfaces. This assumption 

comes out from some simple tests made on two different models.  They are built up with 

PLANE42 elements, using two parallelepipeds one onto the top of the other, whose contact 

surface is modeled with ten CONTAC52 elements. The first model has contact elements built up 

perpendicularly to the two surfaces, while the second one has contacts a few degrees distorted. A 

uniform pressure of 40 MPa on the top face loads the models. 

 

 

Figure 2: Stress distribution along y direction for the model with perpendicular contact elements  
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Figure 3: Stress distribution along y direction for the model with distorted contact elements 

In Figure 2 and in Figure 3, stress distribution for both perpendicular and distorted contact 

elements are drawn. It is immediate to see that, while in the first model all the stress in normal 

direction is uniformly transmitted to the bottom nodes, in the second case this is not true, because 

some discrepancies exists between the nodal stress inside the model. 
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