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Abstract

The AT = 1 staggering (odd—even staggering) in octupole bands of light actinides
is found to exhibit a “beat” behaviour as a function of the angular momentum 1,
forcing us to revise the traditional belief that this staggering decreases gradually to
zero and then remains at this zero value. Various algebraic models (spf-Interacting
Boson Model, spdf-IBM, Vector Boson Model, Nuclear Vibron Model) predict in
their su(3) limits constant staggering for this case, being thus unable to describe
the “beat” behaviour. An explanation of the “beat” behaviour is given in terms of
two Dunham expansions (expansions in terms of powers of I{I + 1) } with slightly
different sets of coefficients for the ground state band and the negative parity band,
the difference in the values of the coefficients being attributed to Coriolis couplings
to other negative parity bands.

1 Introduction

Rotational nuclear spectra have been long attributed to quadrupole deforma-
tions [1}, corresponding to nuclear shapes produced by the revolution of an
ellipsis around its maximum or minimum axis and rotating around an axis
perpendicular to their axis of symmetry. In addition, it has been suggested
that octupole deformation occurs in certain regions, most notably in the light
actinides [2] and in the A & 150 mass region [3], corresponding to pear-like nu-
clear shapes [4,5]. In even nuclei exhibiting octupole deformation the ground




state band, which contains energy levels with I™ = 0t, 2+, 4+, 6%, ..., is ac-
companied by a negative parity band containing energy levels with I* = 1-,
37,87, 77, .... After the first few values of angular momentum I the two
bands become interwoven, forming a single octupole band with levels charac-
terized by I" = 0%, 1-, 2%, 3-, 4%, 57, ...[2,3]. (It should be noted, however,
that in the light actinides alternative interpretations of these bands in terms
of alpha clustering have been proposed [6,7].)

It has been observed [§] that in octupole bands the levels with odd I and
negative parity (I* = 17, 37, 57, ...} are displaced relatively to the levels
with even I and positive parity (I = 0%, 2%, 4%, .. .), i.e. the odd levels do
not lie at the energies predicted by an E(I) = AI(I + 1) fit to the energy
levels, but all of them lie systematically above or all of them lie systematically
below the predicted energies. This is an example of odd-even staggering or
Al =1 staggering, the latter term due to the fact that each energy level with
angular momentum [ is displaced relatively to its neighbours with angular
momenta [ £ 1.

The AI = 1 staggering effect is different from the AJI = 2 staggering ef-
fect recently observed [9,10] in superdeformed nuclear bands [11,12], since the
Al = 2 staggering effect refers to the systematic displacement of the levels
with I = 2, 6, 10, 14, ...relatively to the levels with I = 0, 4, 8, 12, ..., i.e.
in this case the level with angular momentum I is displaced relatively to its
neighbours with angular momenta [ + 2.

It should be noted that the odd-even staggering in octupole bands is much
larger than the relevant experimental errors, while the Al = 2 staggering
effect in superdeformed nuclear bands {9,10], is of the order of the experimental
errors, with only one case (the (a) band of 1%°Gd [9]) known to show an effect
outside the limits of the experimental errors.

The dependence of the amplitude of the staggering effect on the angular mo-
mentum J presents much interest. The situation up to now has as follows:

1) Algebraic models of nuclear structure appropriate for the description of
octupole bands, like the spf-Interacting Boson Model (spf-IBM) with u(11)
symmetry [13], the spdf-IBM with u(16) symmetry [13,14], and the Vector
Boson Model (VBM) with u(6) symmetry [15], predict in their su(3) limits
AT =1 staggering of constant amplitude, i.e. all the odd levels are raised (or
lowered) by the same amount of energy with respect to the even levels [16].
In other words, Al = 1 staggering takes alternatively positive and negative
values of equal absolute value as I increases.

2) Algebraic models of nuclear structure suitable for the description of al-
pha clustering effects, like the Nuclear Vibron Model (NVM) with u(6)®u(4)
symmetry [6], also predict in the su(3) limit AJ] = 1 staggering of constant



amplitude.

3) Older experimental work {2,3] on octupole nuclear bands suggests that
Al =1 staggering starts from large values and its amplitude decreases with
increasing I. These findings are in agreement with the interpretation that an
octupole band is gradually formed as angular momentum increases [4].

Motivated by these recent findings, we make in the present work a systematic
study in the light actinide region of all octupole bands for which at least 12
energy levels are known [17-23), taking advantage of recent detailed experi-

mental work in this region. The questions to which we have hoped to provide
answers are:

1) Which patterns of behaviour of the amplitude of the Al = 1 staggering
appear?

2) Can these patterns be interpreted in terms of the existing models [6,13-15],
or in terms of any other theoretical description?

In Section 2 of the present paper the formalism of staggering is discussed, and
is subsequently applied to the experimental data for octupole bands of light
actinides in Section 3. Section 4 contains an interpretation of the experimental
observations, while in Section 5 the conclusions reached, as well as plans for
future work are given.

2. Formalism

Traditionally the odd-even staggering (Al = 1 staggering) in octupole bands
has been estimated quantitatively through use of the expression [8]

(I+1)E(I 1)+ IE(I+1) )
2l +1 ’

§E(I) = E(I) -

where E(I) denotes the energy of the level with angular momentum I. This
quantity vanishes if the first two terms of the expression

E(I)= Ey+ AI{I +1) 4+ B(I{(I +1)) (2)

are plugged into it, but it does not vanish if the third term of the above ex-
pression is substituted into it. Therefore it is suitable for measuring deviations
from the pure rotational behaviour.

Recently, however, a new measure of the magnitude of staggering effects has
been introduced {10] in the study of Al = 2 staggering of nuclear superde-
formed bands. In this case the experimentally determined quantities are the
v-ray transition energies between levels differing by two units of angular mo-




mentum (AJ = 2). For these the symbol
Ero(I) = E(I +2) - E(1) (3)

1s used. The deviation of the v-ray transition energies from the rigid rotator
behavior is then measured by the quantity [10]

ABs (1) = 7(6Fas(1) = 4By (I ~ 2) ~ 4B (I +2)
+EaofI — 4) + B (1 + 4)). (4)

Using the perturbed rigid rotator expression of Eq. (2) one can easily see
that AE,,(I) vanishes. This property is due to the fact that Eq. (4) is a
(normalized) discrete approximation of the fourth derivative of the function
E34(I), i.e. essentially the fifth derivative of the function E(I )- Therefore we

conclude that Eq. (4) is a more sensitive probe of deviations from rotational
behaviour than Eq. (1).

By analogy, Al = 1 staggering in nuclei can be measured by the quantity

1
AEL’Y(I) = E(GEI.'V(I) ~4F, (I - 1) - 4E; (1 + 1)

FEro(I = 2) + Euo(I +2), (%)
where
Ev(I)=E(I +1) - E(I). (6)

The transition energies E; ,(I) are determined directly from experiment.

3. Analysis of experimental data

We have applied the formalism described above to all octupole bands of
light actinides for which at least 12 energy levels are known [17-23] and
which show no backbending (i.e. bandcrossing) [24] behaviour. Several of
these nuclei (**2-*Ra, ?24-22Th) are rotational or near-rotational (having
10/3 > R4 > 2.7), while others (*'®-222Rn, ??°Ra, 220-?22Th) are vibrational
or near-vibrational (having 2.4 > R, > 2), where the ratio Ry = %(% is a well
known characteristic of collective behaviour. A special case is 2'®Ra, for which
it has been argued [18] that it is an example of a new type of transitional
nuclei, in which the octupole deformation dominates over all other types of
deformation.

The staggering results for 218-222Rp, 218-226R 5 and 220-228Th, have been given
in Fig. 1, Fig. 2, and Fig. 3 of Ref. [25] respectively, which are not reproduced
here because of space limitations. In all cases the experimental errors are of




the size of the symbol used for the experimental point and therefore are not
visible. The following observations can be made:

1) In all cases the shapes appearing are consistent with the following pattern:
Al = 1 staggering starts from large values at low I, it gradually decreases
down to zero, then it starts increasing again, then it decreases down to zero
and starts raising again. In other words, figures resembling beats appear. The
most complete “beat” figures appear in the cases of *°Ra, #**Ra, 222Th, as
well as in the cases of ?®Ra, 2*?Ra, ***Ra.

2) In all cases within the first “beat” (from the beginning up to the first zero of
AE; (I} ) the minima appear at odd I, indicating that in this region the odd
levels are slightly raised in comparison to the even levels. Within the second
“beat” (i.e. between the first and the second zero of AE; ,(I) ), the opposite
holds: the minima appear at even I, indicating that in this region the odd
levels are slightly lowered in comparison to the even levels. Within the third
“beat” (after the second zero of AE,;,(I) ) the situation occuring within the
first “beat” is repeated. (Notice that 22°Th is not an exception, since what is
seen in the figure is the second “beat”, starting from I = 6.)

3) In the case of *?Rn the decrease of the staggering with increasing I, in the
region for which experimental data exist, is very slow, giving the impression
of almost constant staggering. One can get a similar impression from parts
of the patterns shown, as, for example, in the cases of ?*°Ra (in the region
I =12 —20), **Ra (for I = 9 — 17), *Ra (for I = 10 — 16), ***Ra (for
I = 14 - 20), **Th (for I = 10 — 18).

The following comments are also in place:

1) In all cases bands not influenced by bandcrossing effects [24] have been con-
sidered, in order to make sure that the observed effects are “pure” single-band
effects. The only exception is ?°Th, which shows signs of bandcrossings at 10%
and 137, which, however, do not influence the relevant staggering pattern. A
special case is #'®Ra, which shows a rather irregular dependence of E(I) on I.
As we have already mentioned, it has been argued [18] that this nucleus is an
example of a new type of transitional nuclei in which the octupole deformation
dominates over all other types of deformation.

2) The same “beat” pattern appears in both rotational and vibrational nuclei.
The only slight difference which can be observed, is that the first vanishing of
the staggering amplitude seems to occur at higher I for the rotational isotopes
than for their vibrational counterparts. Indeed, within the Ra and Th series
of isotopes under study, the I at which the first vanishing of the staggering
amplitude occurs seems to be an increasing function of Ry, i.e. an increasing
function of the quadrupole collectivity.




3) The present findings are partially consistent with older work [2,3]. The
limited sets of data of that time were reaching only up to the I at which the
first vanishing of the staggering amplitude occurs. It was then reasonable to
assume that the staggering amplitude decreases down to zero and remains

zero afterwards, since no experimental evidence for “beat” patterns existed at

that time.
4. Interpretation of the experimental observations

Although the su(3) limits of the various algebraic models mentioned in the
introduction are sufficient for providing an explanation for AI = 1 staggering
in the cases in which this appears as having almost constant amplitude [16], it
is clear that some additional thinking is required for the many cases in which
the experimental results show a “beat” pattern, as in Section 3 has been seen.

A simple explanation for the appearance of “beat” patterns can be given by
the following assumptions:

1) It is clear that in each nucleus the even levels form the ground state band,
which starts at zero energy, while the odd levels form a separate negative
parity band, which starts at some higher energy. Let us call Eo the bandhead
energy of the negative parity band.

2) It is reasonable to try to describe the ground state band by an expression

like
Ey(I)= AI(I+1)- BU(I+ D) + CIT +1))* +- - (M

where the subscript + reminds us of the positive parity of these levels. Such
expansions in terms of powers of I(I + 1) have been long used for the de-
scription of nuclear collective bands [26]. They also occur if one considers [27]
Taylor expansions of the energy expressions provided by the Variable Moment
of Inertia (VMI) model [28] and the su,(2) model [29]. Notice that fits to ex-
perimental data [26] indicate that one always has A >0, 8> 0,C >0, ...,
while A is usually 3 orders of magnitude larger than B, B is 3 orders of magni-
tude larger than C, etc. Eq. (7) has been long used in molecular spectroscopy
as well, under the name of Dunham expansion {30].

3) In a similar way, it is reasonable to try to describe the negative parity levels
by an expression like

E(N=E+AII+1)-BUII+1)*+C'II+1)P*+-- (8)

where the subscript — reminds us of the negative parity of these levels, while
Ey is the above mentioned bandhead energy. In analogy to the previous case
one expects to have A’ >0, B'>0,C" >0, ...




4) In the above expansions it is reasonable to assume that A > A B> B,
C > (', .... This assumption is in agreement with earlier work [31,32], in
which the Coriolis couplings between the lowest K = 0 negative parity band
and higher negative parity bands with K # 0 are taken into account, resulting
in an increase of the monent of inertia of the lowest K = 0 negative parity band
[33]. This argument means that the coefficient A’ in Eq. (8), which is inversely
proportional to the moment of inertia of the negative parity band, should be
smaller than the coefficient A in Eq. (7), which is inversely proportional to
the moment of inertia of the positive parity band. In analogy to the relation .
A > A', which we just justified, one can assume B > B/, C > (', .... This
last argument is admitedly a weak one, which is however driving to interesting
results, as we shall soon see.

Using Egs (7) and (8) in Eqs (5) and (6) we find the following results
AE(I) = 2 E,F(A~A)(I*+214+2)+(B- B (I‘ +4° +131° +18I' + -2—2-3—)

BT + 32ﬁ1 +68)

F(C -C) (Iﬁ +61° 4331 + 921° + 5

+45C" (T 4+ 1) + -, | (9)

where the upper (lower) signs correspond to the case with /=even (I=odd). A
sample staggering pattern drawn using these formulae has been given in Fig.
4 of Ref. [25]. On these results the following comments can be made:

1) The expression for odd I is the opposite of the expression with even 1. This
explains why in Fig. 4 of Ref. [25] the staggering points for even I and the
staggering points for odd I form two lines which are reflection symmetric with
respect to the horizontal axis.

2) For even I the behaviour of the staggering amplitude is as follows: At low
I it starts from a positive value, because of the presence of Ep. As I increases,
the second term, which is essentialy proportional to I?, becomes important.
(Eq is expected to be much larger than (A~ A").) This term is negative (since
A > A'), thus it decreases the amplitude down to negative values. At higher
values of I the third term, which is essentially proportional to I, becomes
important. (Remember that usually B is 3 orders of magnitude smaller than
A [26].) This term is positive (since B > B'), thus it increases the amplitude
up to positive values. {The behaviour up to this point can be seen in Fig. 4
of Ref. [25].) At even higher values of I the fourth term, which is essentially
proportional to I®, becomes important. (Remember that usually C is 3 orders
of magnitude smaller than B [26].) This term is negative (since C > C’), thus
it decreases the amplitude again down to negative values, and so on.




3) For odd 7 the behaviour of the staggering amplitude is exactly the opposite
of the one described in 2) for even I. The amplitude starts from a negative
value and then becomes consequently positive (because of the second term),
negative (because of the third term), again positive (because of the fourth

term), and so on. The first three steps of this behaviour can be seen in Fig. 4
of Ref. [25].

4) When drawing the staggering figure one jumps from an even I to an odd 1,
then back to an even I, then back to an odd 7, and so on. It is clear therefore
that a “beat” pattern appears, as it is seen in Fig. 4 of Ref. [25].

The following additional comments are also in place:

1) In the case of a single band (i.e. in the case of A= A, B = B', C = C, etc),
the first contribution to the staggering measure AE(]) is the last term in Eq.
(9), which comes from the C(I(I+1))3 term in the energy expansion (see Eqs
(7), (8) ). This is understandable: Since Eq. (5) is a discrete approximation of
the fifth derivative of the function E(I), as it has already been remarked, the
terms up to B(I(I+1))? are “killed” by the derivative, while the C(I(I+1))?
term gives a contribution linear in I.

2) The last term in Eq. (9) does not influence significantly the behaviour of
the staggering pattern, since C is usually 6 orders of magnitude smaller than
A and 3 orders of magnitude smaller than B [26].

3) This type of explanation of the staggering patterns seems to be outside the
realm of the form of the su(3) limits of the algebraic models mentioned in the
introduction. Even if one decides to include higher order terms of the type
(I(7 +1))3, (I(I +1))3, etc, in these models, by including in the Hamiltonian
higher powers of the relevant Casimir operator, these terms will appear with
the same coefficients for both the ground state band and the negative parity
band, even though these two bands belong to different irreps. The only possible
contributions to the staggering will then come from terms like the last term
in Eq. (9), which comes from the term (I( + 1))?, and similar terms coming
from higher powers of I(I+1). However, the term (I(f+1))® in the framework
of the algebraic models already corresponds to 6-body interactions [34], which
are usunally avoided in nuclear structure studies.

We conclude therefore that the “beat” pattern can be explained in terms of
two Dunham expansions with slightly different sets of coeflicients, one for the
ground state band with quadrupole deformation and another for the negative
parity band in which in addition the octupole deformation appears. This is,
however, a phenomenological finding, the microscopic origins of which should
be searched for.




5. Discussion

We have demonstrated that octupole bands in the light actinides exhibit
Al = 1 staggering (odd-even staggering), the amplitude of which shows a
“beat” behaviour. The same pattern appears in both vibrational and rota-
tional nuclei, forcing us to modify the traditional belief that in octupole bands
the staggering pattern is gradually falling down to zero as a function of the
angular momentum I and then remains there.

The su(3) limits of various algebraic models, including octupole degrees of
freedom [13-15] or based on the assumption that alpha clustering is important
in this region [6], predict AT = 1 staggering of amplitude constant as a function
of the angular momentum 7 [16]. Although this description becomes reasonable
in the rotational limit, it cannot explain the “beat” patterns appearing in both
the rotational and the vibrational regions. The detailed study of limits other
than the su(3) ones for these models remains an interesting open problem.

A simple explanatation of the “beat” behaviour has been given by describing
the even I levels of the ground state band and the odd I levels of the negative
parity band by two Dunham expansions [30] (expansions in powers of I{(I+1))
with slightly different sets of coeflicients, the difference in the coefficients being
attributed to Coriolis couplings of the negative parity band to other negative
parity bands. However, the microscopic origins of the “beat” behavior need
further elucidation.
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