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in superdeformed nuclear bands, has also been detected in certain electronically
excited rotational bands of diatomic molecules, where it has been attributed to
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of freedom, as well as by comparison to the AJ] = 1 staggering patterns appearing
in light actinides, have been attempted. Finally, the description of magic numbers
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ABSTRACT

Staggering effects reveal several structural similarities between the rotational spec-
tra of nuclei and diatomic molecules. The A = 2 staggering effect, first observed
in superdeformed nuclear bands, has also been detected in certain electronically
excited rotational bands of diatomic molecules, where it has been attributed to
interband interactions (bandcrossings). In addition, a AJ = 1 staggering effect
seems to appear in certain rotational bands of diatomic molecules. Interpretations
of this effect in terms of algebraic models including octupole or clustering degrees
of freedom, as well as by comparison to the Al = 1 staggering patterns appearing
in light actinides, have been attempted. Finally, the description of magic numbers
of metallic clusters in terms of the 3-dimensional ¢-deformed harmonic oscillator,
related to the modified harmonic oscillator of Nilsson, reveals certain similarities
between the structure of nuclei and atomic clusters.

1. Introduction

Several staggering effects are known in nuclear spectroscopy:

1) In rotational 4 bands of even nuclei the energy levels with odd anguiar mo-
mentum I (I=3,5, 7,9, ...) are slightly displaced relatively to the levels with even
I(I=2,4,6,8,...),1e the odd levels do not lie at the energies predicted by an
E(I) = AI(I +1) fit to the even levels, but all of them lie systematically above or all
of them lie systematically below the predicted energies.

2) In octupole bands of even nuclei the levels with odd I and negative parity
(I"=17,37,5", 77, ...) are displaced relatively to the levels with even I and positive
parity (I"=0%, 2+, 4+, 6%, ...).

3) In odd nuclei, rotational bands (with K = 1/2) separate into signature partners,
i.e. the levels with I=3/2, 7/2, 11/2, 15/2, ...are displaced relatively to the levels




with I=1/2,5/2,9/2,13/2, ....

In all of the above mentioned cases each level with angular momentum I is dis-
placed relatively to its neighbours with angular momentum I + 1. The effect is then
called Al =1 staggering.

‘A new kind of staggering (Al = 2 staggering) has been recently observed in
superdeformed nuclear bands. If AJ = 2 staggering is present, then, for example, the
levels with I=2, 6, 10, 14, ... are displaced relatively to the levels with 1=0, 4, 8, 12,
..., 1.e. the level with angular momentum [ is displaced relatively to its neighbours
with angular momentum [ £ 2.

Although AT = 1 staggering of the types mentioned above has been observed in
several nuclei and certainly is an effect larger than the relevant experimental uncer-
tainties, AI = 2 staggering has been seen in only a few cases and, in addition, the
effect is not clearly larger than the relevant experimental errors.

On the other hand, rotational spectra of diatomic molecules are known to show
great similarities to nuclear rotational spectra, having in addition the advantage that
observed rotational bands in several diatomic molecules are much longer than the
usual rotational nuclear bands. We have been therefore motivated to make a search
for staggering effects in rotational bands of diatomic molecules. The questions to
which we have hoped to provide answers are:

1) Is there AI = 2 staggering and/or Al = 1 staggering in rotational bands of
diatomic molecules?

2) If there is, what are its possible physical origins?

Furthermore, we have made a systematic study of the Al = 1 staggering observed
in the light actinides, since the systematics of the staggering patterns observed there
can be useful for the interpretation of the Al = 1 staggering patterns observed in
diatomic molecules.

In Sections 2 and 3 of the present work the Al = 2 and Al = 1 staggering
in rotational bands of diatomic molecules will be considered respectively, while in
Section 4 the A = 1 staggering in the light actinides will be studied.

2. Al =2 staggering in rotational bands of diatomic molecules

2.1. Al =2 staggering in superdeformed nuclear bands

In nuclear physics the experimentally determined quantities are the y-ray transi-
tion energies between levels differing by two units of angular momentum (A = 2).
For these the symbol

Eyo(I) = E(I1+2) - E(I) (1)

is used, where E(I) denotes the energy of the level with angular momentum /. The
deviation of the ~-ray transition energies from the rigid rotator behavior can be



measured by the quantity

1
AE,,(I) = E(GEM(I) —4Ey (1 ~2) —4E;,(I4+2)+ Eay (I —4) + B3, (1 +4)). (2)
Using the rigid rotator expression
E(I)=AI(I+1), (3)

one can easily see that in this case AE;,(I) vanishes. In addition the perturbed rigid
rotator expression

E(Iy= AI{I+1)+ B(I(I+1))?, (4)

gives vanishing AE,,(I). These properties are due to the fact that Eq. (2) is a
(normalized) discrete approximation of the fourth derivative of the function Es ()
1e. essentially the fifth derivative of the function E(I).

In superdeformed nuclear bands the angular momentum of the observed states is
in most cases unknown. To avoid this difficulty, the quantity AE, ., is usually plotted
not versus the angular momentum I, but versus the angular frequency

_ dE(I)
“=Tar ©)

’

which for discrete states takes the approximate form

Y E(I +2) - E(I) ®)
VI +2)T+3) - VI(IT+1)

For large I one can take the Taylor expansions of the square roots in the denominator,
thus obtaining

"= E(I+2)-E(I) _ Ezg(f)‘ )

Examples of superdeformed nuclear bands exhibiting staggering are shown in Figs
1-2 of Ref. [1]. We say that Al = 2 staggering is observed if the quantity AE,(I)
exhibits alternating signs with increasing w (i.e. with increasing I, according to Eq.
(7)). The following observations can be made:

1) The magnitude of AE;(I) is of the order of 107*-10~° times the size of the
gamma transition energies.

2) The best example of Al = 2 staggering is given by the first superdeformed
band of "°Gd. In this case the effect is almost larger than the experimental error.

3) In most cases the AJ = 2 staggering is smaller than the experimental error,
with the exception of a few points.

2.2. Analysis of experimental data

In the case of molecules the experimentally determined quantities regard the R
branch ((viower, I) = (Vupper, I + 1)) and the P branch ((viower, I) — (Vupper, I — 1)),




where viouer 15 the vibrational quantum number of the initial state, while Vupper 18 the
vibrational quantum number of the final state. They are related to transition energies
through the equations

EX(I) = EP(I) = By, (1 41) = Buyo (I = 1) = DEy,,,.. (D), (8)

ER(I - 1) - EP(I + 1) = Ev:mur(I + 1) - Ewoum-(I - 1) = DE?.womr(I)a (9)
where in general

DE,,(I)=E,(I+1) - E,(I -1). (10)

AT = 2 staggering can then be estimated by using Eq. (2), with E;(I) replaced by
DEQ],,(I)I

AEy (1) = :—G(GDEQ,,,(I)—4DE2,U(I—-2)—4DE2,,,(I+2)+DE‘2'.,(I—4)+DE2,,,(I+4)).
(11)

Results for several rotational bands in different electronic and vibrational states
of various diatomic molecules are shown in Figs 3-9 of Ref. [1]. Ref. [1] in addition
contains detailed references regarding the contents of this section. We say that AJ = 2
staggering is observed if the quantity A E;(I) exhibits alternating signs with increasing
I (I is increased by 2 units each time). The magnitude of AE,(I) is usually of
the order of 1072-10"° times the size of the interlevel separation energy. Several
observations can be made:

1) In all cases shown, the “upper” bands (which happen to be electronically ex-
cited) exhibit AJ = 2 staggering which is 2 to 3 orders of magnitude larger than
the experimental error, while the corresponding “lower” bands (which, in the cases
studied, correspond to the electronic ground state of each molecule), show some effect
smaller than the experimental error.

2) There is no uniform dependence of the Al = 2 staggering on the angular
momentum /. In some cases of long bands, though, it appears that the pattern is a
sequence of points exhibiting small staggering, interrupted by groups of 6 points each
time showing large staggering. For example, in the odd levels of the v = 1 C1Et band
of YD the first group of points showing appreciable Al = 2 staggering appears at
I = 13-23 and the second group appears at I = 27-37, while in the even levels of the
same band the first group appears at [ = 12-22 and the second group at | = 26-36.
Also in the odd levels of the v = 0 A®L+ band of CrD the first group appears at
I = 15-25 and the second at I = 27-37, while in the even levels of the same band
the first group appears at I = 14-24 and the second group at I = 26-36.

3) In all cases shown, the results obtained for the odd levels of a band are in
good agreement with the results obtained for the even levels of the same band. For
example, the regions showing appreciable staggering are approximately the same in
both cases. In addition, the positions of the local staggering maxima in each pair
of figures are closely related. In the odd levels of the YD band mentioned in 2), for
example, maximum staggering appears at I = 19 and I = 31, while in the even levels
of the same band the maxima appear at I = 18 and I = 32.




4) In several cases the Al = 2 staggering of a band can be calculated from two
different sets of data. For example, the AJ = 2 staggering of the v = 1 C'E* band
of YD can be calculated from the data on the 1-1 C!'L+-X'E+ transitions, but it
can also be calculated from the data on the 1-2 C*T+-X1Zt transitions. The results
concerning points showing staggering larger than the experimental error come out
completely consistently from the two calculations, while the results concerning points
exhibiting staggering of the order of the experimental error come out randomly. The
best example of disagreement between staggering pictures of the same band calculated
from two different sets of data is offered by the v = 2 XE+ band of YD, which shows
staggering of the order of the experimental error.

5) When considering levels of the same band, in some cases the odd levels exhibit
larger staggering than the even levels, while in other cases the opposite is true. In
the v = 1 C'Z+ band of YD, for example, the odd levels show staggering larger than
that of the even levels, while in the v = 2 C'E+ band of YD the odd levels exhibit
staggering smaller than that of the even levels.

2.8. Discussion

The observations made above can be explained by the assumption that the stag-
gering observed is due to the presence of one or more bandcrossings. The following
points support this assumption:

1) It is known that bandcrossing occurs in cases in which the interband interaction
is weak. In such cases only the one or two levels closest to the crossing point are
affected. However, if one level is influenced by the crossing, in the corresponding
staggering figure six points get influenced. For example, if E(16) is influenced by the
crossing, the quantities DE,(15) and DE3(17) are influenced (see Eq. (10) ), so that
in the corresponding figure the points AE,(I) with I = 11, 13, 15, 17, 19, 21 are
influenced, as seen from Eq. (11). This fact explains why points showing appreciable
staggering appear in groups of 6 at a time.

2) It is clear that if bandcrossing occurs, large staggering should appear in ap-
proximately the same angular momentum regions of both even levels and odd levels.
As we have already seen, this is indeed the case.

3) It is clear that when two bands cross each other, maximum staggering will
appear at the angular momentum for which the energies of the relevant levels of
each band are approximately equal. If this angular momentum value happens to be
odd, then AFE,(I) for even values of I in this region (the group of 6 points centered
at this I) will show larger staggering than the AE;(I) for odd values of I in the
corresponding region, and vice versa. For example, if the closest approach of two
bands occurs for I = 31, then AF;(I) for even values of I in the I = 26-36 region
will show larger staggering than AE,(I) for odd values of I in the same region. This
is in agreement with the empirical observation that in some cases the odd levels show
larger staggering than the even levels, while in other cases the opposite holds.

4) The presence of staggering in the “upper” {electronically excited) bands and
the lack of staggering in the “lower” (electronic ground state) bands can be attributed



to the fact that the electronically excited bands have several neighbours with which
they can interact, while the bands built on the electronic ground state are relatively
isolated, and therefore no bandcrossings occur in this case. In the case of the CrD
molecule, in particular, it is known that there are many strong Cr atomic lines present,
which frequently overlap the relatively weaker (electronically excited) molecular lines.
In addition, Ne atomic lines are present. Similarly, in the case of the YD molecule
the observed spectra are influenced by Y and Ne atomic lines, while in the case of the
CrH molecule there are Ne and Cr atomic lines influencing the molecular spectra.

5) The fact that consistency between results for the same band calculated from
two different sets of data is observed only in the cases in which the staggering is much
larger than the experimental error, corroborates the bandcrossing explanation. The
fact that the results obtained in areas in which the staggering is of the order of the
experimantal error, or even smaller, appear to be random, points towards the absence
of any real effect in these regions.

It should be noticed that bandcrossing has been proposed as a possible explanation
for the appearance of AJ = 2 staggering effects in normally deformed nuclear bands
and superdeformed nuclear bands.

The presence of two subsequent bandcrossings can also provide an explanation for
the effect of mid-band disappearance of AT = 2 staggering observed in superdeformed
bands of some Ce isotopes. The effect seen in the Ce isotopes is very similar to the
mid-band disappearance of staggering seen, for example, in the v = 1 C15* band of
YD.

In conclusion, there are several examples of A = 2 staggering in electronically
excited bands of diatomic molecules. The details of the observed effect are in agree-
ment with the assumption that it is due to one or more bandcrossings. In these cases
the magnitude of the effect is clearly larger than the experimental error. In cases in
which an effect of the order of the experimental error appears, this is an artifact of the
method used, since different sets of data from the same experiment and for the same
molecule lead to different staggering results for the same rotational band. These facts
emphasize the need to ensure in all cases (including staggering candidates in nuclear
physics) that the effect is larger than the experimental error and, in order to make
assumptions about any new symmetry, that it is not due to a series of bandcrossings.

3. Al =1 staggering in rotational bands of diatomic molecules

3.1. Formalism

In this section we are going to look for A = 1 staggering in molecular bands free
from AT = 2 staggering, in order to make sure that AJ = | staggering is not an effect
due to the same cause as Al = 2 staggering.

By analogy to Eq. (2), AI = 1 staggering in nuclei can be measured by the




4) In several cases the AJ = 2 staggering of a band can be calculated from two
different sets of data. For example, the AI = 2 staggering of the v = 1 C'T* band
of YD can be calculated from the data on the 1-1 C'E+-X'Z+ transitions, but it
can also be calculated from the data on the 1-2 C*T+-X'T* transitions. The results
concerning points showing staggering larger than the experimental error come out
completely consistently from the two calculations, while the results concerning points
exhibiting staggering of the order of the experimental error come out randomly. The
best example of disagreement between staggering pictures of the same band calculated
from two different sets of data is offered by the v = 2 X1Z+ band of YD, which shows
staggering of the order of the experimental error.

5) When considering levels of the same band, in some cases the odd levels exhibit
larger staggering than the even levels, while in other cases the opposite is true. In
the v = 1 C'Lt band of YD, for example, the odd levels show staggering larger than
that of the even levels, while in the v = 2 C*T* band of YD the odd levels exhibit
staggering smaller than that of the even levels.

2.8. Discussion

The observations made above can be explained by the assumption that the stag-
gering observed is due to the presence of one or more bandcrossings. The following
points support this assumption:

1) It is known that bandcrossing occurs in cases in which the interband interaction
is weak. In such cases only the one or two levels closest to the crossing point are
affected. However, if one level is influenced by the crossing, in the corresponding
staggering figure six points get influenced. For example, if E(16) is influenced by the
crossing, the quantities DF,(15) and DE,(17) are influenced (see Eq. (10) ), so that
in the corresponding figure the points AE,(I) with I = 11, 13, 15, 17, 19, 21 are
influenced, as seen from Eq. (11). This fact explains why points showing appreciable
staggering appear in groups of 6 at a time.

2) It is clear that if bandcrossing occurs, large staggering should appear in ap-
proximately the same angular momentum regions of both even levels and odd levels.
As we have already seen, this is indeed the case.

3) It is clear that when two bands cross each other, maximum staggering will
appear at the angular momentum for which the energies of the relevant levels of
each band are approximately equal. If this angular momentum value happens to be
odd, then AF,(I) for even values of I in this region (the group of 6 points centered
at this I) will show larger staggering than the AFE;(J) for odd values of I in the
corresponding region, and vice versa. For example, if the closest approach of two
bands occurs for I = 31, then AE,(]) for even values of [ in the I = 26-36 region
will show larger staggering than AFE;(T) for odd values of I in the same region. This
is in agreement with the empirical observation that in some cases the odd levels show
larger staggering than the even levels, while in other cases the opposite holds.

4) The presence of staggering in the “upper” (electronically excited) bands and
the lack of staggering in the “lower” (electronic ground state) bands can be attributed



quantity

AE, (1) = i%(GEL.,(I)—4E1,.,(I—1)—4E1,.,(I+1)+E1,.,(I—2)+E1,.,(I+2)), (12)

where
Ei,(I)=E(I+1)- E(]). (13)

The transition energies E () are determined directly from experiment.

In the case of molecules the experimentally determined quantities regard the R
branch and the P branch, as we have already seen in Egs (8)-(9). In order to be able
to use an expression similar to that of Eq. (12) for the study of Al = 1 staggering in
molecular bands we need transition energies similar to those of Eq. (13), i.e. transition
energies between levels differing by one unit of angular momentum. However, Eqgs (8)
and (9) can provide us only with transition energies between levels differing by two
units of angular momentum. Assuming for a band E(0) = 0 we can determine from
Eqs (8) or (9) all of its levels with even I

Evuppcr(z) = ER(I) - EP(I)'J (14)

Eyppper{4) = E,...(2) + ER(3) — EP(3),... (15)

Evoner(2) = EF(0) - E¥(2), (16)

E”lower(4) = E"'lower(2) + En(z) - EP(4)’ Tt (17)

In order to be able to determine the levels with odd I from Egs (8) and (9) in an

analogous way, one needs E(1). Then

Evopper(3) = Euupper (1) + ER(2) — EF(2), (18)
Erupper(8) = Euppper (3) + E¥(4) — EP(4), ... (19)
By (3) = Ey,,.. (1) + ER(1) - EP(3), (20)
E.....(5) = Ey,..(3) + ER(3) - EF(5),... (21)

For the determination of E(1) one could use the overall fit of the experimental
data (for the R and P branches) by a Dunham expansion

E(D)=T,+ BJI{I+1) - D,[I(I+ VP + HJI(I + )P+ LI+ 1)]*, (22

which is usually given in the experimental papers. Preliminary results indicate, how-
ever, that it is more accurate to fit by a Dunham expansion separately the transition
energies for the even levels, as they are obtained from the experimental data through
Eqgs (8) and (9), and separately the transition energies for the odd levels, obtained
from the same equations. The two sets of parameters (one for the even levels and
one for the odd levels) obtained in this way are slightly different, a fact that is an
additional indication of some kind of relative displacement between the even and the




odd levels, i.e. a fingerprint of AI = 1 staggering. One can then determine E(1) from
the Dunham expansion obtained for the odd levels.

The separate Dunham expansions just mentioned are also useful from another
viewpoint. In several cases the experimental data for the R and P branches are “bro-
ken”, i.e. for certain values of the angular momentum the relevant measurements are
missing. Then the Dunham expansions can be used for “mending” the sequence of
experimental data, as shown in the following example. Suppose that in some experi-
ment ER(18) is missing. The energies E,,. (I) with I = 2-18 can be determined in
the way described by Eqs (16), (17), ...In the next step, however, which is

Evoner(20) = B, (18) + EF(18) — EF(20), (23)

the problem shows up, since E®(18) is unknown. In this case we have made the
following choice: We determine E,, . (20) from the Dunham expansion for the even
levels of this band and then use Eq. (23) in order to determine the “missing” value
ER(18).

After determining the energy levels by the procedure described above, we estimate
Al =1 staggering by using the following analogue of Eq. (12),

1
AEy(I) = 15(6DBru(1)~4DEy o(I-1)=4DEy o(I+1)+DEyo(I-2)+ DE1o(I+2)),

(24)
where
DE,, = E,(I) — E,(I -1). (25)

3.2. Analysis of experimental data

In Ref. [2] we have made a preliminary application of the formalism described
above to the 0-0 bands of the A®L*-X®T* system of CrD. Ref. [2] in addition
contains detailed references regarding the contents of this section. We have focused
our attention on the ground X®%Lt state, which is known to be free from Al =
2 staggering effects, while the A®L" state is known to exhibit Al = 2 staggering
effects, which are fingerprints of interband interactions (bandcrossings). The following
observations have been made:

1) The Dunham coefficients obtained in each case for the even levels are very
similar but not identical to the coefficients obtained for the odd levels, indicating that
a relative displacement of the even levels with respect to the odd levels is present.

2} In several cases, in which no interpolation of missing experimental data is
needed, almost constant Al = 1 staggering (of different magnitude in each case)
is seen. E(1) has been calculated using the Dunham expansion (Eq. (22)). The
experimental errors are very small (of the order of 0.001 cm™' for the R and P
branches), making clear that AJ = 1 staggering is an effect much larger than the
experimental errors.

3) Concerning the error in the determination of E(1), the following observations
can be made: From the numerical values of the Dunham coefficients and the form of




Eq. (22) it is clear that for I = 1 most of the error will come from the B,I(I + 1)
term, which in this case is 28,. From the differences between the values of B, one
can see that the error of B, will be of the order of 0.002 cm™'. Therefore the error
of E(1) will be of the order of 0.004 cm™!, which is much smaller than the Al =1
staggering seen in these cases.

4) In cases in which a missing experimental value has been determined in the
way indicated by Eq. (23), the “jump” observed in the staggering at the point
corresponding to the interpolation shows the sensitivity of the staggering to small
errors in the transition energies. For example, in the case that R(18) is missing, as
we see from Eq. (23) the “jump” is due to the fact that £(20) is determined from the
relevant Dunham expansion. It is easily seen that an error of the order of 0.002 cm™1
in B, (as estimated in 3) ) can cause an error of the order of 0.84 cm™! in E(20),
for which the first term in the Dunham expansion is 420B,. Indeed, “jumps” of the

order of 1 CI]TI“1 are seen.

3.8. Algebraic models

As we have seen in the previous subsection, there is some preliminary evidence
for AI = 1 staggering of constant magnitude in the v = 0 bands of the ground X®T+
state of the molecule CrD. It is useful at this point to recall algebraic models used
in nuclear structure, which predict constant Al = 1 staggering. These models are
related to the description of octupole degrees of freedom, which are responsible for
the presence of octupole bands, i.e. bands with a sequence of levels with I™ = 0%,
17, 2%, 37, 4%, 5, .... These bands are thought to be present in cases in which the
nucleus acquires a shape with octupole deformation, i.e. a pear-like shape.

3.3.1. The spf-Interacting Boson Model

In the spf-IBM, which possesses an u(1l) symmetry, s, p, and f bosons (i.e.
bosons with angular momentum 0, 1, and 3, respectively) are used. Octupole bands
are described in the su(3)} limit, which corresponds to the chain

u(11) D u(10) D> su(3) 2 o(3) D of2). (26)

The relevant basis is
|N, Nb,wb,(Ab,pb),Kb,I,M >, (27)

where N is the total number of bosons labelling the irreducible representations (irreps)
of u(11), N; is the total number of negative parity bosons (p and f) labelling the ir-
reps of u(10), wp is the “missing” quantum number in the decomposition u(10) Dsu(3),
(X, o) are the Elliott quantum numbers labelling the irreps of su(3), K is the “miss-
ing” quantum number in the decomposition su(3)>o(3), I is the angular momentum
quantum number labelling the irreps of o(3), M is the z-component of the angular
momentum labelling the irreps of 0(2). The energy eigenvalues are given by

E(Ny, Aoy oy I) = @+ BNy + ANJ + 6C (N, ) + £'1(T + 1), (28)




where
COuu) =X +p® + Au +3) + 3. (29)

It is clear that positive parity states occur when N, is even, while negative parity
states occur when N, is odd. In the case of N being even, the ground state band is
sitting in the (3V,0) irrep, while the odd levels of negative parity are sitting in the
(BN —3,0) irrep. Then from Eq. (6) one obtains

_ | ~(B+~(2N —1)+ 18«N), for I = even,
AB(D) = { +{B + (2N — 1) + 18«N), for I = odd. (30)

In the case of N being odd, the ground state band is sitting in the (3N — 3,0) irrep,

while the odd levels of negative parity are sitting in the (3N, 0) irrep. Then from Eq.
(24) one has

[ +(B+v(2N — 1)+ 18«N), for I = even,
AB) = { —(B+ (2N — 1)+ 18xN), for I = odd. (31)

Since N is a constant for a given nucleus, expressing the number of valence nucleon
pairs counted from the nearest closed shells, we see that AT = 1 staggering of constant
amplitude is predicted.

This model could also be used in molecular physics as an extension of the molecular
vibron model, in which rovibrational spectra of diatomic molecules are described in
terms of s and p bosons, the latter representing the degree of freedom corresponding
to the distance between the two atoms of which the molecule is composed, while the
boson number ¥ indicates the number of excitation quanta. The f boson will then
correspond to the octupole degree of freedom, which could be due to the fact that the
diatomic molecule consists of two unequal atoms, therefore it possesses a pear-like
shape, which is a fingerprint of octupole deformation.

3.3.2. The spdf-Interacting Boson Model

In the spdf-Interacting Boson Model, which possesses a u(16) symmetry, s, p, d,
and f bosons (i.e. bosons with angular momentum 0, 1, 2, and 3, respectively) are
taken into account. Octupole bands are described in the su(3) limit, which corre-
sponds to the chain

1(16) D u,(6) ® un(10) D sua(3) @ sup(3} O su(3) D of3) D o(2). (32)
The relevant basis is
|N1 Ny Noyw, ()\ﬂ: nu'ﬂ)1 (Abs Jub)-: ()‘: }u)) K, I,M >, (33)

where N is the total number of bosons labelling the irreps of u(16), N, is the number
of positive parity bosons labelling the irreps of u,(6), and N, is the number of negative
parity bosons labelling the irreps of u;(10). The rest of the quantum numbers are



analogous to those appearing in the basis of the u(11) model, described above. su(3)
is the algebra obtained by adding the corresponding generators of su,(3) and suy(3).
The energy eigenvalues are given by

E(Nb, Aa,#a: Ab? Hby A’ Ky I) =

a+ BNy + YN + £.C(Aay ta) + 6sC (Ap, i) + kC(A, p) + £'1(1 + 1), (34)

with C'(A, p) defined as in Eq. (29).

The ground state band is sitting in the (2N, 0), irrep (which contains N bosons
of positive parity and no bosons of negative parity), while the odd levels of negative
parity are sitting in the (2N — 2,0), (3,08), (2N + 1,0) band {(which contains N — 1
bosons of positive parity and one boson of negative parity). Then from Eq. (24) one
has

AE(I) = { +(B+7 — 2ka(4N + 1) + 18ky + 4k(N + 1)) for I = even, (35)

~(B+ v~ 2k, (4N +1) + 18k, + 4k(N + 1)) for I = odd.
Therefore AT = 1 staggering of constant amplitude is predicted, sinice N is a constant
for a given nucleus, representing the number of valence nucleon pairs counted from
the nearest closed shells.

In comparison with the molecular vibron model, which uses the bosons s and p,
the u(16) model contains in addition the bosons d and f, corresponding to quadrupole
and octupole deformations respectively. The inequality of the masses of the two atoms
composing a diatomic molecule can be used as an argument in favour of the use of
the f boson, as we have already seen. The d boson could be added if an argument
in favour of its use is found. For the present needs in the context of molecules the f
boson suffices, i.e. one can remain within the framework of the u(11) model.

3.3.3. The Vector Boson Model

In the Vector Boson Model {VBM), the collective states are described in terms of
two distinct kinds of vector bosons, whose creation operators £* and n* are o(3)
vectors and in addition transform according to two independent su(3) irreducible
representations (irreps) of the type (A, 1) = (1,0), 1.e. they are two distinct bosons of
angular momentum 1. Octupole bands are described in the su(3) limit of the VBM,
which corresponds to the chain

u{6) D su(3) ® u(2) O so(3) ® u(l1). (36)
The relevant basis is
‘N,(/\,}L),(N,T),K,I,To =y (37)

where N is the total number of bosons labelling the irreps of u(6), (A, u) are the Elliott
quantum nurmbers labelling the irreps of su(3), N and T' are the quantum numbers
labelling the irreps of u(2), K is the “missing” quantum number in the su(3)Dso(3)



decomposition, [ is the angular momentum quantum number labelling the irreps of
so(3), and Tq is the pseudospin projection quantum number labelling the irreps of

u(1). The algebras su(3) and u(2) are mutually complementary, their irreps (X, p)
and (N, T) being related by

N=X+2u, T=\2 (38)

The energy eigenvalues are given by

32
E(N, Ay, K,1,Tg =T) = aN 4+ agN(N 4+ 5) + azC(A, p) + I (I + 1) + a7 (39)
with C(A, u) defined as in Eq. (29).

The ground state band is sitting in the (0,4) = (0,%) irrep of su(3), while the
odd levels of negative parity are sitting in the (2,u — 1) = (2, %’— ~ 1) irrep. Then
from Eq. (24) one obtains

__ | +(6as + a1), for I = even,
AE(I) = { —(6as + a1), for I = odd. (40)

Therefore Al = 1 staggering of constant amplitude is predicted.

The vector bosons of the VBM are interpreted as quanta of elementary collective
excitations, the boson number N counting the number of excitation quanta. Therefore
vector bosons are equally suitable for the description of collective effects both in nuclei
and in molecules.

3.3.4. The Nuclear Vibron Model

An alternative interpretation of the low lying negative parity states appearing
in the light actinides has been given following the assumption that alpha clustering
is important in this region. An algebraic model appropriate for the description of
clustering effects in nuclei is the Nuclear Vibron Model, which uses s and d bosons
for the description of nuclear collectivity, plus s’ and p bosons for taking into account
the distance separating the center of the cluster from the center of the remaining
nucleus. The chain corresponding to the su(3}) limit of this model is

u(6) ® u(4) D sua(3) @ up(3) D sua(3) ® sus(3) 2 su(3) D o(3) D of2), (41)

where the subscript a labels the subalgebras of u(6), while the subscript b labels the
subalgebras of u(4). The relevant basis 1s

|N3M1(/\aaﬂa)anpa(AaFLXaIaM>a (42)

where N is the number of the s and d bosons related to the u(6) algebra, M is
the number of the s’ and p bosons related to the u(4) algebra, (A,, ito) are the Elliott
quantum numbers related to su,(3), n, is the number of p bosons, (A, i) are the Elliott




quantum numbers related to su(3), x is the Vergados “missing” quantum number in
the decomposition su(3)2>0(3), while I and M represent the angular momentum and
its z-component respectively, as usual. The energy eigenvalues are given by

E(ng, A, pha, A, I) = oMy +apnp(np+3) +84C (Aa, pta) + kC (A, p)+ ""I(I‘}' 1), (43)

with C(A, u) defined as in Eq. (29).

The ground state band is characterized by (Aq,pua) = (2N,0), n, = 0, (A, p) =
(2N,0) (i.e. it contains N bosons of positive parity and no p-boson of negative
parity), while the negative parity band is characterized by (A, s} = (2N,0), n, = 1,
(A, 1) = (2N +1,0) (i.e. it contains N bosons of positive parity plus one p-boson of
negative parity). Then from Eq. (24) one has

AE(I) = { +{& +4ap + 46(N +1)), for I = even,

—(¢, + 4o, + 4k(N +1)), for I = odd. (44)

Therefore AI = 1 staggering of constant amplitude is predicted.

It 1s not obvious how this model could be applied in the case of diatomic molecules.
However, we have opted to describe it here along with the other algebraic models,
since it will be needed in the next section.

We conclude that the various algebraic models, describing low lying negative parity
bands in terms of octupole deformation or in terms of alpha clustering, predict odd-
even staggering (AJ = 1 staggering) of constant amplitude. In all cases the staggering
results from the fact that the negative parity states belong to an irrep different from
the one in which the positive parity states composing the ground state band sit.

3.4. Discussion

We have shown evidence for a AT = 1 staggering effect (i.e. a relative displacement
of the odd levels with respect to the even levels) in rotational bands of diatomic
molecules (like the v = 0 bands of the ground X®%* state of CrD) which are known to
be free from A = 2 staggering (i.e. free from interband interactions/bandcrossings).
The magnitude of the AT =1 staggering has been found to be constant as a function
of the angular momentum 7, in agreement with the predictions of algebraic models
including octupole degrees of freedom, suggesting a possible explanation of the effect
in terms of pear-like shapes, occuring in diatomic molecules in general because of the
inequality of the masses of the two atomns of which the molecule is composed. The
existence of the effect is corroborated by the fact that Dunham fits of the even levels
separately and the odd levels separately for the same rotational band lead to similar
but different parameter sets.

Al = ] staggering of constant magnitude has also been seen in several bands
of AgH. If the explanation of the effect in terms of octupole (pear-like) shapes due
to the inequality of the masses of the two atoms composing the molecule is correct,
the effect should be detectable in several cases of bands of diatomic molecules free
from bandcrossing effects, while it should be absent in diatomic molecules consisting




of two identical atoms. A search for more examples of molecular bands exhibiting
constant Al = 1 staggering is clearly needed, before final conclusions could be made.
A starting point for this search can be these of the bands of the molecules YD, CrH,
CoH, which have been found to be free from Al = 2 staggering.

In the case of the AgH molecule, in addition to the bands showing constant AJ = 1
staggering, there are also bands showing AJ = 1 staggering of varying amplitude [3)].
The physical origins of such variations are an interesting problem. Some insight into
this can be gained from the study of Al = 1 staggering patterns in octupole bands
of light actinides, which will be the subject of the next section.

4. AT =1 staggering in octupole bands of light actinides

4.1. Introduction

Rotational nuclear spectra have been long attributed to quadrupole deformations,
corresponding to nuclear shapes produced by the revolution of an ellipsis around its
maximum or minimum axis and rotating around an axis perpendicular to their axis
of symmetry. In addition, it has been suggested that octupole deformation occurs
in certain regions, most notably in the light actinides and in the A ~ 150 mass
region, corresponding to pear-like nuclear shapes. In even nuclei exhibiting octupole
deformation the ground state band, which contains energy levels with I™ = 0%, 2%,

4% 6%, ..., is accompanied by a negative parity band containing energy levels with
I"=1",3",5",7",.... After the first few values of angular momentum I the two
bands become interwoven, forming a single octupole band with levels characterized
by I" = 0%, 17, 2%, 37, 4%, 57, .... (It should be noted, however, that in the light

actinides alternative interpretations of these bands in terms of alpha clustering have
been proposed.)

It has been observed that in octupole bands the levels with odd I and negative
parity (I" = 17,37, 57, ...) are displaced relatively to the levels with even I and
positive parity (I™ = 0%, 2%, 4%, ...), i.e. odd-even staggering or Al =1 staggering
occurs.

The dependence of the amplitude of the staggering effect on the angular momen-
tum I presents much interest. The situation up to now had as follows:

1) As we have seen in subsection 3.3, algebraic models of nuclear structure ap-
propriate for the description of octupole bands, like the spf-Interacting Boson Model
(spf-IBM) with u(11) symmetry, the spdf-IBM with u(16) symmetry, and the Vector
Boson Model (VBM) with u(6) symmetry, predict Al = 1 staggering of constant am-
plitude, i.e. all the odd levels are raised (or lowered) by the same amount of energy
with respect to the even levels. In other words, Al =1 staggering takes alternatively
positive and negative values of equal absolute value as I increases.

2) As we have also seen in subsection 3.3, algebraic models of nuclear structure
suitable for the description of alpha clustering effects, like the Nuclear Vibron Model
(NVM) with u(6)®u(4) symmetry, also predict AI = 1 staggering of constant ampli-



tude.

3) Older experimental work on octupole nuclear bands suggests that Al = 1
staggering starts from large values and its amplitude decreases with increasing 1.
These findings are in agreement with the interpretation that an octupole band is
gradually formed as angular momentum increases.

4) As we have seen in subsection 3.2, recent work on experimental data for di-
atomic molecules shows that in some rotational bands Al = 1 staggering of constant
amplitude seems to appear, while in other bands a variety of shapes, reminiscent of
beats, are exhibited.

Motivated by these recent findings, we make in the present section a systematic
study in the light actinide region of all octupole bands for which at least 12 energy
levels are known, taking advantage of recent detailed experimental work in this region.
The questions to which we have hoped to provide answers are:

1) Which patterns of behaviour of the amplitude of the AJ = 1 staggering appear?
Are these patterns related to the ones seen in diatomic molecules?

2) Can these patterns be interpreted in terms of the existing models, or in terms
of any other theoretical description?

4.2. Formalism

Traditionally the odd-even staggering (Al = 1 staggering) in octupole bands,
as well as in gamma bands, has been estimated quantitatively through use of the
expression

(I+VD)E(I-1)+IE(I+1)
2 +1 ’

where E(I) denotes the energy of the level with angular momentum I. This expression
vanishes for

§E(I) = E(I) (45)

E(I)=Eo + AI(I +1), (46)
but not for
E(I) = By + AI(I +1) + B(I({ + 1))°. (47

Therefore it is suitable for measuring deviations from the pure rotational behaviour.
On the other hand, one can use Eq. (12), as already described in subsection 3.1.
This is what we are going to use in this section.

4.3. Analysis of experimental data

We have applied the formalism described above to all octupole bands of light
actinides for which at least 12 energy levels are known and which show no backbending
(i.e. bandcrossing) behaviour. Using the R4 ratio,

Ry= o (48)




a well known characteristic of collective behaviour, we see that several of these nuclei
(322-22Rga, ?24-228Th) are rotational or near-rotational (having 10/3 > R4 > 2.7),
while others (218-222Rp, ?2°Ra, 229-222T}h) are vibrational or near-vibrational (having
2.4 > Ry > 2). A special case is ?®Ra, for which it has been argued that it is
an example of a new type of transitional nuclei, in which the octupole deformation
dominates over all other types of deformation.

The staggering results for #*8-222Rn, 218-236R45 and 22°-28Th, can be found in
in Fig. 1, Fig. 2, and Fig. 3 of Ref. [4], respectively. Ref. [4] in addition contains
detailed references regarding the contents of this section. In al! cases the experimental
errors are of the size of the symbol used for the experimental point and therefore
negligible. The following observations can be made:

1) In all cases the shapes appearing are consistent with the following pattern:
Al = 1 staggering starts from large values at low /, it gradually decreases down to
zero, then it starts increasing again, then it decreases down to zero and starts raising
again. In other words, figures resembling beats appear. The most complete “beat”
figures appear in the cases of *°Ra, ***Ra, 22Th, as well as in the cases of ?1®Ra,
2R, 226R,,

2) In all cases within the first “beat” (from the beginning up to the first zero
of AE,(I) ) the minima appear at odd 7, indicating that in this region the odd
levels are slightly raised in comparison to the even levels. Within the second “beat”
(i.e. between the first and the second zero of AE,,(I) ), the opposite holds: the
minima appear at even I, indicating that in this region the odd levels are slightly
lowered in comparison to the even levels. Within the third “beat” (after the second
zero of AE, (I} ) the situation occuring within the first “beat” is repeated. (Notice
that 22°Th is not an exception, since what is seen in the figure is the second “beat”,
starting from I = 6.)

3) In the case of **?Rn the decrease of the staggering with increasing I, in the
region for which experimental data exist, is very slow, giving the impression of almost
constant staggering. One can get a similar impression from parts of the other patterns,
as, for example, in the cases of ?°Ra (in the region I = 12—20), **Ra (for I = 9-17),
224Ra (for I = 10 — 16), 2*°Ra (for I = 14 — 20), ***Th (for 1 = 10 — 18).

These observations bear considerable similarities to Al = 1 staggering patterns
found in rotational bands of diatomic molecules. In particular:

1) Staggering patterns of almost constant amplitude have been found in some
rotational bands of the CrD and AgH molecules.

2) Staggering patterns resembling the “beat” structure have been seen in several
bands of the AgH molecule.

The following comments are also in place:

1} In all cases bands not influenced by bandcrossing effects have been consid-
ered, in order to make sure that the observed effects are “pure” single-band effects.
The only exception is 22°Th, which shows signs of bandcrossings at 10% and 137,
which, however, do not influence the relevant staggering pattern. A special case is
218R 4, which shows a rather irregular dependence of E(I) on I. As we have already
mentioned, it has been argued that this nucleus is an example of a new type of tran-




sitional nuclei in which the octupole deformation dominates over all other types of
deformation.

2) The same “beat” pattern appears in both rotational and vibrational nuclei.
The only slight difference which can be observed, is that the first vanishing of the
staggering amplitude seems to occur at higher I for the rotational isotopes than for
their vibrational counterparts. Indeed, within the Ra and Th series of isotopes under
study, the I at which the first vanishing of the staggering amplitude occurs seems
to be an increasing function of Ry, i.e. an increasing function of the quadrupole
collectivity.

3) The present findings are partially consistent with older work. The limited sets
of data of that time were reaching only up to the I at which the first vanishing of the
staggering amplitude occurs. It was then reasonable to assume that the staggering
amplitude decreases down to zero and remains zero afterwards, since no experimental
evidence for “beat” patterns existed at that time.

4.4. Interpretation of the ezperimental observations

As we have seen in the previous subsection, various Al = 1 staggering patterns
occur in the octupole bands of the light actinides. On the other hand, in subsection
3.3 we have seen that the various algebraic models describing low lying negative
parity bands in terms of octupole deformation or in terms of alpha clustering, predict
odd-even staggering (Al =1 staggering) of constant amplitude.

It should be noticed, as already remarked in subsection 4.3, that the experimental
data indicate that the value of I at which the first vanishing of the staggering ampli-
tude occurs increases as a function of Ry, i.e. as the rotational limit is approached.
The higher the value of I at which the first vanishing occurs, the more smooth the de-
crease of the staggering as a function of I is. We see, therefore, that as the rotational
limit is approached, the experimental data approach more and more the constant
staggering prediction provided by the various algebraic models. The best example is
provided by ?*Th, the most rotational among the nuclei studied here.

Although the algebraic models mentioned above are sufficient for providing an
explanation for Al = 1 staggering in the cases in which this appears as having almost
constant amplitude, it is clear that some additional thinking is required for the many
cases in which the experimental results show a “beat” pattern, as in subsection 4.3
has been exhibited.

A simple explanation for the appearance of “beat” patterns can be given by the
following assumptions:

1) It is clear that in each nucleus the even levels form the ground state band,
which starts at zero energy, while the odd levels form a separate negative parity
band, which starts at some higher energy. Let us call Ey the bandhead energy of the
negative parity band.

2) It is reasonable to try to describe the ground state band by an expression like

E.(I)=AI(J+1)~-BIUI+1)P+CUHIT+ 1)+ (49)




where the subscript + reminds us of the positive parity of these levels. Such ex-
pansions in terms of powers of /(I + 1) have been long used for the description of
nuclear collective bands. They also occur if one considers Taylor expansions of the
energy expressions provided by the Variable Moment of Inertia Model (VMI) model
and the su,(2) model. Notice that fits to experimental data indicate that one always
has A> 0, B>0,C >0, ..., while A is usually 3 orders of magnitude larger than
B, B is 3 orders of magnitude larger than C, etc. Eq. (49) has been long used in
molecular spectroscopy as well, under the name of Dunham expansion.

3) In a similar way, it is reasonable to try to describe the negative parity levels
by an expression like

E(D=E+AII+1)~BUI+ 1))+ CIIT+1)P+ - (50)

where the subscript — reminds us of the negative parity of these levels, while Fy is
the above mentioned bandhead energy. In analogy to the previous case one expects
tohave A’>0,B' >0,C">0,...

4) In the above expansions it is reasonable to assume that A > A', B > B,
C > C', .... The reason is the following: Eq. (49) corresponds to the ground
state band, which is expected to possess quadrupole deformation, while Eq. (50)
corresponds to the negative parity states, for which in addition octupole deformation
should show up. One should expect that the states with larger deformation (the
negative parity states) should correspond to larger values of the moment of inertia
©, and therefore to smaller values of the coefficient of the I{I + 1) term, which is
essentially 1/(20). As a result one should have A > A’, and, by analogy, one can
assume B > B', C' > C’, .... This is admitedly a quite weak argument, which is
however driving to interesting results, as we shall soon see.

Using Eqs (49) and (50) in Eqs (12) and (13) we find the following results

2
AE(I)=Ey— (A-A)(I*+2I1+2)+(B- B (I‘* +4I° +131% 4181 + 73)
357
—(C-C" (IG +61° +331* +921° + T12 + ?1 + 68)
+45C(I+ 1)+ -+, for I = even, (51)

2
AE(I)=-Ey+ (A~ AYI*+21+2)- (B~ B (I‘* +41° +131% + 187 + ;)

333
+(C -C") (16 +61° 4+ 337* + 921° + %12 + 51+ 68)
—45C"(I+1)+---, for I=odd. (52)

On these results the following comments can be made:
1) The expression for odd I is the opposite of the expression with even I. This
means that in the relevant staggering plot the staggering points for even I and the




staggering points for odd I shall form two lines which are reflection symmetric with
respect to the horizontal axis.

2) For even I the behaviour of the staggering amplitude is as follows: At low I it
starts from a positive value, because of the presence of Ey. As I increases, the second
term, which is essentialy proportional to I%, becomes important. (E, is expected to
be much larger than (A— A’).) This term is negative (since A > A'), thus it decreases
the amplitude down to negative values. At higher values of I the third term, which
is essentially proportional to 4, becomes important. (Remember that usually B is 3
orders of magnitude smaller than A.) This term is positive (since B > B'), thus it
increases the amplitude up to positive values. At even higher values of I the fourth
term, which is essentially proportional to I®, becomes important. (Remember that
usually C is 3 orders of magnitude smaller than B.) This term is negative (since
C > ('), thus it decreases the amplitude again down to negative values, and so on.

3) For odd I the behaviour of the staggering amplitude is exactly the opposite of
the one described in 2) for even I. The amplitude starts from a negative value and
then becomes consequently positive (because of the second term), negative {because
of the third term), again positive (because of the fourth term), and so on.

4) When drawing the staggering figure one jumps from an even I to an odd I,
then back to an even I, then back to an odd I, and so on. It is clear therefore that a
“beat” pattern appears.

The following additional comments are also in place:

1) In the case of a single band (i.e. in the case of A = A, B= B/, C = (', etc),
the first contribution to the staggering measure AE(I) is the last term in Egs (51),
(52), which comes from the C(I(J + 1))? term in the energy expansion (see Eqs (49),
(50) ). This is understandable: Since Eq. (12) is a discrete approximation of the
fifth derivative of the function E(I), as it has already been remarked, the terms up
to B(I(I +1))* are “killed” by the derivative, while the C(I(I + 1))° term gives a
contribution linear in 1.

2) The last term in Eqs (51), (52) does not influence significantly the behaviour
of the staggering pattern, since C is usually 6 orders of magnitude smaller than A
and 3 orders of magnitude smaller than B.

3) One could argue that the above reasoning is valid only for the case of rotational
or near-rotational bands, for which the expansions of Eqs (49), (50) are known to
be adequate (although one should be reminded at this point that the VMI model
describes quite well not only rotational, but also transitional and even vibrational
nuclei). One can attempt to mend this problem by adding to the expansions of Eqs
(49) and (50) a linear term, in the spirit of the Ejiri formula, the Variable Anharmonic
Vibrator Model (VAVM), and the u{5) and o(6) limits of the Interacting Boson Model

E,(N=AT+AII+1) - BUII+1))+CUII+1D)P+---, (53)

E(DN=FE+AI+AII+1)-BII+1))+CUIIT+1))P+---. (54




Then Eqs (51) and (52) get modified as follows

i 1 !
AE(I)=EQ—(A1—A1)(I+§)“(A_A)(Iz+21+2)
! 4 3 2 23
+(B—B)(I +41° + 131 +18I+?)——---, for I = even, (55)
1
AE(I)=-Ey+ (A — A) (I+ 5) +(A-A)IP+21+2)
/ 4 3 2 23
—(B=-B)|I"+4I°+13I +181+§* +-++, for I =odd. (56)

We see that the extra term, which is proportional to (A; — A}), plays the same role
as the term proportional to (A4 — A’} in shaping up the behaviour of the staggering
amplitude. Therefore the conclusions reached above for rotational nuclei apply equally
well to vibrational and transitional nuclei as well.

4) This type of explanation of the staggering patterns seems to be outside the
realm of the form of the algebraic models presented above. Even if one decides to
include higher order terms of the type (/{1 +1))?, (I{I+1))3, etc, in these models, by
including in the Hamiltonian higher powers of the relevant Casimir operator, these
terms will appear with the same coefficients for both the ground state band and the
negative parity band, even though these two bands belong to different irreps. The
only possible contributions to the staggering will then come from terms like the last
term in Egs (51) and (52), which comes from the term (I(I + 1)), and similar terms
coming from higher powers of 7(I+1). However, the term (/(7+1))? in the framework
of the algebraic models already corresponds to 6-body interactions, which are usually
avoided in nuclear structure studies.

We conclude therefore that the “beat” pattern can be explained in terms of two
Dunham expansions with slightly different sets of coefficients, one for the ground state
band with quadrupole deformation and another for the negative parity band in which
in addition the octupole deformation appears.

4.5. Discussion

We have demonstrated that octupole bands in the light actinides exhibit Al =1
staggering (odd—even staggering), the amplitude of which shows a “beat” behaviour.
The same pattern appears in both vibrational and rotational nuclei, forcing us to
modify the traditional belief that in octupole bands the staggering pattern is gradually
falling down to zero as a function of the angular momentum I and then remains there.

It has also been demonstrated that various algebraic models, including octupole
degrees of freedom or based on the assumption that alpha clustering is important
in this region, predict Al = 1 staggering of amplitude constant as a function of the
angular molentum /. Although this description becomes reasonable in the rotational




limnit, it cannot explain the “beat” patterns appearing in both the rotational and the
vibrational regions.

A simple explanatation of the “beat” behaviour has been given by describing the
even [ levels of the ground state band and the odd 7 levels of the negative parity band
by two Dunham expansions (expansions in powers of I(I + 1)) with slightly different
sets of coefficients, the difference in the coefficients being attributed to the octupole
deformation which is present in the negative parity band.

The “beat” patterns found here in the octupole bands of the light actinides bear
striking similarities to the “beat” patterns seen in the rotational bands of some di-
atomic molecules, like AgH. It is expected that an explanation of the “beat” behaviour
in terms of two Dunham expansions with slightly different sets of coefficients should
be equally applicable in this case.

It is also of interest to check if “beat” patterns appear in other kinds of bands as
well. Preliminary results indicate that such patterns appear in some gamma bands
(**4Er, 1°YD), as well as in a variety of negative parity bands. Further work in this
direction is needed.

5. Quantum algebraic symmetries in atomic clusters

In the previous sections we have studied staggering phenomena in nuclear and
molecular spectra, revealing certain structural similarities between these physical sys-
tems. Structural similarities exist also between nuclei and atomic clusters. Both of
these systems exhibit magic numbers, different in each case. An interpretation of
the magic numbers of several kinds of metallic clusters can be given in terms of the
3-dimensional ¢-deformed harmonic oscillator, which can in addition reproduce the
results of the modified harmonic oscillator, first used in nuclear structure by Nilsson.
The main difference is that the spin—orbit interaction, which plays a crucial role in
the formation of magic numbers in nuclei, is absent in the case of atomic clusters.
Discussions of the description of the magic numbers of metallic clusters in terms of
the 3-dimensional ¢g-deformed harmonic oscillator can be found in Refs [5], [6], while

reviews of applications of quantum algebraic techniques in nuclei and molecules can
be found in Refs {7], [8], and [9].
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