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Christopher Robert Jones

Abstract

The Opal detector at the LEP collider at CERN recorded 3.35 million hadronic Z0

decays between 1992 and 1995. Measurements of the inclusive semileptonic branching

fractions of b hadrons derived from this data sample, are presented in this thesis.

An enriched sample of Z0 → bb decays is obtained using a method which exploits

the relatively long lifetime and high mass of the b quark. A method for measuring the

b purity of this sample from the data is described. Electron and muon candidates are

selected from this b enriched sample and an improved algorithm for identifying electrons

is presented. A new method for determining the fraction of leptons from semileptonic

decays is developed, which compares the distribution of several kinematic variables using

artificial neural networks. A fit for the fraction of semileptonic decays in the lepton

samples is performed, which also yields 〈xE〉b, the average fraction of the beam energy

carried by the weakly decaying b hadron, giving

B(b → X`ν`) = (10.83 ± 0.10 (stat.) ± 0.20 (syst.) + 0.20
− 0.13 (model))%,

B(b → c → X`ν`) = (8.40 ± 0.16 (stat.) ± 0.21 (syst.) + 0.33
− 0.29 (model))%,

〈xE〉b = 0.709 ± 0.003 (stat.) ± 0.003 (syst.) ± 0.013 (model),

where b denotes all weakly decaying b hadrons and ` represents either e or µ. The first

errors are statistical and the second include all experimental systematic uncertainties.

The modelling errors are due to theoretical uncertainties in the semileptonic b decay

lepton momentum spectra and the b quark fragmentation spectra.

The Opal detector and the LEP accelerator are briefly summarised. A theoretical

overview of semileptonic decays is presented and the predictions are compared with these

and other experimental results.
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Chapter 1

Introduction

This thesis presents measurements of the inclusive semileptonic branching fractions of b

hadrons B(b → X`ν`) and B(b → c → X`ν`). The data used in this analysis consists of

3.35 million hadronic Z0 decays collected with the Opal detector at the LEP accelerator

between 1992 and 1995.

The inclusive semileptonic branching fraction B(b → X`ν`) is defined as the fraction

of ground state b hadrons (hadrons containing a b quark)a that decay weakly to a final

state containing a lepton and lepton neutrino pair, where the lepton is either an electron

or muon. The branching fraction B(b → c → X`ν`) refers to the fraction of b hadrons

that decay weakly to a state containing a charm hadron, which then proceeds to decay

semileptonically. The ground state b mesons are the B0, B+, Bs and Bc mesons, whilst

the weakly decaying ground state b baryons are generically referred to as Λb, and consist

of the Λ0
b, Ξb, Σb and Ωb baryons.

Studies of the weak decays of heavy hadrons play an important role in testing the

Standard Model of particle physics and in the determination of some of the parameters

not predicted by the theory. Measurements of the branching fraction B(b → X`ν`) pro-

vide information on the heavy quark masses and Cabibbo-Kobayashi-Maskawa (CKM)

aThroughout this thesis charge conjugation is implied unless otherwise stated.
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2 CHAPTER 1. INTRODUCTION

matrix elements, which determine quark mixing. In addition, the weak decays of hadrons

provide a probe into the parts of the strong interaction that are least well understood; the

perturbative and non–perturbative forces which bind quarks and gluons inside hadrons.

Experimentally, the high momentum leptons from semileptonic b → ` decays provide a

relatively clean and distinctive signature for b decays. ‘Cascade’ decays, b → c → `, also

produce high momentum leptons and form an important background to ‘direct’ b → ` de-

cays. Theoretically, cascade decays are less interesting than direct decays since the heavy

quark c → ` decay is convoluted with the b → c decay kinematics. The B(b → c → X`ν`)

branching fraction is of interest experimentally however and is commonly determined

simultaneously with B(b → X`ν`) to minimise systematic uncertainties.

In Chapter 2 an introduction to the Standard Model is presented. The theory

behind the production and weak decay of b hadrons is discussed, together with an

overview of the current status of experimental measurements and theoretical predictions

for B(b → X`ν`). The various phenomenological models used to describe the semilep-

tonic decay lepton momentum spectra are also described.

Chapter 3 gives a description of the LEP accelerator and the Opal detector and

explains how the data used in this analysis were collected. In this thesis, the semileptonic

branching fractions are measured by calculating the ratio of the number of leptons that

originate from semileptonic b → ` and b → c → ` decays, to the total number of weak

b decays in a data set enhanced in Z0 → bb events. Chapter 4 describes the raw data

sets used in this analysis, and the techniques used to select from these data a sample

enhanced in b hadron decays. A method for measuring the b purity of the b hadron

enhanced sample from the data itself is described, allowing the true number of b decays

in the data to be determined.

In Chapter 5 the techniques used to identify electron and muon candidate tracks in

the Z0 events are described together with the use of simulated Monte Carlo data to deter-

mine the efficiencies of these selections. The development of an improved algorithm for

identifying electron candidates is discussed in detail. The methods used to determine

the fraction of the selected lepton samples that originate from b → ` and b → c → `
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decays are described in Chapter 6, and in Chapter 7 the final results for the semilep-

tonic branching fractions are presented together with a discussion of the systematic and

modelling uncertainties. Finally, Chapter 8 discusses the implications of the results and

gives an outlook on the future developments in b physics.
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Chapter 2

Review of Weak b Hadron Decays

In this chapter an overview of the current theories of particle physics which comprise the

Standard Model is presented. The chapter starts with a brief summary of the particles

and forces in nature and their theoretical description within the Standard Model. An

overview of b hadron production is then given and the models used to describe these

processes are discussed. Following this, the theoretical description of the weak decays

of b hadrons is presented with a summary of the current theoretical and experimental

status of semileptonic weak decays. Finally, the chapter ends with a discussion of the

phenomenological models used to describe the lepton momentum spectra from weak b

hadron decays.

2.1 Introduction

There are currently thought to be four fundamental forces in nature. The Standard

Model encompasses gauge theories describing three of these forces: the electromagnetic,

weak and strong forces. The fourth force, gravitation, has not as yet been successfully

incorporated into the Standard Model. It is however, very weak when compared to

the other forces at currently available experimental energies and hence its omission is

expected to have negligible impact on the theoretical predictions.

5



6 CHAPTER 2. REVIEW OF WEAK B HADRON DECAYS

The Standard Model contains two different species of elementary particles, the bosons

and fermions. The bosons are the gauge particles which mediate the forces and have

integer spina. The fermions are further divided into quarks and leptons, both having

spin 1
2
.

In the following sections a brief description of the Standard Model is given, focusing

on those areas relevant to this thesis. A more detailed discussion can be found in the

literature, for example [1, 2].

2.1.1 Gauge Bosons and Forces

Gauge bosons are the mediating particles for the fundamental forces (Table 2.1).

Interaction Boson Spin Mass / GeV/c2

Electroweak











Electromagnetic

Charged current

Neutral current

Photon

W boson

Z boson

γ

W±

Z0

1

1

1

massless

80.41 ± 0.10

91.188 ± 0.007

QCD 8 Gluons g 1 massless

Gravitation Graviton G 2 massless

Table 2.1: The gauge bosons of the four fundamental forces. Mass values
taken from [3].

The electromagnetic force acts on all electric charge carriers and is mediated by the

photon, a massless spin 1 boson with zero electric charge. Since the photon is electri-

cally neutral it cannot interact directly with other photons, and since it is massless the

electromagnetic force has infinite range. The electromagnetic interactions are described

to a high level of accuracy by the theory of Quantum Electrodynamics (QED).

aSpin measured in units of ~.
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The strong force couples particles which carry colour charge and is mediated by

the massless gluon. The gluon itself carries colour charge and therefore self–interactions

between gluons can occur. These interactions limit the effective range of the strong force.

The theory describing the strong interactions is Quantum Chromodynamics (QCD).

The weak force couples to all particles and is mediated by the massive W± and Z0

gauge bosons. The large masses of the W± and Z0 gauge bosons means the force has

a finite rangeb. At an energy scales sufficient to directly create these bosons, the weak

force is as strong as the electromagnetic force, allowing these forces to be successfully

united in the theory of electroweak interactions.

Gravity is thought to be mediated by the graviton, a massless particle with spin 2,

which has not yet been observed. Gravity is very weak at current experimental energies.

2.1.2 Quarks and Leptons

The fermions are divided into two classes, the quarks and the leptons. The quarks are

distinguished from the leptons in that they feel the strong force. There are six flavours of

quark; the up, charm and top quarks have electric chargec +2
3
e whilst the down, strange

and bottom quarks have charge − 1
3
e. There are also six types of lepton; the electron,

muon and tau which have electric charge −e, and their associated neutral leptons, the

neutrinos. The fermions are grouped together forming three ‘generations’ where each

generation contains a quark and lepton doublet as shown in Table 2.2. The particles in

each generation have similar properties, differing only in their respective mass scales.

The first generation consists of the lightest quark (up and down) and lepton (e and

νe) pairs which together form the building blocks of ordinary matter. The remaining

heavier quarks form particles which quickly decay to lighter particles containing the u

and d quarks.

bFrom the uncertainty principle ∆E · ∆t ≥ ~, a particle with finite mass can only be created from
the vacuum for a finite time period.

ce is the magnitude of the charge of the electron.
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Generations Electric Colour

I II III charge charge

Quarks
u 1.5−5 MeV/c2

d 3−9 MeV/c2

c 1.1−1.4 GeV/c2

s 60−170 MeV/c2

t 174±5 GeV/c2

b 4.1−4.4 GeV/c2

+2
3
e

−1
3
e

r,g,b

Leptons
νe <15 eV/c2

e 0.511 MeV/c2

νµ <0.17 MeV/c2

µ 105.7 MeV/c2

ντ <18.2 MeV/c2

τ 1.78+0.29
−0.26 GeV/c2

0

−e
0

Table 2.2: The spin 1
2

fermions in the Standard Model and their measured
masses [3].

In addition, there are the partner anti–matter particles to those listed in Table 2.2.

Anti–matter particles are identical in many respects to their partners, differing only in

their internal quantum numbers, such as electric and colour charge, which are reversed

(for example the electron anti–matter partner, the positron, has electric charge +e).

Antiquarks are donated by a bar above their name (for example, the antitop quark is t).

2.1.3 Hadrons

Due to the nature of the strong interaction, quarks and antiquarks can only exist in

bound states, termed hadrons. Hadrons are divided into two categories, baryons and

mesons. Baryons are clusters of three quarks. The proton and neutron are common

examples of baryons, where the proton contains two up quarks and one down quark

(uud), whilst the neutron contains one up quark and two down quarks (ddu). Mesons

consist of a quark and an antiquark pair; for example, combining an up quark with an

antidown quark (ud) gives the positive pion, π+, whilst combining an antiup quark with

a down quark (ud) gives the π+ antiparticle partner, the π−.
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2.2 Gauge Field Theories

Any system of interacting particles can be represented theoretically using the Lagrangian

description of the system. Classically, the Lagrangian L is defined as the difference

between the kinetic energy, T , and the potential energy, V , of the system, L = T − V .

Quantum mechanically, field theories are used which describe particles as quantised

perturbations of physical fields. The propagation and interaction of these fields can also

be described in terms of the Lagrangian description. The Lagrangian is constructed

with the requirement that it is invariant under a set of symmetry transformations which

reflect conservation laws in nature.

In quantum field theory, complex fields are used in the Lagrangian to describe the

fermions, with the corresponding quantum mechanical complex phases being unobserv-

able. Changes in these phases, known as gauge transformations, should therefore leave

the Lagrangian unaltered. Global gauge invariance, where the Lagrangian is required

to be invariant under a constant phase change for all space–time coordinates, predicts

the conservation of charge. Local gauge invariance requires that the Lagrangian remains

unaltered under phase transformations that are themselves functions of the space–time

coordinates x,

Ψ(x) → eiα(x)Ψ(x) (2.1)

where Ψ(x) represents the gauge field. Preservation of the invariance of the fermion

Lagrangian under such transformations requires the introduction of additional fields to

the Lagrangian. These fields turn out to correspond to the gauge bosons of the theory.

Thus, by demanding invariance under a local gauge transformation, terms are intro-

duced into the Lagrangian that correspond to the dynamics of the fermion interactions.

The choice of the symmetry groups for a particular transformation depend upon the

interaction to be described and are discussed in the following sections. First however,

the process of renormalisation is described which allows calculable results to be obtained

from the gauge theories.
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2.2.1 Renormalisation

Theoretical predictions from the quantum field theories are obtained using perturbative

expansions in the fields. A convenient technique for this is to use Feynman diagrams

which are graphical representations of each term in the perturbative expansions. For a

given physical process the total amplitude is the sum of all possible Feynman diagrams

that have incoming and outgoing lines representing the interacting particles.

Figure 2.1a shows the zeroth order vertex in the simple QED process for e+e− an-

nihilation. The amplitude for this process can be calculated through well behaved con-

vergent expressions. Figures 2.1b-d show first order corrections to this process. Figure

2.1b shows a loop correction that involves the creation and subsequent annihilation of a

fermion pair by the photon. Figure 2.1c shows a correction where a photon is exchanged

between the incoming electron and positron, whilst Figure 2.1d shows the emission and

re–absorption of a photon by one incoming fermion. In these higher order corrections,

the momenta of the internal lines in the loops are free and give rise to integrals over

infinite momentum ranges in the subsequent calculations. Such integrals are divergent.

The technique of renormalisation deals with these divergences. The loop corrections

are split into infinite and finite parts, and for field theories with local gauge invariance,

such as those in the Standard Model, the infinite parts of the corrections are found to

cancel to all orders in the perturbative expansions. Renormalisation involves absorbing

the divergent diagrams into the definition of the model parameters. In the case of

Figure 2.1b, the infinities are absorbed into the definition of the charge of the electron.

The bare charge is infinite with the observed finite charge renormalised to the physical

measurement. Conceptually, this shielding of the bare electric charge can be viewed as

resulting from a cloud of virtual pairs of particles surrounding the electron. The charge of

the electron polarises these surrounding virtual pairs with the positive particles attracted

and negative particles repelled. In a similar manner, Figures 2.1c and 2.1d are absorbed

through renormalisation of the electron magnetic moment and mass respectively.

One consequence of this is that the higher the energy of the probe used to investigate
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e+

e−

γ

a)

e+

e−

γ γ
f

f

b)

e+

e−

γ
γ

c)

e+

e−

γγ

d)

Figure 2.1: Feynman diagrams for the QED e+e− annihilation vertex. Fig-
ure a) shows the zeroth order diagram, Figure b) shows a loop correction
with internal fermion pair production, Figure c) shows a first order correc-
tion with photon exchange between the incoming e+ and e− whilst Figure
d) shows the emission and re-absorption of a photon by the incoming e−.

the structure of the electron, the deeper into the virtual shielding sea is studied and

hence the higher the observed electron charge. This is accounted for in the theory

by a running electromagnetic coupling constant, αem, which increases with increasing

energy. A similar phenomenon is observed with the strong force but due to gluon self–

interactions the effect is reversed, the strong coupling constant decreases with increasing

energy scale. This effect is known as asymptotic freedom.
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After renormalisation, the calculations are based on experimentally measured param-

eters, taken at some reference energy scale µ. The physical predictions of the theory do

not depend on this renormalisation scale, but only if all the remaining finite components

of each diagram in the perturbative expansion are summed. This is not always possible

and the perturbative expansion must be evaluated to fixed order, which can lead to the-

oretical uncertainties in the predictions depending on the renormalisation scale µ and

the particular scheme used to renormalise the divergences.

2.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the gauge theory describing the strong interactions

based on the SU(3)c ‘colour’ group structure proposed by Fritzsch, Leutwyler and Gell–

Mann in 1973 [4]. QCD describes the strong interactions that bind quarks into mesons

(qq) and baryons (qqq), and are mediated by the gluon gauge boson.

Gluons couple to the ‘colour’ charge carried by quarks and gluons. Colour charge

differs from the analogous electric charge in QED in that three types of colour charge

are postulated: red, green and blue (with the corresponding anticolours red, green and

blue). Eight physical gluons are needed to maintain local gauge invariance under the

SU(3)c transformation, each of which carries a colour–anticolour combination. Quarks

carry a single colour charge. Similarly, the antiquarks carry a single anticolour charge.

The strength of the strong force, mediated by the strong coupling constant αs, in-

creases with increasing separation and decreasing energy scale. This results in the phe-

nomenon known as ‘colour confinement’ where only colourless particles can be observed

since coloured quarks cannot exist alone. Isolated quarks or composite quark states of

non–zero colour have as yet not been observed.

Precise predictions can be made in QED using perturbation theory since the electro-

magnetic coupling constant is relatively small. For a given process the coupling constant

enters into probability amplitude calculations to the power of the number of boson–
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fermion interaction vertices. Higher order diagrams therefore involve higher powers of

the coupling constant. In QCD however, the strong coupling constant is relatively large;

for example at the energy scale of the Z0 resonance, αs(90GeV) ∼ 0.12 compared to the

electromagnetic coupling constant, αem(90GeV) ∼ 0.008. Perturbative calculations in

QCD are therefore only viable for applications involving small distances or large energy

scales, greater than O(a few GeV), where αs is small and the quarks can be considered

essentially as free particles.

2.4 Electroweak Theory

Electroweak theory describes the unified electromagnetic and weak forces. The elec-

tromagnetic and weak interactions were first unified in 1961 by Glashow [5] and later

reformulated in terms of a renormalisable gauge theory by Weinberg [6] and Salam [7].

The weak interaction is parity violating so the left and right handedd fermions have

to be treated differently. Left handed fermions in each generation are considered as two

states of a system with weak isospin IW = 1
2
, differing in their third component of the

isospin, I
(3)
W , which is ±1

2
. The right handed fermions enter the theory as singlet states

with IW = 0. Local gauge invariance is demanded under rotation in weak isospin space,

which transforms a particle into its doublet partner. These transformations belong to

the SU(2)L rotation group, the L subscript denoting that only left handed particles are

involved. In order to keep the weak Lagrangian gauge invariant under this transforma-

tion three additional gauge fields are introduced (Wi; i = 1, 2, 3). The physical fields

associated with the charged current interactions are then linear combinations of the W1

and W2 fields,

W± = W1 ± iW2. (2.2)

Neutral current interactions cannot be fully described by the SU(2)L transformation

dRight handed states have their spin aligned parallel to their direction of motion, left handed states
aligned anti–parallel.
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alone. In order to explain the weak neutral current interaction an additional U(1)Y

gauge transformation is introduced and invariance under the combined transformation

SU(2)L × U(1)Y is required. The U(1)Y transformation gives rise to the neutral field

B, that couples to weak hypercharge Y, defined as Y = 2(Q − I
(3)
W ) where Q is the

electromagnetic charge.

The physical fields, corresponding to the Z0 and A (photon) bosons are given by linear

combinations of the neutral weak isospin field W3 and the weak hypercharge field B,

Z0 = W3 cos θW − B sin θW (2.3)

A = W3 sin θW + B cos θW (2.4)

where the weak mixing angle (θW ) defines the relative strengths of the weak and electro-

magnetic interactions. The weak mixing angle is not predicted by the Standard Model

and must therefore be determined experimentally.

Examples of electroweak interaction vertices are shown in Figure 2.2. The photon and

Z0 boson carry the neutral current and couple to fermion pairs. The W± bosons carry

the charged current which results in the change of quark flavours, or the interchange of

a charged lepton with its associated neutrino.

The charged current for leptons can be expressed as

J (lept)
µ = ( νe νµ ντ

) γµ (1 − γ5)















e

µ

τ















(2.5)

where the {γµ; µ = 0, 1, 2, 3} represent the Dirac spin matrices and γ5 = iγ0γ1γ2γ3.

The charged current couples leptons together within the same generation only. Quarks

however, can couple to quarks from other generations. The charged current for quarks
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γ, Z0

f

fa) Neutral current

W−

e−, d

νe, ub) Charged current

Figure 2.2: The Feynman diagrams for the neutral and charged current
electroweak interaction vertices. a) The neutral current decay of the Z0 or
photon to a fermion–antifermion pair. b) Examples of the charged current
interactions of the W− boson decay.

is similar to Equation 2.5 except for an additional VCKM factor,

J (quark)
µ = ( u c t ) γµ (1 − γ5) VCKM















d

s

b















(2.6)

where VCKM is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [8, 9]. This unitary

matrix describes quark mixing and can be approximately represented by the commonly

used parameterisation suggested by Wolfenstein [10]















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















=















1 − λ2/2 λ Aλ3(ρ− iη)

λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1















+ O(λ4) (2.7)

where λ = sin(θCabibbo), the sine of the Cabibbo mixing angle and A, ρ and η are real

parameters.
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The elements of the CKM matrix are not predicted by the Standard Model but can

be determined experimentally from weak decays or deep inelastic neutrino scattering

experiments. The current experimental situation gives;















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















=















0.9745 − 0.9760 0.217 − 0.224 0.0018 − 0.0045

0.217 − 0.224 0.9737 − 0.9753 0.036 − 0.042

0.004 − 0.013 0.035 − 0.042 0.9991 − 0.9994















where the quoted ranges correspond to the 90% confidence levels [3].

The existence of the CKM matrix is a direct consequence of the fact that the weak

interaction eigenstates differ from the mass eigenstates. Mixing of the quarks occurs via

these inter–generation couplings. The CKM matrix is essential for electroweak theory

since it allows CP violation, i.e. the violation of the invariance under the combined charge

and parity transformation, through non–zero complex phases in the CKM matrix [11,12].

2.5 Higgs Mechanism

Electroweak theory described thus far is inconsistent with nature in that it can only

describe the weak gauge bosons as massless particles, whereas in fact they are mas-

sive. Including explicit mass terms in the electroweak Lagrangian destroys its gauge

invariance and the predictive power of the theory is lost. This situation is resolved by

introducing an additional complex scalar Higgs field into the theory with a non–zero vac-

uum expectation value [13]. This field destroys the symmetry of the gauge theory when

the vacuum chooses one of the infinite number of expectation values for the vacuum

state, but preserves the underlying symmetry of the Lagrangian allowing the theory to

be renormalised.

In the Standard Model, four real Higgs fields are introduced in the form of a weak

isospin doublet of complex scalar fields with couplings such that the vacuum has weak
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isospin and hypercharge to which the particles can couple, generating mass terms. Three

of the Higgs fields combine with the weak gauge boson fields giving mass to the Z0 and

W± bosons. The remaining field manifests itself as the neutral Higgs boson. The

theory does not predict the masses of the Z0 or W± bosons but allows these masses

to be calculated from the measured electromagnetic and weak coupling constants. The

Higgs mechanism also gives mass to fermions, the values of which have to be measured

experimentally.

As yet the Higgs boson has not been observed. Searches by the LEP experiments

however give the lower limit on the Higgs boson mass, mH > 77.5GeV/c2 at the 95%

confidence level [3] whilst global fits to measured Standard Model parameters yield the

upper limit mH . 1TeV/c2.

2.6 b Physics

In e+e− collisions at the Z0 resonance, qq pair production occurs dominantly through

the process e+e− → Z0 → qq. QCD confinement ensures that the primary quark

and antiquark are not observed as isolated particles. Additional quarks and antiquarks

are produced from the vacuum in order to form colourless hadrons in a process called

fragmentation. Such events produce a large number of final state hadrons and are termed

‘multi–hadronic’ events. Around 21% [14] of multi–hadronic decays contain a primary

bb pair, the heaviest quark–antiquark pairs that can be produced from the decay of the

Z0 resonance. Due to their high mass, the resulting b hadrons are unstable and decay

to lower mass hadrons.

The decays of b hadrons are experimentally very distinctive; the high mass of b

hadrons means that the decay products, for example leptons from semileptonic decays

b → c`−ν`, have high momenta and are therefore relatively easy to identify amongst

the other particles in the event. Another feature of b hadrons is their relatively long

lifetimes (∼ 1.5 ps) compared to lighter hadrons, allowing them to be tagged via the
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reconstruction of secondary decay vertices displaced from the primary interaction point.

The study of b physics is theoretically interesting since the high b quark mass

means that reliable calculations can be carried out using Heavy Quark Effective Theory

(HQET). Using HQET, the theoretical uncertainties are significantly reduced by exploit-

ing the symmetries of the heavy–light quark system in heavy hadrons. The following

sections give a brief discussion of the areas of b physics relevant to the analysis presented

in this thesis.

2.6.1 b Hadron Production

Figure 2.3 shows the annihilation of an e+e− pair into a Z0 or excited photon which

subsequently decays into a primary qq pair. This process can be modelled to a high

degree of accuracy using perturbative electroweak calculations. The primary quark and

antiquark subsequently separate from the primary interaction point producing more

partonse during the fragmentation process. The strong force potential between the quark

and antiquark increases with increasing separation to the point where it is energetically

more favourable to produce a light quark–antiquark pair from the vacuum than it is

for the primary qq pair to separate further. In addition, the quarks can radiate gluons

which in turn form quark–antiquark pairs.

This process can be effectively modelled using perturbative QCD until the average

parton energy is too low to allow reliable perturbative calculations due to the increasing

strength of the strong coupling constant. At this point empirical hadronisation models

are used to produce the final colourless hadronic particle states from the parton shower,

during a process know as hadronisation.

The distribution of the variable z, defined as the ratio of the b hadron energy (or

momentum) to that of the primary quark, is known as the fragmentation function. Due

to the high mass of a primary b quark, it is not significantly decelerated when combined

eGeneric name for a quark, antiquark or gluon.
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Figure 2.3: A schematic representation of the production and hadronic
decay of a Z0 or excited photon in e+e− collisions.

with a light quark or quarks to form a b hadron. The fragmentation function for heavy

quarks is therefore peaked towards z = 1.

In the absence of reliable QCD calculations various empirical fragmentation models

have been proposed to describe the z distribution;

• The model of Peterson et al . [15] is the most popular and widely used for heavy

quark fragmentation. In non–relativistic quantum mechanics, first order pertur-

bation theory predicts that the amplitude for the transition from a heavy quark
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state Q with momentum p, to a system containing a heavy hadron state H with

momentum zp and a light quark q with momentum (1 − z)p, via the perturbing

Hamiltonian H ′ is given by 〈Hq|H ′|Q〉/∆E, wheref ∆E = EQ − EH − Eq. The

fragmentation function is then proportional to the square of this amplitude, giving

f(z) ∝ 1

z(∆E)2
(2.8)

where the 1/z factor arises from longitudinal phase space. If the masses are as-

sumed small compared to p and mH ' mQ then

EQ =
√

p2 +m2
Q ' p+

m2
Q

2p
(2.9)

EH =
√

z2p2 +m2
H ' zp +

m2
Q

2zp
(2.10)

Eq =
√

(1 − z)2p2 +m2
q ' (1 − z)p +

m2
q

2(1 − z)p
(2.11)

giving the fragmentation function

f(z) ∝ 1

z
(

1 − 1
z
− εQ

1−z

)2 (2.12)

where εQ = m2
q/m

2
Q.

Although the Peterson function is widely used, several alternatives have also been pro-

posed;

• The model of Collins and Spiller [16] gives

f(z) ∝
(

(1 − z)

z
+

(2 − z)ε̃

(1 − z)

)

(

1 + z2
)

(

1 − 1

z
− ε̃

(1 − z)

)−2

(2.13)

with ε̃ as an adjustable model parameter.

fThe heavy quark Q, heavy hadron H and light quark q have energies EQ, EH and Eq , and masses
mQ, mH amd mq respectively.
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• Kartvelishvili et al . [17] give the functional form

f(z) ∝ zα(1 − z) (2.14)

with α as a free model parameter.

• The Lund symmetric model [18] gives

f(z) ∝ 1

z
(1 − z)a exp

(

−bM
2
T

z

)

. (2.15)

This is mainly used for light flavour fragmentation, with a and b as free parameters

and M2
T the square of the transverse mass of the heavy–light quark systemg.

Experimentally, the z parameter is not directly accessible since initial–state photon

and gluon radiation means that the energy of the primary quark, Equark, is not necessarily

the same as the beam energy, Ecm/2, where Ecm is the centre of mass energy. The

accessible variable is then the scaled energy of the hadron, xE = 2Ehadron/Ecm.

Figure 2.4a shows the four different fragmentation functions with their model pa-

rameters as determined from Opal data [19]. The analysis uses the full reconstruction

of the charm meson in B → D`X and B → D∗`X decays to determine the B energy

from the kinematics of the D(∗)` combination. The various models are then fitted to

the data to extract the model parameters. Since most b quarks result directly from the

Z0 decay and not the subsequent hadronisation process, almost all b hadrons contain a

primary b quark and therefore the z and xE distributions show similar characteristics

peaking towards one, as can be seen in Figure 2.4b. The statistical precision of the data

is currently unable to distinguish between the various models.

gExperimentally, the product bM 2
T is taken as a free parameter.
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Figure 2.4: OPAL data [19] for a) normalised b fragmentation functions
with their respective model parameters as determined from fits to the data,
and b) the corresponding distributions for xE obtained using the different
fragmentation models, fitted to the OPAL data.
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2.6.2 b Hadron Decays

At the energies available at the Z0 resonance, the full range of weakly decaying ground

state b hadrons are kinematically accessible, with the relative production fractions as

shown in Table 2.3.

b hadron Quark Composition Production Fraction / %

B+ bu 39.7 +1.8
−2.2

B0 bd 39.7 +1.8
−2.2

B0
s bs 10.5 +1.8

−1.7

Λb bqq′ 10.1 +3.9
−3.1

B+
c bc negligible

Table 2.3: Summary of the b hadrons produced at LEP (charge conjugates
assumed) [3]. Λb represents a generic b baryon.

B mesons dominate b hadron production at LEP, where the b or b quark combines

with a single quark from the vacuum about 90% of the time. b baryon (generically

referred to as Λb) production is suppressed since it requires the b quark to combine

with a pair of quarks during hadronisation. The formation of s and c quarks during

fragmentation is suppressed relative to lighter quarks due to their high masses and

accordingly, B0
s mesons only account for approximately 10% of the b sample, with

negligible B+
c production.

Approximately 30% of all B mesons are produced in an orbitally excited (L=1) state,

denoted B∗∗, and decay via the strong interaction to ground state B mesons. The ground

state B mesons are the pseudoscalar and vector mesons denoted B (25%) and B∗ (75%)

respectively. The B∗ mesons can only decay electromagnetically to the B meson with

the emission of a photon, since the B∗ − B mass difference is only ∼ 46MeV/c2 [3]. Λb

baryons are either produced as, or expected to decay strongly to, the weakly decaying

ground state Λ0
b, Ξb, Σb and Ωb baryons.

The ground state b hadrons can only decay to lighter hadrons through the charged



24 CHAPTER 2. REVIEW OF WEAK B HADRON DECAYS

B
qsp qsp

b q = c, u
Vqb

W−
νe

e−

νµ

µ−

ντ

τ−

3

u

d

c

s

Figure 2.5: Feynman diagram for spectator decays of B mesons.

current weak decays. Figure 2.5 shows the tree level spectator quark diagram for B

meson decay. The factor of three in the hadronic decays of the W accounts for colour

charge. As the name suggests, the light quark in the b hadron plays no part in the

tree level decay diagram and acts merely as a spectator. Higher order diagrams give

corrections to this simple picture. Decays that do not occur through the weak b → c

decay are commonly known as rare b decays. The simplest rare decay is obtained by

replacing the b → c transition with the Cabibbo suppressed decay b → u. Other rare

decays are those dominated by higher order diagrams, such as the one loop ‘penguin’

diagrams.

2.6.3 The Semileptonic Branching Fraction of b Hadrons

The semileptonic branching fraction of b hadrons is defined as

BSL = B(b → X`ν`) =
Γ(b → X`ν`)

∑

`′=e,µ,τ

Γ(b → X`′ν`′) + Γhad + Γrare

(2.16)

where Γhad and Γrare are the inclusive rates for hadronic and rare hadronic b decays

respectively and ` represents either an electron or muon.
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In the following sections the status of the experimental measurements and theoretical

calculations of the inclusive semileptonic branching fraction of b hadrons is discussed.

2.6.3.1 Experimental Measurements

Measurements of BSL have been made by various experimental groups and fall into two

categories; low energy measurements performed at the Υ(4S) resonance (∼ 10GeV) and

higher energy measurements at the Z0 resonance (∼ 91GeV). A summary of recent

preliminary and published results is given in Table 2.4.

Energy regime Experiment Channelg BSL / %

Aleph [20] † B(b → X`ν`) 11.01 ± 0.10 (stat.) ± 0.29 (syst.)

Delphi [21] † B(b → X`ν`) 10.65 ± 0.11 (stat.) ± 0.43 (syst.)

Z0 L3 [22] B(b → X`ν`) 10.68 ± 0.11 (stat.) ± 0.44 (syst.)

Opal [23] † B(b → Xµνµ) 10.86 ± 0.08 (stat.) ± 0.43 (syst.)

Combined [24] † B(b → X`ν`) 10.87 ± 0.24

Argus [25] B(B → Xeνe) 9.7 ± 0.5 (stat.) ± 0.4 (syst.)

Υ(4S) Cleo [26] B(B → Xeνe) 10.49 ± 0.17 (stat.) ± 0.43 (syst.)

Combined [3] B(B → X`ν`) 10.45 ± 0.21

Table 2.4: Experimental results for the semileptonic branching fractions
of b hadrons. Results that are preliminary only are indicated by a †.

Almost 100% of Υ(4S) decays are to either a B0
dB

0
d or B+B− pair. The higher mass

B0
s , Λb and Bc hadrons are kinematically inaccessible. The most recent measurements

of B(B → X`ν`)
h use a tagged lepton technique. B mesons are tagged using a high

momentum lepton and the remaining electrons in the event are then classified using

charge and angular correlations with the tag lepton [25, 26]. Previous measurements fit

the shape of the lepton momentum spectra to determine the fraction of semileptonic

hB(B → X`ν`) refers to the semileptonic branching fraction of the inclusive sample of B±/B0 mesons
at the Υ(4S), whereas B(b → X`ν`) is used for the full b hadron sample produced at LEP.
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decays [27, 28]. Theoretical uncertainties in the predictions for these spectra result

in sizable modelling dependencies and these dependencies are reduced with these new

tagged lepton measurements.

The most recent and precise measurements of B(b → X`ν`) at the Z0 resonance em-

ploy hemisphere b tagging techniques to select high purity samples of b hadron decays.

The opposite hemisphere is then searched for high momentum lepton candidates and

the fraction of these samples which result from semileptonic b decays are determined

using a variety of techniques. The precision of these measurements is again limited by

the modelling uncertainties in the semileptonic decay lepton momentum spectra.

The world average for results at the Υ(4S) is BB
SL = (10.45 ± 0.21)% [3] whereas a

combination of LEP results obtained at the Z0 resonance gives Bb
SL = (10.87 ± 0.24)%

[24], where the B and b superscripts denote the differing b hadron sample compositions.

Different inclusive semileptonic branching fractions are anticipated at the two energies

due to the differing b hadron compositions, in particular, the presence of Λb baryons at

LEP. The Λb baryon has been measured to have a significantly lower lifetime (∼ 1.2 ps)

than B mesons (∼ 1.6 ps) [3]. Therefore, if the semileptonic widths for Λb baryons and B

mesons are assumed to be the same, and given that the semileptonic branching fraction

is related to the lifetimes, τ , by BSL = Γsl/Γtotal = τΓsl, the semileptonic branching

fraction of Λb baryons would be

B(Λb → X`ν`) '
τΛb

τB
· B(B → X`ν`) (2.17)

∼ 8%.

Various experimental estimates of the Λb baryon semileptonic branching fraction have

been made which agree with this expectation, giving B(Λb → X`ν`) ' (7.4 ± 1.1)%

[29, 30]. Although the uncertainties are large, this indicates that non–spectator effects

responsible for the lifetime difference influence the total decay widths and not the semi–

leptonic widths and supports the assumption that the semileptonic widths of b mesons

and baryons are the same.
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The lower semileptonic decay rate for Λb baryons means that the average semileptonic

branching fraction of b hadrons at LEP is expected to be lower than that obtained at

the Υ(4S). This is in disagreement with the experimental results, as shown in Table 2.4,

although the errors are too large to make any firm conclusions. Understanding the origin

of this potential discrepancy, whether it be theoretical or experimental, has motivated

precise measurements at both energies and the analysis presented in this thesis provides

an updated measurement using Opal data.

2.6.3.2 Theoretical Calculations

The width for the parton level process b → c`−ν` can be calculated from electroweak

theory, discussed in Section 2.4. Calculation of the width for the decay B → D`−ν` is

complicated by the non–perturbative QCD effects that bind the b and light quarks in

the b hadron and which introduce large theoretical uncertainties.

Heavy Quark Effective Theory (HQET) was developed [31–34] to reduce these un-

certainties by exploiting the properties of the heavy–light quark system. Consider a

hadron composed of a heavy quark Q and ‘light degrees of freedom’ consisting of light

quarks, light antiquarks and gluons. The Compton wavelength of the heavy quark scales

as the inverse of the heavy quark mass, λQ ∼ 1/mQ. The light degrees of freedom, on

the other hand, are characterised by momenta of the order of ΛQCD, the typical energy

scale of the non–perturbative QCD interactions which bind the hadron, corresponding

to wavelengths λl ∼ 1/ΛQCD. Since λl � λQ the light degrees of freedom cannot resolve

features of the heavy quark system other than its conserved gauge quantum numbers.

In particular, they cannot probe the actual value of λQ, or equivalently the mass of the

heavy quark.

The timescale for the heavy quark weak decay τQ, is very short compared to the

timescale on which the QCD interactions occur, ie. τQ ∼ 1/mW � 1/ΛQCD where mW

is the W boson mass. In the limit where mQ → ∞, the weak decay of the heavy quark

is therefore decoupled from the QCD interactions that occur in the remaining hadronic
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system. In reality, finite heavy quark masses introduce correction factors of the order of

(ΛQCD/mQ)2. The b hadron weak decay width can therefore be written as;

Γ(b hadron → X`ν`) = Γ(b → c`ν`) + O(1/m2
b) (2.18)

with mb inGeV/c2. For a more comprehensive introduction to HQET refer to [35].

Another important input to the understanding of the semileptonic branching fraction

is the charm multiplicity, nc, the average number of charm or anticharm quarks in the

final state of a b hadron weak decay. This can be expressed as

nc = 1 + B(b → Xcc) − B(b → Xcharmless) (2.19)

where Xcc represents any final state containing both a charm and an anticharm quark.

These states result from the weak decay of the b quark to a c quark, where the W boson

also decays to a cs pair. Xcharmless represents final states containing no charm hadrons,

such as those resulting from semileptonic b → u`ν` decays. Both nc and BSL depend on

the same hadronic partial widths (Equation 2.16) and therefore share the same sources

of theoretical uncertainty.

In the näıve parton model the spectator effects are neglected, giving BSL ' 13% [36],

significantly larger than the experimental results, as shown in Table 2.4. The non–

perturbative corrections to Equation 2.18 calculated within the 1/mQ HQET expansion

prove to be too small to significantly improve the predictions [37]. The dominant theo-

retical uncertainty in calculating the semileptonic branching fraction in fact results from

the calculation of the hadronic decay rate, Γhad, in Equation 2.16. The exact O(αs)

corrections to the non–leptonic width have been computed and an analysis of the renor-

malisation scale and scheme dependence has been performed by both Bagan et al. [38]

and Neubert et al. [39]. The results of these calculations are summarised in Figure

2.6 where the theoretical predictions for nc and BSL are compared to the experimental

results.
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Figure 2.6: The shaded region shows the theoretical prediction for BSL and
nc, which are compared to the experimental measurements.

The QCD corrections increase the partial width Γ(b → Xcc) substantially. This has

the dual effect of lowering the prediction for BSL whilst raising nc. In addition, these

corrections introduce substantial theoretical uncertainties. These uncertainties depend

on two parameters: the ratio of the charm quark mass to the b quark mass, mc/mb, and

the QCD renormalisation scale, µ. The dependence on µ reflects the uncertainties due

to higher–order QCD corrections to the decay rates.

In summary, given the current level of experimental and theoretical uncertainty, the

measurements and predictions for BSL and nc are in agreement. Whilst the measure-

ments at the Υ(4S) show a potential discrepancy with theory and Z0 results, more work

is needed to reduce the uncertainties before it could be claimed to present a genuine

problem.
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2.6.4 Phenomenological Models for Weak b Decays

The momenta of leptons from the decay of heavy hadrons tend to be higher than that

from light hadron decays and therefore the lepton momentum distribution provides one

of the most efficient methods of identifying leptons from weak b hadron decays.

Unfortunately, accurate predictions of the lepton momentum spectra from weak

heavy decays are not possible directly from QCD, and no reliable calculations using

HQET have yet been published. Phenomenological models must therefore be employed,

and the two main models in current use, the ACCMM [40] model and the ISGW [41]

model, are described in the following sections.

2.6.4.1 ACCMM Model

The simplest model for semileptonic B decays is the spectator model in which the decay-

ing b quark is considered as a free particle within the B meson (Figure 2.5). The model

of Altarelli et al . [40] (ACCMM) considers two important corrections to the spectator

model. Firstly, the spectator quark in the B meson is considered as a quasi–free particle

with the momentum distribution,

f(p) =
4p2

√

πp3
F

exp

(

− p2

p2
F

)

(2.20)

where pF is the Fermi momentum, a free parameter of the model.

First order perturbative QCD corrections are also included to account for gluon ra-

diation from the quarks. Figure 2.7 shows two such corrections; the left–hand diagram

shows real gluon radiation whilst the right–hand diagram represents virtual gluon ex-

change.

The decay width for the process B → Xq`ν` is given by ;

Γ(B → Xq`ν`) ' Γ(b → q`ν`) = |Vbq|2
(

G2
Fm

5
b

192π3

)

ηQCD r (2.21)
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Figure 2.7: QCD radiative corrections to the spectator level diagram for
semileptonic decays.

where GF is the Fermi constant, mb the b quark mass, ηQCD a QCD correction factor

and r represents the phase space factor for the decay kinematics. In order to satisfy

energy–momentum conservation in the B decay, the b quark mass is allowed to vary

according to

m2
b = m2

B +m2
sp − 2mB

√

p2 +m2
sp (2.22)

where mB is the known B meson mass and msp is the spectator quark mass. The lepton

energy spectrum is then given by

dΓB

dE`
(pF , msp, mq, mB) =

∫ pmax

0

p2 dp f(p)
dΓ

dE`
(mb) (2.23)

where E` is the lepton energy, pmax is the maximum kinematically allowed value of p

and mq is the mass of the final state quark from the weak decay of the b quark.

The ACCMM model therefore introduces a new parameter, pF , for the momentum

distribution of the spectator quark inside the B meson. In addition, the mass of the

spectator, msp, and the mass of the final quark state, mq, are also free model parameters.

In this way the ACCMM model incorporates bound state effects and reduces the strong

dependence on the b quark mass in the decay width of the spectator quark model,

Equation 2.21. The values of the model parameters are determined from the data.
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The Cleo collaboration have fitted the ACCMM model to their data to determine

the model parameters [42]. From these fits the parameters have been measured to be,

pF = 298 ± 59 (stat.) ± 27 (syst.)MeV/c,

mc = 1673 ± 58 (stat.) ± 24 (syst.)MeV/c2

where the spectator quark mass, msp, is kept fixed at 150MeV/c.

The ACCMM model can also be used in a similar manner to model semileptonic D

decays. Measurements from DELCO [43] and MARK II [44] for semileptonic D0 and D±

decays have been combined and parameterised using the ACCMM model as a convenient

functional form. Taking into account the D boost and experimental resolution, the c → `

spectra can be modelled using the parameters pF = 467MeV/c andms = 1MeV/c2, with

the +1 and −1 sigma variations given by the values pF = 353MeV/c andms = 1MeV/c2,

and pF = 467MeV/c and ms = 153MeV/c2 respectively.

2.6.4.2 ISGW Model

The model proposed by Isgur et al . [41] (ISGW) is an exclusive model which assumes

that the semileptonic B decays are saturated by a few final states. After the b quark

decays into either a c or u quark, that quark then recombines with the spectator quark

to form the final state hadrons. Possible final charm states included are;

• The ground state 11S0, the D meson;

• The first excited state 13S1, the D∗ meson;

• The higher states such as 13P2, 13P1, 13P0, 11P1, 21S0 and 23S1. These are collec-

tively referred to as the D∗∗ states.

The hadronic current for the exclusive channels is expressed in terms of form factor

functions, F (q2), of the 4–momentum transfer, q2, between the initial and final state

mesons. In semileptonic decays, q2 is therefore the mass squared of the virtual W boson.
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In the ISGW model the authors argue that the heavy mass of the b quark makes it

possible to use non–relativistic approximations in modelling the B meson decay. At

minimum recoil of the final state meson, corresponding to maximum q2, the form factors

F (q2
max) are obtained by solving the Schrödinger Equation with a Coulomb plus linear

potential for the ground state B,

V (r) = −4αs

3r
+ br + c. (2.24)

where αs = 0.5, b = 0.18GeV/c2 and c = −0.84GeV. The full form factors are then

obtained by extrapolating the q2 dependence using an exponential form,

F (q2) ∝ F (q2
max) exp

(

q2 − q2
max

κq2
max

)

(2.25)

where κ is a parameter introduced to account for relativistic effects. The authors of the

ISGW model determined a value κ = 0.7 from measured pion form factors.

The ISGW model predicts the relative fractions of the three B semileptonic decay

channels to be 27%, 62% and 11% for D, D∗ and D∗∗ final states respectively, with the

corresponding lepton momentum spectra as shown in Figure 2.8.

Various experimental measurements have been made of the sum of the exclusive D

and D∗ fractions of the total semileptonic B decay width. Cleo found (65 ± 12)% [27]

whilst Argus measured (60 ± 10)% [28], both significantly smaller than the fraction

(89%) predicted by the ISGW model. Cleo therefore introduced a modification to the

ISGW model where they allowed the D∗∗ fraction to float in their fit to lepton momentum

spectra [42]. The fit increased the D∗∗ rate from 11% to 32% and was found to better

reproduce their data. The ISGW model with 32% D∗∗ production is commonly referred

to as the ISGW∗∗ model.
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Figure 2.8: Lepton momentum spectra in the B meson rest frame for b → `
decays in the ISGW model, as presented in [45].

2.6.4.3 Electroweak Radiative Corrections

The effects of electroweak radiative corrections need to be accounted for in the predicted

lepton momentum spectra. Whilst these are second order effects, they amount to cor-

rections of the order of 2 to 10% on the predicted spectra, depending on the lepton

energy. In particular, the corrections differ for electrons and muons and therefore must

be applied in order to test lepton universality in heavy flavour symmetry.

The effects have been calculated by Atwood and Marciano [46] where three main ef-

fects are studied; virtual loops corrections, Coulomb interactions for neutral initial state

mesons and low energy bremsstrahlung. Of these effects, only the third was found to

alter the shape of the lepton spectra, the other two only change the overall normalisa-
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tion. The correction to the spectra can be simply expressed as a multiplicative factor

Cew given by,

Cew(E`) =

(

Emax − E`

CE`

)r

(2.26)

where

r =
2α

π

[

ln

(

2E`

m`

)

− 1

]

(2.27)

and the lepton has mass m` and energy E` < Emax.

C is an arbitrary normalisation factor specified in terms of the maximum and average

lepton energies,

C =
(Emax − E`)

E`

. (2.28)

2.6.4.4 Summary of the Model Predictions

Figure 2.9 shows the ACCMM and ISGW model predictions for the semileptonic decays

b → c`ν` and b → u`ν`, excluding the radiative corrections, as presented in [45]. The

lower mass of the resulting hadronic system in the b → u decays as compared to b → c

decays, results in a harder lepton momentum spectrum.

The primary experimental background in identifying leptons from direct decays,

b → `, results from leptons from the cascade decays, b → c → `, the semileptonic decay

of charm hadrons produced from the weak b hadron decay. In order to model these

decays, the ACCMM model for c → ` decays are convoluted with measured B → D

momentum spectrum [47] in order to boost the lepton momentum spectra into the rest

frame of the b hadron. The model predictions for b → c → ` decays are also shown in

Figure 2.9. Leptons from these decays have significantly lower momenta. The corre-

sponding electroweak radiative corrections to the momentum spectra for electrons and

muons are also shown in Figure 2.9.
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Figure 2.9: The model predictions for the lepton momentum spectra and
the corresponding electroweak radiative corrections, as presented in [45].
On the left, the ACCMM (solid) and ISGW (dashed) spectra are shown.
On the right are the electroweak radiative correction factors for electrons
(solid) and muons (dashed).

2.7 Conclusions

This chapter has briefly described the Standard Model of particle physics and has given

a summary of the theoretical description of semileptonic decays of b hadrons. The

lepton momentum spectra from the phenomenological models for weak decays discussed

in the previous sections will be used as the basis for the measurement of the semileptonic

branching fraction of b hadrons presented in the following chapters.



Chapter 3

The OPAL Detector

The data used in this analysis were taken using the Opal detector, one of the four

experiments operating at the Large Electron Positron collider (LEP) at CERN. This

chapter gives a brief description of the LEP accelerator and an overview of the Opal

experiment.

3.1 The LEP Collider

The LEP collider [48–52] first came into operation in 1989, colliding electrons and

positrons at centre of mass energies up to approximately 100GeV and so directly pro-

ducing Z0 bosons. In 1995 LEP finished its precision measurements at the Z0 resonance

and began a series of upgrades enabling higher energies to be reached. In 1997 LEP was

able to produce e+e− collisions at centre of mass energies exceeding ∼ 160GeV, pro-

ducing the first observation of W+W− pair production. Since that time the energy has

been increased further, eventually culminating in collisions with centre of mass energies

approaching 200GeV.

The LEP collider is a large storage ring with a circumference of 26.7 km situated on

the French–Swiss border at CERN, just outside Geneva. It lies at a depth of between 50

37
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Figure 3.1: The layout of the LEP collider ring and the four experiments.

and 130 meters below the surface and inclined by 1.4% from horizontal due to geological

constraints. The ring is not quite circular, with eight curved sections and eight straight

sections. The four LEP experiments Aleph [53], Delphi [54], L3 [55] and Opal [56]

reside in four of the straight sections, equally spaced around the ring as shown in Figure

3.1. Counter–rotating beams of electrons and positrons are brought into collision at the

centres of each of the experiments.

The production of the LEP beam starts in the CERN complex where the LEP injector

linac (LIL) [57] produces electrons and accelerates them to 200MeV. These electrons are

directed onto a tungsten target from which emerges both electrons and positrons, which

are further accelerated to 600MeV by a second linac and then stored in the Electron

Positron Accumulator ring (EPA). When sufficient electrons and positrons have been
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produced, they are accelerated to 3.5GeV by the Proton Synchrotron (PS), then passed

on to the Super Proton Synchrotron (SPS) where they are further accelerated to 20GeV.

These beams are finally injected into the LEP ring, and once sufficient intensity has

been achieved the beams are then accelerated to the final physics energy. Once the final

energy has been reached the beams are brought into focus and allowed to collide at the

interaction points. A schematic of the injection system is shown in Figure 3.2.

CERN ACCELERATOR COMPLEXp (antiproton)
p (proton)
ion

e  (positron)
e  (electron)
proton/antiproton
conversion

+
-

LEP/LHC

SPS
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L

p + ions
linac e+ e-

linacs

Figure 3.2: The schematic layout of the CERN injector system for the
LEP ring.

The LEP tunnel houses the beam pipe within which the electrons and positrons

circulate. The pipe is kept at a very low pressure, around 10−9 Torr, to minimise

scattering by interaction with the beam gas. Around the ring are situated the magnets

and RF cavities used to control the beam. Dipole magnets, which produce a vertical

magnetic field, are used to steer the beam whilst additional quadrupole and sextupole

magnets are needed to focus the beam. The RF cavities are used during the acceleration
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phase to accelerate the beam to the collision energy and also during normal physics

running to compensate for the energy lost via synchrotron radiation as the particles

orbit the ring.

The particles orbit not as a continuous beam but as a series of bunches equally

spaced about the ring. Initially, each beam was split into four bunches, referred to as

4× 4 running. During 1993, the number of bunches was increased to eight (8× 8) in an

attempt to increase the beam luminosity. In order to avoid eight beam crossing points

in the 8 × 8 mode, a Pretzel scheme was adopted which uses electrostatic separators to

ensure the beams only cross in the experiments. In 1995 LEP returned to the 4 × 4

mode and adopted a ‘bunch train’ scheme where each bunch is further split into four

smaller groups, named bunchlets. At each of the four interaction points the beams are

tightly focused to maximise the interaction luminosity, achieving a beamspot size of

about 150µm × 15µm × 1 cm (horizontal, vertical, longitudinal) at the centre of the

experiments.

3.2 The OPAL Detector

The LEP accelerator was designed for precision measurements at the Z0 resonance, and

therefore the four experiments were designed as general purpose detectors capable of

studying a wide range of decay channels. The Opal (Omni Purpose Apparatus for

LEP) detector was conceived using proven technologies so as to ensue a well understood

and reliable design [56].

Opal was designed to provide as complete as possible information on the full range

of interactions that result from e+e− annihilation. These include the precision measure-

ments of the Z0 decay channels as well as Bhabha scattering and two photon physics,

together with searches for new physics beyond the Standard Model. Such consider-

ations, together with the geometrical constraints imposed by the beam pipe resulted

in a cylindrical design as shown in Figure 3.3. A cylindrical barrel region surrounds
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Figure 3.3: A three–dimensional view of the OPAL detector.
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the beampipe, with the e+e− interactions occurring at the centre. Almost complete 4π

coverage is obtained by closing the barrel with two endcap detectors.

The Opal coordinate system is a right-handed Cartesian set {x, y, z} with its origin

at the centre of Opal, the nominal interaction point. The z–axis lies along the electron

beam directiona, with the x–axis horizontal and directed towards the centre of LEP.

The z–axis is at an inclination of 1.4% to the horizontal due to the tilt of the LEP ring

and therefore the y–axis, which is orthogonal to the other two has a similar inclination

from vertical. The cylindrical nature of Opal devotes itself more conveniently to cylin-

drical polar coordinates {r, φ, z}, or spherical polar coordinates {r, θ, φ}. In cylindrical

coordinates φ is the angle from the x–axis in the x− y plane and r is the distance from

the z–axis in the same plane. In spherical coordinates r is the radial distance from the

origin, θ is the angle from the z–axis and φ the angle from the x–axis in the x− y plane.

3.2.1 Detector Overview

Through the centre of Opal runs a narrow beryllium beam pipe. Surrounding this is

the silicon microvertex detector providing precise positional measurements close to the

interaction point. Next lies the main particle tracking system which comprises various

drift chambers; the central vertex chamber, the central jet chamber and the z coordinate

chambers. These chambers are contained within a pressure vessel holding the drift

chambers at a pressure of 4 bar. The Opal solenoidal magnet places the inner detectors

in a uniform magnetic field of 0.435T along the z–axis. Together, the drift chambers

provide the tracking information needed to reconstruct the r − φ and z coordinates

of charged particles and to determine the particle momenta from the track curvature

resulting from the magnetic field. In addition, charge deposition measurements in the jet

chamber allow rate of energy deposition (dE/dx) measurements to be made, providing

particle identification.

Surrounding the magnet is the time of flight detector which gives accurate timing

aViewed from above, electrons circulate anti-clockwise around LEP, positrons clockwise.
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information, used for triggering purposes and background rejection. Surrounding the

time of flight detector is the calorimetry system. Firstly, the electromagnetic calorimeters

which use lead–glass blocks to measure the energy carried by electrons, positrons or

photons. Prior to this lies the presampler, consisting of thin streamer tubes for the

purpose of sampling the energy of electromagnetic showers initiated before reaching

the calorimeter. Outside the electromagnetic system is the hadronic calorimeter which

consists of limited streamer tubes interleaved with the iron plates of the magnet return

yoke and measures the energy of hadronic showers.

The outer layer of Opal consists of the muon chambers which detect charged particles

that have penetrated the absorption material of the calorimeters. Such particles are

predominantly muons.

In addition to these detectors, which form the structure shown in Figure 3.3, addi-

tional detectors are placed close to the beam pipe on either side of Opal. These form

the forward detectors for particles at very low angles to the beam line and play an im-

portant role, for example, in determining the absolute luminosity at Opal by detecting

electrons and positrons arising from small–angle Bhabha scattering.

The following sections will describe the main sub–detector elements of the Opal

detector in more detail.

3.3 Particle Tracking

The tracking of charged particles in Opal uses the combined information from the

various wire chambers and the silicon microvertex detector. Despite the obvious physical

differences they all use the same basic processes to detect particles. As a charged particle

traverses a medium it will ionise atoms in its path and the resulting electrons and ions

can be detected and used to reconstruct the particle track.

Opal uses two sorts of wire chambers; drift chambers and streamer tubes. The

vertex chamber, the large jet chamber and the z chambers are all gaseous drift chambers
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working from the same principles, differing only in the construction specific to their

design. In drift chambers an electric field causes the ionisation to drift towards the anode

field wires. Close to the wires, the high local electric field causes an electron avalanche

which amplifies the signal which is collected by the anode wires. The chambers consist

of many planes of anode wires together with cathode wires interleaved so as to form the

desired electric field in the detector volume. The ionisation charge drifts to the nearest

anode wire allowing the track to be reconstructed. In the jet chamber, a uniform electric

field is created throughout the detector volume, giving a constant drift velocity. This

allows measurement of the time taken for the charge from the particle track to drift to

the sense wire, which is used to provide tracking information in the plane perpendicular

to the sense wires.

In the jet chamber the wires all lie parallel to the z–axis providing tracking primarily

in the r−φ planeb. The vertex chamber contains a section configured similarly to the jet

chamber, but with the wires more closely packed to give precise measurements close to

the interaction point. The vertex chamber also has sets of wires aligned at an angle of 4◦

to the r−φ plane to allow z position measurements. Finally, the wires in the z chambers

are arranged at 90◦ to the z–axis and provide precise z coordinate measurements. The

barrel muon detectors are also constructed using drift chambers.

Streamer tubes work in a similar manner to drift chambers but the higher field

gradients cause the ionisation charge to avalanche as opposed to drift. The endcap

muon chambers use streamer tubes.

The silicon microvertex detector operates by collecting the ionisation charge gener-

ated as charged particles traverse the silicon wafers. The charge is collected on implanted

semiconducting strips providing precise measurements in r − φ and z.

bz measurements in the jet chamber are discussed in Section 3.3.3
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3.3.1 The Silicon Microvertex Detector

The silicon microvertex detector provides precise tracking capabilities close to the inter-

action point, necessary for the accurate reconstruction of the primary interaction vertex

and secondary decays.

The detector was first installed in 1991 [58] when it became apparent that the low

beam backgrounds permitted a smaller diameter beampipe, thus providing the space

necessary for the detector. Figure 3.4 shows the 1991 configuration (µVTX1) with two

concentric layers of single-sided silicon detector wafers giving r − φ readout.

short outer detector ladder

inner detector ladder

beryllium beam pipe

carbon fibre support ring

ceramic hybridcooling manifold

pressure tube
beam pipe support

Beryllium shell
support and cooling ring

brake mechanism

cable guides long outer detector ladder

Al support roller balls

ladder end support

Figure 3.4: The left–hand side figure shows a cut–away view of the 1991
silicon microvertex detector showing the silicon wafers and readout elec-
tronics. On the right, the silicon microvertex detector is viewed along the
beam axis. The inner and outer layers of silicon wafers, together with the
beryllium beam pipe are shown.

The original beampipe, which was constructed from a carbon fibre aluminium com-

posite, was replaced with a smaller radius beryllium pipe. Beryllium was chosen because

of the small radiation length it presents to incident particles. The microvertex detector

was inserted in the region formed between the new and original beampipes. A carbon

fibre pressure tube was used to isolate the detector from the 4 bar absolute pressure
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vessel of the vertex and jet drift chambers and to maintain the low humidity nitrogen

atmosphere required at the microvertex detector.

The detector was upgraded (µVTX2) for the 1993 operation [59] by attaching ad-

ditional wafers to the backs of the r − φ detectors, with the readout strips oriented

perpendicular to those in r − φ so as to provide z coordinate readout.

The microvertex detector has 11 ladders in the inner barrel and 14 in the outer barrel,

at radii of 61mm and 75mm respectively, as shown in Figure 3.4. Each ladder consists

of 3 silicon wafers 60mm long and 33mm wide, daisy-chained together. Each wafer is

constructed from 250µm thick n-type silicon with the strips formed from implanted p-

type strips 25µm apart. For the r−φ detectors every other strip is instrumented with an

aluminium readout strip, giving a readout pitch of 50µm, whilst for the z wafers, every

fourth strip is a readout strip giving a 100µm readout pitch. The detector extends

to | cos θ | < 0.83 for the inner barrel and | cos θ | < 0.77 for the outer. The ladders

are arranged so as far as possible to avoid lining up the small gaps in the φ coverage

occurring between adjacent ladders in a barrel. This ensures almost 100% single hit

coverage in φ.

A particle traversing the silicon wafer will create electron-hole pairs. The electrons

from these pairs drift under the electric field towards the p-type strips where the charge

is collected. The charge is collected over a number of strips using capacitive coupling

allowing the pulse shape to be reconstructed, which is used to determine the mean hit

position. The impact parameter resolution of the detector has been measured to be

10µm in r − φ and 15µm in z using events collected during Opal running.

The most recent upgrade (µVTX3) [60] was completed for the 1996 data acquisition

when the geometrical acceptance of the detector was extended by increasing the two

layer polar coordinate acceptance to | cos θ | < 0.89. The detector geometry was also

improved by adding an extra ladder to each layer and giving the ladders a staggered

arrangement in r − φ, as shown in Figure 3.5, increasing the φ coverage for each barrel

to 97%.
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Figure 3.5: The µVTX3 configuration of the silicon microvertex detector,
showing the staggered arrangement of the silicon wafers.

3.3.2 The Central Vertex Chamber

The vertex drift chamber [61] was initially designed to provide precise tracking in both

the r−φ and r−z planes for the reconstruction of secondary decays. Since the installation

of the silicon microvertex detector, the vertex chamber has also aided in the matching

of tracks reconstructed in the central jet chamber to silicon microvertex detector hits.

The chamber is 1m long with an inner radius of 88mm and an outer radius of

235mm. It is filled with the same 4 bar mixture of argon (88%), methane (9.4%) and

iso-butane (2.6%) as the other central drift chambers. The chamber is split into 36

sectors in φ, each of which contains an inner and outer layer termed the axial and stereo

layers respectively. The axial layer contains 12 sense anode wires lying parallel to the

z–axis, with interlaced cathode wires. Field shaping wires at the cell edges define the

desired electric field, as shown in Figure 3.6. The stereo cells are similar to the axial

cells, with 6 sense wires inclined by 4◦ in the r − z plane such that their radial planes

coincide with the axial cells at z = 0.
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Figure 3.6: An end–on view of the vertex drift chamber.

By combining the axial and stereo information offline this arrangement allows for

both r−φ and z coordinate determination with average resolutions of 55µm and 700µm

respectively. The axial chambers cover the region | cos θ | < 0.95 while the stereo ac-

ceptance is | cos θ | < 0.92. A coarse z measurement is obtained using time difference

measurements [62] in the axial wires and this is used in fast track finding for triggering

purposes (Section 3.6).



3.3. PARTICLE TRACKING 49

3.3.3 The Central Jet Chamber

At about 4m long and with inner and outer diameters of 0.5m and 3.7m, the central

jet chamber [63] provides the primary charged particle tracking capabilities in Opal. It

is designed with excellent space and double track resolution needed to resolve jet-like

events, together with specific ionisation loss dE/dx measurements providing charged

particle identification.

The chamber is divided into 24 sectors each of which contain a radial plane of 159

sense wires, aligned parallel to the z–axis extending from an inner radius of 255mm

to an outer radius of 1835mm. These wires are equally spaced with a separation of

10mm and alternate with the field potential wires. In order to resolve any left–right

ambiguities, the sense wires are staggered by ±100µm with respect to the plane defined

by the potential wires. The cathode wires form the boundaries between adjacent sectors.

With this arrangement the maximum drift distance varies from 3 cm at the innermost

wire to 25 cm at the outermost wire. Within the region | cos θ | < 0.73 all 159 sense wires

are available for tracking, covering 73% of the full 4π solid angle. Outside this region

the track will leave the jet chamber through the endplates resulting in the number of

possible tracking hits falling with increasing | cos θ |. At least 8 wires are available for

tracks with | cos θ | < 0.98, covering 98% of 4π. A laser system is used to produce track-

like ionisation trails in the chamber, which are used to calibrate the detector alignment

during running [64].

The jet chamber provides full three dimensional particle tracking. The r− φ coordi-

nates are determined from the wire positions and drift times. The drift time is obtained

through a comparison between the time of arrival of charge on each wire and beam cross-

ing timing information. A coarse measurement of the z coordinate is obtained through

charge division, where the ratio of the charge collected at each end of the wire is used

to infer the z coordinate. Using these techniques, an r − φ resolution of 135µm at the

average drift distance of 70mm is obtained, whilst the z coordinate is measured to an

accuracy of ±60mm.
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The jet chamber is contained within a magnetic field of 0.435T providing mo-

mentum information through track curvature measurements. From dimuon events,

e+e− → Z0 → µ+µ−, the momentum resolution has been found to be parameterised by,

σ(pt)

pt

=
√

(0.0015 pt)2 + (0.02)2 (3.1)

where the transverse momentum, pt, is the momentum component in the r − φ plane,

inGeV/c. The chamber also provides dE/dx measurements for particle identification.

For a minimum ionising particle with at least 130 dE/dx measurements a resolution

of σ(dE/dx)/(dE/dx) ∼ 3.8% is obtained [65]. Particle identification through dE/dx

measurements is discussed in detail in Chapter 5 in relation to electron identification.

3.3.4 The Z Chambers

The z chambers [66] are installed as a layer of thin drift chambers surrounding the jet

chamber barrel. They are designed to provide accurate measurements of the z coordinate

of the track endpoints to supplement the relatively imprecise z measurements from

charge division in the jet chamber.

There are in total 24 z chambers each 4m long, 0.5m wide and 59mm thick, providing

coverage for tracks within | cos θ | < 0.72 and over 94% of φ. Each chamber consists of 8

cells, each containing 6 sense wires aligned along the φ direction at increasing radii, with

a stagger of ±250µm to resolve any left–right ambiguities. The cells are bidirectional

in that the sense wires are located at the centre of each cell with the cathode planes at

the edges, such that the ionisation charge can drift towards the sense wires from both

directions.

A z resolution between 100µm and 350µm, depending on the θ angle of the track, is

obtained with the z chambers. Using charge division techniques similar to those used in

the jet chamber, the φ coordinate can be inferred giving an r − φ resolution of 1.5 cm.
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3.3.5 The OPAL Magnet

The central tracking chambers are all contained within a magnetic field provided by

the Opal solenoid. Constructed from a self supporting, water cooled coil of aluminium

and glass–epoxy, the magnet is designed to present a minimum of interaction material

to incident particlesc. During operation, a current of about 7000A provides a uniform

axial field of 0.435T throughout the entire tracking system, stable to within ±0.5% over

the volume of the central tracking detectors. The return yoke is constructed from soft

iron and designed with the aid of compensating coils to keep any stray magnetic fields

outside the solenoid to below 0.01T .

3.3.6 The Muon Chambers

The final elements in the Opal tracking system are the muon chambers. As the outer

layer of the Opal detector they identify muons from their penetrating nature. Particles

reaching the chambers have to traverse at least 1.3m of iron equivalent (corresponding

to 7 interaction lengths for pions) and are therefore predominantly muons. The prob-

ability of a pion penetrating without interaction is less than 0.1% and therefore tracks

in the central tracking chambers which can be matched to muon chamber hits can be

identified as muons.

The muon system is composed of two sets of chambers covering the barrel and endcap

regions, arranged so as to provide coverage by at least one layer over 93% of the solid

angle. Isolated muons above 3GeV/c within this region are identified with practically

100% efficiency [67], whilst the probability that an isolated pion of 5GeV/c is mis-

identified as a muon is less than 1%.

The barrel muon chambers [68] are composed of 110 large area drift chambers each

1.2m wide and 90mm thick divided into 4 modules for easier mounting. On each side of

the barrel a module with 44 chambers is mounted. The remaining two modules consist

cThe solenoid and pressure vessel together present on average only 1.7 radiation lengths.
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of 10 chambers in an upper module and 12 in a lower module and which close the gaps

providing full coverage in φ. The chambers are almost identical, differing only their

lengths, which are either 10.4, 8.4 or 6.0m in order to accommodate the magnet support

structure. The region | cos θ | < 0.68 is covered by four layers, with | cos θ | < 0.72

covered by at least one layer.

The chambers consist of two cells side by side, each containing an anode wire running

the length of the chamber with a maximum drift distance of 297mm from either side.

The chamber walls serve as the cathode, formed from copper clad PC boards with strips

to define the electric field. Opposite the anode sense wire the cathode strips form a

diamond pattern designed to allow the z coordinate to be measured.

The z coordinate is determined in a three stage process. A fine measurement is

obtained using a first set of diamond shaped cathode pads to within 2mm, modulo

the period of the pattern which is 171mm. A second set of diamond pads with period

1710mm gives a less precise measurement (±30mm) and is used to remove the fine

measurement ambiguity. By comparing pulse heights and time differences at each end

of the sense wires a coarse z measurement can be obtained to pinpoint the hit in z with

a resolution of 2mm. The resolution in r − φ is 1.5mm using drift time information.

The region 0.67 < | cos θ | < 0.985 is covered by the endcap muon chambers which

consist of four layers of limited streamer tubes. Each endcap consists of 8 quadrant

chambers together with 4 smaller ‘patch’ chambers which together provide around 150m2

of coverage. The quadrants cover most of the acceptance but are limited by other

detector elements, such as the beampipe and readout cables. The patch chambers are

designed to cover the majority of the remaining regions. Each chamber is composed of

2 layers of streamer tubes aligned perpendicular to each other so as to provide both x

and y coordinate measurements. Anode wires run along the length of the chambers at

a spacing of 10mm within plastic U-formed extrusions. Aluminium strips run along the

inside of the extrusions and also on the other side of the chamber perpendicular to the

sense wire. Thus each coordinate, x and y, for the tracks are measured twice providing

an overall positional resolution of 1mm.
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3.4 Calorimetry

The tracking detectors in Opal provide detailed measurements of the trajectory and

momentum of charged particles. The calorimetry systems are designed to provide ad-

ditional measurements of particle energies, particularly important for neutral particles

such as photons which are not detected by the tracking detectors.

The calorimetry system is composed of two main components; the electromagnetic

and hadronic calorimeters. The electromagnetic and hadronic calorimeters work in a

similar manner, by causing the incident particles to shower into lower energy particles

which are absorbed in the calorimeter material and used to measure the energy of the

incident particle.

In the case of the electromagnetic calorimeter in Opal, lead–glass blocks are used

as both the absorber and detection medium. The high electric charge of the lead nuclei

causes incident photons to convert, forming an e+e− pair. Similarly, an incident elec-

tron will bremsstrahlung in the presence of the heavy lead nuclei, thus losing energy

to radiated photons. These processes will repeat, approximately doubling the num-

ber of particles at each stage until the electron energies are too low to allow further

bremsstrahlung and they are absorbed into the absorber material. The energy of the

incident particle is measured by detecting the Cherenkov radiation emitted in the lead–

glass by the energetic electrons in the shower. The lead–glass blocks present sufficient

material to incident electrons and photons to completely contain their showers within

the blocks so that the number of Cherenkov photons is proportional to the energy of the

incident particles.

The hadronic calorimeters work by causing strongly interacting particles to shower

via inelastic collisions with nuclei of the absorber material. The process continues until

the energies of the shower particles are low enough that they can be absorbed into the

absorber material. In Opal, the absorber material is formed from the magnet return

yoke. The iron layers are interleaved with drift chambers which sample the energy of the

hadronic shower as it forms, allowing the energy of the incident particle to be measured.
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3.4.1 The Electromagnetic Calorimeters

The electromagnetic calorimeter system in Opal is designed to measure the energy of

electrons, positrons and photons in the energy range from tens of MeV up to ∼ 100GeV.

Using lead–glass blocks as a total absorption calorimeter, the system is mounted between

the magnet coil and iron return yoke. The system consists of three overlapping units,

the barrel calorimeter which surrounds the coil and covers the angular region up to

| cos θ | < 0.82, and two endcap assemblies covering the regions 0.81 < | cos θ | < 0.98.

Due to the presence of the central tracking systems, pressure vessel and magnetic

coil, there is about two radiation lengths of material in front of the calorimeters. This

means that electromagnetic showers are likely to have been initiated before reaching the

calorimeters. For this reason, a thin layer of ‘presampler’ detectors are placed just in

front of the calorimeters, which sample the incoming showers, improving the positional

and energy resolution obtained with the entire system.

The barrel electromagnetic calorimeter [56] consists of a cylindrical array of 9440

lead–glass blocks providing 24.5 radiation lengths of absorber material. The blocks

are arranged so that their longitudinal axes point towards the interaction point, to

minimise cross–over between adjacent blocks. The blocks are slightly rotated from a

perfectly pointing geometry however, to prevent tracks escaping undetected through

the gaps between adjacent blocks. The blocks have a nominal square cross-section of

10 cm × 10 cm and a length of 37 cm. In order to achieve the quasi-pointing geometry,

sixteen slightly different shapes are used such that the blocks point to a z position

between 55.5mm < |z| < 157.9mm and away from the beam axis by 30mm in r − φ.

To detect the Cherenkov light produced by the shower electrons, the end of each block

is connected to a phototube via a short light guide. Special phototubes are used that are

tolerant to the small residual magnetic fields from the Opal solenoid. In addition, 2mm

of shielding is provided by a permaloy metal jacket to reduce such fields to a minimum.

The barrel electromagnetic presampler [69, 70] consists of 16 limited streamer tubes

each 6623mm in length arranged to form a barrel layer of radius 2388mm just in front
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of the calorimeter. Each chamber contains two layers of anode wires contained within

a PVC cell, with readout from 1 cm wide cathode strips on each side of cells providing

positional readout in both the r − φ and z planes.

The endcap calorimeters [71] are constructed from similar lead–glass blocks. Each

endcap consists of 1132 square blocks presenting 20.5 radiation lengths, arranged coaxial

to the z–axis due to the geometrical constraints imposed by the spatial requirements

in the endcaps. They are placed within the full magnetic field and thus cannot use

photomultiplier tubes as in the barrel region. Instead, specially designed vacuum photo-

triodes are used to detect the Cherenkov light. Each endcap calorimeter is instrumented

with a presampler [72] consisting of 32 multiwire proportional chambers, arranged into

an annulus configuration in front of the detector.

3.4.2 The Hadron Calorimeters

The hadron calorimeters measure the hadronic energy contained within an event by

means of total absorption. To achieve this, the calorimeters consist of at least 4 inter-

action lengths of iron formed from the magnet return yoke, interleaved with detector

chambers which sample the shower energy. Typically, showers are initiated within the

2.2 radiation lengths of material present before the hadron calorimeters and thus a sig-

nificant fraction of their energy does not reach these calorimeters. The electromagnetic

calorimeters form the majority of this interaction material and so by using both the

electromagnetic and hadronic calorimeter systems in conjunction, it is possible to mea-

sure the full hadronic shower energy. The hadron calorimeter comprises three elements,

namely the barrel, endcap and poletip regions, which together give 97% coverage of the

full solid angle.

The barrel detector consists of 9 layers of limited streamer tubes [73] interleaved with

8 layers of 100mm thick iron slabs, spaced by 25mm and covering radii from 3.39m to

4.39m. The barrel detector covers the angular region up to | cos θ | < 0.81. The endcap

calorimeters extend the sensitive region up to | cos θ | < 0.91, following a similar design
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as the barrel detector with 8 detector layers interleaved with 7 iron slabs, with 35mm

spacings.

The tubes are instrumented with metallic implants on the chamber walls for readout,

with strips on the inner radius walls and pads on the outer. The strips allow single

particle tracking, which are predominantly muons, and are therefore useful in providing

complimentary information for muon identification. Such information is particularly

useful for tracks which lie outside the acceptance of the muon chambers and for low

energy tracks which fail to reach the muon chambers. The pads are arranged into

geometrical stacks emanating from the interaction point and dividing the solid angle

into 976 equal segments. The charge collected on each pad is collected and summed over

all pads in a tower, providing energy and positional measurements of hadronic showers.

The pole–tip detectors [74] extend the angular coverage up to | cos θ | < 0.99 using ten

thin multi–wire chambers with nine 80mm thick iron plates. The pole–tip detectors use

a similar strip and pad readout system to that used in the barrel and endcap detectors.

3.4.3 Calorimeter Resolutions

The energy resolution of the Opal detector is limited by the material lying in front

of the calorimeters which cause the showers to be initiated prior to the detector. The

presampler detectors compensate partly for the resulting loss in resolution.

From test beam studies, the electromagnetic calorimeter resolution was determined

to be σE/E =
√

(0.0022 + 0.0632/E) in the barrel and σE/E = 0.05/
√
E in the end-

caps, where E is measured in GeV [56]. The additional material in front of the detectors

degrades this resolution by a factor of about two. Using the presampler detectors ap-

proximately half of this deterioration can be recovered. The spatial resolution of the

energy clusters is 4 − 6mm in r − φ and about 10mm in z for the barrel detector and

approximately 11mm for the endcap detectors.

The hadron calorimeter resolution was similarly determined from test beam experi-
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ments and was found to be σE/E = 1.2/
√
E, where E is in GeV [56].

3.5 Other OPAL Elements

3.5.1 Time of Flight Detector

The time of flight detector consists of two components; the barrel and endcap detectors,

which together provide precise timing information over almost the full angular coverage

of the Opal detector. The barrel detector consists of 160 thin scintillation counters

covering the region | cos θ | < 0.82 and surrounds the Opal solenoid. The detector

provides low momentum (0.6 to 2.5GeV/c) charged particle identification, fast triggering

information and cosmic ray rejection. The endcap detectors were installed in 1997 and

consist of a layer of 120 scintillating tiles between the presampler and electromagnetic

calorimeters in each endcap. They provide additional timing information on Minimum

Ionising Particles (MIPS) in the endcap regions.

3.5.2 Forward Detectors

The forward detectors [56] are placed close to the beam pipe on either side of the Opal

detector. Their purpose is to detect electrons from low angle Bhabha scattering events

which are used to determine the beam luminosity. In addition they allow the tagging of

electrons from two photon events (e+e− → e+e−γγ).

The forward detectors are situated at ±2.4m from the interaction point and consist of

35 sampling layers of a lead–scintillator sandwich corresponding to 24 radiation lengths.

The detector has an energy resolution of σE/E ∼ 0.17/
√
E for well contained Bhabha

events. A silicon tungsten luminosity detector was added in 1993 [75] in the region

just in front of the forward detector. The detector consists of two components, one at

each side of Opal, formed from 19 layers of silicon detectors and 18 layers of tungsten

and located approximately 2.4m from the interaction point. A 7 radiation length ring of
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lead–scintillator layers (gamma catcher) plugs the acceptance gap between the inner edge

of the endcap electromagnetic calorimeters and the outer edge of the forward detectors.

Finally, the far forward monitor consists of 20 radiation lengths of lead–glass scintillator

calorimeters mounted on either side of the beampipe, 7.85m from the interaction point.

The far forward detector is designed to detect electrons which have been deflected by

the focusing quadrupoles.

3.5.3 Minimum Ionising Particle (MIP) Plug

Installed for the start of 1997 data taking, the MIP plug consists of 4 layers of 1 cm

thick scintillator tiles located at each end of the Opal detector. The inner two layers are

located just behind the gamma catcher and cover the polar angular region 126−220mrad.

The next layer is located behind these and covers the region 45 − 160mrad. These

three layers are divided into quadrants in φ. The final layer is located between the

silicon tungsten luminosity detector and the forward detectors and covers the polar

angular region 43 − 130mrad. This layer is divided into octants in φ. The MIP plug

is designed to provide good time resolution and detection efficiency for single minimum

ionising particles.

3.6 Trigger and Data Acquisition

Positron and electron bunches collide at the interaction points every 22µs in the 4 × 4

running mode, halving to 11µs in the 8×8 mode. In this time interval, the Opal trigger

system [76,77] must decide whether an interesting physics event has occurred and hence

to read out the individual sub–detectors.

Given the large number of channels that require processing when the detector is read

out, the rate at which events can be recorded is limited to a few Hertz. This means that

the trigger system must be able to select only interesting physics events with a minimum

of background.
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The system uses a combination of standalone and coincidence signals to identify

physics events. The standalone signals use information from tracking chamber multi-

plicity counts and total energy summations. Coincidence triggers are derived from the

tracking chambers, calorimeters, muon chambers and time of flight apparatus by di-

viding the 4π solid angle into 144 bins; 6 in θ and 24 in φ. By counting the hits per

bin and correlating back–to–back hits and detector coincidences, a basic image of the

event can be reconstructed. The bins overlap so as to reduce inefficiencies at the bin

boundaries. The standalone and coincidence triggers are analysed in parallel to provide

a fast trigger for physics events, using a programmable set of trigger conditions. If no

trigger condition is met the whole detector is reset for the next bunch crossing.

When the trigger conditions are met, the entire detector is read out [78]. Each sub–

detector has a local system crate which reads out the sub–detector and in some cases

performs some basic data processing. The data are then passed to the event builder

which reconstructs the entire event and passes the data to the filter which performs a

fast analysis of the data, classifying the event into various categories and removing any

remaining background events. The data are then passed on to the offline reconstruction

system for final processing and storage. The information is also made available to the

Opal shift crew for data quality checks and detector monitoring purposes.

3.7 OPAL Offline Event Reconstruction

The offline reconstruction program reconstructs the full event from the information

stored by the individual sub–detectors. This is performed using the ROPE (Recon-

struction of Opal Events) [79] software package which contains individual modules for

each sub–detector to process the sub–detector data using calibration information. More

general routines are then used to merge the information from each sub–detector into a

complete picture of the event.

The track reconstruction begins in the jet and vertex drift chambers by forming track
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seeds from triplets of consecutive hits within a sector. Starting from the outer radius

where the track densities are lower, these seed tracks are extrapolated inwards so that

additional hits can be added and the track refitted. This process continues until the

track χ2 exceeds a given threshold. These segments are then merged to form entire

tracks within a sub–detector. The jet chamber tracks are then merged with vertex and

z chamber tracks. Finally, silicon microvertex hits are added and the entire track refitted

using the full track information.

The completed tracks are characterised using five physics parameters :-

• κ, the track curvature, where |κ| = 1/2ρ and ρ is the radius of curvature of the

track. κ is signed such that with an axial magnetic field along the positive z–axis,

positive values of κ corresponds to a particle with negative charge;

• φ0, the azimuthal angle made by the track tangent in the r− φ plane at the point

of closest approach to the nominal interaction point, the centre of Opal;

• d0, the impact parameter in the r−φ plane to the nominal interaction point. With

an axial magnetic field along the z–axis, d0 is defined as d0 = qD where q is the

track charge in units of e and D = ρ−
√

x2
c + y2

c , where (xc, yc) are the coordinates

of the centre of the track circle;

• tanλ = cot θ, where θ is the track polar angle from the positive z–axis;

• z0, the track z coordinate at the point of closest approach to the interaction point

in the r − φ plane.

The calorimeter information is reconstructed as energy clusters. Starting in the

electromagnetic calorimeter, clusters are formed by first looking for a block with an

energy deposition above a given threshold value. Surroundings blocks are added if they

have an energy deposition above some lower threshold value. This procedure forms

large clusters of energetic blocks. These clusters are then split into finer clusters if local

maxima are found and the resulting fine cluster energies are corrected for preshowering
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using presampler information. The cluster positions are found from a weighted average of

the block positions and the clusters are then finally associated to reconstructed tracks. A

barrel cluster is associated to a track if the track extrapolates from the tracking detectors

to within 150mrad in θ and 80mrad in φ of the cluster position, taking into account

multiple scattering in the intermediate material. Similarly endcap clusters are associated

if they are within 50mrad in both θ and φ. Hadronic clusters are reconstructed in a

similar manner, with the spatial association requirements for the barrel and pole tip

detectors 100mrad in both θ and φ. In the endcaps this increases to 200mrad. The

remaining unassociated clusters are then assigned to neutral particles.

Finally, the data are stored in DST (Data Summary Tape) format in terms of the re-

constructed tracks and clusters, and are made available for offline analysis. The raw data

are also stored so that future improvements, such as better calibrations and improved

reconstruction techniques can be incorporated.
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Chapter 4

Event Reconstruction and Selection

By the end of data taking in 1995 the Opal detector had recorded approximately 4.3

million multi–hadronic Z0 → qq decays with centre of mass energies around the Z0 res-

onance. This chapter describes the raw data sets used in this analysis and the criteria

used to select these multi–hadronic decays. Of these hadronic events, roughly 21% [14]

are Z0 → bb decays. The techniques used to select a high purity, unbiased sample of

Z0 → bb decays and the determination of the b purity of the selected sample from the

data are described.

4.1 OPAL Data and Monte Carlo

4.1.1 OPAL Data

The raw data set used for this analysis consists of events collected between 1992 and

1995, with centre of mass energies within 3GeV of the Z0 peak. The most important

trigger requirements used to select multi–hadronic decays are :-

• Track trigger : At least two tracks are required with momentum transverse to

the z–axis greater than 0.45GeV/c, originating from the nominal interaction point

63
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at the centre of the Opal detector;

• Time of flight trigger : At least three non–adjacent scintillator hits in the time

of flight detectors are required;

• Electromagnetic trigger : The sum of the raw energy in either the barrel or

endcap electromagnetic calorimeters must exceed 6GeV or 7GeV respectively.

Various detector status cuts are applied to ensure good quality data. In addition to

the requirements imposed by the above triggers, the following detectors are required to

have been operational during the data acquisition :-

• The vertex, jet and z tracking chambers for efficient charged particle track recon-

struction and the electromagnetic calorimeters for neutral particle detection;

• The silicon microvertex detector, for the precise reconstruction of the primary

interaction point and secondary decay vertices, essential for the reconstruction of

b hadron decays;

• The muon chambers for muon identification and more stringent requirements on

the electromagnetic calorimeters for electron identification.

4.1.2 Monte Carlo Samples

Simulated events, where the true particle species and event kinematics are known, are

used to study the performance of the various selection criteria and analysis techniques.

These events are termed Monte Carlo events where the name derives from the statistical

technique [80] used to generate the events.

The Monte Carlo data used in this thesis were generated using the JETSET7.4

generator [81]. Starting from a quark–antiquark pair produced from the decay of a

Z0 boson or excited photon, JETSET generates a parton shower. The quarks in the

shower radiate gluons which in turn form additional quark–antiquark pairs. This process
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continues until the parton energies are too low for further showering, at which point the

hadronisation of the partons into the final state hadrons is simulated. Finally, the decays

of short lived hadrons are simulated. This stage is governed by decay tables which outline

the possible decay channels and the corresponding branching fractions for each particle

species. These tables can be updated when new information becomes available and

allows particular decay channels to be studied in detail.

The next stage consists of the simulation of the response of the Opal detector to these

generated events. The program used is based around the GEANT package [82] which

allows a detector to be defined in terms of sensitive volumes with specific properties. The

Opal interface to GEANT, named GOPAL [83] (GEANT for Opal), defines the detector

using information from the original technical drawings used to build the Opal detector.

Figure 3.3 shows a cut–away view based on the GOPAL simulation. GEANT simulates

the interactions between the particles and the detector, detector noise, inefficiencies and

detector resolutions and produces a full simulation of the detector readout in the same

format as the real data. This means that the Monte Carlo data is identical in structure

to the real data, allowing the same reconstruction code and analysis techniques to be

used on both the real and simulated data samples.

4.2 Multi–Hadronic Selection

The data sample used in this analysis consists of multi–hadronic Z0 → qq events selected

from the raw data sets discussed above. Multi–hadronic events are selected using the

procedure described in [84]. This selection defines quality requirements to select well de-

fined, ‘good’, tracks and neutral clusters and uses these to select multi–hadronic events.

A ‘good’ track satisfies the criteria :-

• Nhit ≥ 20, where Nhit refers to the total number of track hits in the vertex, jet

and z tracking chambers;
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• |d0| < 2 cm, where |d0| is the distance of closest approach between the track and

the interaction point, in the r − φ plane;

• |z0| < 40 cm, where z0 is the z coordinate at the point of closest approach of the

track to the interaction point, in the r − φ plane;

• |pt| > 0.05GeV/c, where pt is the track momentum transverse to the z–axis;

• | cos θ | < 0.995, where θ is the azimuthal track angle;

• χ2
r−φ < 999, where χ2

r−φ is the χ2 from the track fitting procedure in r − φ;

• χ2
z < 999, where χ2

z is the χ2 from the track fitting procedure in r − z.

For ‘good’ electromagnetic clusters, the requirements are :-

• Eraw > 0.1GeV (0.2GeV) in the barrel (endcaps), where Eraw is the uncorrected

energy of the cluster;

• Nblocks ≥ 2 if the cluster is in the endcaps, where Nblocks is the number of adjacent

blocks in the cluster.

In order to be selected as a multi–hadron, the event as a whole must satisfy :-

• Ntracks ≥ 5, where Ntracks is the number of good tracks;

• Nclusters ≥ 7, where Nclusters is the number of good clusters;

• ΣEraw/2Ebeam ≥ 0.10, where the summation runs over all good clusters;

• an energy imbalance along the beam direction, Σ(Eraw cos θ)/ΣEraw < 0.65, where

the summations run over all good clusters and θ is the polar angle of the cluster.

The charged track and cluster multiplicity requirements are designed to select multi–

hadron events, minimising backgrounds from Z0 decays to lepton pairs. The energy



4.2. MULTI–HADRONIC SELECTION 67

requirements suppress backgrounds from two–photon events, beam interactions with

residual gas in the beam pipe and cosmic rays.

The multi–hadronic selection has been measured to have an efficiency of ∼ 98.4% [84]

with the majority of the inefficiency arising from reduced detector acceptance towards

| cos θ | = 1. The main backgrounds are from τ+τ− and two–photon events, which have

been estimated to form (0.11±0.03)% and (0.5±0.02)% of the selected multi–hadronic

sample respectively [84].

4.2.1 Additional Quality Requirements for b Hadron Decays

In addition to these criteria, tighter selection cuts are also applied which have been

optimised for the selection of b hadron decays. All tracks used in the selection of b

decays are also required to pass the following requirements :-

• Njet ≥ 20, where Njet is the number of hits in the jet chamber;

• p < 65GeV/c, where p is the track momentum;

• pt > 0.15GeV/c;

• | tanλ | < 100;

• χ2
r−φ < 100;

• χ2
z < 100;

In addition, electromagnetic clusters are required to satisfy,

• Raw energy of cluster > 0.05GeV;

• Corrected energy of barrel clusters > 0.1GeV;

• Corrected energy of endcap clusters > 0.2GeV.
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Tracks and clusters passing these selections are hereafter referred to as ‘BT quality’.

Events are required to have seven BT quality tracks and seven BT quality clusters.

The multi–hadronic pre–selection efficiency of these BT event selection criteria has been

measured to be (98.1 ± 0.5)% [85].

4.3 b Hemisphere Tagging

The analysis presented in this thesis requires a sample of multi–hadronic decays enriched

with Z0 → bb decays. Such decays are tagged by reconstructing secondary decay vertices

significantly separated from the primary interaction point. The relatively long lifetime

(∼ 1.5 ps), high decay charged multiplicity and high mass (∼ 5GeV/c) of b hadrons are

used to construct an efficient and discriminating vertex tagging variable.

In order to obtain an unbiased sample of b hadron enriched decays, a hemisphere

tagging technique is used. The thrust axis (Section 4.3.2) for the event is computed and

then using the plane perpendicular to this axis, passing through the centre of Opal,

the event is divided into two ‘thrust’ hemispheres. The b–tagging algorithm is then

applied to each hemisphere separately. The sample of hemispheres opposite a b–tagged

hemisphere forms a sample of b hadron decays free from any biases introduced by the

b–tagging algorithm.

4.3.1 Jet Finding

In Z0 → qq(g) decays, the primary quarks and gluons fragment forming hadronic jets

with directions that closely follow the momentum in the primary parton state. In the

absence of any initial state radiation, the Z0 is produced at rest and therefore the final

state particles must have zero net momentum. Therefore, a primary qq pair results in a

pair of jets in an approximately back to back configuration, whilst gluon radiation from

the primary partons, qq(g), will result in the formation of additional jets.
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The cone jet finding algorithm [86,87] is used to group the charged tracks and unas-

sociated electromagnetic clusters into jet–like topologies. The algorithm defines a jet as

a set of particles that have a total energy greater than a cutoff value ε and momentum

vectors that lie within a cone of half angle R. In this analysis R = 0.55 radians and

ε = 5.0GeV, which have been optimised for the reconstruction of b jets [87]. Selected

events are required to have two or more reconstructed jets in order to be consistent with

Z0 → qq(g) decays.

The cone algorithm has been found to have superior angular resolution for the jet

direction when compared to other possible algorithms [87], providing a better measure of

the b hadron direction. In addition, the cone jet finder is well suited to analyses requiring

all the particles in a jet to share a common origin, such as the reconstruction of secondary

decay vertices. The angular nature of the algorithm makes it better suited to assigning

all tracks from secondary decays to the same jet, whilst preventing ‘stray’ tracks from

the opposite hemisphere from being included. This leads to improved secondary vertex

reconstruction within individual jets.

4.3.2 Thrust Cuts

The thrust [88] of the event, T , is defined as

T = max
n̂

(∑

i |pi · n̂|
∑

i |pi|

)

(4.1)

where the summation runs over all BT quality tracks and unassociated clusters in the

event. The axis n̂ which maximises the thrust value is called the thrust axis. An event

with two well collimated jets will have T ∼ 1, whilst events with additional jets due to

the radiation of energetic gluons will have lower values of T , down to 0.5 for an isotropic

distribution of tracks.

The hemisphere b–tagging technique relies on the assumption that the b hadrons

occupy opposite thrust hemispheres. Therefore, in order to suppress events containing
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more than two jets, where the b and b quarks are more likely to have been boosted into

the same hemisphere, the thrust is required to be greater than 0.8. In addition, the

polar angle of the thrust axis, θth, must satisfy | cos θth| < 0.75. Such a cut ensures that

the majority of the event is contained within the central barrel region where the particle

tracking is optimal and silicon microvertex detector information is available.

4.3.3 Primary Vertex Reconstruction

The primary e+e− interaction vertex is reconstructed on an event by event basis using

the BT quality tracks independently for each thrust hemisphere. Reconstructing a sep-

arate primary vertex in each hemisphere avoids potential correlations in the b–tagging

performance between the hemispheres resulting from sharing a single primary vertex

reconstructed using all BT quality tracks in the event [89].

The primary vertex position is calculated using a three–dimensional χ2 minimisation

technique. The BT quality tracks from a given thrust hemisphere are fitted to a common

position, with the LEP beamspot position [90] included as a constraint in the fit. The

fit is iterated by repeatedly rejecting the track contributing the largest χ2 until the

remaining tracks are all consistent with a single primary vertex, in that they contribute

less than 4 to the overall χ2. If the fit fails to converge in three dimensions then it is

repeated using only r− φ information. If this also fails the primary vertex position and

errors are taken from the LEP beamspot position and width.

4.3.4 Secondary Vertex Reconstruction

The use of the cone jet finding algorithm, discussed in Section 4.3.1, ensures that tracks

that originate from secondary decays are largely contained within the same jet. This

information is used to aid the finding of secondary decay vertices by limiting the recon-

struction to tracks within the same jet.

Secondary vertices are reconstructed using a similar three dimensional χ2 minimisa-



4.3. B HEMISPHERE TAGGING 71

tion technique as used for the primary vertex reconstruction. Additional quality con-

straints are applied to candidate secondary vertex tracks, namely :-

• p > 0.5GeV, where p is the track momentum;

• b0 < 0.3 cm, where b0 is the ‘impact parameter’, the distance of closest approach

of the track to the reconstructed hemisphere primary vertex;

• σb0 < 0.1 cm, where σb0 is the error on the track impact parameter.

These requirements tend to favour tracks that originate from b hadron decay vertices

rather than the primary vertex due to the hard fragmentation of the b quark. Tracks

with the largest χ2 are iteratively removed from the vertex fit until each track contributes

less than 4 to the total χ2.

The decay length, L, is calculated as the length of the vector joining the primary

vertex to the secondary vertex, with the constraint that it lies along the jet axis. L

is positively signed if the secondary vertex is displaced from the primary vertex in the

direction of the jet momentum and negatively signed otherwise. The error on L, denoted

σL, is determined from the track error matrices and used to construct the decay length

significance variable L/σL. This variable forms the basis of the vertex tag discussed in

the next section.

4.3.5 b Vertex Flavour Tagging

In order to assess the likelihood that a reconstructed secondary vertex resulted from a

b hadron decay, various characteristic variables are used. These variables are discussed

briefly below; for more details see [14, 91] :-

• Ns, the number of tracks in the secondary vertex. The high mass of b hadrons on

average give higher multiplicity decays;

• The decay length L. The longer lifetime of b quarks compared to the lighter

quarks means that on average a b hadron will travel further before decaying;
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• The decay length significance L/σL. The ratio of the decay length, L, to the

error on the decay length, σL, gives a measure of the significance of a large decay

length. b hadron decays tend to have not only long decay lengths but also well

defined vertices due to the high vertex multiplicity and therefore have will high

impact parameter significances;

• The reduced decay length significance LR/σLR
. The decay length signif-

icance of the secondary vertex, re-fitted with the track with the largest impact

parameter significance, b0/σb0 , removed gives a measure of the vertex robustness.

This is because a vertex caused by one mis-measured track with a large impact

parameter will tend to give a low vertex significance with that track removed;

• The critical track discriminant TD. This variable represents the probability

that a set of tracks with invariant mass greater than the average charm hadron

mass is consistent with having originated from the reconstructed secondary vertex.

The information contained within these variables is combined using an artificial neu-

ral network [91]. Artificial neural networks provide an automated method for combining

the information in a given set of variables in an optimal manner which not only uses the

inherent separation power of each variable, but also the correlations between them. A

more detailed discussion of the use of artificial neural networks is given in Chapter 5.

The neural network was trained using a sample of Monte Carlo events such that

the neural network output, NNbtag, represents the probability that the vertex is due to

the decay of a b hadron. The b hemisphere tag is constructed by requiring that the

hemisphere contains a reconstructed secondary vertex with a b probability greater than

a given threshold value. By varying this threshold value the efficiency and purity of the

selection can be varied to suit requirements. Figure 4.1 compares the NNbtag distribution

obtained in the data to the Monte Carlo, showing good agreement. A cut on the neural

network output of NNbtag > 0.78 was applied giving a b purity, defined as the fraction

of the tagged hemisphere sample that are in true Z0 → bb decays, of ∼ 92% with the

corresponding selection efficiency being around 31%.
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Figure 4.1: The output distribution for the b–tagging neural network
NN btag . The data (points) are compared to the Monte Carlo (solid line).
True b vertices are shown by the heavy hatched region, c vertices by the
lightly hatched region and uds vertices by the open region. The arrow indi-
cates the cut used to select b decays, NN btag > 0.78.

4.4 Data Samples

Table 4.1 outlines the data samples used in this analysis. A total of 3.35 million multi–

hadronic Z0 decays are selected in the data, of which approximately 2.15 million pass

the BT event selection, detector status requirements and thrust cuts. From this sam-

ple of events approximately 300 000 b–tagged hemispheres are selected. The detector

requirements imposed for electron and muon identification mean that a small fraction

of the data b–tagged hemispheres are rejected. The total numbers passing the electron

and muon identification criteria are also listed.
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Selection Year Opal events Monte Carlo events

5 flavour bb cc

1992 650 428 1 500 000 400 000 400 000

1993 707 205 1 000 000 275 000 275 000

Multi–hadron 1994 1 339 836 4 000 000 3 500 000 1 000 000

1995 655 807 1 000 000 250 000 250 000

total 3 353 276 7 500 000 4 425 000 1 925 000

BT + thrust cuts total 2 150 423 4 606 269 2 788 411 1 230 172

Opal hemispheres Monte Carlo hemispheres

5 flavour bb cc

b–tagged total 303 366

b–tagged + e ID total 301 303 699 108 1 835 956 48 616

b–tagged + µ ID total 302 577

Table 4.1: A summary of the multi–hadronic data and Monte Carlo sam-
ples used in this thesis. The top section shows the number of events passing
the multi–hadron selection and the refined BT selection combined with the
thrust cuts. The total number of hemispheres b–tagged and satisfying the
electron and muon identification criteria are also shown.

A total of 7.5 million multi–hadronic Monte Carlo events are used. These samples

contain all five quark flavours (u, d, s, c, and b) kinematically accessible in Z0 → qq

decays. In addition, dedicated samples of 4.425 and 1.925 million primary bb and cc

heavy flavour hadronic decays are also used.

4.5 b Tagged Sample Purity

In order to extract the true number of b hadron decays in the b–tagged sample, the

b purity of the sample must be determined. The purity, Pb, defined as the fraction of

the b–tagged hemisphere sample that originate from true Z0 → bb decays, is extracted

from the data itself using a double tagging technique in order to minimise systematic

uncertainties.
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4.5.1 Method

The double tagging technique exploits the independent hemisphere tagging method,

using the additional constraint that both hemispheres must necessarily have the same

primary flavour. The number of hemispheres passing the b–flavour tagging selection

criteria (Nt) as well as the number of events where both hemispheres are selected (Ntt)

are counted in the data. With the b–tagging efficiencies for the different flavours given

by ηb, ηc and ηuds, the expected numbers can be expressed as ;

Nt = 2NMH (Rbηb +Rcηc +Rudsηuds) , (4.2)

Ntt = NMH

(

CbRbη
2
b + CcRcη

2
c + CudsRudsη

2
uds

)

, (4.3)

where NMH represents the number of events that passed the multi–hadronic event selec-

tion and Ruds ≡ (1 −Rb − Rc).

The values of Rb and Rc, the fraction of Z0 events decaying into bb and cc pairs

respectively, are taken from experimental results [3]. The hemisphere correlation coef-

ficients Cq, where q represents the primary quark flavour, are given by the ratio of the

efficiency for tagging both hemispheres in a qq event, ηqq, over the square of the effi-

ciency for tagging one hemisphere containing that specific flavour, namely, Cq = ηqq/η
2
q.

Deviations of Cq from unity account for the fact that the tagging between the two hemi-

spheres is not completely independent and a small efficiency correlation exist between

the hemispheres. The correlation for b events, Cb, is taken from the Monte Carlo while

Cc and Cuds, which have negligible impact on the b purity measurement, are assumed

to be unity. The values for ηc and ηuds are taken from the Monte Carlo.

The form of Equations 4.2 and 4.3 for Nt and Ntt makes their physical origin clear;

they are simply the sum of the true numbers for each flavour of event occurring in the

data, weighted by the corresponding single or double tag efficiency. The equations can

however, be trivially re–expressed in terms of the b purity Pb, using the definition

Pb =
2NMHRbηb

Nt
(4.4)
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which gives,

Nt =

(

2NMH

1 − Pb

)

(Rcηc +Rudsηuds) , (4.5)

Ntt =
NMHC

2
b

Rb

P 2
b

(1 − Pb)2
(Rcηc +Rudsηuds)

2 +
(

CcRcη
2
c + CudsRudsη

2
uds

)

. (4.6)

Whilst the b purity can in principle be determined from the direct solution of either

of Equations 4.5 or 4.6, the value of Pb is extracted in practise by maximising the log–

likelihood of both equations simultaneously in order to obtain the maximum statistical

sensitivity. The overall log likelihood can be expressed as the sum of the log likelihoods

for Nt and Ntt (see Appendix A for details) ;

lnLtotal = lnLt + lnLtt

=
(

NDATA
t lnN exp

t −N exp
t

)

+
(

NDATA
tt lnN exp

tt −N exp
tt

)

(4.7)

where N exp
t and N exp

tt are the number of expected single b–tagged hemispheres and dou-

ble b–tagged events for a given purity, and NDATA
t and NDATA

tt are the corresponding

numbers selected in the data. Equation 4.7 was maximised using MINUIT [92], which

is a software package designed to find the minima of multi–parameter functions and to

perform comprehensive error analyses. From a fit to the full data sample, the hemisphere

b–tagging purity was measured to be (91.901 ± 0.016)% where the error is purely sta-

tistical.

4.5.2 Systematic Uncertainties

Extensive studies have been presented in a previous Opal analysis on the systematic

differences between data and Monte Carlo for Cb, ηc and ηuds [14]. These same studies

were used in this analysis, where similar event selection and b–tagging algorithms are

used to assign the systematic uncertainty on Pb.
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Input parameter Value δPb / %

Rc 0.177 ± 0.008 ±0.19

Rb 0.2169 ± 0.0012 ±0.01

ηc 0.0209 ± 0.0002 (MC stat.) ± 0.0014 (syst.) ±0.34

ηuds 0.0034 ± 0.0000 (MC stat.) ± 0.0003 (syst.) ±0.22

Cb 1.0493 ± 0.0052 (MC stat.) ± 0.0052 (syst.) ±0.01

Total ±0.45

Table 4.2: The contributions to the systematic uncertainty on Pb for each
input parameter used to measure the b purity in the data after b–tagging.
For the input parameters taken from the Monte Carlo, the Monte Carlo
statistical and systematic uncertainties are shown separately.

Table 4.2 shows the individual contributions from each input parameter and the

overall systematic error on Pb. The dominant modelling uncertainties arise from the

Monte Carlo modelling errors on the light flavour efficiencies ηc and ηuds. In evaluat-

ing the systematic errors on these efficiencies the following sources of uncertainty were

considered:

Detector resolution : The tracking resolution in the Monte Carlo was varied by apply-

ing a multiplicative scaling factor to the difference between the true and reconstructed

track parameters for all charged tracks. Independent variations of ±10% on the r − φ

and r − z parameters were used to assign the systematic error. Systematic uncertain-

ties due to the charged track reconstruction efficiency and mis–alignment of the silicon

microvertex detector are also included, as discussed in detail in [14].

Heavy quark production from gluon splitting : The production of heavy quark

pairs via the processes g → bb̄ and g → cc̄ increases the tagging efficiency in charm

and light quark events. The rates of gluon splitting events were adjusted according

to experimental results as discussed in [14] and the uncertainties used to evaluate the

corresponding systematic errors.
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Charm physics : In addition to the sources listed above, the efficiency for tagging

charm events, ηc, depends on various physical quantities in charm events:

• Charm quark fragmentation : The charm tagging efficiency increases with

the scaled energy xE of the weakly decaying charm hadron. The Monte Carlo

simulations are tuned to correspond to the experimental measurements [14] for

the mean scaled energy 〈xE〉c using the fragmentation functions of Peterson et al.,

Collins and Spiller, Kartvelishvili et al. and the LUND group (Section 2.6.1). The

experimental uncertainties on 〈xE〉c and the observed variations with the different

fragmentation functions are used to assign the associated systematic error on ηc;

• Charm hadron production fractions : Due to the differing lifetimes and decay

modes for each charm hadron species, the vertex tagging efficiency in cc events de-

pends on the mixture of weakly decaying charm hadrons. The relative production

fractions of D±, D0, Ds and charm baryons are varied according to the experi-

mentally measured production fractions [14] and used to assign a systematic error

on ηc;

• Charm hadron lifetimes : The secondary vertex decay lengths, L, and there-

fore the tagging efficiencies depend upon the lifetimes of the decaying hadrons.

The lifetimes of the weakly decaying charm hadrons were independently varied

according to experimental results [3] and used to assign a systematic uncertainty

on ηc;

• Charged and neutral decay multiplicities : The charged track multiplicity

serves as one of the inputs to the b–tagging neural network and therefore affects

the tagging efficiency in cc events. The neutral decay multiplicities also affect the

tagging efficiencies since an increased number of neutral particles results in less

energy and transverse momentum being available for charged decay products. The

average charged and neutral multiplicities in charm decays are varied according to

experimental measurements [14] and used to assign a systematic uncertainty on ηc;
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• K0 and hyperon production The branching fractions for D → K0,K0 and

Λ+
c → Λ, and the total production rates for K0, Λ and other weakly decaying

hyperons were varied according to experimental measurements [14]. A systematic

error on ηc was assigned according to the observed variations.

bb efficiency correlation uncertainties : The b–tagging efficiency correlation co-

efficient Cb is determined from the Monte Carlo simulation. These correlations arise

from three classes of effects: (1) kinematic correlations due to final state gluon radia-

tion, (2) geometrical correlations due to detector non–uniformities and (3) correlations

resulting from the primary vertex determination. A detailed discussion of the Monte

Carlo simulation of these effects is given in [14]. Due to the relative sizes of the Nt and

Ntt samples, where Nt � Ntt, the majority of the statistical power in the likelihood fit

for Pb resides in the single tag Equation 4.5. Since Equation 4.5 is independent of the

correlation coefficients Cq, the error on Cb therefore results in a negligible uncertainty

on the measured b purity.

Rb and Rc : The values for Rb and Rc are taken as the current world averages [3] with

the corresponding systematic uncertainty on Pb evaluated by varying the parameters

within the experimental errors.

4.5.2.1 Summary of Pb Determination

Using a double tagging technique, the b purity of the b–tagged data sample has been

measured from the Opal data itself. Adding all sources of systematic error in quadra-

ture, the b–tagging purity is measured to be,

Pb = (91.90 ± 0.02 (stat.) ± 0.45 (syst.))%

corresponding to a b–tagging efficiency of around 30%.
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Chapter 5

Electron and Muon Identification

This chapter describes the techniques used to identify candidate electron and muon

tracks in multi–hadronic events, where an improved algorithm for electron identification

is developed. The efficiencies for identifying leptons from direct decays, b → `, and

cascade decays, b → c → `, are taken from the Monte Carlo simulations and a discussion

of the systematic uncertainties associated with these efficiencies is presented.

5.1 Electron Identification

In order to efficiently identify electron candidates within multi–hadronic events, it is

necessary to combine information from a number of different sources. Making optimal

use of all the available information requires a sophisticated algorithm, capable of multi–

dimensional discrimination. An artificial neural network is used, since it provides one

of the most powerful of such discrimination tools. In the following sections the various

physics quantities used in electron identification are discussed.

81
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5.1.1 Preliminary Selections

In addition to the general track selection criteria discussed in Section 4.2.1, candidate

electron tracks are first required to pass a preliminary set of selection cuts.

• Candidate tracks are required to have a minimum momentum of 2GeV/c.

• Candidate tracks are required to have a minimum of 40 jet chamber hits usable

for the determination of the specific energy loss (discussed in Section 5.1.3).

These criteria favour electrons from the weak decays of heavy hadrons, such as direct

and cascade decays, which tend to form well defined, high momentum tracks.

Candidates passing these criteria are then passed to the main electron identification

algorithm, which is described in detail in the following sections.

5.1.2 Input Variable Selection Criteria

The selection of variables to be used as inputs to the electron identification neural

network is motivated by two considerations :-

• The performance of the electron identification defined in terms of the efficiency at

selecting true electrons compared to the electron purity of the selected sample;

• The systematic uncertainty resulting from determining the electron identification

performance from the Monte Carlo simulations.

These considerations may conflict; an optimal performance neural network requires

the use of all possible sources of information regardless of how well they are modelled

in the Monte Carlo. In the analysis presented in this thesis however, the minimisation

of the efficiency systematic errors is important. In order to calculate the true number

of b → e and b → c → e decays that occurred in the data, the selected samples need

to be corrected to account for the selection efficiencies. The size of the data sample is
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sufficient that for any reasonably efficient set of selection criteria, the resulting statistical

errors are small compared to the systematic uncertainties associated with determining

these efficiencies from the Monte Carlo. In the following sections, potential inputs are

discussed in relation to this specific requirement.

5.1.3 Specific Ionisation

Charged particles traversing a given medium will lose energy by ionisation along their

path. The specific ionisation energy loss, dE/dx, is a function of the velocity of the

particle and is essentially independent of the particle mass. The Opal jet chamber

measures both the hit positions and the amount of charge deposited by tracks traversing

the chamber, allowing the particle dE/dx to be determined. By combining velocity

information in the form of dE/dxmeasurements with the particle momentum determined

from the track curvature due to the magnetic field, it is possible to estimate the mass

of the particle and hence determine its identity [65].

The average specific energy loss of ionising particles can be described by the Bethe–

Bloch equation [3, 93] as a function of the particle velocity β,

dE

dx
= −4πNAr

2
emec

2z2
eZ

1

Aβ2

(

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2

)

, (5.1)

where Tmax is the maximum kinetic energy which can be imparted to a free electron in

a single collision and ze is the charge of the incident particle. Z and A are respectively,

the atomic number and atomic mass of the medium. NA is the Avogadro number, re is

the classical electron radius and me is the electron mass. I is the mean ionising potential

whilst δ is a density function which takes into account polarisation in the gas.

Figure 5.1 shows dE/dx measurements obtained with the Opal jet chamber [65].

The solid lines show the predicted curves for a given particle species and the points are

the measured data.
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Figure 5.1: The dE/dx distributions [65]. The points show the data points
for multi–hadronic tracks and muon pairs. The Bethe–Bloch predictions for
different particle species are shown by the lines.

The curves show three distinctive regions :-

• The non–relativistic region, at low velocities, where the dE/dx curves show

a characteristic fall with 1/β2;

• The relativistic rise region, at medium velocities, where dE/dx rises logarith-

mically as ln (β2);

• The Fermi Plateau region, at high velocities where dE/dx saturates.

The dE/dx curves for different particle species cross at various points, making the



5.1. ELECTRON IDENTIFICATION 85

separation of these two species difficult in particular regions of momentum. In addition,

at high momenta the curves converge to a common value, such that particle species

cannot be distinguished using dE/dx information. In terms of optimising particle iden-

tification capabilities, the figure of merit which needs to be maximised is not the dE/dx

resolution but the separation power between different species, defined as;

SdE/dx =
dE/dxA − dE/dxB

σ(dE/dxA) ⊕ σ(dE/dxB)
(5.2)

where σ(dE/dx) is the measurement error on the specific ionisation dE/dx, and A and

B represent two different particle species. The symbol ⊕ indicates the quadratic sum of

the errors for species A and B.

Figure 5.2: The dE/dx separation power for various particle species in
multi–hadronic events, as a function of momentum.
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Figure 5.2 shows the dE/dx separation power, SdE/dx, between given particle species

as a function of their momentum. For electron identification through dE/dx measure-

ments, pion – electron separation is of prime importance since pions form the main

source of background.

The raw value of dE/dx measured in the jet chamber is dependent on many of

the physical parameters of the chamber. Changes in the gas density due to variations

in leakage and leakage compensation for example, will result in gas gain variations of

10 − 20% and therefore similar changes in the raw dE/dx values. The jet chamber is

calibrated [65, 94] by taking these variations into account in the Bethe–Bloch expecta-

tion for dE/dx. As a consequence, the appropriate parameter used for dE/dx particle

identification is not the raw value of dE/dx, but the normalised value defined as,

dE/dx|norm =
dE/dxmeasured − dE/dxexpected

σ(dE/dxexpected)
(5.3)

where dE/dxmeasured is the raw measured value and dE/dxexpected the expected value

according to the Bethe–Bloch equation, for a particular particle species.

The dE/dx|norm is calculated by minimising the χ2 function

χ2 =

(

dE/dxmeasured − dE/dxexpected

σ(dE/dxexpected)

)2

+

(

pmeasured − pexpected

σ(pexpected)

)2

(5.4)

where,

σ(dE/dxexpected) = σ(dE/dxmeasured) ·
(

dE/dxexpected

dE/dxmeasured

)

, (5.5)

σ(pexpected) = σ(pmeasured) ·
(

pexpected

pmeasured

)

. (5.6)

The χ2 function is minimised with respect to both dE/dxexpected and pexpected simul-

taneously according to the Bethe–Bloch equation (5.1) under the hypothesis that the

particle is of a particular species. The dE/dx values for true particles of the given species

will be distributed about the expected values, giving a Gaussian dE/dx|norm distribution
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Figure 5.3: The dE/dx|norm distribution under the electron hypothesis.
Figure a) compares the normalised distribution for electrons (dashed) to all
other particles (solid) in the Monte Carlo. In Figure b) the data (points)
are compared to the Monte Carlo predictions (solid line). The true electron
contribution to the Monte Carlo is shown by the hatched region.

of unit width, centered at zero. Other particles species will cluster away from zero.

Figures 5.3a and 5.3b show the dE/dx|norm distributions for tracks in multi–hadronic

events, under the electron hypothesis. In Figure 5.3a the distributions normalised to

unit area are compared for electrons (dashed line) to all other particles (solid line) in

the Monte Carlo. As expected, true electrons form a Gaussian distribution centred at

zero, with the remaining background tracks clustering below zero. In Figure 5.3b the

inclusive Monte Carlo sample is compared to the data, showing good agreement.

The error on the raw dE/dx value, σ(dE/dx), is derived from the number of dE/dx

hits, the effective charge seen by the track in the jet chamber, the pathlength of the track

within a cell and the error on the track polar angle θ. This variable is less dependent

on the physical parameters of the jet chamber and is therefore more stable than the

raw dE/dx value. The σ(dE/dx) distribution also holds discriminatory information
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Figure 5.4: The σ(dE/dx) distributions. Figure a) compares the nor-
malised distribution for electrons (dashed) to all other particles (solid) in
the Monte Carlo. In Figure b) the data (points) are compared to the Monte
Carlo predictions (solid line). The true electron contribution to the Monte
Carlo is shown by the hatched region.

for electron tracks, as shown in Figure 5.4a. Electrons from the decay of short lived

heavy hadrons tend to have larger momenta than fragmentation tracks and thus tend

to produce better defined tracks, which in turn leads to more hits usable for dE/dx

measurements and hence a smaller dE/dx error. For these reasons σ(dE/dx) is also a

suitable parameter for use in electron identification.

Figure 5.4b compares the data distribution for σ(dE/dx) to the Monte Carlo. A

systematic difference between the data and the Monte Carlo can be seen for tracks

with large dE/dx errors, where the Monte Carlo over–estimates the number of such

tracks. The systematic uncertainties on the Monte Carlo estimate of the performance

of the electron selection resulting from this, and all other discrepancies in the electron

identification variables described in the proceeding sections, are discussed in Section 5.3.
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5.1.4 Electromagnetic Calorimeter Information

Information from the electromagnetic calorimeters can also be used to identify electron

candidates. An electron will deposit most of its energy in the electromagnetic calorime-

ters, unlike hadronic particles which interact less with the lead–glass medium. This can

be quantified using the variable E/p, the ratio of the electromagnetic energy associated

to a track, to the track momentum measured in the jet chamber. For energies greater

than a few GeV the electron mass is negligible in comparison to its energy and so the

track momentum (inGeV/c) is approximately equal to its energy (inGeV). Electrons

will therefore tend to have E/p values close to one whilst the hadronic backgrounds clus-

ter towards zero. Hadronic showers also tend to be broader than electromagnetic showers

and hadronic backgrounds can therefore be further suppressed by using only the energy

located close to the extrapolated track position at the electromagnetic calorimeter.
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Figure 5.5: The Econe/p distributions. Figure a) compares the normalised
distributions for electrons (dashed) to all other particles (solid) in the Monte
Carlo. In Figure b) the data (points) are compared to the Monte Carlo
predictions (solid line). The true electron contribution to the Monte Carlo
is shown by the hatched region.
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Experimentally, the electromagnetic energy associated to the track is determined

by defining a cone around the track direction with a half–angle of 30mrad. The cone

size was optimised in the Monte Carlo simulations so as to fully contain the electron

shower whilst rejecting as much of the residual background hadronic energy as possible.

The cone is then extrapolated to the electromagnetic calorimeter surface, forming an

oval region. Blocks with their centres within this region and with an energy deposition

above a given background threshold level are summed to give an estimate of the track

energy, Econe. Figure 5.5 shows the Econe/p distributions for tracks in multi–hadronic

events. The true electron contribution forms a peak at one whilst the backgrounds

cluster towards zero.
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Figure 5.6: The distributions for Nblocks, the number of electromagnetic
calorimeter blocks used in the Econe calculation. Figure a) compares the
normalised distributions for electrons (dashed) to all other particles (solid)
in the Monte Carlo. In Figure b) the data (points) are compared to the
Monte Carlo predictions (solid line). The true electron contribution to the
Monte Carlo is shown by the hatched region.

The number of blocks used to calculate Econe/p, termed Nblocks, can also be used as

a discriminating variable. Figure 5.6a compares the Nblocks distribution for electrons to
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that obtained for all other tracks. Electromagnetic showers are narrow and therefore

tend to deposit their energy in only a few blocks. Hadronic showers are less likely to

shower in the electromagnetic calorimeters and therefore on average only deposit a small

fraction of their total energy. This means that hadronic showers in the electromagnetic

calorimeters are less likely to be reconstructed and therefore tend to involve a smaller

number of blocks.

5.1.5 Track Momentum
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Figure 5.7: The distributions of the track momentum p. Figure a) com-
pares the distributions for electrons (dashed) to all other particles (solid) in
the Monte Carlo. In Figure b) the data (points) are compared to the Monte
Carlo predictions (solid line). The true electron contribution to the Monte
Carlo is shown by the hatched region.

The distributions for the track momentum are shown in Figure 5.7. The main ben-

efit from including the momentum in the network inputs results not from its intrinsic

discrimination power, but from the correlations it provides with other variables. The

discrimination power of the dE/dx|norm variable depends strongly on the track momen-

tum, providing the best separation for lower momentum tracks (Figure 5.2). Both the
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track momentum and electromagnetic calorimeter resolutions improve with increasing

momentum and therefore the discrimination power of the Econe/p variable improves with

increasing momentum. Including the track momentum as an additional input variable

allows the neural network to define the best combination of these variables at all mo-

menta and thus improves the overall network performance.

5.1.6 Track Azimuthal Angle

The track azimuthal angle θ holds information on the region of the detector through

which the track traversed. The precision of the track dE/dx value depends on the

number of central tracking chamber hits used in its determination. For tracks within

| cos θ | < 0.73 all 159 sense wires are available. For increasing | cos θ | this number

decreases and therefore so does the precision on dE/dx. The resolution of the track

momentum also degrades with decreasing number of tracking hits.
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Figure 5.8: The distributions for | cos θ |. Figure a) compares the distribu-
tions for electrons (dashed) to all other particles (solid) in the Monte Carlo.
In Figure b) the data (points) are compared to the Monte Carlo predictions
(solid line). The true electron contribution to the Monte Carlo is shown by
the hatched region.
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The amount of material the track has to traverse prior to the calorimeters also varies

with θ. The increased probability of shower initiation in this additional material leads to

a degradation of the energy resolution of the calorimeters. These effects can be taken into

account by including | cos θ | as an additional input variable, the distributions for which

are shown in Figure 5.8. Using the modulus of cos θ prevents any forward–backward

asymmetries in the detector configuration affecting the electron identification.

5.1.7 Track–Cluster Matching Variables

During the event reconstruction charged tracks are associated with electromagnetic clus-

ters, as described in Section 3.7. The quality of these associations can be characterised

using the angular matching variables :-

• ∆θ = θtrack − θcluster, the difference in θ between the extrapolated track position

at the electromagnetic calorimeter and its associated cluster;

• ∆φ = |φtrack −φcluster|, the absolute difference in φ between the extrapolated track

position at the electromagnetic calorimeter and its associated cluster.

The distributions for these variables are shown Figure 5.9. Electrons correctly associ-

ated with their electromagnetic clusters tend to give better matches than that obtained

with hadronic showers or accidental associations and therefore these variables can also

be used in identifying electrons.

5.1.8 Artificial Neural Networks

When analysing experimental data a standard procedure is to place various selection

cuts on kinematic variables in order to single out desired features. Defining the optimum

cuts for a large set of correlated variables can be problematic. Artificial neural networks

provide a mechanism for defining such a selection procedure which, with the correct
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Figure 5.9: The track–cluster matching variables ∆θ and ∆φ. Figures a)
and b) compare the normalised distributions for electrons (dashed) to all
other particles (solid) in the Monte Carlo. In figures c) and d) the data
(points) are compared to the Monte Carlo predictions (solid line). The true
electron contribution to the Monte Carlo is shown by the hatched region.
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training, is able to extract the maximum possible information from a given set of input

variables.

In the following sections a basic introduction to the theory of neural networks is

presented, together with a description of the training procedure used for the electron

identification network. Finally, a discussion of the reliability of the Monte Carlo simu-

lation in terms of the efficiency and purity of the electron selection is given.

5.1.8.1 An Introduction to the Theory of Neural Networks

Artificial Neural Networks (ANN) are computation models inspired by the structure of

biological neural systems. The networks discussed below are based on those produced

using the JETNET [95] package and are specific to pattern recognition applications. A

more detailed introduction to the theory and applications of artificial neural networks

can be found in [96, 97].

The basic computational entities of the network are the nodes, which can take real

values within a given interval {−1, 1} (or {0, 1}). Information is passed between the

nodes via weighted inter–connections. It is the structure of these connections which

defines how the neural network operates. In feed–forward networks the connections are

unidirectional; the information passes from a set of input nodes through the network

to a set of output nodes. This architecture is used in pattern recognition applications

where the output nodes represent the desired features of a set of input variables.

Figure 5.10 shows the generic structure of a feed–forward neural network. The basic

features are:

The Input layer : The input nodes, xk, take the values of the input variables. The

set of input variables for a particular track are collectively referred to as the input

pattern for that track;

The Output Layer : The output nodes, yi, represent the various features of the input

patterns which the network has been trained to distinguish;
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Figure 5.10: Architecture of a feed–forward artificial neural network.

The hidden layer : The hidden nodes, hj, pass information between the input and

output layers. It is this layer which gives the network its complex behaviour

and non–linear responses, and hence its analytical power. In most cases only one

hidden layer is needed, although for particularly complex problems more hidden

layers can be used. Networks with more than one hidden layer are generally harder

to optimise and are thus only used when absolutely necessary;

The weights : The connections between the nodes in the various layers are controlled

by the weights wjk and wij. These are adjusted during the training process so as

to produce the desired mapping from the input patterns to the output features.

The term feed–forward refers to the flow of information in the network; from the

input layer through the various hidden layers to the output layer. For such networks,

the output nodes can be expressed as an analytical function of the input nodes. For the
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architecture shown in Figure 5.10 we have;

yi = g

(

∑

j

wij g

(

∑

k

wjkxk + θj

)

+ θi

)

(5.7)

where θj and θi represent threshold values for the nodes to ‘activate’ and are commonly

set to zero.

The activation functions, g(x), control the response of the nodes and typically take

the form of a sigmoid function. For example,

g(x) =
1

2

(

1 + tanh
( x

T

))

(5.8)

where T is the temperature of the network and controls the gain of the function g(x).

Figure 5.11 shows the activation function for different temperatures.

g(x)

x0

1
T1
T2

T1 > T2

Figure 5.11: The sigmoid activation function for two different network
temperatures.

For high values of T , the sigmoid function approaches a straight line and the re-

sulting network has a linear response. Such networks are often used in function fitting

applications. For pattern recognition, a non–linear response is beneficial and lower tem-

peratures are therefore used. The choice of temperature is relatively arbitrary since the

network adjusts accordingly during the training procedure, and in this thesis the most
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commonly used choice of T = 1 was employed.

5.1.8.2 Neural Network Training

Network training refers to the process of adjusting the connection weights so as to map

the input patterns to the target output features.

The weights wij and wjk are determined by minimising an estimator of the fit error

between the obtained (oi) and target (ti) network outputs for a set of training data, with

respect to these weights. The most commonly used estimator is the mean square error,

defined as

E =
1

2Npat

Npat
∑

p=1

Nout
∑

i=1

(

o
(p)
i − t

(p)
i

)2

(5.9)

where Npat is the total number of training patterns and Nout the number of network

output nodes.

Once the weights have been fitted to the training data in this way, the network

should be able to recognise data it has not been exposed to; this ability is called the

generalisation performance of the network. In order to prevent over–learning, where

the networks fits to particular fluctuations in the training data set that are not general

characteristics of the data, the number of training patterns must be much greater the

number of free parameters, the network weights.

The optimisation of such a large number of variables, using a correspondingly sizeable

training sample, requires the use of specialised optimisation techniques. The most widely

used technique is back propagation, where Equation 5.9 is minimised using a gradient

descent method. In this method, the weights are updated on a pattern by pattern basis

according to the learning rule,

ω(p+1) = ω(p) + ∆ω(p) (5.10)

where ω indicates the vector of all network weights. The change in weight ω(p), denoted
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∆ω(p), is determined from the gradient of the network error for the current input pattern

p, denoted E(p),

∆ω(p) = −η∂E
(p)

∂ω
(5.11)

where η is the learning parameter which controls the rate at which the network converges.

A second term is often added to ∆ω(p) to stabilise the learning by retaining some

information from the previous iteration, giving,

∆ω(p) = −η∂E
(p)

∂ω
+ α∆ω(p−1) (5.12)

where 0 < α < 1. Finally, in order to prevent local as opposed to global minima from

being found, an additional noise term, σ, is often introduced

∆ω(p) = ∆ω(p) + σ. (5.13)

In the Langevin scheme a normalised Gaussian noise term is used and the magnitude

of the noise is systematically decreased during the training procedure. This technique ef-

fectively prevents the network converging prematurely before it has sufficiently explored

the parameter space, leading to a higher probability of finding the global minimum.

The data set used in the network training is typically divided into two distinct subsets,

termed the training and test data sets. The training set is used explicitly in the network

optimisation whilst the test set is used to assess the performance of the network during

the training.

After each iteration through the training data set the average network error (Equation

5.9) is computed for the test data set. Once this error has converged to its minimum

value, the network has found the optimal weights and the training is stopped. In order

to determine the final network performance it is desirable to use a third data set, the

evaluation data set, which is independent of both the training and test data sets. Such a

set has not been used either explicitly or indirectly in the training and therefore provides

a truly statistically independent determination of the final network performance.
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5.1.9 Electron Identification Neural Network

The neural network training techniques described above were applied to electron iden-

tification using the JETNET [95] package. Eight variables where selected as inputs to a

neural network trained to identify electrons :

• The normalised specific ionisation, dE/dx|norm;

• The error on the specific ionisation, σ(dE/dx);

• The track Econe/p;

• The number of calorimeter blocks used in the Econe summation, Nblocks;

• The track momentum, p;

• The track | cos θ |;

• The track–cluster matching variable, ∆θ;

• The track–cluster matching variable, ∆φ.

The parameter ranges for these inputs differ substantially and such differences ad-

versely affect the network training since each input requires very different weights. This

can lead to optimisation instabilities and longer training times. Such effects can be

prevented by normalising the input variables to a standard range, using an isomorphic

functional mapping that preserves the features of the input variables. The actual form

of the mapping is arbitrary since the training will adjust to the normalised distributions.

The mapping between the raw, xraw, and normalised, xnorm, distributions was chosen

as,

xnorm =
1

(

1 + e
xraw−〈xraw〉

σraw

) (5.14)

with 〈xraw〉 the mean and σ2
raw the variance of the input distributions. This mapping

produces distributions normalised to between zero and one.
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From the Monte Carlo simulation a sample of tracks was selected from events passing

the BT multi–hadronic event selection criteria (Section 4.2.1). In addition, the following

loose pre–selection criteria were applied to the tracks :-

• −2 < dE/dx|norm < 4. This rejects the majority of the hadronic tracks whilst

retaining practically all true electrons;

• number of dE/dx hits > 20. This rejects tracks with the poorest dE/dx modelling.

These pre–selection criteria allow the network to focus the training on the rejection

of hadronic tracks which most closely resemble true electrons.

A sample of 90 000 tracks was selected using these criteria. This sample was divided

equally to form two independent training and test samples, with a 50:50 composition of

electrons and background sources. In this way the resulting neural network output can

be interpreted as the probability that the track is a true electron.

Neural networks were trained using the input variables. The matching variables

∆θ and ∆φ were found to improve the network performance only for tracks in the

endcaps and therefore these variables are used only in these regions. One hidden layer

with 13 nodes was found to be sufficient to fully map the input parameter space onto

one output node representing the electron probability. Figure 5.12 shows the output

distributions for the resulting network, NNe. By placing a cut on the network output,

a high purity sample of electrons can be selected. In this analysis candidate electron

tracks are required to satisfy NNe > 0.9 giving a network efficiencya around 79% with a

purity of approximately 94%. The systematic uncertainties associated with the Monte

Carlo modelling of the NNe distribution are discussed in Section 5.3.

aExcluding the effects of the track pre–selection criteria.
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Figure 5.12: The output distribution for the electron identification neural
network NNe . The data (points) are compared to the Monte Carlo predic-
tions (solid line). The true electron contribution is shown by the hatched
region. The selected tracks with NNe > 0.9 are also indicated.

5.2 Photon Conversion Rejection

Electrons from photon conversions, γ → e+e−, form an important background to promptb

electrons in the neural network tagged sample. Such conversion electrons are rejected

using an additional neural network, NNcv, trained to identify them using their distinctive

topological and kinematic characteristics. Each identified electron candidate is consid-

ered in turn with all other charged tracks in the event and the probability that they

form a photon conversion pair is determined using the NNcv network.

bPrompt leptons are leptons from either direct, b → ` or cascade, b → c → `, decays.
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Nine characterising input variables are used in NNcv :-

• The distance between the two tracks at tangency;

• The radius of the first measured tracking chamber hit with respect to the centre

of the Opal detector, for both tracks;

• The radius of the reconstructed vertex of the candidate photon conversion;

• The invariant mass of the pair, assuming both tracks to be electrons;

• The impact parameter of the reconstructed photon with respect to the primary

vertex of the event;

• The electron identification network output, NNe, of the partner track;

• The product of the momentum and charge, for both tracks.

Figure 5.13 shows the distribution for NNcv. By requiring that tracks satisfy the

selection NNcv < 0.8, the photon conversion background is substantially reduced, whilst

retaining ∼ 98% of the NNe selected sample of prompt electrons.

5.3 Electron Identification Systematics

The efficiency for selecting electrons and the corresponding purity of the selected sam-

ples are determined from the Monte Carlo. In order to assess the systematic uncertain-

ties associated with these measurements, a detailed study of the electron identification

and photon conversion rejection neural networks was performed [98]. Two independent

methods were used to study the differences between data and Monte Carlo. These are

described in the following sections.
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Figure 5.13: The output distribution for the photon conversion neural
network, NNcv . The data (points) are compared to the Monte Carlo predic-
tions (solid line). The true photon conversion contribution is indicated by
the darkly hatched region whilst the lightly hatched region shows all other
true electrons. The open region shows all non–electron candidates. The
selected tracks with NNcv < 0.8 are also indicated.

5.3.1 Test Sample Studies

Various techniques can be used to select samples of tracks enhanced in particular particle

species. Pure electron samples can be used to study differences in the selection efficiencies

between data and Monte Carlo. Pion samples, the predominant background in the

electron selection, are used to study the Monte Carlo modelling of the purity of the

electron selection.
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The following samples were selected in both the data and Monte Carlo :-

Electron Samples

By placing the tight requirement NNcv > 0.999 on the photon conversion neural net-

work output, a sample ∼ 98% pure in photon conversion electrons can be selected in

multi–hadronic events. Electrons from Bhabha scattering, e+e− → e+e−, are selected

by requiring that the event contains only two well measured tracks with momenta be-

tween 40GeV/c and 50GeV/c and which are associated to high energy electromagnetic

clusters. Such a sample of tracks is practically 100% pure in Bhabha electrons.

Pion Background Samples

Pions are identified from two sources. Firstly, K0
s → π+π− decays were reconstructed

using tracks with dE/dx values consistent with a pion hypothesis and a reconstructed

invariant mass consistent with the K0
s mass. Selected tracks gave a sample 97% pure

in pions. Secondly, τ decays to 3 charged tracks were selected according to [99]. These

tracks yield a sample 98% pure in pions.

The Monte Carlo modelling of the electron selection was studied in the electron and

pion test samples using the variable δf where,

δf =
fDATA − fMC

fDATA

(5.15)

and f is the fraction of tracks which pass a given cut on the electron identification

output, NNe > NNcut
e , in either the data or Monte Carlo. By varying the value of NNcut

e ,

the modelling of the network can be studied as a function of the network output. For

the electron test samples, δf represents the fractional difference between the data and

Monte Carlo simulation in the efficiency of the electron selection. For the pion samples,

δf represents the fractional difference in the fake rate, the efficiency for mistakenly

identifying fake electrons.

Figure 5.14 shows examples of the δf distributions obtained by comparing the 1995

data to 1995 Monte Carlo samples. Similar studies were also performed for the 1992,

1993 and 1994 data sets and similar sized discrepancies where observed, although the
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Figure 5.14: The values of δf obtained with the four test samples, as
a function of the NNe cut position. The upper two plots correspond to
the fractional error on the efficiency, whilst the lower two plots show the
fractional error on the fake rate.

differences are not fully correlated between the different years. These studies show that

for the pure electron samples the electron identification efficiency is correctly modelled

in the Monte Carlo to a relative accuracy of ∼ 4% [98]. Using the background samples,

the fake rates were found to be correct to within a relative accuracy of ∼ 60%, although

these tests were limited by the low statistics of the test samples.
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5.3.2 Input Parameter Modelling

The systematic uncertainties in the modelling of the NNe output necessarily stem from

discrepancies between data and Monte Carlo in the input distributions. The modelling

of each variable was studied in turn, and the impact that any discrepancies between

data and Monte Carlo had on the neural network performance was assessed. Finally,

a conservative estimate of the overall network systematic uncertainties can be obtained

by adding in quadrature the individual errors associated with each input variable.

The modelling of dE/dx|norm

The quality of the dE/dx|norm modelling in the Monte Carlo has been extensively studied

[94] showing that the mean of the inclusive dE/dx|norm distribution is correct to ±0.03

and the width to ±2%. Accordingly, the dE/dx|norm was shifted and smeared in the

Monte Carlo and the efficiency and purity were recalculated. The variations in the

dE/dx|norm mean resulted in relative errors of 1.0% on the efficiency and 6.0% on the

fake rate. Variations in the width resulted in relative efficiency and fake rate errors of

0.3% and 6.0% respectively.

In addition, studies of the dE/dx|norm distribution for identified photon conversions

[98] show an additional modelling discrepancy for dE/dx|norm < 0, corresponding to an

additional 21% error on the electron dE/dx|norm width. This results in a relative error

of 1.9% on the efficiency.

Adding these errors in quadrature, a conservative estimate of the overall error due

to dE/dx|norm mis–modelling is obtained. A relative efficiency error of 1.9⊕ 1.0⊕ 0.3 =

2.2% and a relative fake rate error of 6.0 ⊕ 6.0 = 8.5% are obtained.

The modelling of σ(dE/dx)

The σ(dE/dx) distribution has been studied [94] and the mean found to be correctly

modelled to ±0.016, resulting in relative errors of 2.4% and 15% on the efficiency and

fake rates respectively.

Differences in the shape of the σ(dE/dx) distribution are assessed by smearing the
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width of the distribution by a conservative ±10% which encompasses the observed

variations between data and Monte Carlo [94]. This leads to relative errors of 1.7%

and 7% on the efficiency and fake rates respectively.

The modelling of Econe/p

For electrons, the Econe/p distribution is approximately a Gaussian distribution centred

at one. The Monte Carlo modelling has been studied using Bhabha electrons, identified

photon conversions and an electron enhanced sample using the selection dE/dx|norm > 0

[98]. The mean of the Econe/p has been found to be modelled correctly to within ±2%

resulting in a relative error on the electron identification efficiency of 0.8%. The width

of the Econe/p distribution is correctly modelled to ±4%, giving a relative efficiency

error of 1.0%. From studies of the pion background samples, a relative error of 10% is

assigned to the fake electron rate.

The modelling of Nblocks

The predominant mis–modelling of the Nblocks variable occurs for tracks with no associ-

ated energy Econe and hence with Nblocks = 0 [98]. The fraction of such tracks is found

to differ by 0.9% between data and Monte Carlo. These tracks are very unlikely to

be identified using the neural network selection and therefore this discrepancy directly

relates to a relative efficiency error of 0.9%. The error on the fake rate due to the

modelling of Nblocks is negligible.

The modelling of ∆θ and ∆φ

The track–cluster matching variables ∆θ and ∆φ are well modelled in the Monte Carlo

and since they are only used for endcap tracks, they contribute a negligible systematic

uncertainty to the modelling of NNe.

The modelling of the momentum and | cos θ | distributions

The neural network modelling is less sensitive to discrepancies in the momentum and

| cos θ | distributions, since these variables are less discriminating than other input vari-

ables. No significant modelling discrepancies were found [98] and therefore no systematic

error was assigned for either the momentum or | cos θ | variables.
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Adding in quadrature the errors on the electron identification efficiency and fake rate

as considered above, gives the overall relative systematic errors on the efficiency to be

4% and the fake rate to be 21%.

5.3.3 Summary of Electron Identification Systematic Studies

From the studies described in Section 5.3.1 using the test samples, the Monte Carlo

modelling of the efficiency is found to be correct to a relative uncertainty of 4% and the

fake rate to a relative 60% although the fake rate tests are statistically limited. From

studying each input in turn, as discussed in Section 5.3.2, the efficiency is again found

to be modelled to 4%, with the fake rate modelled to 21%. In conclusion, the Monte

Carlo efficiencies are found to be correct to a relative accuracy of 4%, and the fake rate

to a relative accuracy of 21%.

5.3.4 Systematic Studies of Photon Conversion Rejection

Similar systematic studies to those used for the NNe selection have been conducted on

the effects of the photon conversion rejection on the efficiencies for selecting prompt elec-

trons [98]. These studies show that the photon conversion rejection contributes a small

additional relative uncertainty of 0.8% on the prompt lepton identification efficiencies

determined from the Monte Carlo. The additional uncertainty on the fake electron rate

was found to be negligible in comparison to that resulting from NNe.

5.4 Muon Identification

5.4.1 Selection Criteria

Muon candidates are identified using reconstructed track segments in the muon cham-

bers. Each reconstructed charged track is extrapolated from the central detector to the
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muon chambers using its track parameters. The extrapolated position is compared with

the positions of track segments reconstructed in the external muon chambers. In addi-

tion to the BT track selection criteria (Section 4.2.1), the muon selection requirements

are [100] :-

• Muon candidates are required to have momenta greater than 2GeV/c;

• χpos < 3, where χpos is the positional matching parameter, defined as

χ2
pos =

(

∆φ

σ(∆φ)

)2

+

(

∆θ

σ(∆θ)

)2

(5.16)

where ∆φ and ∆θ are respectively the differences in φ and θ between the extrapo-

lated central detector track position at the muon chambers and the nearest muon

segment. The errors, σ(∆φ) and σ(∆θ), are calculated from the expected multiple

scattering effects and the track and muon segment reconstruction errors;

• A ‘best–match’ requirement. Each muon segment can in principle be matched to

more than one charged track. If several tracks are matched to the same muon

segment then the ambiguity is resolved by taking only the charged track with the

smallest spatial separation from the muon track segment. Figure 5.15 compares

the χpos distribution for ‘best–match’ candidates obtained in the data, to the

corresponding distribution for the Monte Carlo.

5.4.2 Muon Identification Systematics

The Monte Carlo modelling of the efficiency and purity of the muon selection has been

studied in detail elsewhere [101]. To compare the muon selection efficiency in data and

Monte Carlo, a sample of muon pairs from two–photon production, e+e− → e+e−µ+µ−,

was selected. These muons are found in the momentum range 2 to 6GeV/c, correspond-

ing to ∼ 57% of the muon candidates selected in multi–hadronic events. The Monte

Carlo was found to underestimate the efficiency in the data by 1.3%, giving a multi-
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Figure 5.15: The χpos distribution for best–match muon candidates. The
data (points) are compared to the Monte Carlo predictions (solid line). The
true muon contribution is shown by the hatched region. The selected tracks
with χpos < 3 are also indicated.

plicative correction factor of 1.013 to the measured efficiencies. The relative difference

in efficiency is about 0.9% in the barrel region rising to 5% in the endcaps.

Using a pure sample of muons from Z0 → µ+µ− decays, the data and Monte Carlo

can be compared for muons with momentum greater than ∼ 30GeV/c. A difference of

1.1% in muon finding efficiency is observed for these muons, although only ∼ 0.2% of the

multi–hadronic muon sample have momenta above 30GeV/c. Based on the distributions

of the muons in the various detector regions (87% in the barrel and 13% in the endcaps),

a relative systematic uncertainty of 1.9% is assigned to the muon finding efficiency.
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To study the fake rate in the muon selection, three different samples were used:

identified pions in K0
s → π+π− decays, three prong τ decays, and a kaon enriched

sample based on dE/dx requirements [101]. From a comparison of the fake muon rates

in data and Monte Carlo for these samples, it was determined that a correction factor

of 1.11± 0.12 must be applied to the Monte Carlo events in order to reproduce the fake

rates observed in the data.

5.5 Summary of Lepton Identification

In this chapter the techniques used to identify leptons in multi–hadronic events have

been described. Using these selections, the efficiencies to identify leptons from b → `

and b → c → ` decays are determined from the Monte Carlo simulations. The ACCMM

model was used to simulate the momentum spectra for lepton from b → ` and b → c → `

decays, as described in Section 2.6.4.1 [102]. The measured efficiencies are

εb→e = (56.62 ± 2.31 (syst.))%

εb→µ = (67.94 ± 1.29 (syst.))%

εb→c→e = (33.06 ± 1.35 (syst.))%

εb→c→µ = (42.77 ± 0.81 (syst.))%

where the errors result from the systematic uncertainties discussed in the previous sec-

tions. These efficiencies include the effects of the lepton pre–selection criteria.

Figure 5.16a shows the identification efficiencies for leptons from b → ` and b → c → `

decays, as a function of the lepton momentum in the b hadron rest frame, prest, including

the effect of the pre–selection criteria. Leptons with low rest frame momenta require a

higher boost from the b hadron momentum in order to be pre–selected and therefore a

reduction in the selection efficiencies is expected at low rest frame momenta, due to the

p > 2GeV/c pre–selection requirement.
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Figures 5.16b and 5.16c compare the lepton prest distributions for all b → ` and

b → c → ` decays to those selected by the electron and muon identification criteria.

For b → ` decays the selection biases are very small and consequently the candidate

leptons form a representative sample of all leptons from b → ` decays. For cascade

decays, the selection criteria inefficiencies at very low rest frame momenta are more

important since the average lepton momenta from b → c → ` decays is lower than that

from b → ` decays. However, given the small fraction of the total b → c → ` sample

with low momenta the selection biases are not important.
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Figure 5.16: Figure a) shows the lepton identification efficiencies for b → `
and b → c → ` decays, as a function of the lepton momentum in the b
hadron rest frame, including the effects of the lepton pre–selection crite-
ria. Figures b) and c) compare the prest distributions for all b → ` and
b → c → ` decays (solid black), to those obtained with leptons selected by
the electron (dashed red) and muon (dotted green) identification criteria.



Chapter 6

Identifying Semileptonic b Decays

In order to calculate the semileptonic branching fractions B(b → X`ν`) and

B(b → c → X`ν`), it is first necessary to determine the fraction of the selected lep-

ton samples that originate from b → ` and b → c → ` decays. This chapter outlines the

techniques used in the identification of these sources of leptons and the methods used

to determine their contribution to the overall lepton samples selected in the data.

6.1 Analysis Method

Chapter 4 describes the use of a lifetime based b–tagging method to select a sample

of b enriched hemispheres in the data. A search for lepton candidates is performed in

the hemispheres opposite a b–tagged hemisphere in events containing one or two such

hemispheres, using the techniques outlined in Chapter 5. Due to the different b hadron

lifetimes and decay modes, the b–tagging efficiencies vary slightly amongst the different

species, which can lead to a small bias in the relative fractions of b hadrons in the b–

tagged hemispheres. Such biases are avoided by using the hemisphere opposite to the

b–tagged hemisphere. In addition, this method avoids potential correlations between the

b–flavour tagging and lepton selections which might arise if the b–tagging and lepton

selections were applied in the same hemisphere.

115
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In order to determine semileptonic branching fractions, the fraction of the selected

lepton samples that originate from direct, b → `, and cascade, b → c → `, semileptonic

decays must first be determined. This can be achieved by fitting the Monte Carlo

momentum distributions to the data using the various phenomenological models for the

lepton momentum spectra in semileptonic decays, as discussed in Section 2.6.4. The

dominant systematic errors in this method are the theoretical uncertainties resulting

from the differences between the various models. In order to reduce these modelling

dependencies a new method is presented in this thesis where the momentum information

is combined with other discriminating variables through artificial neural networks trained

to distinguish leptons from semileptonic b decays. These neural networks and the fitting

procedure are described in detail in the following sections.

6.2 Lepton Classification

6.2.1 Composition of Lepton Samples

The composition of lepton samples selected in the Monte Carlo from hemispheres oppo-

site a b–tagged hemisphere is shown in Table 6.1. The main contributions to the samples

come from direct, b → `, and cascade, b → c → `, decays. The remaining sources are

collectively referred to as background in the following sections.

Fake muons form the largest source of background in the muon sample. These fake

muons are due mainly to light mesons passing through the hadronic calorimeter without

showering. Fake electrons are less common and consist mainly of mis–identified pions.

These fake leptons tend to have lower momentum or transverse momentum (with respect

to the jet axis) than leptons from either b → ` or b → c → ` decays.

The decays b → c̄ → `, where the c̄ originates from the virtual W boson decay (see

Figure 2.5), form an important background to b → c → ` decays. Leptons from either

of these two types of decay tend to be produced with less transverse momentum than



6.2. LEPTON CLASSIFICATION 117

Contributions to selected lepton samples Electrons Muons

b → ` 54.7% 43.0%

b → c → ` 27.1% 23.0%

fake leptons 3.3% 18.5%

non–prompt leptons 5.3% 7.3%

b → c̄ → ` 3.5% 3.1%

b → τ → ` 2.5% 1.8%

b → J/Ψ → `+`− 0.9% 0.7%

primary cc events 2.4% 2.2%

primary uds events 0.2% 0.2%

g → cc̄ 0.2% 0.1%

g → bb̄ < 0.001% < 0.001%

Table 6.1: Composition of the selected Monte Carlo samples of lepton
candidates opposite a b–tagged hemisphere.

leptons from direct b → ` decays. In addition, in b → c̄ → ` decays the b quark also

decays predominantly to a c quark, giving two charm quarks in the final hadronic state.

Due to the presence of two heavy quarks in the final state, the momentum available

for leptons from b → c̄ → ` decays is lower on average than that available in b → c → `

decays. Another small contribution arises from semileptonic b decays to τ leptons which

then decay leptonically, b → τ → `.

True leptons in primary bb events which do not originate from the semileptonic

decay of a b or c quark, for example electrons from photon conversions, are grouped

together as non–prompt leptons. A smaller contribution to the backgrounds are leptons

from charm and light flavour (uds) events. Due to the high b purity of the selected

data sample, these sources are greatly suppressed. The selected lepton samples also

contain small contributions from b → J/ψ → `+`− decays, which are discussed further

in Section 7.3.1.7. Leptons originating from the decay of heavy quarks produced from

gluon splitting, g → bb̄ or g → cc̄, are suppressed due to the requirement that the thrust

of the event is greater than 0.8 (Section 4.3.2).
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6.2.2 Identifying Leptons from Semileptonic b Decays

Instead of attempting to reject the various backgrounds, the fractions of leptons from

b → ` and b → c → ` decays in the selected samples are determined by comparing the

distributions of several kinematic variables in the data to those obtained in the Monte

Carlo. Artificial neural networks are used to extract the maximum amount of informa-

tion from the kinematic variables. A first neural network, NNb`, is trained to discriminate

leptons from b → ` decays while another, NNbc`, is trained to identify b → c → ` decays.

6.2.2.1 The NNb` and NNbc` Input Variables

Various kinematic variables are used as input variables to the neural networks NNb` and

NNbc` which were trained using the JETNET [95] neural network packagea, separately

for electrons and muons. Training samples were used consisting of 70 000 electron and

90 000 muon candidates identified in the Monte Carlo in the hemispheres opposite to

b–tagged hemispheres.

In total eight kinematic variables are used as inputs to the networks :-

• lepton momentum p : the lepton candidate total momentum;

• lepton pt : the transverse momentum calculated with respect to the nearest jet

axis, excluding the lepton candidate itself;

• lepton jet energy : the energy of the jet containing the lepton candidate;

• sub–jet energy : the energy of the sub–jet (defined below) containing the lepton

candidate;

• pt sum : the scalar sum of transverse momenta of charged tracks in the lepton jet;

• impact parameter significance : the impact parameter of the candidate lepton

track with respect to the primary vertex, divided by the error on this distance;

aSee Section 5.1.8 for a more detailed introduction to artificial neural networks.
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• lepton Qjet : the lepton candidate charge multiplied by the jet charge (defined

below) of the jet containing the lepton, including the lepton candidate track;

• opposite Qjet : the lepton candidate charge multiplied by the jet charge of the

most energetic jet in the hemisphere opposite the lepton candidate.

In b → ` decays, the lepton momentum spectrum reflects the hard fragmentation of

the primary b hadron and is thus particularly efficient at separating these leptons from

other sources. Similarly, the high mass of the b hadron induces a high lepton momentum

in the rest frame of the weakly decaying b hadron, which, once boosted along the b jet

direction, gives a harder pt spectrum for b → ` than b → c → ` or background decays.

The total energy of the lepton jet has sensitivity to leptons from direct and cascade

decays since b jets are expected to have lower visible energy in semileptonic decays due

to the emission of an energetic neutrino.

The smaller mass of charm hadrons relative to b hadrons forces the non–leptonic

decay products from a charm semileptonic decay to follow the lepton direction more

closely than in b decays. The neutrino in a charm decay also carries less energy on

average than the neutrino in a primary b → ` decay. These differences mean that the

energy deposited by neutral and charged particles in the vicinity of the lepton candidate,

the lepton sub–jet energy, will be on average lower in b → ` decays than in b → c → `

and light flavour decays. The lepton jet is therefore divided into two sub–jets, where the

initial sub–jet seeds are the lepton track and the other tracks in the jet, as described in

[103]. Each track and unassociated electromagnetic cluster is then reassigned iteratively

until each one is closer in angle to its assigned sub–jet axis than to the other. No track

or cluster is added to the sub–jet containing the lepton candidate beyond an invariant

mass upper limit of 2.5GeV/c2. The ‘sub–jet energy’ used for the neural network input

refers to the sub–jet including the lepton candidate.

The scalar sum of pt of all charged tracks in a jet characterises the width and multi-

plicity of the jet, both of which are known to differ slightly for b jets compared to lighter

quarks [104]. The summation runs over all BT quality tracks (Section 4.2.1).
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The lepton impact parameter significance is the distance of closest approach of the

track to the primary vertex divided by the uncertainty on this distance. Larger impact

parameter significances are expected for leptons from secondary decays, such as b → `

and b → c → ` decays, than for tracks from the primary vertex, such as fragmentation

tracks.

The final two variables consist of the reconstructed lepton charge multiplied by the

jet charge, for the jet associated with the lepton and for the most energetic jet in the

opposite hemisphere. The jet charge is the weighted sum of all track charges in the jet,

Qjet =

∑

i

Qi · pi
0.5

∑

i

pi
0.5

(6.1)

where Qi is the track charge, pi is the track momentum and the summation runs over

all BT quality (Section 4.2.1) charged tracks in the jet, including the lepton candidate

itself. The momentum factor increases the sensitivity of the jet charge to higher momen-

tum tracks from secondary decays in relation to lower momentum fragmentation tracks.

The exponent of 0.5 has been found to optimise the jet charge sensitivity in b hadron

decays [105].

Leptons from b → ` decays have the same charge as the weakly decaying b quark and

therefore the ‘lepton Qjet’ variable shows a positive correlation between the lepton charge

and associated jet charge. Leptons from b → c → ` decays have opposite charge to the

decaying b quark and hence show a negative correlation with the lepton jet charge, whilst

leptons from b → c̄ → ` decays have a positive correlation with the lepton jet charge.

In the absence of B0 − B0 mixing, the correlations between the lepton charge in one

hemisphere and the jet charge in the opposite hemisphere, embodied in the ‘opposite

Qjet’ variable, are opposite to those of the jet associated with the lepton. In decays

where one of the b quarks fragments into a B0 (B0) meson which then proceeds to mix

into a B0 (B0) meson before decaying weakly, the charge correlations for the opposite

Qjet variable are reversed.
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The eight input variables used by the neural networks are shown for electrons in

Figures 6.1 and 6.2 and for muons in Figures 6.3 and 6.4. Three categories of Monte

Carlo decays are shown: direct b → ` decays, cascade b → c → ` decays, and all other

sources grouped together as background. Good agreement can be seen between the data

and Monte Carlo simulations. Combining the information from these variables using

artificial neural networks allows not only the intrinsic separation power of each variable

to be used, but also takes into account correlations between them.

6.2.2.2 The NNb` and NNbc` Output Distributions

The shapes of the neural network output variables NNb` and NNbc` are shown in Figures

6.5 and 6.6 respectively, for electron candidates and in Figures 6.7 and 6.8 for muon

candidates.

The NNb` and NNbc` distributions for the electron and muon networks are very

similar, reflecting the fact that the same information is contained within the input dis-

tributions. However, the background classes are different between electrons and muons

and consequently, differing levels of separation are obtained. It is for this reason that it

was necessary to train the networks separately for electron and muon candidates.

The discrimination power of a given distribution can be quantified using the figure

of merit. The figure of merit, F , measures the difference in the distributions obtained

for two different classes of event. If F equals zero the distributions are identical and this

variable holds no discrimination power between the two classes, whilst if F is one, the

distributions have no overlap at all and complete separation is possible. Analytically, F

is defined by the inverse correlation function,

F = α1α2

∫ +∞

−∞

(f1(x) − f2(x))
2

α1f1(x) + α2f2(x)
dx (6.2)

where class 1 contributes a fraction α1 of the total sample with normalised distribution

f1(x), whilst class 2 contributes fraction α2 = 1 − α1 with normalised distribution

f2(x) [106].
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Figure 6.1: Input variables 1–4 for the electron candidate neural networks
NNb` and NNbc`.
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Figure 6.2: Input variables 5–8 for the electron candidate neural networks
NNb` and NNbc`.
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Figure 6.3: Input variables 1–4 for the muon candidate neural networks
NNb` and NNbc`.
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Figure 6.4: Input variables 5–8 for the muon candidate neural networks
NNb` and NNbc`.
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Table 6.2 shows the figures of merit for the discrimination of b → ` and b → c → `

decays for each of the input distributions, and for the NNb` and NNbc` network outputs,

as calculated from the Monte Carlo. In each case the b → ` or b → c → ` distributions

are compared to the inclusive distribution for all remaining lepton candidates.

Variable b → e b → c → e b → µ b → c → µ

momentum p 0.165 0.084 0.246 0.038

transverse momentum pt 0.378 0.195 0.444 0.091

lepton jet energy 0.009 0.006 0.011 0.004

sub–jet energy 0.017 0.006 0.020 0.002

pt sum 0.003 0.002 0.002 0.002

impact parameter 0.012 0.009 0.011 0.009

lepton Qjet 0.161 0.178 0.154 0.102

opposite Qjet 0.049 0.049 0.033 0.035

NNb` 0.519 – 0.569 –

NNbc` – 0.363 – 0.214

Table 6.2: Figures of merit for the discrimination of b → ` and b → c → `
decays for each of the input variables to the NNb` and NNbc` neural networks,
compared to the corresponding values for the neural networks themselves.

The pt distributions offer the best discrimination power for b → ` decays, as expected

since these variables are the most sensitive to the lepton momentum spectrum in the

rest frame of the weakly decaying b hadron. The lepton total momentum is less dis-

criminating due to the Lorentz boost the lepton receives from the b hadron. For the

separation of b → c → ` decays, the pt distributions are not as efficient as for b → `

decays since the lower momentum spectra have a higher cross–over with the background

distributions. For these decays, the Qjet variables provide roughly equivalent discrimi-

nating power. The remaining input variables are less discriminating singly, but due to

correlations between the input variables their contributions to the neural networks are

not negligible.

The dominant differences between the electron and muon samples reside in the com-

position of the background and the relative contribution of the background to the overall
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lepton samples. Therefore, for b → ` decays which are comparatively easy to discrim-

inate from the background, the performances of NNb` networks are very similar. For

b → c → ` decays which are harder to separate from the background, the differences in

the background samples have a more pronounced effect on the performance of the NNbc`

networks. The higher background fraction in the muon samples results in muons from

b → c → µ decays being harder to distinguish than electrons from b → c → e decays.

6.3 Determining the Lepton Sample Compositions

The fractions of the lepton samples selected in the data that originate from b → ` and

b → c → ` decays are determined by fitting the NNb` and NNbc` distributions obtained

in the Monte Carlo to the data.

Five free parameters are used in the fitting procedure :-

• f(b → e) : the fraction of candidate electrons from b → e decays;

• f(b → c → e) : the fraction of candidate electrons from b → c → e decays;

• f(b → µ) : the fraction of candidate muons from b → µ decays;

• f(b → c → µ) : the fraction of candidate muons from b → c → µ decays.

The fraction of remaining backgrounds are fixed as 1− f(b → `)− f(b → c → `),

independently for the electron and muon samples. These six fractions are used to

form the inclusive Monte Carlo distributions, normalised to the respective number

of leptons observed in the data.

• εb, the Peterson b fragmentation model parameter (Section 2.6.1).

The p and pt momentum spectra for prompt and cascade leptons are strongly

dependent on the momentum of the weakly decaying parent b hadron. In turn, the

momentum spectrum of the b hadron depends on the details of the fragmentation

of the primary b quark into the b hadron. The model of Peterson et al. is used
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Figure 6.5: The NNb` neural network output distribution for the identifi-
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Figure 6.6: The NNbc` neural network output distribution for the identifi-
cation of electrons from b → c → e decays.
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Figure 6.7: The NNb` neural network output distribution for the identifi-
cation of muons from b → µ decays.
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Figure 6.8: The NNbc` neural network output distribution for the identifi-
cation of muons from b → c → µ decays.
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in the Monte Carlo to describe the distribution of the b fragmentation variable z,

the fraction of the b quark momentum carried by the b hadron produced during

fragmentation. Allowing the Peterson model parameter, εb, to be a free parameter

in the fit reduces the systematic uncertainties associated with the choice of b

fragmentation model and model parameter. This is achieved using a reweighting

method in which the Monte Carlo events are weighted to give a z distribution

corresponding to the desired value of εb. A common value of εb is used for the

electron and muon distributions. This introduces a small correlation between the

two lepton samples which are otherwise independent. For this reason the electron

and muon samples are fitted simultaneously.

In order to obtain the maximum statistical separation power, two dimensional dis-

tributions are formed from the outputs of the NNb` and NNbc` networks, with 20 bins

in NNb` and 20 in NNbc` (20 × 20). This method allows the correlations between the

distributions to be taken into account in addition to their intrinsic discrimination power.

The method of maximum likelihood was used to fit the Monte Carlo distributions to

the data. The log likelihood expressions for the electron and muon distributions were

calculated using the methods described in Appendix A and take into account the lim-

ited statistics in the Monte Carlo samples. The combined likelihood for the electron

and muon samples were maximised for the five fit parameters using the MINUIT [92]

package.

The two dimensional distributions for each of the three Monte Carlo contributions

are shown in Figures 6.10a-c and 6.11a-c, for electron and muon candidates respectively.

These figures show that the distributions are sparsely populated in the regions towards

NNb` = NNbc` = 1, since the neural networks rarely classify a lepton as both a b → ` and

b → c → ` candidate. In order to prevent the limited Monte Carlo and data statistics in

these regions from adversely affecting the fit procedure, an isomorphic transformation

is applied to effectively spread the b → ` peak into the sparse region. This distributes

the information over the fit region more evenly, without any loss of information or

introduction of artificial biases into the distributions.
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Figure 6.9: The transformation function for the NNbc` network output, for
3 different values of NNb`.

Figure 6.9 shows the transformation function between the raw and transformed NNbc`

values. A simple functional form is used,

NNtrans
bc` =

1 − e−α·NNraw
bc`

1 − e−α
(6.3)

where the strength of the transformation, α, is itself a function of the NNb` output

variable,

α = κ · (NNb`)
a (6.4)

where κ and a are fixed parameters. This form was found to provide evenly distributed

transformed functions with a minimum of arbitrary parameters. The fitted results were

found to be insensitive to the particular form of the transformation used, as discussed in

Section 6.4. The values κ = 30 and a = 3 where chosen for the main analysis since they

produced the most uniformly transformed distributions. The transformed distributions

for the full electron and muon samples are shown in Figures 6.10d and 6.11d.
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Figure 6.10: The two–dimensional distributions formed from the NNb`

and NNbc` neural networks for electron candidates. The three Monte Carlo
contributions for a) b → e, b) b → c → e and c) backgrounds are shown
separately. Figure d) shows the overall distribution with the transformed
NNbc` network output.
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Figure 6.11: The two–dimensional distributions formed from the NNb`

and NNbc` neural networks for muon candidates. The three Monte Carlo
contributions for a) b → µ, b) b → c → µ and c) backgrounds are shown
separately. Figure d) shows the overall distribution with the transformed
NNbc` network output.
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6.3.1 Monte Carlo Lepton Samples

The Monte Carlo samples of leptons used in the fitting procedure were selected using

the same lepton identification criteria as in the data and are also required to be opposite

a b–tagged hemisphere. The selected samples are detailed in Table 6.3 where the con-

tributions to the b → `, b → c → ` and background samples for each year are outlined.

The background classes are also further subdivided into those originating from primary

bb, cc and light flavour (uds) events.

Year b → ` b → c → ` Backgrounds

bb cc uds

Electrons

1992 14 372 7 223 3 426 854 69

1993 11 907 5 989 3 016 545 19

1994 109 005 54 546 27 859 2 272 107

1995 12 472 6 318 3 269 581 25

Total 147 756 74 076 37 570 4 252 220

Muons

1992 17 306 9 317 11 617 1 623 187

1993 14 075 7 716 9 574 1 011 44

1994 127 563 68 758 87 188 4 059 280

1995 14 515 7 905 9 855 1 024 82

Total 173 459 93 696 118 234 7 717 593

Table 6.3: Summary of the lepton samples identified in the Monte Carlo
in hemispheres opposite a b–tagged hemisphere.

The use of additional primary bb and cc Monte Carlo samples to increase the statis-

tical precision in the fit means that the raw composition of the selected samples does not

correspond to the natural mixture of the five flavours (u, d, s, c and b) in the data. In

order to account for this when fitting to the data, the raw samples are reweighted such

that the weighted samples correspond to a true five flavour composition. The Monte

Carlo samples are also reweighted so that the relative fractions of events from each year

of Monte Carlo agree with those collected in the data.
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6.4 Monte Carlo Tests of Fitting Procedure

To test the fitting procedure, the Monte Carlo sample is divided into two equal sub–

samples. The first sub–sample is used as a substitute for the real data in the fit procedure

whilst the second is retained as the Monte Carlo reference sample. The fitted parame-

ters for the first sample can then be compared to the true information from the Monte

Carlo to establish the reliability of the fit. In order to increase the statistical precision

of the tests, the b–tagging requirement was removed for the b → ` and b → c → ` lep-

ton samples. For these samples, the shapes of the NNb` and NNbc` distributions show

only a weak dependence on whether the hemisphere b–tagging requirement was applied.

Therefore, removing the requirement for these decays provides a more stringent test of

the fit procedure whilst retaining the features of the b–tagged fit.

The fitted fractions of b → ` and b → c → ` decays, and the Peterson b fragmentation

parameter εb agree with the true values as shown in Table 6.4. The relative fractions of

b → ` and b → c → ` decays in these test samples are larger than those listed in Table

6.1 due to the removal of the b–tagging requirement for these sources of leptons.

Fitted Parameter Electrons Muons

true /% fitted /% true /% fitted /%

f(b → `) 61.06 60.97 ± 0.12 54.63 54.72 ± 0.10

f(b → c → `) 30.74 30.86 ± 0.16 29.46 29.47 ± 0.15

background 8.20 8.17 ± 0.20 15.91 15.82 ± 0.19

b fragmentation true fitted

parameter εb 0.00380 0.00382 ± 0.00008

Table 6.4: The true composition and the measured fractions from the
fitting procedure for the Monte Carlo sub–samples are shown for electrons
and muons separately. The generated and fitted values for the Peterson b
fragmentation parameter εb are also shown.

To test the stability of the fit procedure with respect to the number of bins used

for the distributions, the Monte Carlo test was repeated with the binning ranging from
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5 × 5 up to 40 × 40 bins in the NNb` versus NNbc` distributions. Figure 6.12 shows the

fractional difference (in %) between the fitted and true values for each of the five free fit

parameters, defined as,

∆P =
Pfitted − Ptrue

Ptrue
, (6.5)

where P is the fitted parameter. There are no biases in the fitted parameters with

respect to variations in the binning. The test was also repeated for varying values of

the transformation parameters κ and a (Equation 6.4). Figure 6.13 shows the stability

of the fitted parameters with respect to changes in these parameters which correspond

to substantial variations in the shape of the transformed distributions. Again, no biases

were observed in the results. These tests demonstrate that the fit procedure is insensitive

to the particular form of the transformation used and the choice of the size of bins, and

is therefore reliable.

To check further for biases in the fit procedure the same Monte Carlo sample was

used for both the data and Monte Carlo reference samples used in the fit. The statistical

variations between the two samples were removed in this test and the fitted results should

reproduce the true values exactly with any biases showing up clearly as deviations. No

evidence for biases was found.
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the fitted and true values for each of the free fit parameters as a function
of the binning size.
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Chapter 7

Results

In the previous chapter the Monte Carlo fit techniques used to determine the composition

of the selected lepton candidate samples were described. In this chapter, the results of

the fit to the data are discussed and the resulting semileptonic branching fractions are

calculated. Various corrections which are applied to the Monte Carlo in order to better

model the data are described, together with the associated systematic uncertainties. The

theoretical uncertainties associated with the choice of b fragmentation and semileptonic

b decay models are also determined. Finally, the agreement between data and the various

semileptonic decay and fragmentation models is discussed.

7.1 Calculation of the Branching Fractions

The semileptonic branching fractions are given by

B(b → X`ν`) =
Nb→`

Nb

=
N` · f(b → `)

εb→`
· 1

Nb−tags · Pb
(7.1)

where Nb→` is the number of hemispheres containing a semileptonic b decay and Nb is

the total number of true b hemispheres.

141
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The fraction of b → ` decays determined by the fit, f(b → `), multiplied by the

number of lepton candidates, N`, yields the number of b → ` decays in the selected

lepton sample. The total number of b events that decayed semileptonically, Nb→`, is then

obtained by correcting this number to account for the lepton detection efficiency, εb→`.

The total number of weak b decays in the b–tagged sample, Nb, is obtained from the total

number of b–tagged hemispheres, Nb−tags, scaled by the sample b purity, Pb, as extracted

from the data. The semileptonic branching fractions are determined separately for the

electron and muon channels. With εb→c→` and f(b → c → `) replacing the corresponding

expressions for b → ` decays, a similar equation for B(b → c → X`ν`) is obtained.

In the following sections, the results of the fit to the data are presented and the

corresponding semileptonic branching fractions are calculated.

7.2 Results

The selected lepton samples used in this thesis are outlined in Table 7.1. A total of

29 516 candidate electrons were selected in the data from a sample of 301 303 b–tagged

hemispheres where the detector status criteria for electron identification were satisfieda.

Similarly, 44 832 candidate muons were selected from 302 577 b–tagged hemispheres

which also satisfied the muon identification detector status requirements.

The Monte Carlo fit to the full data sample yields the following semileptonic decay

fractions and Peterson b fragmentation parameter,

f(b → e) = 0.5726 ± 0.0042,

f(b → c → e) = 0.2596 ± 0.0055,

f(b → µ) = 0.4620 ± 0.0034,

f(b → c → µ) = 0.2166 ± 0.0051,

εb = 0.00573 ± 0.00040,

aThe detector status criteria for lepton identification are discussed in Section 4.1.1.
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where the errors are the data statistical uncertainties. The full statistical correlation

matrix for the fitted parameters is shown in Table 7.2.

The measurement of the b purity from the data, described in Chapter 4, and the

efficiencies for identifying leptons from semileptonic decays, determined in Chapter 5 give

Pb = 91.90%,

εb→e = 56.62%,

εb→µ = 67.94%,

εb→c→e = 33.06%,

εb→c→µ = 42.77%.

Using these results the semileptonic branching fractions are determined using Equa-

tion 7.1 as

B(b → Xeνe) = (10.78 ± 0.08 (stat.))%,

B(b → Xµνµ) = (10.96 ± 0.08 (stat.))%,

B(b → c → Xeνe) = (8.37 ± 0.17 (stat.))%,

B(b → c → Xµνµ) = (8.17 ± 0.19 (stat.))%.

where the errors are statistical only.

From the fitted Peterson b fragmentation parameter, the corresponding value for

〈xE〉b, the mean fraction of the beam energy carried by the weakly decaying b hadron,

can be determined from the Monte Carlo, giving

〈xE〉b = 0.709 ± 0.003 (stat.). (7.2)

In the following sections the systematic and modelling uncertainties on the semilep-

tonic branching fractions and 〈xE〉b are discussed.
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Year Electrons Muons

Candidates b–tagged hemispheres Candidates b–tagged hemispheres

1992 4 999 56 617 8 160 56 734

1993 6 413 64 838 9 793 65 237

1994 12 777 126 342 19 049 127 309

1995 5 327 53 506 7 830 53 297

Total 29 516 301 303 44 832 302 577

Table 7.1: The lepton candidate samples selected in the data in the hemi-
spheres opposite a b–tagged hemisphere. The number of b–tagged hemi-
spheres in events passing the electron and muon identification detector sta-
tus criteria are also shown.

f(b → e) f(b → c → e) f(b → µ) f(b → c → µ) εb

f(b → e) 1.000

f(b → c → e) −0.348 1.000

f(b → µ) 0.125 −0.021 1.000

f(b → c → µ) 0.015 −0.003 −0.262 1.000

εb 0.323 −0.054 0.388 0.047 1.000

Table 7.2: The statistical correlation matrix for the fitted parameters.
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7.3 Systematic and Modelling Uncertainties

The Monte Carlo does not provide a perfect model of the data and various corrections

are applied in order to produce a better simulation. The Monte Carlo was generated

with various physical quantities set according to the experimental results available at

that time. In many cases these quantities have since been updated and the Monte Carlo

must be corrected accordingly. In addition, discrepancies between the data and Monte

Carlo simulation are studied to assess the resulting systematic uncertainties on the

results. The treatment of the theoretical uncertainties resulting from the modelling of

the b fragmentation and semileptonic decay lepton momentum spectra are also described.

The following sections discuss these corrections in detail, with the resulting uncertainties

shown in Table 7.3.

7.3.1 Systematic Effects

7.3.1.1 Lepton Finding Efficiencies

The systematic uncertainties relating to the prompt lepton selection efficiencies are dis-

cussed in detail in Chapter 5. A relative error of 4% was assigned to the electron

identification selection with an additional relative uncertainty of 0.8% arising from the

rejection of electrons from photon conversions. The muon identification selection was

assigned a 1.9% relative error.

7.3.1.2 Finite Monte Carlo Statistics

The fit is performed taking into account finite Monte Carlo statistics in the log likeli-

hood definition (see Appendix A). The errors returned by the fitting procedure therefore

contain components due to the size of both the data and Monte Carlo samples added

in quadrature. The data and Monte Carlo statistical uncertainties are separated by

repeating the fit using a likelihood expression that assumes infinite Monte Carlo statis-



146 CHAPTER 7. RESULTS

Parameter B(b → e) B(b → c → e) B(b → µ) B(b → c → µ) 〈xE〉b
systematic sources

lepton efficiency ∓0.440 ∓0.341 ∓0.208 ∓0.155

MC statistics ±0.019 ±0.042 ±0.022 ±0.049 ±0.0010

b hadron species ∓0.013 ±0.022 ∓0.012 ±0.030 ∓0.0006

B(b → Xu`ν`) ±0.004 ±0.009 ±0.022 ∓0.0020

B0 − B0 mixing ±0.002 ±0.016 ∓0.002 ±0.007 ±0.0002

lepton fake rate ±0.006 ∓0.048 ±0.037 ∓0.106 ∓0.0003

fake lepton spectrum ∓0.003 ∓0.002 ∓0.042

B(b → τ → `) ∓0.026 ∓0.013 ∓0.021 ∓0.019 ±0.0003

B(b → c̄ → `) ∓0.004 ∓0.081 ∓0.023 ∓0.064 ±0.0003

B(b → J/Ψ → `+`−) ∓0.004 ∓0.002 ±0.0001

Λb polarisation ±0.004 ±0.006 ±0.005 ±0.026 −0.0013
+0.0020

detector resolution ±0.074 ±0.113 ±0.055 ±0.086 ±0.0004

Pb : Rc ±0.022 ±0.017 ±0.022 ±0.017

Rb ∓0.001 ∓0.001 ∓0.001 ∓0.001

〈xE〉c ±0.004 ±0.003 ±0.004 ±0.003

g→ bb ±0.016 ±0.013 ±0.016 ±0.013

g→ cc ±0.010 ±0.008 ±0.010 ±0.008

B(D → K0
s ) ±0.011 ±0.008 ±0.011 ±0.008

D0 lifetime ±0.002 ±0.002 ±0.002 ±0.002

D+ lifetime ±0.003 ±0.002 ±0.003 ±0.002

Ds lifetime ±0.001 ±0.001 ±0.001 ±0.001

D charged mult. ±0.011 ±0.008 ±0.011 ±0.008

D neutral mult. ∓0.024 ∓0.018 ∓0.024 ∓0.018

f(c → D±, D0) ±0.017 ±0.014 ±0.017 ±0.014

f(c → Ds) ±0.002 ±0.001 ±0.002 ±0.001

f(c → Λc) ∓0.007 ∓0.005 ∓0.007 ∓0.005

experimental systematic ±0.450 ±0.377 ±0.227 ±0.234 +0.0031
−0.0027

model–dependent sources

b → ` −0.078
+0.207

+0.126
−0.211

−0.101
+0.221

+0.206
−0.320

−0.0051
+0.0081

b → c → ` −0.072
+0.057

+0.149
−0.059

−0.064
+0.058

+0.168
−0.048

+0.0009
−0.0008

fragmentation +0.047
−0.028

+0.225
−0.144

+0.096
−0.070

+0.236
−0.180

−0.0118
+0.0102

total models +0.220
−0.110

+0.298
−0.262

+0.248
−0.139

+0.355
−0.370

+0.0131
−0.0129

Table 7.3: Summary of all experimental systematic and model–dependent
uncertainties on B(b → X`ν`) and B(b → c → X`ν`) (shown separately for
electrons and muons), and 〈xE〉b. All errors are absolute errors given in
percent (except for 〈xE〉b). The sign on each contribution indicates the
correlation between this systematic uncertainty and the final results.
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tics. This yields the data statistical errors only and allows the Monte Carlo statistical

contribution to be determined. The Monte Carlo statistical errors quoted in Table 7.3

include this contribution to the Monte Carlo statistical error added in quadrature with

the Monte Carlo errors resulting from the b–purity measurement, as listed in Table 4.2.

7.3.1.3 b Hadron Species

The shape of the NNb` and NNbc` distributions for leptons from b → ` or b → c → `

decays differ slightly according to the species of the weakly decaying b hadron. The

largest difference is observed for leptons from Λb baryon decays when compared to all

other b hadrons. A correction must be made to account for differences in the relative

abundance of the different species of b hadrons in data and Monte Carlo. Experimental

measurements [3] give the production fraction of B± and B0 combined to be (79.4 +2.5
−3.1)%,

B0
s = (10.5 +1.8

−1.7)% and Λb = (10.1 +3.9
−3.1)%.

An additional correction must be made to account for the observed difference in the

semileptonic branching fraction for inclusive Λb, (7.4 ± 1.1)% [29, 30], and the B±/B0

mixture as measured at the Υ(4S) resonance, (10.45±0.21)% [3]. Since no such measure-

ment exists for B0
s mesons, it is assumed that B0

s has the same semileptonic branching

fraction as B± and B0 mesons.

The Monte Carlo sample is reweighted so that it corresponds to the experimentally

measured mixture of b hadrons. The Λb fraction in the Monte Carlo is varied by one

standard deviation using the combined errors from the measurements of the Λb fraction

and the semileptonic branching fractions for each b hadron species. This obtains the

corresponding contributions to the systematic uncertainties on the results.

7.3.1.4 Weak b → u Transitions

Leptons from b → u`ν` decays form a small percentage of the total b → ` samples since

the b → u transition is Cabibbo suppressed relative to b → c decays (Section 2.4). How-
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ever, due to the small mass of the resulting hadronic system produced in b → u decays,

such leptons tend to have higher momenta on average than those from b → c decays and

thus produce significantly different NNb` and NNbc` distributions.

Combining two recent measurements [107, 108] an experimental measurement for

semileptonic b → u decays is obtained giving B(b → Xu`ν`) = (0.184 ± 0.079)%. The

branching fraction in the Monte Carlo is corrected accordingly and the errors used to

assign the systematic uncertainties.

7.3.1.5 B0 − B0 Mixing

The use of jet charge information in the NNb` and NNbc` neural networks introduces a

weak dependence on the level of B0 − B0 mixing (Section 6.2.2).

The rate of B0−B0 mixing is described by the mixing parameter χ, which is the time

integrated probability that a B0 (B0) meson produced during fragmentation mixes and

then decays weakly as a B0 (B0). For inclusive semileptonic decays the mixing parameter

is defined as

χ =
Γ
(

B0 → B0 → `+X
)

Γ
(

B0/B0 → `±X
) =

Γ
(

B0 → B0 → `−X
)

Γ
(

B0/B0 → `±X
) . (7.3)

The rate of B0 mixing in the Monte Carlo is adjusted to correspond to experimental

results. The B0
d − B0

d mixing parameter is set to χd = 0.172 ± 0.010 [3] whilst maximal

B0
s −B0

s mixing is used according to the current experimental limit of χs > 0.4975 at the

95% confidence level [3].

7.3.1.6 Composition of Background Sample

The fitting procedure compares the data to three categories of leptons: b → ` decays,

b → c → ` decays and background. The fit itself determines the lepton sample com-

positions in terms of these three categories, such that their relative abundance in the

Monte Carlo sample has no influence on the fitted results. However, the composition of
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the background samples could differ between data and Monte Carlo. Differences in the

NNb` and NNbc` distributions for the various sources in the background result in a small

systematic uncertainty on the fitted results. The shapes of the distributions are similar

for non–prompt and fake leptons in bb events but exhibit significant differences to those

arising from lighter flavours. The composition of the Monte Carlo sample is discussed in

Section 6.2.1. Given that the b purity found in the data is very close to that seen in the

Monte Carlo, (91.90 ± 0.45)% and (91.25 ± 0.03)% respectively, reweighting the small

contributions from light flavour events to account for this difference has a negligible

effect on the results.

The Monte Carlo modelling of the fake lepton rates in the electron and muon selec-

tions is discussed in Sections 5.3 and 5.4.2. A correction factor of 1.11 ± 0.12 must be

applied to the fraction of fake muons in the Monte Carlo to better reproduce the data.

For electrons, no correction is required but a relative error of ±21% is assigned to the

fake rate. The Monte Carlo is reweighted according to these corrections and the errors

used to assign a systematic uncertainty due to fake leptons.

A shifted momentum spectrum between data and Monte Carlo for fake leptons would

change the shape of the NNb` and NNbc` distributions. The total and transverse momen-

tum distributions obtained in the data are compared to the Monte Carlo in Figures 6.1

and 6.3, showing good agreement. Nevertheless, small variations in these distributions

are allowed by adjusting the momentum spectrum for fake and non–prompt leptons by

±25MeV/c, roughly ±0.5% of the mean lepton momentum. The NNb` and NNbc` neu-

ral network input variables and outputs are recalculated with these modified momenta

and the fit is repeated. The resulting differences in the fitted results are used to assign

the systematic uncertainty.

The background sample also has to be adjusted to reflect the b → τ → ` content of

the data. In such cases where the tau lepton decays to a high momentum electron or

muon, the lepton closely resembles those arising from semileptonic b → ` and b → c → `

decays. The Monte Carlo events are reweighted according to the branching fractions

B(b → τ → e) = (0.463 ± 0.071)% and B(b → τ → µ) = (0.452 ± 0.069)% [3] and the
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errors used to determine the corresponding systematic uncertainties.

The b → c̄ → ` fraction in the background is also varied to assess its effect on the

fitted results. The selected events are reweighted to set this branching fraction to

(1.62 +0.44
−0.36)% according to an experimental estimate detailed in [109].

7.3.1.7 Contributions from b → J/Ψ → `+`− Decays

Leptons from b → J/Ψ → `+`− decays have similar kinematic characteristics to direct

b → ` leptons and therefore produce similar output distributions for the NNb` and NNbc`

neural networks. For this reason, leptons from b → J/Ψ → `+`− decays are included

with the b → ` sample in the fitting procedure and a small correction is applied to the

fitted f(b → `) fractions to account for their contribution.

The experimental value given in [3] for B(b → J/Ψ+X) is (1.16±0.10)%. Combined

with a recent BES measurement for B(J/Ψ → `+`−) = (5.87 ± 0.10)% [110], this gives

B(b → J/Ψ → `+`−) = (0.0681 ± 0.0060)%. The numbers of selected leptons from

b → J/Ψ → `+`− events reconstructed in the Monte Carlo are adjusted accordingly and

the fitted f(b → `) fractions corrected to subtract the b → J/Ψ → `+`− contributions.

7.3.1.8 Λb Polarisation

The shape of the lepton momentum spectra from the semileptonic decays of Λb baryons

depend upon the degree of polarisation of the Λb. Leptons from Λb decays are reweighted

to simulate a momentum spectrum corresponding to −56% polarisation according to

[111]. The systematic uncertainties are calculated using the polarisation range −13%

to −87%, the 95% confidence level limits [111].
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7.3.1.9 Detector Resolution

The tracking resolution and reconstruction efficiencies could be slightly different be-

tween data and Monte Carlo. The reconstructed track parameters are smeared by a

conservative ±10% in the Monte Carlo and the lepton detection efficiencies and the fit

fractions are recalculated. The b purity is also re–evaluated using the input parameters

from the smeared Monte Carlo. The differences in the final values for B(b → X`ν`),

B(b → c → X`ν`) and the b fragmentation parameter are used to estimate this source

of systematic uncertainty.

7.3.1.10 b Tagging Purity

The systematic uncertainty on the b–tagging b purity obtained from the data is discussed

in Section 4.5. This effect constitutes a 0.49% relative error on the final values for

B(b → X`ν`) and B(b → c → X`ν`). The errors shown in Table 4.2 have been split into

more categories in Table 7.3 to show the separate contributions from Rc, Rb, 〈xE〉c (the

mean fraction of the beam energy carried by weakly decaying charmed hadrons), gluon

splitting to bb and cc pairs, the branching fraction of charmed mesons into K0
s , charmed

lifetimes, decay multiplicities of charmed mesons and charm production fractions. The

errors resulting from the uncertainty in the b purity due to detector resolution and finite

Monte Carlo statistics are combined with the other contributions from these sources of

error.

7.3.2 Modelling Dependencies

7.3.2.1 Semileptonic b Decay Models

Existing published and preliminary B(b → X`ν`) measurements [20–23] depend heavily

on the modelling of the semileptonic decay. The exact shape of the lepton momentum

spectrum is not known and little theoretical progress has been made in recent years. The
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use of the neural networks NNb` and NNbc` to distinguish b → ` and b → c → ` decays

from the background reduces the dependence of the branching fractions on the shape of

the lepton momentum spectrum by making use of additional information. Nevertheless,

the simulation of the weak b hadron decays and the prediction of the lepton momentum

spectrum is still a large source of theoretical uncertainty.

Different decay models are used to estimate the effects of the modelling on the fitted

parameters and lepton identification efficiencies (Section 2.6.4). The Monte Carlo events

are reweighted to reproduce the various predictions for lepton momentum spectra in the b

hadron rest frame. The ACCMM model [40] is used for b → ` decays with the ISGW and

ISGW∗∗ [41] models providing the +1σ and −1σ deviations respectively, as prescribed

in [102]. For the cascade decays, b → c → `, the ACCMM model predictions for the

c → ` lepton momentum spectra are combined with Cleo measurements of the b → D

momentum spectrum for the central results, as described in [102], with the ±1σ errors

derived from the experimental uncertainties on these momentum spectra. Although the

models were derived for B0 and B± mesons only, all b hadrons are reweighted. This has

a very small effect on the central results but provides a more conservative estimate of

the modelling uncertainties than when only the B0 and B± decays are reweighted. The

agreement between the data and these and other semileptonic decay models is further

investigated in Section 7.7.

Since the b–tagging requirement highly suppresses contributions from primary cc

events, the error arising from the modelling of the lepton momentum spectra from

semileptonic decays in charm events, c → `, is negligible. These decays are simply

reweighted to the central ACCMM model as described in [102].

The minimum momentum cut of 2GeV/c imposed on the selected leptons means

that the measured lepton identification efficiencies correspond to a restricted momentum

range. The effect of the extrapolation below the minimum momentum is taken into

account when evaluating the lepton selection efficiencies corresponding to the different

models.
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7.3.2.2 b Fragmentation Models

Several models have been proposed to describe the heavy quark fragmentation process

and these are discussed in Section 2.6.1. The function of Peterson et al. [15] was used

to simulate fragmentation in bb and cc events in the Monte Carlo. For b hadrons, the

Peterson parameter is determined from the fit by reweighting the Monte Carlo events.

For charm events, the parameter is varied to describe a 〈xE〉c for charm hadrons of

0.484 ± 0.008 [102]. As prescribed in [102], the models of Collins and Spiller [16] and

Kartvelishvili et al. [17] are used to estimate the systematic uncertainties arising from

the shape of the b quark fragmentation function, quoted as the +1σ and −1σ errors

respectively. These models also have one free parameter. The Monte Carlo is reweighted

to simulate each function and the corresponding free parameter determined from the fit.

The effects of the differing fragmentation functions and fitted parameters on the

lepton efficiencies are also included in the fragmentation modelling errors quoted in

Table 7.3. The systematic uncertainties associated with the b fragmentation models are

determined from the observed variations in the derived values of branching fractions and

〈xE〉b obtained with the various fragmentation functions. The agreement between the

data and these models is further discussed in Section 7.7.

7.4 Results

The input distributions for the NNb` and NNbc` neural networks and the resulting net-

work output distributions presented in Chapter 6, show the Monte Carlo distributions

adjusted according to the fitted parameters and systematic corrections discussed in the

previous sections. Good agreement between the data and Monte Carlo is observed;

the χ2/bin for the fitted NNb` distributions is 1.25 and 1.00 for electrons and muons

respectively, whilst for the NNbc` distributions the χ2/bin is 1.15 and 0.88, respectively.
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Electrons Muons

Pb 0.9190 ± 0.0002 (stat.) ± 0.0045 (syst.)

Nb−tags 301303 302577

N` 29516 44832

εb→` 0.5662 ± 0.0231 (syst.) 0.6794 ± 0.0129 (syst.)

f(b → `) 0.5726 ± 0.0042 ± 0.0041 (syst.) 0.4620 ± 0.0034 ± 0.0031 (syst.)

B(b → X`ν`) (10.780 ± 0.079 ± 0.450 +0.220
−0.109)% (10.964 ± 0.081 ± 0.227 +0.248

−0.139)%

εb→c→` 0.3306 ± 0.0135 (syst.) 0.4277 ± 0.0081 (syst.)

f(b → c → `) 0.2596 ± 0.0055 ± 0.0047 (syst.) 0.2166 ± 0.0051 ± 0.0045 (syst.)

B(b → c → X`ν`) (8.370 ± 0.177 ± 0.377 +0.298
−0.262)% (8.167 ± 0.192 ± 0.234 +0.355

−0.370)%

Table 7.4: Results for the combined data sample including all systematic
uncertainties for electrons and muons. The uncertainties due to semilep-
tonic decay and fragmentation modelling are shown in the last error on the
branching fractions.

B(b → Xeνe) B(b → c → Xeνe) B(b → Xµνµ) B(b → c → Xµνµ)

B(b → Xeνe) 1.00

B(b → c → Xeνe) 0.40 1.00

B(b → Xµνµ) 0.34 −0.22 1.00

B(b → c → Xµνµ) −0.26 0.53 −0.22 1.00

Table 7.5: The full correlation matrix from the averaging procedure for
the B(b → Xeνe), B(b → Xµνµ), B(b → c → Xeνe) and B(b → c → Xµνµ)
branching fractions.
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All the relevant quantities needed to calculate the semileptonic branching fractions

B(b → X`ν`) and B(b → c → X`ν`) are summarised in Table 7.4. The values

B(b → Xeνe) = (10.78 ± 0.08 (stat.) ± 0.45 (syst.) + 0.22
− 0.11 (model))%,

B(b → Xµνµ) = (10.96 ± 0.08 (stat.) ± 0.23 (syst.) + 0.25
− 0.14 (model))%,

B(b → c → Xeνe) = (8.37 ± 0.18 (stat.) ± 0.38 (syst.) + 0.30
− 0.26 (model))%,

B(b → c → Xµνµ) = (8.17 ± 0.19 (stat.) ± 0.23 (syst.) + 0.36
− 0.37 (model))%

are obtained for electrons and muons independently, showing good consistency with

lepton universality. These four branching fractions are combined to obtain

B(b → X`ν`) = (10.83 ± 0.10 (stat.) ± 0.20 (syst.) + 0.20
− 0.13 (model))%,

B(b → c → X`ν`) = (8.40 ± 0.16 (stat.) ± 0.21 (syst.) + 0.33
− 0.29 (model))%

where ` represents either an electron or a muon.

The results were combined taking into account the full correlation matrix which com-

bines the statistical correlations resulting from the fit procedure, as shown in Table 7.2,

with the systematic correlations resulting from the correlated systematic and modelling

errors shown in Table 7.3. The same averaging mechanism was used as that for the

combined LEP heavy flavour results which are described in detail in [102] and obtained

from [112]. The overall correlation matrix for the individual results is given in Table 7.5.

The combined value derived for B(b → c → X`ν`) is outside the range given by

B(b → c → Xeνe) and B(b → c → Xµνµ) due to large off–diagonal terms in the covari-

ance matrix and strong correlations with the B(b → X`ν`) measurements. The combined

statistical error on B(b → X`ν`) is larger than the individual errors on B(b → Xeνe) and

B(b → Xµνµ) since the statistical errors from B(b → c → Xeνe) and B(b → c → Xµνµ)

also contribute.

Figure 7.1 shows the central results and one sigma error contours for the B(b → X`ν`)

and B(b → c → X`ν`) results, comparing the individual lepton channels to the combined



156 CHAPTER 7. RESULTS

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

10.2 10.4 10.6 10.8 11 11.2 11.4

B(b → Xlυl) /%

B(
b 

→
 c

 →
 X

lυ
l) 

/%

muons
electrons
average

Figure 7.1: The central results and one sigma error contours for the
B(b → X`ν`) and B(b → c → X`ν`) results. The results for electrons
(dashed red) and muons (dotted green) are compared to the correlated av-
erage (solid black).

results. This figure does not show the correlations between the individual lepton channels.

From the fitted b fragmentation model parameters, the average value of the fraction

of the beam energy carried by the weakly decaying b hadron is obtained, giving

〈xE〉b = 0.709 ± 0.003 (stat.) ± 0.003 (syst.) ± 0.013 (model)

where the modelling error is dominated by the choice of b fragmentation model.

7.5 Agreement between Data and Monte Carlo

In order to verify that the systematic and modelling uncertainties discussed in Section 7.3

give realistic errors on the final results, it is necessary to establish that these variations
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encompass any discrepancies between data and Monte Carlo relevant to the NNb` and

NNbc` neural networks.

Figures 7.2 and 7.3 show for each network input variable the ratio of the data to the

Monte Carlo, for the selected electron and muon candidates respectively. The shaded

regions show the upper and lower bounds on the Monte Carlo variations due to the

systematic and modelling uncertainties, evaluated by adding linearly the ±1σ variations

for each source of uncertainty. This gives a conservative estimate of the overall Monte

Carlo variations since the correlations between the individual corrections are not taken

into account. Overall, good agreement between the data and Monte Carlo is observed

with the residual differences encompassed by the systematic and modelling variations.

The corresponding ratios for the NNb` and NNbc` distributions are presented in Fig-

ure 7.4, showing that the systematic and modelling variations which encompass the

differences between data and Monte Carlo for the input parameters also cover the dis-

crepancies in the neural network outputs. Systematic trends are present in the NNb`

distributions where the data is systematically lower than the Monte Carlo in the regions

towards NNb` = 1, and correspondingly higher for NNb` . 0.8 due to the Monte Carlo

normalisation to the data. These differences are discussed further in Section 7.7 where

the agreement between the data and Monte Carlo for the various theoretical models

used to describe semileptonic b decays and b fragmentation is studied.

Additional checks were also performed to assess directly the effect that any discrep-

ancies between data and Monte Carlo in the description of the neural network input

variables had on the performance of the NNb` and NNbc` neural networks. For each

input variable in turn, the differences between the means of the distributions in the data

and Monte Carlo were assessed. The fit procedure was then repeated twice, with this

variable in the Monte Carlo shifted by ± twice the observed difference. The resulting

variations in the fitted parameters were found to be consistent with those discussed

in Section 7.3 and small when compared to the combined systematic and modelling

uncertainties.
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Figure 7.2: The ratio of the data to Monte Carlo for each input variable for
the electron NNb` and NNbc` neural networks. The shaded regions show the
Monte Carlo variations due to the systematic and modelling uncertainties.



7.5. AGREEMENT BETWEEN DATA AND MONTE CARLO 159

0.8
0.9

1
1.1
1.2

5 10 15 20 25
0.8
0.9

1
1.1
1.2

0 1 2 3 4

0.8
0.9

1
1.1
1.2

10 20 30 40 50
0.8
0.9

1
1.1
1.2

10 20 30

0.8
0.9

1
1.1
1.2

0 2 4 6 8
0.8
0.9

1
1.1
1.2

-10 0 10 20 30

0.8
0.9

1
1.1
1.2

-0.5 0 0.5
0.8
0.9

1
1.1
1.2

-0.5 0 0.5

a)

muon momentum / GeV/c

da
ta

/M
C

b)

muon pt / GeV/c

da
ta

/M
C

c)

muon jet energy / GeV

da
ta

/M
C

d)

muon sub-jet energy / GeV/c

da
ta

/M
C

e)

pt sum / GeV/c

da
ta

/M
C

f)

impact parameter significance

da
ta

/M
C

g)

muon Qjet / e
2

da
ta

/M
C

h)

opposite Qjet / e
2

da
ta

/M
C

Figure 7.3: The ratio of the data to Monte Carlo for each input variable
for the muon NNb` and NNbc` neural networks. The shaded regions show the
Monte Carlo variations due to the systematic and modelling uncertainties.
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7.6 Consistency Checks

Various tests are performed on the data to check the stability of the results by varying

the lepton selection criteria.

• The minimum lepton momentum cut is increased from the nominal 2.0GeV/c to

5.0GeV/c in steps of 0.5GeV/c and the branching fractions B(b → X`ν`) and

B(b → c → X`ν`) are recalculated at each point.

• The fit is performed over a restricted range of the NNb` distribution, NNb` > NNcut
b` ,

with the cut value ranging from 0.0 to 0.6 in steps of 0.1. For each cut value

B(b → X`ν`) is recalculated.

• The fit is performed over a restricted range of the NNbc` distribution, NNbc` > NNcut
bc`,

with the cut value ranging from 0.0 to 0.4 in steps of 0.1. For each cut value

B(b → c → X`ν`) is recalculated.

The results are given in Figure 7.5 where the errors are statistical only.

Increasing either the minimum momentum or NNb` cut values primarily removes

the background contributions and b → c → ` decays, increasing the b → ` purity of the

lepton samples. No significant momentum biases are seen in the B(b → X`ν`) results

as shown in Figure 7.5a. Figure 7.5b shows the results obtained for the B(b → X`ν`)

branching fractions with an increasing cut value on the NNb` network output. Again,

no significant variations are observed.

The model–dependent errors are not shown in Figure 7.5 but they increase substan-

tially as the cut values are raised since the efficiencies for selecting the prompt leptons

decrease and the corresponding modelling uncertainties on the efficiency extrapolations

below the cut values become large. In particular, the minimum momentum and NNb`

cuts reject a substantial fraction of the b → c → ` lepton samples (see Figures 6.1, 6.3,

6.5 and 6.7) such that it is meaningless is evaluate B(b → c → X`ν`) for these tests.



162 CHAPTER 7. RESULTS

10.6

10.8

11

11.2

2 2.5 3 3.5 4 4.5 5
minimum momentum cut  / GeV/c

B(
b 

→
 X

lυ
l) 

/ % a)

10.6

10.8

11

11.2

0 0.1 0.2 0.3 0.4 0.5 0.6
NN

cut
bl

B(
b 

→
 X

lυ
l) 

/ % b)

7.5

8

8.5

9

0 0.1 0.2 0.3 0.4
NN

cut
bcl

B(
b 

→
 c

 →
 X

lυ
l) 

/ % c)

Figure 7.5: Consistency checks on the central values derived for
B(b → X`ν`) and B(b → c → X`ν`) for electrons (solid circles) and muons
(open circles). The dark and light dashed lines show the central results
for electrons and muons respectively. Figure a) shows the variation of the
B(b → X`ν`) branching fractions with the minimum momentum cut. Fig-
ure b) shows the stability of B(b → X`ν`) with an an increasing cut on
the NNb` network output, whilst Figure c) shows the equivalent test for
B(b → c → X`ν`) with an increasing NNbc` cut. The errors are statistical
only.
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Figure 7.5c shows the results obtained for B(b → c → X`ν`) with a cut applied to

the NNbc` output, increasing the b → c → ` purity of the lepton samples. A small

bias is observed, but is not significant given the increasing systematic and modelling

uncertainties.

Finally, the data are divided into four statistically independent sub–samples corre-

sponding to the year in which the data were collected. A fit is performed to each year

of data using the same combined Monte Carlo sample as used for the full analysis. The

b–tagging purities and lepton identification efficiencies are recalculated for each data

sub–set separately. The results for B(b → X`ν`) and B(b → c → X`ν`) for both tests

are shown in Figure 7.6 where the errors correspond to the statistical uncertainties and

uncorrelated systematic errors. All results are consistent with the central results within

errors.

7.7 Semileptonic Decay and Fragmentation Models

The main results presented in Section 7.4 use the prescriptions discussed previously

to model b fragmentation (Section 7.3.2.2) and the lepton momentum spectra from

semileptonic decays (Section 7.3.2.1) and to evaluate the associated modelling uncer-

tainties. These prescriptions [102] are followed by all four LEP experiments in order to

establish a common set of systematic and modelling uncertainties, which facilitates the

combination of individual measurements for the LEP average results.

In this section, a study of the agreement between the data and various phenomeno-

logical models is presented. Various models for the lepton momentum spectra from

b → ` decays are investigated, which affect both the lepton total and transverse mo-

mentum spectra. For each b → ` decay model, three different fragmentation functions

are also studied, those of Peterson et al. [15], Collins and Spiller [16] and Kartvelishvili

et al. [17]. These functions primarily affect the lepton total momentum spectrum, leaving

the transverse momentum distribution unaltered.
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Six semileptonic b → ` decay models are investigated :-

• ACCMM model [40] (Section 2.6.4.1) :

The model parameters were tuned to the Cleo data [42]. Their values are fixed

as given in [102]: the Fermi momentum of the spectator quark, pF = 298MeV/c,

the mass of the charm quark, mc = 1673MeV/c2, and the mass of the spectator

quark, msp = 150MeV/c2.

• ISGW model [41] (Section 2.6.4.2) :

This model has no free parameters and the D∗∗ contributions are predicted to

account for 11% of all b decays.

• ISGW∗∗ model [102] (Section 2.6.4.2) :

This is the ISGW model modified such as to allow the total contributions from

D∗∗, fD∗∗, to account for 32% of all b decays, as determined from Cleo data [42].

• ISGW2 model [113] :

A revised version of the ISGW model incorporating constraints from heavy quark

symmetry, hyperfine distortions of wave functions and form factors with more

realistic high–recoil behaviour. This model predicts that the sum of all D∗∗ con-

tributions accounts for 9.3% of the total b decay width.

• ISGW2∗∗ model :

This is the ISGW2 model modified to allow the sum of all D∗∗ contributions to be

an additional free parameter of the fit.

• ACCMM∗ model :

This is the ACCMM model with free parameters. The Fermi momentum parameter

pF and the mass of the charm quark mc are treated as additional free parameters

in the fit. The spectator quark mass was fixed at msp = 150MeV/c2.
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For each of these semileptonic b → ` decay models the analysis is repeated, using

each of the three different b fragmentation models. The resulting semileptonic branching

fractions B(b → X`ν`) and B(b → c → X`ν`), and 〈xE〉b are re–calculated. The same

models are used to simulate b → c → ` decays and to assess the associated modelling

uncertainties, as described in Section 7.3.2.1.

Figures 7.7 and 7.8 show the fitted distributions for the NNb` network outputs for each

of these models compared to the data, for electrons and muons respectively. The figures

focus on the b → ` peak regions of the NNb` distributions corresponding to NNb` > 0.8,

which are most sensitive to the variations from the different models. The fit is performed

over the full range of the neural network output (from zero to one) as in the main analysis.

From these fits to the data, the NNb` > 0.8 region is determined to be approximately

93% pure in b → ` decays.

The results for the branching fractions B(b → X`ν`) and B(b → c → X`ν`) obtained

using each combination of b fragmentation and b → ` decay models are summarised

in Table 7.6, together with the statistical, systematic and modelling uncertainties. All

errors are calculated according to the procedures outlined in the preceding sections,

apart from the modelling error which accounts for b → c → ` decay modelling. The

values obtained for the decay model parameters as well as for the free parameter in the

b fragmentation functions are also given in Table 7.6. The results for 〈xE〉b corresponding

to the various fitted b fragmentation functions are also given. The χ2/bin is calculated

using the NNb` > 0.8 portion of the distributions as shown in Figures 7.7 and 7.8, and

incorporate the statistical, systematic and modelling uncertainties from both the electron

and muon samples. These are given only as an indicator of the agreement between the

Monte Carlo and the data.
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Figure 7.7: The fitted distributions for the NNb` neural network output for
electrons with a) the ACCMM, ISGW and ISGW∗∗ models; b) the ISGW2,
ISGW2∗∗ and ACCMM∗ models; c) the ACCMM model with the Peterson,
Collins and Spiller and Kartvelishvili b fragmentation functions. The Pe-
terson function is used to describe the b fragmentation in a) and b). The
shaded areas show the contributions from sources other than b → e in the
data, as extracted from the fit.
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Figure 7.8: The fitted distributions for the NNb` neural network output for
muons with a) the ACCMM, ISGW and ISGW∗∗ models; b) the ISGW2,
ISGW2∗∗ and ACCMM∗ models; c) the ACCMM model with the Peterson,
Collins and Spiller and Kartvelishvili b fragmentation functions. The Pe-
terson function is used to describe the b fragmentation in a) and b). The
shaded areas show the contributions from sources other than b → µ in the
data, as extracted from the fit.
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b → `

model

b → ` model

parameters

Fragmentation

parameter
〈xE〉b B(b → Xeνe) / % B(b → Xµνµ) / % B(b → c → Xeνe) / % B(b → c → Xµνµ) / % χ2/bin

Peterson et al.

ACCMM fixed 0.00573 ± 0.00062 0.709 ± 0.004 10.78 ± 0.08 ± 0.45
−0.07
+0.06

10.96 ± 0.08 ± 0.23
−0.06
+0.06

8.37 ± 0.18 ± 0.38
+0.15
−0.06

8.17 ± 0.19 ± 0.23
+0.17
−0.05

64/48

ISGW fixed 0.00655 ± 0.00070 0.705 ± 0.004 10.70 ± 0.08 ± 0.45 −0.07
+0.06

10.86 ± 0.08 ± 0.23 −0.07
+0.06

8.50 ± 0.18 ± 0.38 +0.16
−0.06

8.37 ± 0.19 ± 0.24 +0.16
−0.04

98/48

ISGW∗∗ fixed 0.00456 ± 0.00051 0.718 ± 0.004 10.99 ± 0.08 ± 0.46 −0.07
+0.06

11.19 ± 0.08 ± 0.23 −0.06
+0.06

8.16 ± 0.18 ± 0.37 +0.14
−0.06

7.85 ± 0.20 ± 0.23 +0.19
−0.07

37/48

ISGW2 fixed 0.00787 ± 0.00083 0.698 ± 0.004 10.69 ± 0.08 ± 0.45 −0.07
+0.06

10.86 ± 0.08 ± 0.23 −0.07
+0.06

8.62 ± 0.18 ± 0.38 +0.16
−0.06

8.55 ± 0.19 ± 0.24 +0.15
−0.03

131/48

ISGW2∗∗ fD∗∗ = 45 ± 5% 0.00446 ± 0.00055 0.719 ± 0.004 10.95 ± 0.08 ± 0.45 −0.09
+0.07

11.15 ± 0.08 ± 0.23 −0.08
+0.07

8.17 ± 0.18 ± 0.37 +0.19
−0.07

7.85 ± 0.20 ± 0.23 +0.40
−0.08

35/48

ACCMM∗
pF = 837

+204

−217
MeV/c

mc = 1287+142

−135
MeV/c

0.00465 ± 0.00054 0.717 ± 0.004 10.95 ± 0.09 ± 0.46 −0.11
+0.08

11.15 ± 0.09 ± 0.23 −0.10
+0.08

8.16 ± 0.18 ± 0.37 +0.23
−0.08

7.84 ± 0.20 ± 0.23 +0.51
−0.09

38/48

Collins and Spiller

ACCMM fixed 0.00342 ± 0.00062 0.698 ± 0.004 10.83 ± 0.08 ± 0.45 −0.07
+0.06

11.06 ± 0.08 ± 0.23 −0.07
+0.06

8.60 ± 0.18 ± 0.38 +0.15
−0.06

8.40 ± 0.19 ± 0.24 +0.18
−0.06

148/48

ISGW fixed 0.00421 ± 0.00074 0.693 ± 0.004 10.74 ± 0.08 ± 0.45 −0.07
+0.06

10.95 ± 0.08 ± 0.23 −0.07
+0.06

8.72 ± 0.18 ± 0.38 +0.16
−0.06

8.61 ± 0.19 ± 0.24 +0.17
−0.05

202/48

ISGW∗∗ fixed 0.00241 ± 0.00044 0.705 ± 0.004 11.05 ± 0.08 ± 0.46 −0.07
+0.06

11.30 ± 0.08 ± 0.23 −0.07
+0.06

8.39 ± 0.18 ± 0.38 +0.14
−0.06

8.09 ± 0.20 ± 0.23 +0.20
−0.08

84/48

ISGW2 fixed 0.00556 ± 0.00096 0.687 ± 0.004 10.72 ± 0.08 ± 0.45 −0.07
+0.06

10.94 ± 0.08 ± 0.23 −0.07
+0.06

8.83 ± 0.18 ± 0.39 +0.16
−0.06

8.79 ± 0.19 ± 0.24 +0.16
−0.04

253/48

ISGW2∗∗ fD∗∗ = 43 ± 5% 0.00251 ± 0.00044 0.704 ± 0.004 11.00 ± 0.08 ± 0.45 −0.09
+0.07

11.24 ± 0.08 ± 0.23 −0.08
+0.07

8.43 ± 0.18 ± 0.38 +0.19
−0.07

8.14 ± 0.20 ± 0.23 +0.41
−0.06

80/48

ACCMM∗
pF = 679+180

−192
MeV/c

mc = 1287+146
−138

MeV/c
0.00252 ± 0.00043 0.704 ± 0.004 10.94 ± 0.09 ± 0.45

−0.11
+0.08

11.19 ± 0.09 ± 0.23
−0.10
+0.08

8.43 ± 0.18 ± 0.38
+0.23
−0.08

8.14 ± 0.20 ± 0.23
+0.49
−0.09

88/48

Kartvelishvili et al.

ACCMM fixed 10.04 ± 0.57 0.720 ± 0.005 10.75 ± 0.08 ± 0.45 −0.07
+0.06

10.89 ± 0.08 ± 0.23 −0.07
+0.06

8.23 ± 0.18 ± 0.37 +0.15
−0.06

7.99 ± 0.19 ± 0.23 +0.16
−0.04

41/48

ISGW fixed 9.40 ± 0.54 0.714 ± 0.005 10.69 ± 0.08 ± 0.45 −0.07
+0.06

10.80 ± 0.08 ± 0.23 −0.07
+0.06

8.36 ± 0.18 ± 0.37 +0.16
−0.06

8.20 ± 0.19 ± 0.24 +0.15
−0.03

56/48

ISGW∗∗ fixed 11.23 ± 0.63 0.729 ± 0.005 10.94 ± 0.08 ± 0.45 −0.07
+0.06

11.10 ± 0.08 ± 0.23 −0.06
+0.06

8.01 ± 0.18 ± 0.37 +0.14
−0.06

7.66 ± 0.20 ± 0.22 +0.18
−0.06

48/48

ISGW2 fixed 8.58 ± 0.49 0.706 ± 0.005 10.69 ± 0.08 ± 0.45 −0.07
+0.06

10.81 ± 0.08 ± 0.23 −0.07
+0.06

8.48 ± 0.18 ± 0.38 +0.16
−0.06

8.39 ± 0.19 ± 0.24 +0.14
−0.02

73/48

ISGW2∗∗ fD∗∗ = 46 ± 5% 11.44 ± 0.67 0.731 ± 0.005 10.91 ± 0.08 ± 0.45 −0.08
+0.07

11.07 ± 0.08 ± 0.23 −0.07
+0.06

8.01 ± 0.18 ± 0.37 +0.19
−0.07

7.65 ± 0.20 ± 0.22 +0.39
−0.09

53/48

ACCMM∗
pF = 1063+409

−368
MeV/c

mc = 1153+184
−199

MeV/c
10.96 ± 0.64 0.727 ± 0.005 10.95 ± 0.09 ± 0.46 −0.11

+0.11
11.11 ± 0.10 ± 0.23 −0.10

+0.11
8.00 ± 0.18 ± 0.37 +0.23

−0.10
7.64 ± 0.20 ± 0.22 +0.52

−0.20
39/48

Table 7.6: Branching fractions B(b → X`ν`) and B(b → c → X`ν`) (given in %) derived by comparing the data to various semileptonic

decay models for b → ` decays. The quoted errors on the branching fractions correspond to the statistical, systematic and b → c → `

modelling errors, respectively. The fitted b → ` decay model parameters are also given when appropriate. The fitted b fragmentation

function parameters, and the corresponding values for 〈xE〉b are presented. The combined statistical, systematic and b → c → `

modelling errors are given for all fitted model parameters. The χ2/bin is calculated using the portion of the NNb` output shown in

Figures 7.7 and 7.8, using all uncertainties from both the electron and muon samples; these are given as an indicator of the quality of

the fit. All models and their parameters are described in the text
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7.7.1 Discussion of Results

Although the statistical precision of the tests is insufficient to allow any firm state-

ments to be made concerning the various models, certain trends in the results can be

summarised :-

• For the ACCMM∗ model, the best fit to the data is obtained with the b fragmentation

model of Peterson et al., giving

pF = (837 ± 143 (stat.) ± 132 (syst.) + 234
− 186 (model))

mc = (1287 ± 100 (stat.) ± 87 (syst.) + 112
− 136 (model))MeV/c2

where the mass of the spectator quark is kept fixed at 150MeV/c2. The correlation

coefficient between these model parameters is high at −0.970.

The systematic errors are calculated using the same scheme as described in Section

7.3. The modelling errors correspond to the b fragmentation and b → c → ` decay

models added in quadrature and are dominated by the uncertainties resulting from the

choice of b fragmentation model. These values are consistent with recent theoretical

calculations of pF using the relativistic quark model, which give predictions around 500

to 600MeV/c [114, 115], and the world average charm mass of 1100 to 1400MeV/c2

taken from [3].

• The ISGW∗∗ and ISGW2∗∗ models also give good agreement with the data. However,

these models are less theoretically sound since they are modifications to the original

models to allow the overall fraction of D∗∗ contributions to be a free fit parameter.

In the ISGW model the fraction of D∗∗ in the final state, fD∗∗, is predicted to be 11%.

In the modified ISGW∗∗ model this is increased to 32% in order to better reproduce

the Cleo data [42]. For the ISGW2∗∗ model, the best agreement with the Opal data is

found with the Peterson b fragmentation model when the D∗∗ contribution amounts to,

fD∗∗ = (45 ± 3 (stat.) ± 3 (syst.) ± 4 (model))%
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of the total width, instead of the 9.3% derived in the original ISGW2 model. Again, the

modelling error contains uncertainties from both the b fragmentation and b → c → `

decay models. The ISGW2 model gives worse agreement with the data than the ISGW

model.

• Allowing the ISGW2∗∗ and ACCMM∗ model parameters to be free fit parameters

produces very similar Monte Carlo distributions for the NNb` neural networks. Accord-

ingly, the resulting B(b → Xeνe) and B(b → Xµνµ) branching fractions are very similar

for these models, and slightly higher than the central results obtained using the ACCMM

model. In addition, the branching fractions are more stable with respect to variations

in the b fragmentation model.

• The fragmentation function of Collins and Spiller is generally disfavoured by the data,

for all semileptonic decay models investigated. The fragmentation functions of Peterson

et al. or Kartvelishvili et al. provide equally good fits to the data.
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Chapter 8

Conclusions

8.1 Summary of Results

In this thesis, measurements of the inclusive semileptonic branching fractions of b

hadrons, B(b → X`ν`) and B(b → c → X`ν`), and the average fraction of the beam

energy carried by the weakly decaying b hadron, 〈xE〉b, have been presented.

The final results for the semileptonic branching fractions are

B(b → X`ν`) = (10.83 ± 0.10 (stat.) ± 0.20 (syst.) + 0.20
− 0.13 (model))%,

B(b → c → X`ν`) = (8.40 ± 0.16 (stat.) ± 0.21 (syst.) + 0.33
− 0.29 (model))%.

This B(b → X`ν`) measurement is the most precise to date at the Z0 resonance, while

the B(b → c → X`ν`) result is more precise than the current world average value of

(7.8 ± 0.6)% [3].

The B(b → X`ν`) measurement presented here is consistent with the current world

average of all measurements taken at the Z0 resonance, Bb
SL = (10.99±0.23)% [3], based

on a global fit to several electroweak parameters and including specific measurements of

B(b → X`ν`) [22, 116–121]. It is also in good agreement with a preliminary average of
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the most recent and precise published and preliminary LEP results obtained at the Z0

resonance, Bb
SL = (10.87 ± 0.24)% [24].

On the other hand, this measurement for B(b → X`ν`) is still larger than the mea-

surement at the Υ(4S) of BB
SL = (10.45±0.21)% [3], the semileptonic branching fraction

for B0 and B± mesons, when it is expected to be lower due to the presence of Λb baryons

at the Z0 resonance, as discussed in Section 2.6.3.1. Correcting for this expected dif-

ference, the discrepancy between this result and the Υ(4S) measurement is about 1.8

standard deviations.

The measurement of B(b → X`ν`) is also consistent with the theoretical calculations

discussed in Section 2.6.3.2, which are shown in Figure 2.6 where the average results for

BSL and the related quantity nc, the average number of charm hadrons produced per b

decay, are compared to the theoretical predictions [38, 39].

The average value of the fraction of the beam energy carried by the weakly decaying

b hadron is also obtained from this analysis, giving

〈xE〉b = 0.709 ± 0.003 (stat.) ± 0.003 (syst.) ± 0.013 (model).

which is in good agreement with published results [2, 3].

All the measurements presented here are statistically independent of and consistent

with similar results derived in a previous Opal analysis [116], where the quantities

B(b → X`ν`) = (10.5 ± 0.6 (stat.) ± 0.5 (syst.))%

B(b → c → X`ν`) = (7.7 ± 0.4 (stat.) ± 0.7 (syst.))%

〈xE〉b = 0.697 ± 0.006 (stat.) ± 0.011 (syst.)

were extracted from a global fit for these and two other parameters; Rb, the fraction of

Z0 events decaying into bb and the mean B0 − B0 mixing parameter χ. However, the

uncertainties related to assessing the systematic correlations between these old results

and those presented in this thesis means that no overall gain in precision is obtained
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by combining them. Therefore the results presented in this thesis supersede the results

previously published in [116].

In Section 7.7 the results obtained using various phenomenological models for the

lepton momentum spectra in semileptonic b decays are described. For the results dis-

cussed above, the free parameters of these models are fixed to the values prescribed

in [102], as determined by Cleo [42]. Allowing these model parameters to be additional

free parameters in the fit to the Opal data yields significantly different values. Corre-

spondingly, the values for the semileptonic branching fractions, B(b → X`ν`), derived

from these fits are slightly higher than the main results discussed above. However, the

statistical precision of these tests is insufficient to allow any firm conclusions concerning

the various models to be made.

8.2 Outlook

The semileptonic branching fractions presented in this thesis represent an analysis of the

Opal data taken at the Z0 resonance and the precision of the results are limited by the

experimental systematic and theoretical modelling uncertainties. The use of phenomeno-

logical models to describe the lepton momentum spectra introduces large uncertainties

and therefore more precise predictions are required for future advances. Heavy–quark

effective theory (HQET) provides a mechanism for understanding semileptonic decays

from first principles and theoretical efforts are currently underway to produce the lep-

ton momentum spectra from HQET and thus to provide more rigorously motivated

predictions for future analyses.

The LEP experiments finished collecting Z0 data in 1995 and therefore the currently

emerging measurements represent the final results from the LEP collaborations. Whilst

substantial theoretical advances may provoke future revisions to these results, new ex-

perimental results from CERN are therefore only expected with the advent of the LHC

experiments. Elsewhere however, the Cleo detector is currently being upgraded [122]
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to match the increased luminosity at the CESR collider, and will provide new results

at the Υ(4S) resonance. Two new e+e− colliders are also due to start running in 1999,

the PEP-II and KEK-B facilities, designed to run at the Υ(4S), with their respective

experiments BaBar [123] and BELLE [124]. At existing colliders, the HERA-B [125]

experiment and the upgraded Tevatron experiments CDF [126] and D0 [127] will come

into operation before the year 2001. Thus, a wealth of new data expected over the next

few years will provide improvements on the current results.

Eventually, the high statistics at the LHC pp collider, expected to be operational

around 2005, will supersede these experiments. Supplying the two general purpose

experiments, ATLAS [128] and CMS [129], and the dedicated b physics experiment

LHC-b [130], the accelerator is expected to deliver in excess of 1011 b hadrons per year,

providing precision tests of the Standard Model in the b physics sector.



Appendix A

The Likelihood Function

Consider a set of data values {x1, x2, x3, . . . , xN} drawn from a given probability density

P (x; η), which is also dependent on a parameter η. The probability that the data

are consistent with a particular value of η, denoted η ′, is given by the product of

the individual probabilities for each data point. This product is called the likelihood

L(x1, x2, x3, . . . , xN ; η = η′) where,

L(x1, x2, x3, . . . , xN ; η = η′) = P (x1; η
′) · P (x2; η

′) · P (x3; η
′) · · ·P (xN ; η′)

=
∏

i

P (xi; η
′). (A.1)

Conversely, the likelihood equation can be maximised with respect to η to give an esti-

mator of the value of η′. It is often convenient in such cases to take the natural log of

the likelihood function giving,

ln (L) = ln

[

∏

i

P (xi; η
′)

]

=
∑

i

ln [P (xi; η
′)] (A.2)

Consider a typical experimental situation in which a data distribution is compared

to a Monte Carlo simulation. The probability of obtaining r events in a given bin of
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the distribution, if the mean expected value from the Monte Carlo is λ, is given by the

Poisson probability distribution,

P (r;λ) =
e−λλr

r!
(A.3)

which expressed as a log–likelihood gives,

ln (L) = ln [P (r;λ)]

= ln

(

e−λλr

r!

)

= ln
(

e−λ
)

+ ln (λr) − ln (r!). (A.4)

Ignoring the constant term ln (r!) this gives

ln (L) = r lnλ− λ. (A.5)

Equation A.5 can be trivially extended to give the log–likelihood function that the entire

data distribution is consistent with the Monte Carlo prediction. If the data is split into

Nbins bins with di events in bin i, where the predicted population is fi, the likelihood

function is given by,

ln (L) =

Nbins
∑

i=1

(di ln fi − fi) (A.6)

This expression correctly accounts for data bins with a low number of entries and is

commonly referred to as a binned log–likelihood.

Equation A.6 is appropriate if the Monte Carlo sample is sufficiently large that any

statistical fluctuations in the predicted distributions are negligible in comparison to

those in the data. In order to take limited Monte Carlo statistics into account, Poisson

variations in the fi values must be incorporated into the likelihood expression.

The Monte Carlo distribution, fi, is formed from the number of Monte Carlo events
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from source j in bin i, aji, and the strength of that contribution Pj, namely,

fi = ND

Nsource
∑

j=1

Pjaji

Nj
(A.7)

where Nsource is the total number of sources in the Monte Carlo, ND is the total number

of events in the data sample and Nj the total number of events in the Monte Carlo

sample for source j,

ND =

Nbins
∑

i=1

di, Nj =

Nbins
∑

i=1

aji. (A.8)

Finite Monte Carlo Statistics can then be taken in account by replacing the number of

events aji in Equation A.7 by some (unknown) expected number of events Aji,

fi = ND

Nsource
∑

j=1

PjAji

Nj
. (A.9)

From each Aji, the corresponding aji are then generated from a Poisson distribution,

since Aji � Nj. The total likelihood which is now to be maximised is the combined

probability of the observed {di} and the observed {aji},

lnL =

Nbins
∑

i=1

(di ln fi − fi) +

Nbins
∑

i=1

Nsource
∑

j=1

(aji lnAji − Aji) . (A.10)

The estimates for the contribution of each source to the total Monte Carlo dis-

tributions, pj, and the Aji parameters are obtained by maximising the log–likelihood.

Although this method correctly incorporates the effects of finite Monte Carlo statistics it

introduces additional unknowns, the Aji parameters, which also need to be determined.

The theoretical details for incorporating Monte Carlo statistics have now been out-

lined. The mathematical and computational algorithms for minimising Equation A.10

have been implemented within the HBOOK [131] package by Barlow et al. as described

in [132] and further details can be found in these references.



180 APPENDIX A. THE LIKELIHOOD FUNCTION



Bibliography

[1] D. Griffiths, Introduction to Elementary particles, John Wiley and Sons, 1987.

[2] M. G. Green, S. L. Lloyd, P. N. Ratoff and D. R. Ward, Electron – Positron

Physics at the Z, Institute of Physics Publishing, 1998.

[3] Particle Data Group, C. Caso et al., Review of particle physicsa, Eur. Phys. J.

C3, 1 (1998).

[4] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon

picture, Phys. Lett. 47B, 365 (1973).

[5] S. L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22, 579

(1961).

[6] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264 (1967).

[7] A. Salam, Weak and electromagnetic interactions, Originally printed in

“Svartholm: Elementary Particle Theory, Proceedings of the Nobel Symposium

held in 1968 at Lerum, Sweden”, Stockholm 1968, 367-377.

[8] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10, 531

(1963).

[9] M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak

interaction, Prog. Theor. Phys. 49, 652 (1973).

ahttp://durpdg.dur.ac.uk/lbl/

181



182 BIBLIOGRAPHY

[10] L. Wolfenstein, Parametrization of the Kobayashi–Maskawa matrix, Phys. Rev.

Lett. 51, 1945 (1983).

[11] C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak

model and a measure of maximal CP violation, Phys. Rev. Lett. 55, 1039 (1985).

[12] C. Jarlskog, A basis independent formulation of the connection between quark

mass matrices, CP violation and experiment, Z. Phys. C29, 491 (1985).

[13] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys.

Rev. 145, 1156 (1966).

[14] Opal Collaboration, G. Abbiendi et al., A measurement of Rb using a double

tagging method, Eur. Phys. J. C8, 217 (1999).

[15] C. Peterson, D. Schlatter, I. Schmitt and. P.M. Zerwas, Scaling violations in

inclusive e+e− annihilation spectra, Phys. Rev. D27, 105 (1983).

[16] P. D. B. Collins and T. P. Spiller, The fragmentation of heavy quarks, J. Phys.

G11, 1289 (1985).

[17] V. G. Kartvelishvili, A. K. Likhoded and V. A. Petrov, On the fragmentation

functions of heavy quarks into hadrons, Phys. Lett. B78, 615 (1978).

[18] B. Andersson, G. Gustafson and B. Soderberg, A general model for jet fragmen-

tation, Z. Phys. C20, 317 (1983).

[19] Opal Collaboration, G. Alexander et al., A study of b quark fragmentation into

B0 and B+ mesons at LEP, Phys. Lett. B364, 93 (1995).

[20] Aleph Collaboration, D. Buskulic et al., Measurement of the semileptonic b

branching ratios from inclusive leptons in Z decays, (1995), Contributed Paper to

EPS-HEP-95 Brussels, EPS-0404.

[21] Delphi Collaboration, Measurement of the semileptonic b branching ratios and

χ̄b from inclusive leptons in Z0 decays, (1997), Contributed Paper to EPS-HEP-97

Jerusalem, EPS-415.



BIBLIOGRAPHY 183

[22] L3 Collaboration, M. Acciarri et al., Measurement of the branching ratios

b → eνX, µνX, τνX and νX, Z. Phys. C71, 379 (1996).

[23] Opal Collaboration, Measurement of the semileptonic branching fraction of in-

clusive b–hadrons, Opal Physics Note PN334, contributed paper to ICHEP 98

Vancouver ICHEP’98 #370 .

[24] LEP Collaboration, D. Abbaneo et al., A combination of preliminary electroweak

measurements and constraints on the Standard Model, (1999), CERN-EP-99-015.

[25] Argus Collaboration, H. Albrecht et al., A model independent determination

of the inclusive semileptonic decay fraction of B mesons, Phys. Lett. B318, 397

(1993).

[26] Cleo Collaboration, B. Barish et al., Measurements of the B semileptonic branch-

ing fraction with lepton tags, Phys. Rev. Lett. 76, 1570 (1996).

[27] Cleo Collaboration, R. Fulton et al., Exclusive and inclusive semileptonic decays

of B mesons to D mesons, Phys. Rev. D43, 651 (1991).

[28] Argus Collaboration, H. Albrecht et al., Exclusive semileptonic decays of B

mesons to D mesons, (1992), DESY-92-029.

[29] Opal Collaboration, K. Ackerstaff et al., Measurement of the semileptonic branch-

ing fraction of inclusive b baryon decays to Λ, Z. Phys. C74, 423 (1997).

[30] Aleph Collaboration, R. Barate et al., A measurement of the semileptonic branch-

ing ratio B(b-baryon → plν̄X) and a study of inclusive π±, K±, (p, p̄) production

in Z0 decays, Eur. Phys. J. C5, 205 (1998).

[31] M. A. Shifman and M. B. Voloshin, On annihilation of mesons built from heavy

and light quark and B0 − B0 oscillations, Sov. J. Nucl. Phys. 45, 292 (1987).

[32] M. A. Shifman and M. B. Voloshin, On production of D and D∗ mesons in B

meson decays, Sov. J. Nucl. Phys. 47, 511 (1988).



184 BIBLIOGRAPHY

[33] N. Isgur and M. B. Wise, Weak decays of heavy mesons in the static quark

approximation, Phys. Lett. B232, 113 (1989).

[34] N. Isgur and M. B. Wise, Weak transition form–factors between heavy mesons,

Phys. Lett. B237, 527 (1990).

[35] A. F. Falk, The heavy quark expansion of QCD, (1996), hep-ph/9610363.

[36] G. Altarelli and S. Petrarca, Inclusive beauty decays and the spectator model,

Phys. Lett. B261, 303 (1991).

[37] I. Bigi, B. Blok, M. A. Shifman and A. Vainshtein, The baffling semileptonic

branching ratio of B mesons, Phys. Lett. B323, 408 (1994).

[38] E. Bagan, P. Ball, V. M. Braun and P. Gosdzinsky, Theoretical update of the

semileptonic branching ratio of B mesons, Phys. Lett. B342, 362 (1995).

[39] M. Neubert and C. T. Sachrajda, Spectator effects in inclusive decays of beauty

hadrons, Nucl. Phys. B483, 339–370 (1997).
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[96] Ben J. A. Kröse and Patrick van der Smagt, An introduction to neural networksb,

The University of Amsterdam, fifth edition, 1993.
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