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1. Introduction: What is the challenge of light-front quantisation?

The idea of light-front quantisation (or light-cone quantisation) of relativistic
dynamical systems is more than fifty years old. It was introduced by Dirac [1].
In a nutshell, it suggests taking a point of view of a massless observer flying with
the speed of light. The picture of the relativistic dynamics such an observer would
have is much different from the conventional one. In the most general terms, the
challenge of light-front quantisation is to exploit the possible advantages of this
light-like observer’s point of view.

Light-front quantisation has been extensively studied and used for fifty years.
For a recent review, see Ref. [2]. Despite those massive efforts, the challenge is still
not answered properly. To explain why, we first explain what is potentially the most
prominent advantage of the light-front description.

The major complication of a complete (nonperturbative) treatment in the con-
ventional equal-time quantisation of relativistic dynamical systems (e.g., Lorentz
invariant field theories) is that it is not possible to single out a finite ”set of charac-
ters” taking part in the events. If we single out some set of particles, new particles
are created through interactions, and the number of particles is always potentially
infinite. At the moment, the only practical way out of that intractable situation
is the lattice regularisation. Under that regularisation, the situation is put under
control by keeping the number of degrees of freedom in the description proportional
to the number of the vertices of the lattice that replaces the continuum space. The
biggest promise of the light-front quantisation is that it may give an alternative way
to overcome the problem of an infinite number of interacting degrees of freedom.
Therefore, the challenge of light-front quantisation is to develop it to a stage where
it would be a serious rival to the lattice field theory. Evidently, it is nowhere close
to that stage of development.

The way the light-front keeps the infinite number of interacting degrees of free-
dom under control is very different from lattice regularisation. It is less severe: the
initial theory is distorted not at small and large distances, as is the case with the
lattice regularisation, but only at large distances. Because of that, the total number
of degrees of freedom the light-front formulation deals with is infinite, in sharp con-
trast to the lattice regularisation. Instead of cutting the total number of degrees of
freedom, light-front quantisation gives a possibility to break the total set of degrees
of freedom into subsets, each of the subsets finite, in such a way that there would
be no interaction between the degrees of freedom from different subsets. One may
say that the light-front promises to slice the complete theory into an infinite set of
independent subtheories in such a way that each subtheory constitutes a quantum
mechanics with a finite number of degrees of freedom.
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Each subtheory is singled out by a value of an additive semi-positive conserving
quantum number. The availability of such a quantum number is the major char-
acteristic feature of the light-front quantisation. Let us explain what this quantum
number is.

Let the light-like observer be flying along the third axis in the positive direc-
tion. The natural ”time” (i.e., the coordinate parametrising the world-line of the
observer) is then x+ ≡ (x0 + x3)/

√
2 (the normalising square root above is a mat-

ter of later convenience). Therefore, the hyperplane in the space-time where the
light-like observer is setting the initial conditions for all the dynamics is singled
out by the condition x+ = const. In analogy with the equal-time formulation, the
components of the momentum generating the shifts of the system at fixed x+ are
kinematical, i.e., even in the presence of an interaction between the parts of the
system, the total momentum is a sum of the momenta of the subsystems. In other
words, the operators corresponding to the kinematical variables are quadratic in the
creation–annihilation operators and easy to diagonalise even in the presence of an
interaction. To reiterate, the components of the momentum P− = (P0−P3)/

√
2, P⊥

are kinematical in the light-front quantisation (P⊥ denotes the set of the space-like
momentum components perpendicular to the third direction). This is quite similar
to the kinematical character of P3 and P⊥ in the equal-time quantisation. What is
not similar is the fact that P− is non-negative (P− = (P 2

⊥ + M2)/(2P+), where M is
the mass of the state).

This qualitative difference between the equal-time and light-front quantisations
enables the following consideration: Suppose we make an infrared regularisation of
the system that discards all excitations whose P− is smaller than some regularisation
parameter, and let P− be conserving for the regularised system as it is for the original
system. Then the consideration of the dynamics can be restricted to the sectors of
fixed P−, and every such sector cannot accommodate more excitations than its P−
divided by the minimal P− allowed. That is the case because adding one more
excitation would increase P− at least by the minimal value allowed for P−. Notice
that it is not the case for the equal-time quantisation: because the negative values
of momentum are allowed in that case, it is always possible to add more excitations
to any state without changing its momentum.

We summarise that the promise of the light-front quantisation is high: it promises
to give a non-perturbative definition of quantum field theories that may compete
and complement the lattice formulation.

In what follows, we will see how this promise fails in general, and how the non-
Abelian gauge theory escapes this failure because of recent findings. The rest of the
paper is organised as follows. Section 2 discusses the problem of zero modes, which
is the biggest threat to the light-front division into finite sectors; Section 3 specifies
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the discussion to non-Abelian gauge theories; Section 4 describes the recent findings
restoring the hope for realising of the light-front separation into sectors; Section
5 contains a description of the Hamiltonian of SU(2) gluodynamics reduced to the
smallest non-trivial sector of fixed P−; Section 5 contains the conclusion and outlook.

2. The Zero Modes

It is time to specify the infrared regularisation needed to cut P− from below.
It should respect the symmetries of the theory, in particular, the gauge symmetry
(as for the lattice formulation, the major application for the light-front quantisation
should be to the non-Abelian gauge theories). The only evident way to achieve this
is to compactify the x− direction. Therefore, in what follows we consider all the
fields to be periodic in the x− direction: A(x− = L/2) = A(x− = −L/2). In that
case, the spectrum of P− is discrete, and the smallest possible non-zero value of P−
is 2π/L. This approach, with finite x− span and discrete P− is known as discretised
light-cone quantisation (DLCQ) [3, 4].

What about the degrees of freedom that have zero P−? Potentially they endanger
our program, because it may be possible to add any number of such excitations to
any state without changing its P−. Such degrees of freedom correspond to the field
configurations independent of x−, ∂−A = 0. This is the infamous problem of light-
front zero modes. Because of it, the promise of light-front quantisation has yet to
be realised.

The problem of the light-front zero modes was first analysed in Ref. [4]. It was
pointed out that, by Lorentz invariance, the time derivative of a field A may enter
the action in the combination ∂+A∂−A. Therefore, in the cases where the time
derivative enters in this combination alone, no time derivative of the zero modes
enter the action, because their ∂− is zero. Thus, varying the action over the zero
modes gives an equation without time derivatives. In other words, the zero modes
are not among the dynamical degrees of freedom. The classical equations of motion
allow one to express them in terms of the real dynamical degrees of freedom at any
moment of time, without referring to dynamical evolution. After that, substituting
them back into the action yields a theory without zero modes, and the promise of the
light-front quantisation survives. That is, it survives in principle. But practically,
the equation for the zero modes is a nonlinear equation in partial derivatives. We
do not know how to solve it. It is instructive to analyse an example of the φ4 theory
to see what is the characteristic appearance of the zero modes equation (to obtain
it, integrate the equation for the field over x−).

We conclude that in general the light-front quantisation is stuck at the problem
of zero modes. It remains to consider particular cases: what if in a case of interest
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the zero mode problem can be solved?
Our message is that it is indeed the case: we are lucky. The most interesting

case of non-Abelian gauge theories has a zero mode equation which can be explicitly
solved, and the Hamiltonians can be explicitly obtained for particular sectors of
fixed value of P−.

In what follows, we consider the simplest relevant case of SU(2) gluodynamics.

3. Light-Front Gluodynamics

The first complication with gluodynamics is that in general there are time deriva-
tives of the field configurations independent of x− in the action. That is the case
because there is a four-vector apart from ∂µ at our disposal (it is the gauge field
Aµ). Evidently, combinations like (∂+φ)A−φ, where φ is a matter field, or transverse
components of the gauge field, are present in the action. Their presence complicates
the zero mode issues as well as the Hamiltonian treatment, because for the Hamilto-
nian treatment we want the time derivatives to enter the action in the combinations
piq̇i, where p are the momenta, and q are their conjugate coordinates.

Because of that, probably starting from Ref. [5], it is customary to consider
the light-front formulation in the light-cone gauge, A− = 0. It is important that in
this gauge the Euler-Lagrange equation that follows from variation of the action of
gluodynamics with respect to A− is implied by the rest of the equations. Thus, it
is consistent to set A− = 0 right in the action. Variation over A+ gives an equation
for A+ without time derivatives. The action at A− = 0, and at A+ excluded by the
equations of motion is amenable to the Hamiltonian treatment.

It was noticed in Ref. [6] that at finite span of x− the light-cone gauge is
inaccessible. This is the case because at finite volume there is a gauge invariant
quantity depending only on A−. It is the trace of the large Wilson loop embracing

the hole span of the x− direction: W = TrP exp (ig
∫ L/2
−L/2 dx−A−)/2. If W deviates

from unity, no gauge transformation can change this fact. The closest one can get to
the light-cone gauge at finite volume is to keep A− diagonal and independent of x−.
If we take this gauge (we will call it light-cone gauge even if its A− is non-zero), the
problem of the Hamiltonian treatment is non-trivial. In particular, it was studied
in Ref. [6], and in a number of subsequent papers. The results of those studies
were summarised in Ref. [7]. We extract from Ref. [7] the conclusion relevant for
our consideration: the problem of zero modes is very complicated in the case under
consideration. Other studies [8] seem to agree with that conclusion.

Our recent work [9] sets the whole picture in a new perspective. The major
conclusion is opposite: the zero mode equation is linear with respect to the zero
modes, it is quite possible to solve it, and to write down explicit expressions for the
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Hamiltonians at fixed values of P−.
The reason for this qualitative difference in conclusions lies in the choice of

variables: in Ref. [7], the formulation is made in the traditional light-cone gauge,
while in Ref. [9], there is no particular gauge choice, and the determination of the
canonical variables, zero modes, Gauss law, etc. is made prior to any gauge choice.
This enables a direct approach to solving the problem with fully retained zero modes.

In the next Section, we sketch the results of Ref. [9], and then, in Section 5, give
a description of the Hamiltonian in the sector of P− = 2π/L.

4. Canonical Variables and Zero Modes of SU(2) Gluodynamics

In Ref. [9], the problem of Hamiltonian treatment of the light-front gluodynam-
ics has been reconsidered using the Faddeev-Jackiw approach [10] to constrained
systems. In this Section, we give a simplified version of the treatment of Ref. [9].

There are two key steps to determine the canonical structure of the light- front
gluodynamics [9]. The first step is made in analogy with the equal-time treat-
ment. It is related with the determination of the variable canonically conjugate to
A−. The analogy hinges on the fact that the field equations for A− have second
time derivatives, which are related to the terms of the action whose structure is
∂+A−∂+A−. Notice that in this respect A− is similar to all the space components of
the gauge field if the dynamics of the latter is considered in the equal-time approach.
Therefore, by this analogy, one of the canonical variables is A−, and its canonical
conjugate is E = F+− + . . .. The dots denote the terms whose appearance is due to
the non-trivial dependence of the rest of the canonical variables on A− (see below).
Because of that dependence, time derivatives of A⊥, when expressed in terms of the
canonical variables, contain terms proportional to the time derivatives of A−, thus
extra contributions to E appear.

The second step is related to the treatment of the terms of the action containing
time derivatives of A⊥. They are

∂+A⊥D−A⊥. (1)

Because of the form of the term (1), it is natural to expand the field A⊥ over the
eigenfunctions of D−:

A⊥ = B⊥χ0 +
∑
p>0

[
χp√
2p

(a†p)⊥ +
χ†

p√
2p

(ap)⊥
]
, (2)

where D−χp = ipχp, χ†
p = χ−p, and p is the real eigenvalue of D−/i. To avoid

misunderstanding, χp on the right-hand side of Eq. (2) are matrices like A⊥ on the
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left-hand side; B⊥ is a real field independent of x−, and (a†p)⊥, (ap)⊥ are complex,
conjugated to one another, independent of x−. There is a scalar product with
respect to which D−/i is a Hermitian operator, and χp are its eigenfunctions (see
Refs. [9, 11]).

If this expansion of A⊥ is substituted in the action, the obtained form of the
action shows that a†⊥, a⊥ are the creation-annihilation operators, while B⊥ is the
zero mode (there are no time derivatives of B⊥ in the action). Simultaneously, extra
terms in E are generated replacing the dots above (see Ref. [9] for details).

The good news is that the action is quadratic in B⊥, and the equation for the
zero modes is a non-singular linear equation. Yet there is one more component of Aµ

which we have not mentioned: the A+ component. There are no time derivatives of
that component in the action, and the action is linear in it. This is quite similar to
the way the A0 component enters the action in the case of the equal-time treatment.
Also similar is its role: variation over it yields the Gauss law. It is crucial that the
Gauss law does not contain B⊥, and the equation for B⊥ does not contain A+: they
do not meet in the action.

So, the general structure of the light-front theory is quite similar to the general
structure of the equal-time theory: there are canonical variables determined regard-
less of the gauge (like the canonical pair E, A in the equal-time theory), and there
is a Gauss law. The only complication is that we need to solve for B⊥.

Now turn back to our program: Does the promise of the light-front formulation
persist? Can we slice the theory into independent quantum mechanical sectors, each
with finite number of the degrees of freedom? The answer is in the affirmative, but
there are subtleties. To see them, we need to give a description of the excitations
we have in the formulation, in particular, to trace how the total P− is built up from
contributions of the separate excitations.

First of all, using the Gauss law, we can demonstrate that only a diagonal part
of A−, independent of the location on the transverse plane and of x−, is a true
dynamical quantity. This is so because the non-diagonal, or x−-dependent part
of A− can be removed by a gauge transformation, and a diagonal part dependent
on the location on the transverse plane can be expressed in terms of the rest of
the dynamical variables through the Gauss law. The global contribution to A−
does not contribute to P−. Therefore, restricting P− does not restrict the dynamical
component of A−. Thus, the wave functions of the sectors with fixed P− will depend
on this variable. It is important that this is not a field but a number variable, i.e.,
there is only one degree of freedom related to this variable. It is also important that
the wave functions should be periodic with respect to this variable because of the
presence of ”large” gauge transformations (see Refs. [9, 12] for details). Thus, A−
does not threaten our program of slicing the theory into quantum mechanics.
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Next are the ”transverse gluons” excited by (a†p)⊥. First of all, to really count
them, we need to describe the spectrum p of D−. Generally, each p is a function of
location on the transverse plane, and a functional of A−. It is not very convenient
to count degrees of freedom by a function (not to say about a functional), but we
really do not need to do this because we can use the natural ordering of p: for
SU(2), we can describe the positive part of the spectrum by two parameters; one
is a non-negative integer n, and another is a variable σ = −1, 0, +1. Then n will
determine 2πn/L minimising the difference |p − 2πn/L|, and σ will determine the
sign of the deviation of p off 2πn/L. With such a definition, we gain the possibility
to number the modes by n and σ. Note that when n = 0 only σ = +1 is available,
because (a0,−)† = a0,+, and the term of Eq. (2) corresponding to n = 0, σ = 0 is the
zero mode B⊥. It is important to note that pn,σ is a non-smooth functional of A−:

pn,σ =
2πn

L
+ σDev(gA−), (3)

where Dev(∗) is a function whose value is equal to the smallest absolute deviation
of its argument off an integer multiple of 2π/L. Therefore, in the Hamiltonian, we
expect a non-smooth dependence on A− (see below).

After we know the numbering of the excitations, it is time to ask what is the
contribution of the excitations to the total P− of the system. Using explicit expres-
sions for P− [9] it is easy to verify that the contribution of the (n, σ) excitation to
P− is 2πn/L. Therefore, there is an excitation whose contribution to P− vanishes:
it is the (0, +) excitation.

That endangers our program: there is a zero-momentum physical degree of free-
dom. But the general idea of the light-front split survives. This is the case because
σ coincides with an Abelian charge of the excitations, and there is a component of
the Gauss law requesting the total Abelian charge on the transverse plane to vanish
all the time. So, if we add to an admissible state a single excitation (0, +), we
have to add one more excitation whose σ = −1, to keep the total charge zero. And
the smallest P− of such an excitation is 2π/L (this is the momentum of the (1,−)
excitation).

We conclude that the combination of the Gauss law and zero mode analysis
keeps the light-front split alive. In the next Section, we look at a simplest non-
trivial quantum mechanics related to light-front SU(2) gluodynamics.

5. The P− = 2π/L Sector

All this is very nice, but does it really work? What are the quantum mechanics
appearing in the sectors of fixed P−? The real interesting physics is in the sectors of
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large n ∼ L. But the sectors of low n should also contain valuable information. For
example, they should contain ultraviolet divergences from which we can deduce the
non-perturbative running coupling. This idea that the two-dimensional quantum
mechanics contains dimensional transmutation was introduced in Ref. [13].

So, the first test of the approach of Ref. [9] is to try it on the sectors of small P−.
The sector of P− = 0 was considered in Ref. [9]. It is trivial in the sense that there
are no ultraviolet divergences in that sector. However, it is quite interesting in its
own right. The objects one finds in this sector are hybrids of “fluxes” known from
finite volume equal-time formulation [14], and non-Abelian plane waves of Coleman
[15]. Considering this sector allows the conclusion that qualitative features of the
infinite volume gluodynamics (like the presence of the mass gap) depend on the way
the infinite volume limit is taken.

The next in complexity is the sector of P− = 2π/L. In what follows, we describe
the Hamiltonian reduced to this sector.

5.0. The Structuring

The description we give is structured: there are three levels. The first level in-
volves the synthetic quantities constructed from the fields, like components of the
field strength, Fkl. The second level resolves the first expressing the Hamiltonian
in terms of the creation–annihilation operators. The last, third, level specifies the
description to a sector of a fixed number of quanta of the longitudinal momentum
P−. The notations of Ref. [9] are used in the description.

5.1. The Synthetic Level

The Hamiltonian consists of the following terms:

H = K + D + F + B. (4)

K is the kinetic energy of the global angle variable q, 0 ≤ q ≤ 1 (K =
−g2L/(2V (2π)2)(∂/∂q)2, V is the volume of the transverse space). D, F , and B
are functionally dependent on the transverse components of the gluon field, Ak, and
on q. D is the characteristic light-front term containing the inverse of D−, F is
the most conventional term—the square of the transverse components of the field
strength, and B comes from the zero modes.

Here are the explicit expressions for the terms:
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D =
1

2

∑
p 6=0

∣∣∣∣
(

1

D−
DkF−k

)p∣∣∣∣
2

; (5)

F =
1

4
< Flm|Flm >; (6)

B = −1

2
JkM

−1Jk. (7)

Here M is an operator acting in the space of the zero modes, i.e., functions depending
only on the transverse coordinates and x+:

M =< χ0| −D2
kχ0 >, (8)

which is a sum of two terms; first of them is just the transverse Laplacian, and the
second is quadratic in the transverse components Ak. Also, throughout this section,
A⊥ is given by Eq. (2) with B⊥ set to zero. The current Jk in Eq. (7) is as follows:

Jk =< χ0|ig
[
Ak,

1

D−
DlF−l

]
+ DlFlk > . (9)

On the right-hand sides of Eqs. (5) - (7), there is an integration over the trans-
verse coordinates,

∫ ∏
k dxk, which is not explicitly shown. Jk is a function of the

location in the transverse space.
The inverse of M in Eq. (7) is understood in the sense of expansion in powers of

the fields. It involves the inversion of the transverse Laplacian. Here and in what
follows, this inversion is understood as an operator which annihilates the zero mode
of the function it acts on.

5.2. The Creation–Annihilation Operators Level

Now we need to resolve the synthetic quantities of the previous section in terms
of the creation–annihilation operators. First we list the relations we will need:

(ap
k)

† =
√

2pAp
k , p > 0; (10)

A−p
k = (Ap

k)
†; (11)

[χp1 , χp2] = ε(σ1, σ2)
χp1+p2√

L
; (12)

A− =
1

∆⊥

g

L

∑
p>0

σp(a
p
k)

†ap
k; (13)
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p =
2πn

L
+ σDev

[
2πq

L
+ gA−

]
. (14)

In the above relations, the sign ε depending on the two signs of deviations of the
p-eigenvalue off an integer multiple of 2π/L is (i) antisymmetric in its arguments, and
(ii) its non-trivial values are as follows: ε(+,−) = −, ε(0, +) = −, and ε(0,−) = +
(0 in the arguments of ε appears when the corresponding eigenvalue is an integer
multiple of 2π/L); ∆⊥ is the transverse Laplacian, whose inversion is understood as
above; the function Dev[∗] in Eq. (14) is by definition as follows:

Dev[x] = min
n

∣∣∣∣x− 2πn

L

∣∣∣∣, (15)

i.e., it is the magnitude of the deviation of x from its nearest integer multiple of
2π/L (see also Eq. (3)). To avoid misunderstanding, A− above is not a matrix as
before. It is a number field, and the right-hand side can be treated as its definition;
it is related to A− as it was before: using the notations of Ref. [9], now A− =
(Ã0

− −
∫

dx⊥Ã0
−/V )/

√
L.

With the equipment of the above relations, we resolve the ”square root” of the
D-term as follows:

(
1

D−
DkF−k

)p

=
1

ip

(
∂k(ipA

p
k)−

ig√
L

∑
p′ 6=0

ip′ε(σp−p′ , σp′)Ap−p′
k Ap′

k

+ igε(σp, 0)Ap
k∂kA−

)
. (16)

The rest of the terms in the Hamiltonian are resolved in the same way.

5.3. Specification for a Fixed Value of P−

Specification for a particular sector of fixed longitudinal momentum is the most
involved part of the description of the Hamiltonian. We are not ready to give it for
the general case of arbitrary fixed P−. We consider the simplest non-trivial case.

5.3.1. Specification for P− = 2π/L

First of all, three kinds of excitations are involved:

(i) the excitation with the lowest possible eigenvalue of D−/i; we will call it
a-excitation, its creation–annihilation operators will be denoted by a†k, ak;
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(ii) the excitation with the next-to-lowest possible eigenvalue of D−/i, the b-
excitation (b†k, bk); and

(iii) the excitation whose D−/i coincides with the value of P− = 2π/L, the c-
excitation (c†k, ck).

So, for example, a c-excitation can decay into a pair of a and b without breaking
the conservation of the longitudinal momentum (a carries no longitudinal momen-
tum, and b carries the same quantum of the longitudinal momentum 2π/L as c
does).

The reduction of the above Hamiltonian to the sector under consideration can be
performed by retaining only terms up to fourth order in the creation–annihilation
operators, and containing only the a−, b− and c− operators.

The B-term above is the most amenable with respect to this reduction. So we
start the reduction with

5.3.2. B-Term Reduction

The B-term is a term of the kind JkM
−1Jk, and both Jk and M−1 are compli-

cated (non-polynomial) functionals of the creation–annihilation operators. The first
step in reduction is to notice that the expansion of Jk in the creation–annihilation
operators starts from the quadratic term. Therefore, the leading term in the expan-
sion of the B-term in powers of the creation–annihilation operators is the only one
we need for our reduction, and we can replace in the leading term M−1 by 1/(−∆⊥)
(we recall that there is no ambiguity in the action of this operator on a constant
function).

The next step is to reveal the leading quadratic contribution to the current Jk

(see Eq. (9)). At the moment, Jk is expressed in terms of Ak. Ak are expandable
in powers of the creation–annihilation operators, and the expansion starts from the
linear term; Jk in turn is expandable in powers of Ak, and the leading term is
quadratic. So, we start from retaining the leading term of the expansion of Jk in
powers of Ak:

Jk = ig < χ0|2∂l[Ak, Al] + [Al, ∂kAl] > . (17)

All we need to obtain the desired reduction of the B-term now is to substitute in
Eq. (17) the expansion Ak = a†kχ(0,+)/

√
2pa + b†kχ(1,−)/

√
2pb + c†kχ(1,0)/

√
2pc + h.c.,

calculate the commutator involved in Eq. (17) using Eq. (12), and compute the
scalar product of the commutator with χ0 keeping in mind that the eigenvectors χ

12



form the orthonormal set. Here is the outcome of these manipulations:

Jk =
2ig√

L
∂l

(
b†kbl − b†l bk

pb

− a†kal − a†l ak

pa

)

+
ig√
L

(
b†l ∂kbl − (∂kb

†
l bl

pb
− a†l ∂kal − (∂ka

†
l )al

pa

)
. (18)

Here pa = Dev[2πq/L], pb = 2π/L− Dev[2πq/L], and pc = pa + pb.
If we substitute the above expression of the Jk in the B-term, it will generate a

number of contributions which can be classified as b-b interaction, a-a interaction,
and a-b interaction. In our sector, we need only the a-b contribution (because we have
only one a-excitation, and only one b-excitation). Retaining the a-b contribution we
obtain

B =
g2

L

1

papb
jk(b)

1

∆⊥
jk(a), (19)

where
jk(a) = 2∂l(a

†
kal − a†l ak) + (a†l ∂kal − (∂ka

†
l )al), (20)

jk(b) is obtained from jk(a) by the substitution a → b. The last thing to notice
is that the ugly non-smooth Dev-function featuring the expressions for pa, pb can
be dropped out of Eq. (19). To see how it works, consider a small value of q and
observe that here papb = (2π/L)2q(1 − q) which is symmetric with respect to the
reflection q → 1 − q. Therefore, the exact expression with Dev, which works also
for the values of q exceeding 1/2, is identical in this case with the above naive
representation without Dev, which in general holds only at q < 1/2.

Therefore, our final expression for the reduced B-term is as follows:

B =
g2

(2π)2

L

q(1− q)
jk(b)

1

∆⊥
jk(a). (21)

5.3.3. Reduction of the D- and F -terms

To reduce the D- and F - terms we notice that they both are infinite sums over the
spectrum of D−/i. Only finite number of terms of these sums contribute when the
action of the Hamiltonian is reduced to the sector P− = 2π/L. In fact, an inspection
reveals that only the terms whose eigenvalues p satisfy p ≤ P− contribute. Therefore,
the D-term contribution is in fact |Da|2 + |Db|2 + |Dc|2, where, for example, Da =
((1/D−)DkF−k)

a; and the F -term contribution is (|F 0
lm|2+|F a

lm|2+|F b
lm|2+|F c

lm|2)/2,
where, for example, F 0

lm = −ig([Al, Am])0.
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When the transverse components Ak are replaced in those expressions by the
sum of the creation–annihilation operators divided by the square roots of the cor-
responding eigenvalues, non-polynomial functions of the creation–annihilation op-
erators appear, because the square roots of the eigenvalues downstairs contain A−,
which is quadratic in the creation–annihilation operators (see Eq. (13)). For our
reduction, we need to expand these functions in A− and to retain only the linear
terms in A−. A Characteristic example is as follows:

1√
2p
' 1√

2p̄

(
1− gσε(q)

2p̄
A−

)
, (22)

where p̄ is p at zero A−, σ is the sign of the deviation of p off the multiple integer
of 2π/L, and ε(q) = +1 when q < 1/2 and −1 otherwise.

When Eq. (13) is used to express A− in terms of the creation–annihilation
operators, a characteristic ”potential” generated by the a- or b- charges enters the
formulas. We introduce a dedicated notation for it:

Va =
1

−∆⊥
a†kak, Vb =

1

−∆⊥
b†kbk. (23)

Also, we will use another useful notation:

Ak =
ak√
2pa

, (24)

and similarly for other creation–annihilation operators (for example, C†k = c†k/
√

2pc).
With these notations, the reduced expressions for Da, Db, . . . , F c are as follows

(by reduced we mean that some terms have been omitted because they are vanishing
in the sector under consideration):

Da =
(
1− g2ε(q)

2Lpa

Vb

)
∂kA†

k +
(
1 +

ε(q)

2

)
g2

Lpa

(∂kVb)A†
k +

−ig√
L

pc + pb

pa

C†kBk; (25)

Dc = ∂kC†k +
ig√
L

pb − pa

pc

B†
kA†

k; (26)

F 0
lm =

−ig√
L

(AlA†
m −AmA†

l ) +
ig√
L

(BlB†
m − BmB†

l ); (27)

F a
lm = ∂l

(
A†

m

(
1− g2Vbε(q)

2Lpa

))
− ∂m

(
A†

l

(
1− g2Vbε(q)

2Lpa

))

+
−ig√

L
(BlC†m − BmC†l ); (28)
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F c
lm = ∂lC†m − ∂mC†l −

ig√
L

(B†
lA†

m − B†
mA†

l ). (29)

The two missing expressions for Db and F b
lm are obtained from the expressions for

Da and F a
lm by the substitutions A → B, a → b, and −i → i for the imaginary unit.

With these expressions at our disposal, the reduced Hamiltonian is derived by
taking the sum of their magnitudes squared, and by omitting the excessive terms.

5.3.4. The three-gluon vertex

The terms bilinear in the creation-annihilation operators are easily obtainable;
they are as they should be, a†k(−∆⊥)/(2pa)ak+b†k(−∆⊥)/(2pb)bk +c†k(−∆⊥)/(2pc)ck.

The next in complexity is the three-gluon vertex describing the decay of a c-
excitation into a pair of a- and b- excitations. We will express it in terms of the
Fourier modes of the above operators, A†

k(x) ≡ ∑
ka(Ã†

k(k
a) exp ikax)/

√
V , etc.,

where x is the location in the transverse space, ka is the transverse momentum of
the a-excitation, and the V is the volume of the transverse space. The term of the
Hamiltonian we are looking for is representable as follows:

G3 =
∑

ka,kb,kc

δ(kc − ka − kb)Ã†
a(k

a)B̃†
b(k

b)C̃c(k
c)Vabc(k

a, kb, kc) + h.c. (30)

Now our task is to get an expression for Vabc (summation over the transverse vectorial
indices abc is implied above).

A calculation along the above lines gives

Vabc(k
a, kb, kc) =

2g√
LV

[
δbc

pa
(kb

apa−ka
apb)+

δac

pb
(kb

bpa−ka
b pb)− δab

pc
(kb

cpa−ka
c pb)

]
. (31)

We have a loose notation in the above formula: e.g., the subscript a denotes both
vectorial index of the a-excitation, and the label on the D−/i-eigenvalue. To avoid
misunderstanding, it is a vectorial index when it hangs on the transverse momenta,
or on a Kronecker’s delta-symbol.

The only term we are to determine in the reduced Hamiltonian Hred = K +G2 +
G3 + G4 is the G4-term. Partly we know it, because we specified above reduction of
the B-term, which gives a contribution to G4.There are quite a number of terms in
G4, and we will not write them down explicitly. We hope that the general pattern
is clear, and the reader can recover the rest of the terms in G4.

Comparison with Ref. [13] shows that the dimensional transmutation is implied
by this Hamiltonian. The crucial check of the whole construction can be given by a
calculation of the numerical coefficient by the leading inverse logarithm of the ultra-
violet cut-off in the running coupling, because its value is known from conventional
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perturbation theory. This calculation is in progress.

6. Conclusion and Outlook

We described a promising approach to a non-perturbative description of non-
Abelian gauge theories. It results from previous efforts to answer the challenge of
the light-front quantisation of the gauge theories (see Ref. [2]), and from recent
analysis of the light-front formulation [9]. The first result we expect from this
approach is an alternative non-perturbative definition of the running coupling that
can be obtained from the quantum mechanics in the sector P− = 2π/L.

In more general terms, we are at the very beginning of a long road: we need to
generalise to SU(N), to include fermions, and, the most interesting, to go to the
sectors of large P−.

We note also that the finite volume light-front formulation may play an important
role for string theory, where one has to quantise a compactified theory. Since we
have obtained a light-front formulation without a gauge fixing and in finite volume
our results can stimulate a deeper understanding of a relation with novel M-theory
developments [16].

It is too early to make a conclusion about the approach we presented, but we
believe in its promising future.
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