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Abstract

A scaling between isotopic distributions for elements with Z < 8 has been observed
which allows a transparent characterization of the dependence of such distributions on
the overall isospin of the system. For the cases investigated, this scaling is not very
sensitive to secondary decays and applies to a broad range of statistical production
mechanisms including evaporation, strongly damped binary collision, and
multifragmentation. The origins of this scaling behavior for the various reaction

mechanisms are explained and the implications for future research are discussed.




The availability of high intensity radioactive beams facilitates the exploration of the
isospin degree of freedom in nuclear reactions. The isotopic degree of freedom is espe-
cially important for understanding the behavior of the charge symmetry term of the nuclear
equation-of-state(1-3|, for obtaining information about charge equilibration|4-6], and for pro-
viding stringent tests for reaction models. Understanding the connection between the en-
trance channel isospin and the isotopic distribution of reaction products is also important for
optimizing production of rare isotopes far from stability. Large solid angle measurements of
isotopic yields that can provide insight into such issues are rare. Nonetheless, recent measure-
ments have revealed systematic isospin dependencies [7] that now appear to be ma;lifested
in a variety of nuclear reactions over a wide range of incident energies.

To iilustrate how such isotopic yields may be systematized, we examine the dependence of
the isotopic yields within the grand-canonical ensemble. While this approach is not strictly
valid for finite nuclear systems, it offers the advantage of transparent analytical formulae.
In this approach the isotopic yields are governed by both the neutron and proton chemical
potentials, p,, and p, and the temperature T, plus the individual binding energies, B(N,Z),

of the various isotopes [8,9]:

Y(N,Z) = F(N,2,T) - exp(B(N, 2)/T) - exp(N 1,/T + Z 1,/ T) (1)

The factor F(N,Z,T) includes spin degeneracies and information about the secondary
decay from both particle stable and particle unstable states to the final ground state yields.
A precise global description of experimental isotope distributions is difficult due, in part,
to the complexity of describing the excitation and decay reaction products from states far
above the energy threshold for particle emission[10-12]. Similarly, the accurate prediction
of F(N,Z,T) is difficult due to a lack of comprehensive energy. =pin and branching ratio

information. about many relevant levels that contribute to these i« av< 111-121. It has been




shown that some of these difficulties can be minimized by assuming that the influence of
secondary decay on the yield of a specific isotope is similar for two different systems labeled
1 and 2 that have same temperature but different isospins, i.e. Fi(N,Z,T) = F2(N,Z,T) [7).
In this case, the relative isotope yield ratio, R21(N, Z), depends on only three parameters
7]:

R (N,2) =Ya(N,Z2)/Yi(N,Z) =C -exp(N -a + Z - §) (2)

where @ = Ap, /T and 3 = Ap,/T reflect the differences between the neutron and pro-
ton chemical potentials for the two reactions and C is an overall normalization constant.
The parameters a,3 and C are obtained by fitting Ra;. To simplify the expressions used
throughout this article, we define differences between the observables for the two systems as
AX = X3 — X1, eg Ap, = ppy— ;- We have also chosen the system in the numerator to
be more neutron-rich than the one in the denominator, i.e. No/Z> > Ny/Z;. This definition
differs from that of Ref. [13-15] where the inverse ratios, R12(N, Z) have been used.

The accuracy of this representation can be very compactly displayed by constructing a
scaled isotopic ratio, S(3) = Ro1-exp(—3 Z) as a function of N. Where this parameterization
is accurate and the best fit value of 3 is chosen, values for S(3) of all elements lie along a
straight line on a semi-log plot. We refer to this trend as isotopic scaling. The data points
plotted next to the label "multifragmentation” in Figure 1 denote values for S(3) extracted
from ratios of isotopically resolved differential multiplicities extracted from multifragmen-
tation events in central 124Sn +124 §n and '28n +11? Sn collisions(7]. The scaled isotope
ratios for fragments with 3 < Z < 8 lying along a single line, is consistent with Eq. 2 and
the well known success of equilibrium parameterizations for multifragmentation [16]. More
surprisingly, the isotopic scaling is observed for other reactions shown in Figure 1: strongly
damped binary collisions (*80 induced reactions on two targets ?Th and 97 Au) [17] and

evaporative compound nuclear decay (*He+!16Sn and *He +21 Sn collisions)[14], for which




Grand-Canonical Ensemble approaches would appear to have little relevance. Why isotopic
scaling is also observed in these cases is examined below.

An examination of strongly damped collisions reveals that isotopic scaling is reasonably
well respected at low incident energies (E/A < 10MeV) and at relatively backward angles
i.e. when equilibrium is established between the orbiting projectile and target. In such cases,
the isotopic yields follow the " Qgq-systematics”[17,18], in which the primary isotope yield of
the projectile-like fragment depends primarily on the @-value of the mass transfer and can

be approximated by

Y(N, Z) « exp((Mp + My — Mp — Mjy)/T) 3)

where Mp and Mr are the initial projectile and target masses, and M} and My are the
final masses of the projectile- and target-like fragment. Here, T has a natural interpretation
as the temperature, but is not always assumed to be so. Using this expression, charge and
mass conservation, and expressing explicitly only the terms that depend on N and Z, one

can write Hg; as

Ry(N,Z) x exp[(BE(N2 — N,Z3 — Z) — BE(N1 — N, 2, - 2))/T), (4)

where Z,- and /V; are the total proton and neutron number of reaction ;. BF is the bind-
ing energy of a nucleus. Expanding the binding energies in Taylor series, one obtains an

expression of the form

BE(Ny—N,Zy—Z)~BE(N1=N,Z1~Z) =~ —Asy-Z—As,-N+c-Z? +d-N*+e-ZN, (5)

where As, and As, are the differences of the neutron and proton separation energies for the

two compound systems. Evaluating Eq. 5 within the context of a liguud <lrop expansion, one




finds that the second order terms are of order (1/A), where A the mass number, relative to

the first order terms. The leading order term in equation 4 becomes

Ry x exp((—Asp - N — Asp - Z)/T). (6)

Comparison of Eqs. 2 and 6 reveals that the difference in the average separation energies
plays a corresponding role to the difference in chemical potentials in the grand canonical
expression, an intriguing result when one considers that g = —s in the low temperature
limit[12]. From Eq. 5, one expects that Eq. 6 will become less accurate and eventually break
down leading to a failure in isotopic scaling when the range of fragment masses considered
becomes large. More detailed examination suggests that one may also expect the breakdown
of this scaling trend for target and projectile far from the valley of stability.

Next we consider the yields from higher energy reactions involving the formation of a
composite system and the subsequent decay via evaporation of different isotopes. The scaling
behavior for fragments detected at backward laboratory angles (8 = 160°) in *He +11% Sn
and *He +'% Sn collisions at E/A = 50MeV [14] is illustrated in Figure 1, next to the
label "evaporation”. Scaling is not respected in these reactions at forward angles where
contributions from pre-equilibrium processes become significant [14].

To explore the factors which govern the evaporation rates of different species that con-
tribute to the evaporation systematics, we utilize the formalism of Friedman and Lynch
[19] which provides statistical decay rates derived from detailed balance as in the Weisskopf
model (20]. When the relative rates are dominated by emission within a particular window
of source-mass or source-temperature, the relative yields are directly related to the instan-

taneous rates
dn(N,Z)/dt « T* -exp(—Vo/T+ N - fa/T+ Z - f3/T - B/T) (7)

where V; gives the Coulomb barrier, and the terms f; (f;) represent the vxcitation contribu-




tion to the free energy per neutron (proton). These factors are often modeled by the excited
Fermi gas wherein they attain values determined by the temperature and density of the neu-
tron (proton) distribution. The factor B = BE(N;, Z;) — BE(N; — N,Z; — Z) — BE(N, Z)
reflects the separation energy associated with the removal of the isotope from the parent
nucleus, here denoted by the subscript ”i".

If one calculates Rz, using yields from two systems, and if one adopts the approximations
for the binding energy differences between parent and daughter nuclei utilized in Eq. 6, one

obtains:

Ru(N,Z) ocexp[{(—Asn + Af) - N+ (-Dsp + Afy + eAR(Z; - 2)) - ZY/T]  (8)

where ©(Z) is the electrostatic potential at the surface of a nucleus with neutron and proton
number N and Z. The sum of the separation energies, free excitation energies and electro-
static potentials play the same roles as chemical potentials in Eq. 2. As the second order
term from the electrostatic potential is small for the decay of large nuclei, all factors in the
exponent are proportional to either N or Z. Eq. 8 suggests that isotopic scaling can be
expected for evaporation of nuclei with masses small in comparison to the total mass.

In a_similar manner, relative isotope ratios predicted for multifragmentation processes
by the Expanding Evaporating Source (EES) model [21] will also display isotopic scaling.
This latter model utilizes a formula for the particle emission rates which is formally identical
to that of Eq. 8 but assumes values for the separation, Coulomb, and free energies, B,
Ve and f* that differ from those in Eq. 7 principally because the residue may expand to
sub-saturation density. In this circumstance, the separation energies may vanish or become
negative, enhancing the emission rate of fragments with 3 < Z < 20. As in the case of pure
evaporation theory, all factors in the exponent are proportional to either N or Z.

Thus in all four models, compound nuclear evaporation, strongly <l.unped binary col-




lisions, equilibrium multifragmentation, and the time dependent EES multifragmentation
model[21], isotopic scaling is expected because the logarithm of the relative rates can be ex-
panded to first order in NV and Z . At low excitation energies, the differences in the neutron
and proton separation energies for the two systems are major factors in all expressions. For
systems of comparable mass but very different N/Z ratio, the volume, surface, and Coulomb
contributions to the separation energy largely cancel. The most important contribution to
the differences in the neutron and proton separation energies in Ry; comes from the symme-
try term in the semi-empirical (liquid-drop) mass formula. In the EES model, this symmetry
term must be extrapolated to sub-saturation density as the system expands; a measure-
ment of Ry can thereby probe the density dependence of the symmetry energy [22]. Recent
SMM model calculations [12] indicate that p, and s, are closely related (u, =~ —sp +f)
for 0 < T < 3MeV, where the decay configurations are mainly binary, but the connection
between u,, and s, becomes increasingly weak as the role of multifragment decay configu-
rations become important. For multifragment decays in the equilibrium limit, the chemical
potentials carry the information determining the relative N/Z ratios of the free nucleons and
light particles and how this differs from the N/Z ratio of more strongly bound fragments. If
the fragments expand at high temperature, the chemical potentials will reflect the density
dependence of their symmetry energies as well [21,23].

The utilization of single separation energies or chemical potentials in Eqs. 1-8 is an
approximation that will break down when the range of fragment charges and masses included
in the scaling plot becomes larger. The non-linear terms in the exponent come both from
the symmetry energy of the remaining system and from Coulomb potential terms. As more

detailed data over a broader range of nuclei become available, it mayv be interesting to expand

the exponents in Egs. 1-8 to second order in N and Z and explore the «merging systematics.
Many micro-canonical equivalents to the formalism for multifr.uinert vion represented by
Eq. 1 have Coulomb terms that are explicitly quadratic, density ««j:. t 1t ind opposite in




sign to the term V. in Eq. 8.

The systematics described by Eq. 2 rely on the emission mechanism for the fragments in
each reaction being described statistically with some common effective temperature and that
distortions from secondary decays cancel[7, 13-15]. However, one should note with caution
that exhibition of the systematic trends does not imply that both reacting systems proceed
with the same reaction mechanism. The data labeled as "mixed” in Fig. 1 demonstrate this
point. The isotopic yields of fragments produced in central Au + Au multifragmentation
process at E/A = 35MeV/ [24] can be related via isotopic scaling to those produced in lower
multiplicity evaporation process produced in Xe + Cu reactions at E/A = 30M eV'[25]. As
the emission mechanisms in the two reactions differ significantly, the parameters o and 3
will reflect a mixture of factors from the evaporation and multifragmentation models, eval-
uated at slightly different temperatures for the two reactions. Nothing from the systematics
itself reveals this complexity of interpretation. In order to draw correct conclusions from
isotopic measurements, it is therefore absolutely essential to obtain additional experimental
information that elucidates the underlying reaction mechanism.

In summary, we have observed a scaling between isotopic distributions which allows a
transparent characterization of the dependence of such distributions on the overall isospin
of the system. This scaling applies to a broad range of statistical production mechanisms
including evaporation, strongly damped binary collision, and multifragmentation. We have
shown how this systematics can be explained by the theories most frequently applied to such
processes and suggested that higher order terms may lead to deviation when the study is
extended over much wider ranges of charge or neutron number.

This work was supported by the National Science Foundation nnder Grant Nos. PHY-
95-28844 and PHY-96-05140.

Figure Caption:

Figure 1: The scaled isotopic ratio, S{3) is plotted as a funti i -t N using the best




fit value of 3 obtained from fitting isotopes with Z > 3. The data points plotted next to
the label "multifragmentation” in Figure 1 denote S(3) extracted from multifragmentation
events in central 248n +124 Sn and '28n +112 Sn collisions{7] with 3 = —0.40, a = 0.36.
The data labeled as "mixed” are S(3) constructed from isotope yields produced in central
Au + Au multifragmentation events [24] and evaporation events in Xe + Cu [25] reactions
with 8 = —0.27, a = 0.41. The scaling behavior for evaporation process is illustrated by the
reactions *He +11% Sn and *He +1?* Sn [14] plotted next to the label "evaporation” with
3 = —0.82, a = 0.60. Systematics of the strongly damped binary collisions is represented by
the data of 0 induced reactions on two targets *32Th and 197 Au [17] plotted next to the
label "deeply inelastic” with 3 = —1.1, a = 0.74.
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