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Binary Fluids with Long Range Segregating Interaction I:

Derivation of Kinetic and Hydrodynamic Equation.

by

S. Basteay, R. Esposito�, J. L. Lebowitz+ and R. Marra#

Abstract: We study the evolution of a two component uid consisting of \blue"
and \red" particles which interact via strong short range (hard core) and weak long
range pair potentials. At low temperatures the equilibrium state of the system is one
in which there are two coexisting phases. Under suitable choices of space-time scal-
ings and system parameters we �rst obtain (formally) a mesoscopic kinetic Vlasov-
Botzmann equation for the one particle position and velocity distribution functions,
appropriate for a description of the phase segregation kinetics in this system. Further
scalings then yield Vlasov-Euler and incompressible Vlasov-Navier-Stokes equations.
We also obtain, via the usual truncation of the Chapman-Enskog expansion, com-
pressible Vlasov-Navier-Stokes equations.

1. Introduction.

The process of phase segregation in which a system evolves from an initial unstable
homogeneous state into a �nal equilibrium state consisting of two coexisting phases is
of continuing theoretical and practical interest [GSS], [FLP], [L]. Such a process occurs
whenever the system, which is initially at values of the thermodynamic parameters, say
temperature T0 and pressure p0, corresponding to a single homogeneous phase has its
parameters \suddenly" changed to new values, say T and p, at which there is a coexistence
of phases.

This happens, for example, when an alloy is `quenched' from a high temperature melt
or solid to a low temperature solid state by sudden cooling [GSS]. After such a quench the
system �nds itself in an unstable (or metastable) situation, as far as the spatial concen-
trations, which have not been able to adjust rapidly enough to the "sudden" quench, are
concerned and domains of the two equilibrium phases form and start growing in time. This
proceeds until there are \in the �nal state" only two regions of pure equilibrium phases
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separated by an interface. Since the kinetics of the domain growth have a profound inu-
ence on the properties of the alloy, this problem has been and continues to be extensively
studied both theoretically and experimentally [GSS]. For such alloy systems the segrega-
tion process takes place mainly through the (anti)di�usion of the two components|from a
uniformly mixed state to a demixed one. There are no macroscopic matter or energy ows
since the system is a solid and has a high heat conductivity which keeps the temperature
equal to some constant ambient value. The only relevant conserved quantities are therefore
the particle numbers of the two components and the macroscopic equations describing the
process are fairly well established: these are the well known Cahn-Hilliard equations [CH]
and variations on them. We refer the reader to reviews on this subject [GSS].

The situation is much less clear for phase segregation in uids where macroscopic ows of
matter and heat are important. There are now additional conservation laws for momentum
and energy and there is no general consensus even on what hydrodynamical equations
are most appropriate for describing the macroscopic evolution of the system [S], [OP],
[AGA]. In particular, it is not clear which is the correct coupling between the Cahn-Hilliard
equation for the order parameter and the Navier-Stokes equation for the uid velocity.

To make a start on the mathematical analysis of such processes we investigate a model
binary uid introduced in [BL] where the process of phase segregation was studied numer-
ically.

In the present work we derive general equations appropriate both in the one phase and
in the coexistence region. In part II we consider applications to the segregation process
including an analysis of new numerical results. Many of our discussions here will be semi-
heurustic. In particular will not go into detail about the domain of validity of the technical
conditions necessary for the rigorous mathematical establishment of the results.

The model we study is composed of two types of particles, call them red and blue.
There are Nr red and Nb blue particles in a cubic box of volume � = Ld; we will generally
consider d = 3 and use periodic boundary conditions. The particles all have unit mass and
hard core diameter a. Particles of di�erent kind also interact with each other through a
long range pair potential of the Kac type, having a range ` and a strength A`. By properly
choosing A`, we obtain, in the limit ` ! 1, a system whose equilibrium properties are
described by a mean-�eld type phase diagram exhibiting a demixing phase transition for
temperature T < Tc [LP].

This transition is essentially independent of the hard core size a and the dimension-
less microscopic particle densities �ra

3 and �ba
3 can therefore be arbitrarily small in the

demixed phases. This means that we can have a situation in which, at least in principle,
the whole phase transition is well described by a Vlasov-Boltzmann type of kinetic equa-
tion. We will in fact see that we can, by suitably scaling space and time and the densities,
obtain, at least on the formal level, a set of nonlinear Vlasov-Boltzmann (VB) equations,
describing the evolution of the one particle distribution functions f�(q; v; t), � = r; b.

The VB equations we derive are of a form similar to ones conjectured for a one com-
ponent uid with hard cores and an attractive long range interaction [DS], [G]. Such a
system however requires the hard cores for stabilization against collapse [LP] and �a3 is
greater than 1=3 in the liquid phase. It is therefore not clear that a VB equation is an
appropriate kinetic description of such a liquid-vapor transition. This is the motivation

2



for introducing the binary model we consider here.

We discuss the scalings necessary to go from a microscopic Hamiltonian description of
the time evolution to the VB equations in Section 2 leaving a formal derivation, in the
spirit of Lanford [Lan], to Appendix C. The equations themselves are of the same form as
those used in [BL] for the kinetics in the coexistence regime of this system. Their numerical
results for the time evolution and the analysis of the stationary states showed that these
VB equations for the one particle distributions f� indeed lead to the phase segregated
state expected from purely equilibrium considerations.

While the mesoscopic description in terms of the one-particle distribution functions
is a great simpli�cation compared to the full microscopic representation, it is still more
complicated than the macroscopic theory that treats the binary system as a continuum
with well de�ned local density �(x; t), concentration di�erence '(x; t), velocity u(x; t)
and temperature T (x; t). The derivation of hydrodynamic equations from the Boltzmann
equation (which one expects to be structurally of the same form as those descibing dense
binary uids) is closely related to the problem of �nding approximate solutions of the
Boltzmann equation. The reason for this is that the uid dynamic variables are de�ned
and change on space and time scales which are very large when measured in units of the
mean free path and mean free time between collisions, i.e. the kinetic or mesoscopic scale.
Therefore, it can be expected that the system will reach a state close to local equilibrium
in a macroscopically very small time interval, meaning that f�(x; v; t) should stay close
to local Maxwellians, with parameters ��, u and T , which change slowly on the kinetic
scale. The big disparity between the kinetic and hydrodynamic scales suggests looking for
a solution of the Boltzmann equation as a series expansion in the scale parameter which
is the ratio of these two scales. Many rigorous results in this direction have been obtained
in recent years, especially for the Euler (E) and the incompressible Navier-Stokes (INS)
equations. The situation is less satisfactory in the case of the compressible Navier-Stokes
(NS). This is a consequence of the fact that while the E and INS equations correspond
to well de�ned scaling limits, in which the mean free path goes to zero, there is no such
scaling limit for the NS equations as can be seen from the fact that these equations are
not invariant under scaling [DEL].

Having obtained the VB equations we turn to the derivation of hydrodinamic equations.
The results available for the these equations are fewer than for the Boltzmann equation.
In Sect. 3 we present a rigorous derivation of the Vlasov-Euler (VE) equations for this
system, which di�ers from the usual Euler equations by the presence of self-consistent
forces coming from the Vlasov terms. We do this by adapting to this case the method of
Caisch [Ca80], i.e. we prove that the Hilbert expansion is asymptotic, by showing that
the remainder at any order is �nite in a suitable Sobolev norm.

We then consider in Sect. 4 and 5 a modi�ed Chapmann-Enskog expansion of the
kind considered by Caisch [Ca87] and show also in this case that the remainder at any
order is �nite in the same Sobolev norm. The term of zero order in this expansion is
a Maxwellian with parameters solving a set of dissipative new PDE's, the Vlasov-Navier-
Stokes (VNS) equations, where, beyond the usual terms present in the compressible Navier-
Stokes equations, there are di�usive terms coming from the presence of the self-consistent
force. In particular, the equation for the concentration can be put in the form of a gradient
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ux of an energy functional [BELMII] which is similar to an exact evolution equation
derived for a microscopic model of a binary alloy. The latter has been proven to yield the
same late time phase segregation behavior as the Cahn-Hilliard equation, [GL96], [GL97].
Both Vlasov-Euler and Vlasov-Navier-Stokes have non trivial stationary solutions with the
same solitonic pro�le as in the BV Equation.

Finally in Sect. 6 we consider the incompressible regime for these equations and derive,
under suitable initial conditions and scaling, a set of PDE's with dissipative terms involving
a force linear in the concentration (they are essentially the linearization of the analogous
terms in the compressible equations around a constant concentration and density pro�le).
Above results all rely on the crucial assumption that the initial value problems for the
hydrodynamical equations have a unique smooth solution at least on some macroscopic
time interval. We do not discuss the technical conditions which ensure the existence of
such solutions.

2. Vlasov-Boltzmann equation for a binary mixture.

We consider a system ofNr red particles with positions �
r
i and velocities v

r
i , i = 1; : : : ; Nr

and Nb blue particles with positions �bi and velocities vbi , i = 1; : : : ; Nb, in a 3-dimensional
torus �, interacting via two body forces. N = Nr + Nb is the total number of particles.
The potential energy is

V (�r1; : : : ; �
r
Nr ; �

b
1; : : : ; �

b
Nb
) =

1

2
A`

X
�== �

N�X
i=1

N�X
j=1

U`(j��i � ��j j)

+
1

2

X
�;�

N�X
i=1

N�X
j=1

Wa(j��i � ��j j)
(2:1)

where �; � = r; b, U` is the long range potential

U`(r) = U(
r

`
) (2:2)

for some bounded, smooth non-negative function U on IR+. The factor A` is the intensity
of the long range interaction to be suitably chosen to get a mean �eld type of behavior
when ` becomes very large compared to the interparticle spacing [LP]. The potential Wa

is the formal hard core potential

Wa(r) =
n1 if r < a
0 otherwise.
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In other words the particles are hard spheres of diameter a interacting by elastic col-
lisions which are color blind and by a weak repulsive long range force between particles
of di�erent species. The total number of particles of each species as well as the total
momentum and energy are invariant during the evolution.

Choosing the size of � to be ` (or some constant multiple thereof) there are two charac-
teristic length scales for this dynamics: a, the range of the hard core potential and `, the
range of the Kac potential. We can consider a third length, which depends on the density,
the mean free path � de�ned by the relation

� =
`3

Na2
:

The kinetic limit arises when there is a large separation between a and �, corresponding
to a low density (N=`3) situation. To obtain a kinetic limit we send N and ` to 1 while
a is �xed, say 1, in such a way that �=` is �nite and assume initial data almost constant
on regions of size � �. We denote by

Æ =
a

�
=

1

�

and assume �nite

 =
�

`

The kinetic equations will be obtained in the limit Æ ! 0, assuming

A` = 3Æ2;

meaning that A` is proportional to 1=N . A further limit  ! 0 will provide the hydrody-
namical limit to be discussed later.

In kinetic coordinates q, that is q�i = Æ��i , for � = r; b and i = 1; : : : ; N� and kinetic
time � = Æ�m, �m being the microscopic time, the equations of motion for the system are,
for � = r; b and i� = 1; � � � ; N�

dq�i�
d�

= v�i�

dv�i�
d�

= 3Æ2
N�X
j�=1

K(jq�i� � q�j� j)(1� Æ��)
(2:3)

in
�N = f(q1; v1; : : : ; qN ; vn) 2 �N � IR3N j jqi � qj j > Æ; i == jg;

where K(jx � yj) = �(rU)(jx � yj), N = Nr + Nb, and we use the notation qi; vi,
i = 1; : : : ; N when the color is irrelevant. When two particles are in contact (namely at
distance Æ) they undergo an elastic collision regardless of their color. We neglect the event
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that more that two particles are in contact because it has vanishing Lebesgue measure.
Hence the evolution (2.3) is de�ned only almost everywhere.

Note that when N � `2 then the mean force on each particle on the kinetic scale (2.3)
is of order unity. This is the reason why our original choice of the strength A` of the
potential in (2.2) was like `�2 rather than `�3 as in the usual case [LP].

With this scaling we can get, at least formally, in the limit Æ ! 0 the Vlasov-Boltzmann
equation for a binary mixture of hard core particles interacting via a weak long range
potential. A formal proof of this is given in Appendix C. The rigorous proof would require
the extension of the Lanford argument to this case, an extension that is not obvious because
the Vlasov part is not well controlled in the Lanford norms.

Even if we have discussed the derivation of the Vlasov-Boltzmann equation only for hard
spheres, from now on we consider the Vlasov-Boltzmann equations in full generality. The
function fr(q; v; �) (resp. f b(q; v; �)) is proportional to the probability density of �nding
a red (resp. blue) particle at q 2 
 � IR3, with velocity v 2 IR3 at time � � 0. We notice
that the relation between the f�'s and the microscopic one particle densities ��1 (�; v; �m)
(normalized to N�) is given by

f�(q; v; �) = lim
Æ!0

Æ�1��1 (Æ
�1q; v; Æ�1�):

The functions fr and f b are positive and normalized to �3 for any value of � . They
are solutions to the equations

@�f
r + v � rqf

r + F r � rvf
r = J(fr; fr) + J(fr; f b);

@�f
b + v � rqf

b + F b � rvf
b = J(f b; f b) + J(f b; fr):

(2:4)

The Vlasov force acting on each particle is of the Kac type, meaning that for any  > 0,
the forces are conservative non local forces with range �1 de�ned by the position

F�(q; �) = �rq

Z



dq03U(jq � q0j)n�(q0; �); � = r; b; � 6= � (2:5)

with U(jqj) a smooth, non negative function of compact support and nr, nb are the rescaled
spatial densities of the red and blue particles:

n�(q; �) =

Z
IR3

dvf (�)(q; v; �);

Z



dq n(�)(q; �) = �3: (2:6)

For any positive functions f and g, J(f; g) denotes the e�ect of the collisions of particles
distributed according to g on the distribution f . Its expression is given by

J(f; g) =

Z
IR3

dv�

Z
S2
d!b(jv � v�j; !)[f(v0)g(v0�)� f(v)g(v�)]: (2:7)
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Here b(jvj; !) is the di�erential cross section of the short range interaction, ! 2 S2 is the
impact parameter and v0; v0� are the incoming velocities corresponding to an elastic collision
with outgoing velocities v; v� and impact parameter !. We assume the Grad's (see [Gra])
angular cuto� condition that b(jvj; !) is a smooth function growing at most linearly for
large jvj, i.e. b(jvj; !) = jvj�h(!) with 0 � � � 1 and h a smooth bounded function on S2.

An important property of the collisions is the entropy production inequality: let

N� =

Z
IR3

dvJ(f�; f�) log f�; � = 1; 2;

N�;� =

Z
IR3

dvJ(f�; f�) log f�; �; � = 1; 2:

Then N�'s as well as N1;2 +N2;1 are non negative. Moreover N� vanishes as usual if and
only if the f�'s are Maxwellians:

f� =M(n�; u�; T�; v); � = 1; 2

with
M(�; u; T ; v) :=

�

(2�T )3=2
e�(v�u)

2=2T : (2:8)

Furthermore N1;2 +N2;1 vanishes if and only if the two Maxwellians have the same local
temperature and mean velocities:

u� = u; T� = T; � = 1; 2:

This implies that the only solutions of the equations

J(f1; f1) + J(f1;2 ) = 0;

J(f2; f2) + J(f2;1 ) = 0

are Maxwellians with the same mean velocity and temperature. General arguments suggest
that all the stationary solutions of equations (2.4) will be Maxwellians with u = 0, T(q)=T,
and densities satisfying the equations

T logn1(q) +

Z
dq03U(jq � q0j)n2(q0) = C1

T logn2(q) +

Z
dq03U(jq � q0j)n1(q0) = C2:

(2:9)

Beyond the spatially constant equilibria, there may be other spatially non homogeneous
solutions. For example, by prescribing the boundary conditions in one dimension

lim
z!�1

ni(z) = �n�i ;
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one gets at small values of T a solitonic solution describing the interface pro�le [BL]. We
shall leave a discussion of this part for [BELMII]) and focus here on deriving macroscopic
equations for the evolution of the conserved quantities.

Before closing this section, let us de�ne

f(q; v; �) =
1

2
[fr(q; v; �) + f b(q; v; �)]

as the density of �nding a particle at q with velocity v at time � , independently of its color.
Moreover, we set

�(q; v; �) =
1

2
[fr(q; v; �)� f b(q; v; �)]:

The system (2.4) can be written in the following equivalent form:

@�f + v � rqf + 2F � rvf + 2W � rv� = 4J(f; f);

@��+ v � rq�+ 2F � rv�+ 2W � rvf = 4J(�; f);
(2:10)

where F = F r + F b, W = F r � F b. We can absorb the numerical factors by rede�ning U
as U=2 and b as b=4 so obtaining

@�f + v � rqf + F � rvf +W � rv� = J(f; f);

@��+ v � rq�+ F � rv�+W � rvf = J(�; f):
(2:11)

3. Compressible Hydrodynamics.

We are interested in the behavior of the system on the macroscopic scale. To this end we
introduce a scaling parameter " representing the ratio between the kinetic and macroscopic
space units and, for any t � 0 and x 2 "
 we set

� = "�1t; q = "�1x:

We assume that at time zero the densities vary slowly on the microscopic scale f i(q; v; 0) =
~f("q; v; 0) and look for solutions of (2.11) such that

f i(q; v; �) = ~f i("q; v; "�); i = r; b

with ~f i smooth functions on "
� IR3 � IR+. For the force we have

F r("�1x; "�1t) = �"rx

Z
"


dx0
�
"

�d
U
h�
"

�
jx� x0j

i
~nb(x0; t);
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and a similar relation for F b. Therefore, if we assume  = ", also the forces are slowly
varying functions and the ~f satisfy the following system, where we remove the \tilde's"
because in the sequel we shall always consider only the macroscopic variables:

@tf + v � rxf + F � rvf +W � rv� = "�1J(f; f);

@t�+ v � rx�+ F � rv�+W � rvf = "�1J(�; f):
(3:1)

We shall use the notation

F = K� f; W = �K� �; (3:2)

where,
K(x) = �rxU(jxj) (3:3)

and, for any function g we set

(K� g)(x; t)
def
=

Z



dx0K(jx� x0j)
Z
IR3

dvg(x0; v; t): (3:4)

We will show that the solution of the system (3.1) is close for " small to the local equi-
librium with parameters �(1), �(2), u and T statisfying the following set of hydrodynamic
equations:

@t�+r � [�u] = 0;

@t'+r � ('u) = "r � (DQ);
�Dtu+rP � �K � �+ 'K � ' = �"r�;
3

2
�DtT + Pr � u = "r(�rT )� "� : ru� "K � ' �DQ:

(3:5)

Here � = �(1) + �(2) is the total density, ' = �(1) � �(2), P = �T

Dt := @t + u � r;

� := ��(ru+ruy � 2

3
Ir� u)

Q := r'
�
+

1

�2T
(�2 � '2)K � ': (3:6)

ruy is the adjoint of the matrix ru, � : ru = Tr (�ru), I is the unit matrix, � and
D are the viscosity and the di�usion coeÆcients and � is the heat conductivity. These
are computed from the VBE. The above equations, with " = 0 will be referred to as the
Vlasov-Euler equations (VE). We assume that the initial value problem for such equations,
with suitable initial data, has a suÆciently smooth solution at least on a time interval [0; �t].
Under such conditions we will prove in the next section and in Appendix A that the solution
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to the VBE for the binary uid, under the Euler scaling, converges to the Maxwellian local
equilibrium with parameters satisfying the VE equations in the interval [0; �t], with an error
of order " (Proposition 4.1 and Corollary 4.2).

When " > 0, the above equations will be referred to as the Vlasov-Navier-Stokes equa-
tions (VNS). In Section 5, using also the arguments of Appendix A we will show that
their solutions provide an approximation up to the order "2 to the solutions of the VBE in
the Euler scaling, provided that the initial value problem for such equations has suitably
smooth solutions as before. The precise statement is given in Proposition 5.1 and Corollary
5.2.

Like for the usual Navier-Stokes equations, which are frequently and succesfully used
with " = 1 in physical and engineering applications, although their derivation is restricted
to small values of ", we will consider the VNS equations with " = 1 and analyze some of
their properties in [BELMII]. In order to get di�usive e�ects as sharp limits of the VBE,
it is necessary to go to the parabolic scaling where � = "�2t and consider simultaneosly a
low Mach number situation. This will be discussed in Section 6.

4. Euler limit.

We outline the proof of the convergence of the Vlasov-Boltzmann system to the VE
equations. The proof will be completed in Appendix A. We �x the Maxwellian M(�; u; t)
with �; u; T possibly depending on space and time and denote

Lf = J(M; f) + J(f;M) (4:1)

and

�f = J(f;M): (4:2)

Moreover, we set

Q(f; g) =
1

2
[J(g; f) + J(f; g)] (4:3)

It is easy to check that, as for the one-component Boltzmann equation,

Lf = 0 i� f =M��; � = 0; : : : ; 4; (4:4)

where

�0 = 1; �i = vi; i = 1; : : : ; 3; �4 = v2=2 (4:5):

Moreover, along the same lines one gets

�f = 0 i� f = aM; a 2 IR: (4:6)
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We shall try to solve (3.1) following [Ca], in terms of a truncated Hilbert expansion of
the form

f =
KX
n=0

"nfn + "mRf ;

� =
KX
n=0

"n�n + "mR�;

(4:7)

with suitably chosen positive integers K and m ( the values will be K = 6, m = 3). The
functions fn and �n are computed using a Hilbert expansion and the remainders Rf and
R� are de�ned as the di�erence between the solution and the truncated expansion.

We substitute in (3.1) the formal power series

f =
1X
n=0

"nfn; � =
1X
n=0

"n�n; (4:8)

F =
1X
n=0

"nFn =
1X
n=0

"nK� fn; W =
1X
n=0

"nWn =
1X
n=0

"nK� �n; (4:9)

and denote by Dt the time derivative along the trajectories:

Dt = @t + v � rx:

We have:

"�1Q(f0; f0) +
1X
n=0

"n
h
2Q(f0; fn+1) + Sn

i
= 0; (4:10)

"�1J(�0; f0) +
1X
n=0

"n
h
J(�n+1; f0) + J(�0; fn+1) + Tn

i
= 0; (4:11)

where

Sn =
X

(h;h0): h;h0�1

h+h0=n+1

Q(fh; fh0)�
X

(h;h0): h;h0�0
h+h0=n

�
Fh � rvfh0 +Wh � rv�h0

��Dtfn: (4:12)

Tn =
X

(h;h0): h;h0�1

h+h0=n+1

J(�h; fh0)�
X

(h;h0): h;h0�0
h+h0=n

�
Fh � rv�h0 +Wh � rvfh0

��Dt�n: (4:13)

In order that the formal series solve (3.1) the coeÆcients have to satisfy the conditions:

Q(f0; f0) = 0;

J(�0; f0) = 0
(4:14)
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and, for any n � 0,

2Q(f0; fn+1) + Sn = 0;

J(�n+1; f0) + J(�0; fn+1) + Tn = 0:
(4:15)

As remarked in the previous section, the �rst of the conditions (4.14), implies that f0 is a
Maxwellian with parameters depending on x; t:

f0(x; v; t) =M(�(x; t); u(x; t); T (x; t); v) :=M(v): (4:16)

Moreover from the second eqn. of (4.14) we get

�0(x; v; t) =
'(x; t)

�(x; t)
M(�(x; t); u(x; t); T (x; t); v);

for some suitable function '(x; t). Using (4.1) and (4.2) we can write (4.15) as

Lfn+1 = �Sn;
��n+1 = �J(�0; fn+1)� Tn:

(4:17)

Since Sn and Tn only depend on the fk and �k for k � n, we have �rst to solve the �rst
eqn. and then, once fn+1 is determined, we solve the second one for �n+1.

In order to check the solvability of these equations we introduce the Hilbert space H of
measurable functions on IR3 such that the scalar product

(f; g) =

Z
IR3

dvf(v)g(v)M�1(v); (4:18)

is �nite. In this Hilbert space the operators L and � are densely de�ned and symmet-
ric. Moreover, the null spaces of L and � are the �ve-dimensional subspace spanned by
fM��; � = 0; : : : ; 4g introduced in (4.5) and the one-dimensional space spanned by M�0
respectively. We denote by P and K the projectors on such subspaces and by P? = 1�P
and K? = 1�K the projectors on their orthogonal complements. >From the properties of
L and � it is immediate to check that

PL = 0; K� = 0: (4:19)

Both L and � are non positive and there are positive constants Æ and Æ0

(f;Lf) � �ÆkP?fk2; (f;�f) � �Æ0kK?fk2: (4:20)

Moreover
L = �� +K;

� = �� +�;
(4:21)
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where

�(x; v; t) =

Z
Re3

dv�b(jv � v�j)M(�(x; t); u(x; t); T (x; t); v�); (4:22)

is a strictly positive function such that

�0(1 + jvj)� � �(x; v; t) � �1(1 + jvj)� (4:23)

for some positive constants �0 and �1 provided that � and T are bigger than some �xed
positive constants. Furthermore, K and � are compact operators on H. Therefore, us-
ing the Fredholm alternative theorem we can conclude the existence of solutions to (4.17)
provided that Sn 2 P?H and Tn + J(�0; fn+1) 2 K?H. These conditions can be veri-
�ed inductively, as in the usual one-component Boltzmann equation. We now write the
conditions for n = 0 which determine the macroscopic equations for �, u, T and ': Since
P[rvf0] and P[rv�0] have no component along �0, it is easy to check that the condition
PS0 = 0 can be written explicitly as

@t�+rx � [�u] = 0;

�[@tu+ (u � rx)u] = �rxP + �K � �� 'K � ';
�[@te+ (u � rx)e] + Prx � u = 0

; (4:24)

where � denotes the usual convolution, P = �T is the equation of state for the pressure
in the perfect gas and e = 3T=2 is its internal kinetic energy. On the other hand, since
KJ = 0 and Krv = 0, the condition KT0 = 0 becomes KDt�0 = 0 which is explicitly
written as

@t'+rx � ['u] = 0; (4:25)

Equations (4.24) and (4.25) represent the Euler equations for the binary mixture. They
di�er from the usual Euler equations by the presence of the equation (4.25) for ' and
for the nonlinear self consistent force terms due to the long range Kac interaction. We
will refer to them as the Vlasov-Euler equations (VE). Existence of solutions to the initial
value problem for the system (4.24)-(4.25) requires some analysis but we do not discuss
this. We simply assume that, for suÆciently smooth initial data a unique solution of the
system exists and stays smooth up to some time �t.

Given such a solution, the functions f1 and �1 can be found by solving (4.17) with
n = 0. In consequence, f1 is determined up to p1 2 PH and �1 up to q1 2 KH. The
procedure can then continue by taking advantage of the arbitrariness of p1 and q1 to satisfy
the conditions PS1 = 0, KT1 = 0. In this way the functions fn and �n can be found for
any n. Classical results by Grad [Gra] provide the smoothness and decay properties we
use below.

Now we go back to the truncated expansions (4.7). Once 'n and �n are computed for
n = 0; : : : ; K, we can look for the equations for the remainders Rf and R�. A straightfor-
ward calculation shows that, in order that f and � satisfy (3.1), Rf and R� have to solve

13



the equations

DtRf + F � rvRf +W � rvR� ="
�1LRf + L(1)Rf + "m�1[J(Rf ; Rf) + Af ];

DtR� + F � rvR� +W � rvRf ="
�1�R� + "�1 ~�Rf + �(1)R�+

"m�1[J(R�; Rf) + A�];

(4:26)

where

L(1)g =
KX
h=1

"h�1[J(fh; g) + J(g; fh)];

~�g = J(
KX
n=0

"n�n; g); �(1)g = J(g;
KX
h=1

"h�1fh);

(4:27)

Af = "K�2m+1
� X

(h;h0): h;h0�1
h+h0>K+1

"h+h
0�K�1Q(fh; fh0)

�
X

(h;h0): h;h0�0
h+h0>K

"h+h
0�K

�
Fh � rvfh0 +Wh � rv�h0

��DtfK
�

A� = "K�2m+1
� X

(h;h0): h;h0�1
h+h0>K+1

"h+h
0�K�1J(�h; fh0)

�
X

(h;h0): h;h0�0
h+h0>K

"h+h
0�K

�
Wh � rvfh0 + Fh � rv�h0

��Dt�K

�
;

(4:28)

and

F =
KX
n=0

"nFn + "mK� Rf ;

W =
KX
n=0

"nWn + "mK� R�:

(4:29)

The expressions of Af and A� show that it is convenient to choose K � 2m�1 in order
to get them bounded as "! 0.

The construction of the solution Rf , R� of (4.26) is obtained using a �xed point argu-
ment to handle the nonlinear terms in the equations.

In Appendix A we shall sketch the proof of the Proposition below, which extends the
similar result proved for the one-component Boltzmann gas without long-range interactions
in [Ca80] and [Lac]. We assume for simplicity periodic boundary conditions, namely 
 is
the 3-dimensional torus of unit side. The potential of the long range force is assumed C1,
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non negative and of compact support. Of course such assumptions could be relaxed, but
we will not try to examine the most general setup. Moreover we use the norm

kfk�;`;s = sup
v2IR3

h
e�v

2

(1 + jvj2)`=2jf( � ; v)js
i

(4:30)

and jf js is the Sobolev norm of order s.
We will refer below to suÆciently smooth solutions to the VE equations meaning solu-

tions which are in Hs for some suÆciently large s and such that the inequalities

T0 � T � T1; �0 � �� ' � �1

are veri�ed for suitable positive constants T0, T1, �0 and �1.

Proposition 4.1. Suppose that (�; u; T; ') is a solution to the Vlasov-Euler equations
(4.24), (4.25) suÆciently smooth in the time interval [0; �t]. Then there are positive con-
stants "0 and C such that, for " < "0 a unique classical solution to the system (4.26) with
m � 4 exists and satis�es the bounds

sup
t2[0;�t]

kRf ( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s+ kA�( � ; t)k�;`;s
�
;

sup
t2[0;�t]

kR�( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s + kA�( � ; t)k�;`;s
�
;

(4:31)

for any positive � < �T=2, �T
def
= supx2
;t2[0;�t] T (x; t), ` > 3, s � 2.

Corollary 4.2. Under the assumptions of Proposition 3.1, for " < "0 there is a smooth
solution (f"t ; �

"
t ) to the rescaled Vlasov-Boltzmann equations (3.1) and moreover, denoting

byMt the Maxwellian with parameters evolving according to the Euler equations, it satis�es:

sup
0�t��t

[kf"t �Mtk�;`;s + k�"t �
't
�t
Mtk�;`;s � C"]:

5. Navier Stokes correction.

The Navier-Stokes corrections to the hydrodynamical equations on the Euler scale are
usually obtained by means of a suitable resummation of the Hilbert series expansion called
the Chapmann-Enskog expansion. For our purposes it is convenient to look at a modi�ed
version of the expansion proposed by Caisch [Ca87].
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We use the notation: for n � 0, fn = Pfn, fn = P?fn, �n = K�n, �n = K?�n,
Fn = K� fn, Wn = K� �n. The terms in the expansions are given as follows: we set
Ms :=M(1; u; T );

f0 = �Ms; �0 = 'Ms; f̂1 = 0; �̂1 = 0 (5:1)

L �f1 = P?
h
Dtf0 + F0 � rvf0 +W0 � rv�0

i
(5:2)

���1 = �J(�0; �f1) + K?
h
Dt�0 � "

'

�2
P[Dt

�f1] +W0 � rvf0 + F0 � rv�0

i
: (5:3)

P
h
Dt(f0 + " �f1) + F0 � rv(f0 + " �f1) +W0 � rv(�0 + "��1)

i
= 0 (5:4)

K
h
Dt(�0 + "��1) +W0 � rv(f0 + " �f1) + F0 � rv(�0 + "��1)

i
= 0 (5:5)

L �f2 = �2Q(f1; f1)

+ P?
h
Dt( �f1 + "f̂2) +

�
F0 � rvf1 + F1 � rvf0 +W0 � rv�1 +W1 � rv�0

�i (5:6)

���2 = �'J(Ms; f2)� J(�1; f1) + K?
h
Dt

��n +
'

�2
P[Dt

�f1] + "Dt�̂2

+
�
W0 � rvf1 +W1 � rvf0 + F0 � rv�1 + F1 � rv�0

�i (5:7)

P
h
Dtf2 +

X
(h;h0): h�0;h0>0

h+h0=2

�
Fh � rvfh0 +Wh � rv�h0

�i
= 0 (5:8)

K
h
Dt�2 +

X
(h;h0): h�0;h0>0

h+h0=2

�
Fh � rv�h0 +Wh � rvfh0

�i
= 0 (5:9)

Before giving conditions de�ning the higher order terms of the expansion let us comment
about previous conditions: Equations (5.1){(5.9) have to be solved in the order they are
written: (5.2) and (5.3) are used to determine �f1 and then ��1 in terms of the hydrody-
namical parameters (�; u; T; ') and their derivatives; as a consequence (5.4) and (5.5) only
involve (�; u; T; ') and represent the hydrodynamical equations we are looking for. Be-
cause of (5.1) f1 and �1 are completely determined. Then (5.6) and (5.7) can be solved
to �nd �f2 and ��2, depending only on f0; f1; �0; �1 and on the hydrodynamical parts of f2
and �2. Finally, (5.8) and (5.9) are linear equations in the hydrodynamical part of f2 and
�2 which can be used to determine them.

We notice that the term proportional to " in (5.3) has been included to avoid third
order derivatives in the hydrodynamical equations. This is usually done in the standard
Chapman-Enskog expansion by expanding the time derivatives in powers of ".

16



For n � 2 we set:

L �fn+1 = �
X
k;j�1

k+j=n+1

2Q(fj; fk)

+ P?
h
Dt( �fn + "f̂n+1) +

X
(h;h0): h;h0�0

h+h0=n

�
Fh � rvfh0 +Wh � rv�h0

�i (5:10)

���n+1 = �'J(Ms; fn+1)�
X
k;j�1

k+j=n+1

J(�k; fj)

+K?
h
Dt

��n + "Dt�̂n+1 +
X

(h;h0): h;h0�0
h+h0=n

�
Fh � rv�h0 +Wh � rvfh0

�i (5:11)

P
h
Dtfn+1 +

X
(h;h0): h�0;h0>0

h+h0=n+1

�
Fh � rvfh0 +Wh � rv�h0

�i
= 0 (5:12)

K
h
Dt�n+1 +

X
(h;h0): h�0;h0>0

h+h0=n+1

�
Fh � rv�h0 +Wh � rvfh0

�i
= 0 (5:13)

The procedure used for f2 and �2 can be repeated to get fn and �n for any n > 2.

As for the Euler limit discussed in the previous section, instead of looking for the
convergence of the expansion we consider its truncation (4.7) where the functions fn and
�n are computed according to the procedure just explained, but setting fn = 0, �n = 0
for n � K + 1. The remainders Rf and R� have to be solutions of the equations

DtRf + F � rvRf +W � rvR� ="�1LRf + L(1)Rf + "m�1
�
J(Rf ; Rf) + Af

�
;

DtR� +W � rvRf + F � rvR� ="�1[�R� + ~�Rf ] + �(1)R�

+ "m�1
�
J(R�; Rf) + A�)

� (5:14)

where F and W are given by (4.29), L(1), �(1) and ~� are given by (4.27), while the
expressions of Af and A� are slightly di�erent from (4.28), and are:

Af = "K�2m+1
� X

(h;h0): h;h0�1
h+h0>K+1

"h+h
0�K�1Q(fh; fh0)�

X
(h;h0): h;h0�0

h+h0>K

"h+h
0�K

�
Fh � rvfh0 +Wh � rv�h0

�

�Dt
�fK � P[F0 � rvfK +W0 � rv�K ]

�
;

(5:15)
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A� = "K�2m+1
� X

(h;h0): h;h0�1

h+h0>K+1

"h+h �K�1J(�h; fh0)

�
X

(h;h0): h;h0�0
h+h0>K

"h+h
0�K

�
Wh � rvfh0 + Fh � rv�h0

�

�Dt
��K �K[W0 � rvfK + F0 � rv�K ]

�
:

(5:16)

We now exploit the equations (5.2){(5.5) in order to obtain the Navier-Stokes equations
for the binary mixture with long range forces.

Note that in (5.2) the force terms do not contribute because P?rvMs = 0. Therefore
�f1 has the same expression as for the one component gas without self-interaction: recall
that

P?(Dtf0) =M

2
4 3X
i;j=1

Ai;j@iuj +
3X

i=1

Bi@iT

3
5 ; (5:17)

with

Ai;j =
1

T
(~vi~vj � ~v2

3
Æi;j); Bi =

�
~v2

2
� 5

2
T

�
~vi
T 2

and ~v = v � u.
Therefore

�f1 = � 1
3X

i;j=1

Ai;j@iuj �  2

3X
i=1

Bi@iT; (5:18)

with  1 and  2 non negative smooth functions of j~vj. Moreover, P[rv
�f1] = 0 because �f1

is orthogonal to the invariants. On the other hand (Ms��;rv
��1) = 0 for � = 0; : : : ; 3,

because ��1 is orthogonal to the constants. Furthermore

Z
dv[F0 � rv(f0) +W0 � rv�0] = 0; (5:19)

Z
dv~v[F0 � rv(f0) +W0 � rv�0 = �F0��W0': (5:20)

Hence the mass equation is

@t�+r � (�u) = 0; (5:21)

and the momentum equation is

�Du
t u+rP = �"r � � + �F0 + 'W0 (5:22)
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with Du
t = @t + u � r and

�i;j := ��(@jui + @iuj � 2

3
Æi;jr � u)

and

� =

Z
dv 1(j~vj)A2

1;2:

In order to compute the equation for the energy and for the concentration we need the
expression of ��1, which has to be computed using (5.3). This implies

��1 = ��1K?
"
Dt�0 � "

'

�2
P[Dt

�f1] +W0 � rvf0 + F0 � rv�0 � J(�0; �f1)
#
: (5:23)

We are interested in computing the component of rv
��1 alongM�4 i.e., after an integration

by parts:

(M�4;rv
��1) = �

Z
d~v~v ��1: (5:24):

Since J(�0; �f1) =
'
�
L �f1 � � �f1, we get

��1J(�0; �f1) =
'

�
��1L �f1 � �f1 =

'

�
��1P?(Dtf0)� �f1;

after using (5.2) to get the second equality The second term does not contribute to (5.24)
since �f1 is orthogonal to M~v. Hence, by (5.18),

Z
dv~v��1J(�0; �f1) =

'

�

Z
d~v~v��1

�
~v � rT M

2T 2
(~v2 � 5T )

�
; (5:25)

the term proportional to ru is odd in ~v and hence does not contribute to the previous
expression. Now we compute

K?[Dt('Ms) + �W � rvMs + �F � rvMs] =

'Du
t (Ms) + '~v � rMs +Ms~v � r'+ �W � rvMs + 'F � rvMs (5:26)

We have

'Du
t (Ms) =

Ms

2T 2
'Du

t T (~v
2 � 3T ]�rvMs'D

u
t u

Since the �rst term is even in ~v, only the second term contributes to
R
dv~v��1M (5:26). By

using the equation for the momentum we get

Du
t u =

1

�
[�rP + �F + 'W ]� "

�
r � � (5:27)
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Moreover

�'
�
rP � 'F � '2

�
W + �W + 'F

� � rvMs = [
'

�
rP +W

�2 � '2

�
] � rvMs:

Now

�'
�
rP � ~v

T
Ms +Ms~v � r' = [�' 1

T
rT � '

�
r�+r'] �Ms~v =

[�' 1

T
rT + �r'

�
] �Ms~v

and

�' 1

T
~v � rTMs + '~v � rMs = [� 1

T
rT + (

~v2

2T 2
� 3

2T
)]'~v � rTMs +

'

T
Ms~v 
 ~v � ru

= 'rT �Ms~v[
~v2

2T 2
� 5

2T
] +

'

T
Ms~v 
 ~v � ru:

(5:28)
The last term in (5.28) does not contribute to (5.24). Since the �rst term in the r.h.s of
(5.28) cancels out with the term in (5.25) (remember that M = �Ms) we have

r.h.s (5.26) =M~v
h
r'
�
� W

�2T
(�2 � '2)� "

'

�2
r � �

i
: (5:29)

It is now easy to check that in the computation of the l.h.s. of (5.23) the last term of
(5.29) is compensated by the term " '

�2P[Dt
�f1]. Collecting terms we get

(Ms�4;rv
��1) = �D

h
r�
�
� W

�2T
(�2 � �2)

i
(5:30)

where

D :=

Z
dvM~vi�

�1~vi (5:31)

The other terms appearing in the equation for the energy are computed in the standard
way: Z

d~v�4

"
' � r �f1 + F0 � rv

�f1 +W0 � rv
��1

#
= 0 (5:32)

r �
Z
d~v�4 �f1 = �r � [�rT ];
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with

� =

Z
d~v 2B

2
i :

Moreover Z
dv�4F0 � rv

�f1 = �
Z
dv~v � F0 �f1 = 0

Z
dv�4W0 � rv

��1 = �
Z
dv~v �W0

��1 = �W0 �DQ;

with

Q := r'
�
� 1

�2T
W (�2 � '2) (5:33)

Therefore, the equation for the energy is

3

2
�DtT + pr � u = "r(�rT )� "� : ru� "W �DQ (5:34)

Finally, to get the equation for the concentration we have to exploit the condition (5.5).

K
h
Dt('M + "��1)

i
= @t'+

Z
dvv � r'M + "

Z
dvv � r��1

=@t'+r � (u') + "r �
Z
dv~v ��1

(5:35)

The last term has already been computed in (5.30). Therefore, the equation for ' is

@t'+r � ('u) = "r � (DQ) (5:36)

where Q is given in (5.33).
Recalling the de�nitions of F0 andW0 we �nally get the Vlasov-Navier-Stokes equations

(VNS) for a binary mixture given by (3.5).

As for the Euler limit, the arguments in the Appendix A prove the following Proposition
5.1 which holds under the same assumptions as before Proposition 3.1: periodic boundary
conditions and smoothness of the long range potential.

Proposition 5.1. Suppose that for " > 0 small enough there is a solution (�"; u"; T "; '")
to the Vlasov-Navier-Stokes equations (3.5) suÆciently smooth in the time interval [0; �t]
independent of ". Then there are positive constants "0 and C such that, for " < "0 an
unique classical solution to the system (5.14) with m � 4 exists and satis�es the bounds

sup
t2[0;�t]

kRf ( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s+ kA�( � ; t)k�;`;s
�
;

sup
t2[0;�t]

kR�( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s + kA�( � ; t)k�;`;s
�
;

(5:37)
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for any � < T=2, T
def
= supx2
;t2[0;�t] T

"(x; t), ` > 3, s � 2.

Corollary 5.2. Under the assumptions of Proposition 3.1, for " < "0 there is a smooth
solution (f"t ; �

"
t ) to the rescaled Vlasov-Boltzmann equation (3.1) and moreover, denot-

ing by Mt the Maxwellian with parameters evolving according to the Vlasov-Navier-Stokes
equations, it satis�es:

sup
0�t��t

[kf"t �Mt � "f1k�;`;s + k�"t �
't
�t
Mt � "�1k�;`;s � C"2]:

6. Incompressible Navier-Stokes limit.

In this Section we consider a di�erent scaling limit such that one can get hydrodynamic
equations with dissipative terms of order 1 instead of order " as in the previous Section.
We choose also in this case  = " but we use the parabolic space time scaling

t! "�2t; x! "�1x:

After rescaling, eq.'s (2.11) become:

@tf + "�1v � rxf + "�1F � rvf + "�1W � rv� = "�2J(f; f); (6:1)

@t�+ "�1v � rx�+ "�1F � rv�+ "�1W � rvf = "�2J(�; f);

with F and W given by (3.2).
We shall solve (6.1) as in the Euler case in terms of a truncated Hilbert expansion of

the form

f =
KX
n=0

"nfn + "mRf ;

� =
KX
n=0

"n�n + "mR�;

(6:2)

with suitably chosen positive integers K and m, but in this case we choose in a di�erent
way the terms of order 0 in the expansion.

f0 =M0; �0 = 0

where M0 is a Maxwellian with parameters �� and �T some �xed constants and u = 0. This
implies the vanishing of the forces at the lowest order: W0 = F0 = 0. We remark that
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choosing the �rst order term in the expansion to be a global Maxwellian is essential to
the incompressible limit set up. The choice �0 = 0 is made for simplifying the computa-
tions. By plugging (6.2) in the rescaled Boltzmann equations (6.1), one easily obtains the
conditions for the higher order terms in the expansions:

Lf1 = 0; (6:3)

��1 = 0; (6:4)

for 0 � n � K � 1:

Lfn+2 +
X

(h;h0): h;h0�1
h+h0=n+2

Q(fh; fh0) =

X
(h;h0): h>0;h0�0

h+h0=n+1

�
Fh � rvfh0 +Wh � rv�h0

�
+ v � rxfn+1 + @tfn;

(6:5)

��n+2 +
X

(h;h0): h;h0�1
h+h0=n+2

J(�h; fh0)

=
X

(h;h0): h;h0�0
h+h0=n+1

�
Fh � rv�h0 +Wh � rvfh0

�
+ v � rx�n+1 + @t�n:

(6:6)

Moreover

@tRf + "�1 [v �Rf + F � rvRf +W � rvR�]

= "�2LRf + "�1L(1)Rf + L(2)Rf + "m�2[J(Rf ; Rf ) +Af ];

@tR� + "�1 [v �R� + F � rvR� +W � rvRf ] = "�2�R�

+ "�1�(1)R� + "�1 ~�(1)Rf + �(2)R� + ~�(2)Rf + "m�2[J(R�; Rf ) +A�];

(6:7)

where

L(1)g = J(f1; g) + J(g; f1); L(2)g =
KX
h=2

"h�2[J(fh; g) + J(g; fh)];

~�(1)g = J(�1; g); ~�(2)g = J(
KX
n=2

"n�2�n; g);

�(1)g = J(g; f1); �(2)g =
KX
h=2

"h�2J(g; fh);

(6:8)
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Af = "K�2m+2
� X

(h;h0): h;h0�1

h+h0>K+2

"h+h �K�2Q(fh; fh0)

�
X

(h;h0): h;h0�0
h+h0>K+1

"h+h
0�K�1

�
Fh � rvfh0 +Wh � rv�h0

�

� @tfK�1 � v � rxfK � "@fK

�
A� = "K�2m+1

� X
(h;h0): h;h0�1
h+h0>K+2

"h+h
0�K�2J(�h; fh0)

�
X

(h;h0): h;h0�0
h+h0>K+1

"h+h
0�K�1

�
Wh � rvfh0 + Fh � rv�h0

�

� @t�K�1 � v � rx�K � "@�K

�
;

(6:9)

and F and W are given by

F =
KX
n=1

"nFn + "mK� Rf ;

W =
KX
n=1

"nWn + "mK� R�;

(6:10)

with Fn = K� fn, Wn = K� �n.

We now �nd the expressions of the �rst terms in the expansions f1; �1; f2; �2.
From (6.4) we get

�1 = '1M0

and from (6.3) we have

f1 = M0(v)

�
�1 + u1 � v�T + �1

v2 � 3 �T
�T 2

�

where �1; u1; �1 are to be determined as functions of x; t. By (6.5) with n = 0 we obtain

P(v � rxf1 + F1 � rvf0) = 0:

But

P[v � rxf1] =M0

��
1 +

v2 � 3 �T

2 �T 2

�
rx � u1 + v

�T
� rx( �T�1 + ���1)

�
;
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while
P[F1 � rvf0] = �M0

v
�T
� F1:

Hence we �nd the conditions

rx � u1 = 0; rx

h
�1 + �1 +

Z
dyU(jx� yj)�1(y)

i
= 0: (6:11)

On the other hand,
P?[F1 � rvf0] = 0;

so
f2 = L�1

h
P?v � rxf1

i
� L�1J(f1; f1) + f̂2;

with f̂2 2 NullL.
Therefore f2 has the usual expression

f2 =
1

2

3X
i;j=1

Ai;j[u1;iu1;j �  1@iu1;j ] +
3X
i=1

Bi[�1u1;i �  2@i�1] +
1

2
M0�

2
1P?

h�v2 � 3

2

�2i
:

(6:12)
>From (6.6) with n = 0 we get the expression for �2:

�2 = ��1
h
v � rx�1 +W0rvf0 � J(�1; f1)

i
+ �̂2;

with �̂2 2 Null�.
Moreover, by (6.3)

��1J(�1; f1) = �'1��1�f1 = �'1f1:
Hence

�2 = '1f1 +
h
rx'1 � 1

�T
W1

i
� ��1[vM0] + �̂2:

>From (6.5) with n = 1 we get

@tu1 + u1 � rxu1 = �rxp+ F2 + ��xu1 + �1F1 + '1W1

and
5

2
[@t�1 + u1 � rx�1] = u1 � F1 + ��x�1

Since F2 = rxG, with G(x) =
R
dyU(jx � yj)�2(y), putting �p = p � G, the previous

equation reduces to

@tu1 + u1 � rxu1 = �rx �p+ ��xu1 + �1F1 + '1W1;
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which is the usual incompressible Navier-Stokes equation with the self-consitent force

�1F1 + '1W1 = ��1rx

Z
dyU(jx� yj)�1(y) + '1rx

Z
dyU(jx� yj)'1(y):

Finally from (6.4) with n = 1 we get the equation for '1

@t'1 + u1 � rx'1 = D
h1
��
�x'1 � 1

�T
�x

Z
dyU(jx� yj)'1(y)

�i
;

with

D = �
Z
dvv � ��1(vM): (6:13)

Summarizing, dropping the index 1, the set of equations for �; u; �; �; p is:

@tu+ u � rxu = �rxp+ ��xu+ �F + 'W;

5

2
[@t� + u � rx�] = u � F + k�x�;

@t'+ u � rx' = D
h1
��
�x'� 1

�T
�x

Z
dyU(jx� yj)'(y)�i;

F = �rx

Z
dyU(jx� yj)�(y); W = rx

Z
dyU(jx� yj)'(y);

rx

h
�+ � +

Z
dyU(jx� yj)�(y)

i
= 0;

rx � u = 0:

(6:14)

The equation for ' is linear unlike the one we get in the VNS equations, but there is still a
non linear term in ' in the momentum equation. The equation for � which corresponds to
the deviation in the temperature decouple from the rest. In fact, if we consider a solution
to the previous equation with an initial datum � = const; � = const such conditions persist
in time and u and ' have to solve the simpli�ed set of equations

@tu+ u � rxu = �rxp+ ��xu+ 'W;

@t'+ u � rx' = D
h1
��
�x'� 1

�T
�x

Z
dyU(jx� yj)'(y)�i;

W = rx

Z
dyU(jx� yj)'(y);

rx � u = 0:

(6:15)

In Appendix B there is the proof of the following proposition:
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Proposition 6.1. Suppose that for " > 0 small enough there is a solution (�; u; T; ') to
the incompressible Navier-Stokes equations (6.14) suÆciently smooth in the time interval
[0; �t] independent of ". Then there are positive constants "0 and C such that, for " < "0 a
unique classical solution to the system (6.7) exists and satis�es the bounds

sup
t2[0;�t]

kRf ( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s+ kA�( � ; t)k�;`;s
�
;

sup
t2[0;�t]

kR�( � ; t)k�;`;s � C" sup
t2[0;�t]

�kAf ( � ; t)k�;`;s + kA�( � ; t)k�;`;s
�
;

(6:16)

for any � < �T=2, ` > 3, s < m.

Corollary 6.2. Under the assumptions of Proposition 3.1, there is for " < "0 a smooth
solution (f"t ; �

"
t ) to the rescaled Vlasov-Boltzmann equation (6.1) and moreover, denoting

by Mt the Maxwellian with parameters evolving according to the incompressible Navier-
Stokes equations (6.14), it satis�es:

sup
0�t��t

jjf"t �M0 � "f1jj�;`;s + jj�"t �M0 � "�1jj�;`;s � C"2]

.

Appendix A

We present a sketch of the proof of Proposition 3.1 in the case of hard spheres, where
�(v) � jvj for large v's. The extension to more general cross sections is possible along the
lines proposed in [DE], but we do not discuss it. The smoothness and decay properties
of the expansion terms are obtained by now standard methods ([Ca80], [DEL], [ELM94],
[ELM95], [ELM98], [ELM99]) which allow to prove the following

Theorem A.1

Given " > 0, assume that there exists a suÆciently smooth solution of the Vlasov-Euler
equations (4.24) and (4.25) in the time interval [0; �t]. Then for any j > 3, s < s0 and
0 < � < T � = sup(x;t)2
�[0;�t] T (x; t) there is a constant c > 0 such that the terms in the
expansion fi; �i; i = 1; :::; K, with K = 2m, solutions of the equations (5.8){(5.7)

jjfijj�;j;s � c; jj�ijj�;j;s � c (A:1)

jj@vfijj�;j;2 � c; jj@v�ijj�;j;2 � c (A:2)

We need bounds on the remainders Rf and R�.
We set

Rr � R(1) = Rf � R�; Rb � R(2) = Rf + R�: (A:3)

The reason is that terms like W � rvR� and F � rvRf in (4.26) are not well suited
when some force term is present to represent the solutions of the equations in terms of
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characteristics, which is essential in the method we are going to use. The equations for
the new variables are:

DtR
(1) + F (1) � rvR

(1) = "�1
h
�(1) �LR(1) + �(1) ��R(2) + �(2)��R(1)

i
+ L1R(1)

+ �2R
(1) ++�1R

(2) + "m�1
�
J(R(1); R(1)) + J(R(1); R(2)) + A(1)

�
;

DtR
(2) + F (2) � rvR

(2) = "�1
h
�(2) �LR(2) + �(2) ��R(1) + �(1)��R(2)

i
+ L2R(2)

+ �1R
(2) +�2R

(1) + "m�1
�
J(R(2); R(2)) + J(R(2); R(1)) +A(2)

�
;

(A:4)

where �M is the Maxwellian M with � = 1 and

fj =
1

2
[f

(1)
j + f

(2)
j ]; �j =

1

2
[�f (1)j + f

(2)
j ]

�Lh = J( �M;h) + J(h; �M);

��h = J( �M;h); ��h = J(h; �M)

Lih = J(
KX
j=1

"j�1f
(i)
j ; h) + J(h;

KX
j=1

"j�1f
(i)
j )

�ih = J(h;
KX
j=1

"j�1f
(i)
j ); �ih = J(

KX
j=1

"j�1f
(i)
j ; h)

A(1) = Af +A�; A(2) = Af � A�

Following Caisch [Ca80] we now decompose the remainders in low and high velocity
parts, by looking for solutions to equations (A.4) in the form

R(1) =

q
�(1) �Mg(1) +

p
M�h(1); R(2) =

q
�(2) �Mg(2) +

p
M�h(2)
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M� is a global Maxwellian with a temperature T �. We have

Dtg
(1) + F (1) � rg(1) = "�1

h
�(1) �Lg(1) +

p
�(1)

p
�(2) �Tg(2) + �(2) �Gg(1)

i

+ "�1���1
hp

�(1)(K�h(1) +K�
Th

(2)) +
�(2)p
�(1)

K�
Gh

(1)
i

Dth
(1) + F (1) � rh(1) = �[�(1) + F (1) � �0(1)]

p
�(1)g(1) + F (1) � �0�h(1)

+ "�1�(1)
h
� � + ��(K�h(1) +K�

Th
(2)) +

�(2)

�(1)
(��G +K�

Gh
(1))

i

+ L1
�
�
p
�(1)g(1) + h(1)

�
+G2

�
�
p
�(1)g(1) + h(1)

�
+ T1

�
�
p
�(2)g(2) + h(2)

�
+ "m�1

h
��Q�

�
��(1)g(1) + h(1); ��(1)g(1) + h(1)

�
+ ��Q�

�
��(1)g(1) + h(1); ��(2)g(2) + h(2)

�
+A(1)

i
(A:5)

The equation for g(2); h(2) is obtained by the exchange 1! 2.
where

�(v) =

8<
:
1; jvj � 

�� = 1� �
0; otherwise

(A:6)

�(i) =
1

2
Dt(log �M); �0(i) =

1

2
�(i)rv log �M; i = 1; 2

�0� =
1

2
rv logM�; � =

r
�M

M�

(A:7)

�Lf =
1p
�M
�L
p

�Mf) = (�� +K)f; L�f =
1p
M�

L
p
M�f) = ��� +K�f

�Tf =
1p
�M
��
p

�Mf; �Gf =
1p
�M
��
p

�Mf = (��G + �KG)f; ; K�
T =

1p
M�

��
p
M�f

G�f =
1p
M
�
��
p
M�f = (���G +K�

G)f; Gif =
1p
M�

�i
p
M�f; i = 1; 2

Lif =
1p
M�

Li
p
M�f; i = 1; 2; Tif =

1p
M�

�i

p
M�f; i = 1; 2

(A:8)

��Q�(f; `) =
1p
M�

Q(
p
M�f;

p
M�`); ��J�(f; `) =

1p
M�

J(
p
M�f;

p
M�`) (A:9)
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Linear problem

We solve �rst the linear problem for gi; hi; i = 1; 2, assuming that F (i) are given functions
such that

kF (i)k1 + krxF
(i)k1 < �F : (A:10)

We consider the lienar system

Dtg
(1) + F (1) � rg(1) = "�1

h
�(1) �Lg(1) +

p
�(1)

p
�(2) �Tg(2) + �(2) �Gg(1)

i

+ "�1���1
hp

�(1)(K�h(1) +K�
Th

(2)) +
�(2)p
�(1)

K�
Gh

(1)
i

Dth
(1) + F (1) � rh(1) = �[�(1) + F (1) � �0(1)]

p
�(1)g(1) + F (1) � �0�h(1)

+ "�1�(1)
h
� � + ��(K�h(1) +K�

Th
(2)) +

�(2)

�(1)
(��G +K�

Gh
(1))

i

+ L1
�
�
p
�(1)g(1) + h(1)

�
+G2

�
�
p
�(1)g(1) + h(1)

�
+ T1

�
�
p
�(2)g(2) + h(2)

�
+ "m�1D(1)

(A:11)
and the equation for g(2); h(2) obtained by the exchange 1 ! 2. Here F (1) has to be
considered as a given force.

We use the integral form of (A.11) [Ma], [ELM98]:

g(i)(t; x; v) =

Z t

t�
dsH(i)

�
s; '

(i)
s�t(x; v)

�
exp

n
�
Z t

s

ds0
1

"
~�(i)

�
'
(i)
s0�t(x; v)

�o
: (A:12)

where ~�(i) = �(i)� + �(j)�G, '
(i)
t (x; v) the characteristics of the equation

@tf + v � rxf + F (i) � rvf = 0 (A:13)

and

H(1) ="�1
h
�(1)Kg(1) +

p
�(1)

p
�(2) �Tg(2) + �(2)KGg

(1)
i
+

"�1���1
hp

�(1)(K�h(1) +K�
Th

(2)) +
�(2)p
�(1)

K�
Gh

(1)
i (A:14)

and H(2) is given by the same expression after the exchange 1! 2.

h(i)(t; x; v) =

Z t

t�
dsH 0(i)

�
s; '(i)s�t(x; v)

�
exp

n
�
Z t

s

ds0
1

"
�̂(i)

�
'(i)s0�t(x; v)

�o
: (A:15)

with
�̂(i) = ~�(i) � "�0� � F (i)
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(which is positive for " suÆciently small, depending on �F , since �
(i) grow linerly at high

velocities) and

H 0(1) = "�1�(1)
h
��(K�h

(1) +K�
Th

(2)) +
�(2)

�(1)
(K�

Gh
(1))

i

+ L(1)(�
p
�(1)g(1) + h(1)) +G(2)(�

p
�(1)g(1) + h(1)) + T (1)(�

p
�(2)g(2) + h(2))

+ �[�(1) + F (1)�0(1)]
p
�(1)g(1) + "m�1D(1)

(A:16)
We do not write explicitely the equations for g(2); h(2) in integral form. In the following

we use the compact notation: g = fg(1); g(2)g and h = fh(1); h(2)g. Below we use the
notation k � k`;s = k � k0:`;s and k � k` = k � k0:`;0. Generalizing the method by Caisch
[Ca80]to our case, we get bounds for the norms k � k` of g(i) ; h(i) in terms of the L2 norm
of g(i) in the form

jjhjjr � "(1 + �F )jjgjjL2 + "mjDjr�1
jjgjjr � jjgjjL2 + "m+1jDjr;

(A:17)

provided that "; "0 for some suitable "0 positive and �nite for any �nite �F . To conclude
the argument we need a bound for jjgjjL2 =

P2
i=1 jjg(i)jjL2 in terms of the L2 norm of D.

This last step is not standard so that we give a sketch of the proof.
To estimate jjgjjL2, we multiply the �rst equation in (A.11) by g(i), i; j = 1; 2; i 6= j,

respectively, integrate over x; v and �nally sum over i = 1; 2

1

2

d

dt

h
jjg(1)jj2L2 + jjg(2)jj2L2

i
= "�1

h
p
�(1)g(1); L

p
�(1)g(1)

�
+

p

�(2)g(2); L
p
�(2)g2

�i
+ "�1

h�
p
�(2)g(1); �M�1=2J( �M;

p
�M
p
�(1)g(2))

�
+


p
�(1)g(2); �M�1=2J( �M;

p
�M
p
�(2)g(1)

��
+

+

p

�(2)g(1); �M�1=2J(
p

�M
p
�(2)g(1); �M)

�
+
p

�(1)g(2); �M�1=2J(
p

�M
p
�(1)g(2); �M)

�i
+

"�1


���1

�p
�(1)(K�h(1) +K�

Th
(2)) +

�(2)p
�(1)

K�
Gh

(1)
�
; g(1)

�
+

"�1


���1

�p
�(2)(K�h(2) +K�

Th
(1)) +

�(1)p
�(2)

K�
Gh

(2)
�
; g(2)

�
:

(A:18)
Here



f; g

�
denotes the L2(
 � R

3) scalar product. The operator L is symmetric with
respect it. The terms in the �rst square brakets are non positive by the non positivity
of the operator L. It is easy to see, by using the symmetry properties of the Boltzmann
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kernel [CC], that also the contribution coming from the terms in the second square braket
are non positive. Therefore we have

1

2

d

dt
jjgjj2L2 � C "�1kh(2))kr � jjgjj2 + �jjgjj22; (A:19)

with r � 3. The �nal estimate is

jjgjjL2 � C"m�1jj��1Djjr

The same kind of arguments provides the bound for the derivatives of g with respect x.
Because of the force terms the argument di�ers from the one given in [Ca80] in the fact
that we have to control at the same time the derivatives with respect the velocity and
space. We sketch the proof for the derivatives of g. Di�erentiating the �rst equation in
(A.11) we get two coupled equations for rvg and rg

@trg(i) + (v � r)rg(i) +rF (i) � rvg
(i) + F (i) � rv(rg(i)) = rN (i)(g; h)

@trvg
(i) + v � r(rvg

(i)) +rg(i) + F (i) � rv(rvg
(i)) = rvN

(i)(g; h)

where N(g; h) is the r.h.s. of (A.11) for g. Proceeding as before in getting (A.18) we obtain

d

dt
(jjrgjjL2 + jjrvgjjL2) � c�F (jjrgjjL2 + jjrvgjjL2) + jjrN jjL2 + jjrvN jjL2

The derivatives with respect the velocity of N can be estimated by the methods in
[ELM94], where it is proven the identity

@

@v
Q(f; g) = Q(f;

@g

@v
) +Q(g;

@f

@v
)

where @
@v stands for the partial derivative with respect to any of the components of v. The

�nal result is
Lemma A.2

There is an "0 > 0 �nite for each �nite �F such that any solution to the linear problem
(A.11), with D and Fi given, satis�es for j > 3, s � 3 and any 0 < " � "0

jjg(i)jjj;s + jj@vg(i)jjj;s�1 � C(1 + �F )"
m�s

h
jj~��1D(i)jjj+2;s + jj~��1@vD(i)jjj+2;s

i
(A:20)

jjh(i)jjj;s + jj@vh(i)jjj;s�1 � C(1 + �F )"
m�s+1

h
jj~��1D(i)jjj;s + jj~��1@vD(i)jjj;s

i
(A:21)

Non-linear problem and �xed point argument.
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The nonlinear equations (A.5) are solved by a �xed point method. This method works
if there is some small parameter in front of the non linear terms. In (A.5) there are two
kinds of non linear terms: the usual Boltzmann non linear term, which is multiplied by a
power of " and the Vlasov term involving the forces which gives rise to linear and quadratic
terms in the remainders: in fact the forces are given by expressions of the type

F (1) = K� f (2) = K� [
KX
n=0

"nf (2)n ]
�
+ "mK� R(2) (A:22)

Hence the non linear term due to the force is small and we can apply the recursive argument.
The Boltzmann terms are dealed with as in Caisch [Ca80]. The control of the force

term requires the boundedness of the gradient of the Kac potential. The result is

Theorem A.3

There is an "0 > 0 such that the remainders satisfy for j > 3, z = s � (d � 1) with
s < m and any 0 < " � "0

jjg(i)jjj;z � c"m�s+1; jjh(i)jjj;z � c"m�s+1; i = 1; 2 (A:23)

Proof. Let R
(i)
k be the solution of (A.4) with force

F
(i)
k =

�
K� [

KX
n=0

"nf (j)n )]
�
+ "m

�
K� R

(j)
k�1

�

:= F (i)
" + "m ~F

(i)
k ; j = i+ 1mod 2;

(A:24)

and the collision integrals computed with R(i) replaced by R
(i)
k�1; moreover, we put R

(i)
0 =

0; i = 1; 2. Lemma A.2 and an inductive argument assure that the sequences R
(i)
k are

uniformely bounded for " suÆciently small. In fact, setting �� = �
F
(i)
"
, we have �k =

�
F
(i)

k

� �� + C"mkRk�1k1. By a standard argument kRk�1k1 is bounded by a constant

�(�k�1) with �( � ) some monotone function. Hence, � = sup�k satis�es the inequality
� � �� + "m�(�). By setting "m�(2��) � ��, we conclude � < 2�� and hence the uniform

boundedness of the sequences R
(i)
k for " suÆciently small.

The di�erences ÆR
(i)
k := R

(i)
k �R(i)

k�1 can be decomposed again in high and low velocity

parts Ægk; Æhk, with Ægk = (Æg
(1)
k ; Æg

(2)
k ) and Æhk = (Æh

(1)
k ; Æh

(2)
k ) solve the equations

DtÆgk + ("m ~Fk�1 + F") � rvÆgk = N(Ægk; Æhk)

DtÆhk + ("m ~Fk�1 + F") � rvÆhk = N 0(Ægk; Æhk)
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where N = (N (1); N (2)), N 0 = (N 0(1); N 0(2)) and N (1), N 0(1) are the r.h.s. in (A.11) with

D(i) = �"Æ ~Fk � rv(gk�1 + hk�1)+

[J(R
(i)
k�1; R

(i)
k�1)� J(R

(i)
k�2; R

(i)
k�2)] + [J(R

(i)
k�1; R

(j)
k�1)� J(R(i)

k�2; R
(j)
k�2)]:

with Æ ~F
(i)
k := ( ~F

(i)
k � ~F

(i)
k�1) = K� [R

(j)
k�1 � R

(j)
k�2]. By Lemma A.2 the solutions satisfy

(A.20) and (A.21), so that

jjÆgkjjj;s � C"m�s+1jj~��1[Æ ~Fk) � rv(gk�1 + hk�1)]jjj+2;s (A:25)

jjÆhkjjj;s � "m�s+2jj~��1[Æ ~Fk � rv(gk�1 + hk�1)]jjj;s (A:26)

We have

jjÆ ~Fk � rv(gk�1 + hk�1)jj2j0 � C sup
x;v

(1 + jvj2)jjrv(Ægk + Æhk)j sup
v

Z
dxjÆ ~Fkj2

� C

Z
dx
��� Z dv

Z
dyK(x� y)(Rk�1 �Rk�2)

���2

� C

Z
dx
��� sup

v
(1 + jvj2)j

Z
dyK(x� y)(Ægk�1 + Æhk�1)

���2

� C
���(Z dyjK(x� y)j2)1=2 sup

v
(1 + jvj2)j� Z dyjÆgk�1 + Æhk�1j2

�1=2���2
� C[jjÆgk�1jj2j0 + jjÆhk�1jj2j0]

To get the second inequality we have used that the norms jjrvÆgkjjj;s and jjrvÆhkjjj;s are
�nite by Lemma A.2, so that the supremum over x in the �rst row exists �nite. The last
inequality is a consequence of the fact that the Kac potential is bounded and that the
space integration is on a torus. Finally, by (A.25) and (A.26) we have

jjÆgkjjj;0 � c"m�s+1jjÆgk�1jjj;s + jjÆhk�1jjj;0]

jjÆhkjjj;0 � c"m�s+1jjÆgk�1jjj;s + jjÆhk�1jjj;0]
We remark that it is possible to prove that the norm jj � jjj;z for the remainders g(i); h(i)

are bounded with z = s� (d� 1) and s < m.

Appendix B

In this Appendix we show how to bound the remainders which are solutions of (6.7).
The method we use is di�erent from the one in Appendix A. In fact in this case the lowest
order is a global Maxwellian and we do not need to introduce the decomposition into low
and high velocity. Also in this case we need a Theorem on the regularity of the terms of
the expansion analogous to Theorem A.1
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Theorem B.1

Given " > 0, assume that there exists a suÆciently smooth solution of the incompressible
Navier-Stokes equations (5.28) in (0; t0]. Then there is a constant c > 0 and s depending
on the smoothness of the solution of INS such that the terms in the expansion fi; �i; i =
2; :::; K solutions of the equations (6.5) and (6.6) satisfy

jjfijjj;s � c; jj�ijjj;2 � c (B:1)

jj@vfijjj;s � c; jj@v�ijjj;2 � c (B:2)

for any j.

We write (6.7) for the variables R(i); 1 = 1; 2 de�ned in (A.3)

@tR
(1) + "�1

�
v �R(1) + F (1) � rvR

(1)
�
= "�2

h
LR(1) + �R(1) +�R(2)

i
+ "�1

h
L1R(1) + �2R

(1) +�1R
(2)
i
+
h
L01R(1) + �02R

(1) +�01R
(2)
i

+ "m�2
�
J(R(1); R(1)) + J(R(1); R(2)) + A(1)

�
;

@tR
(2) + "�1

�
v �R(2) + F 2 � rvR

(2)] = "�2
h
LR(2) + �R(2) +�R(1)

i
+ "�1

h
L2R(2) + �1R

(2) +�2R
(1)
i
+
h
L02R(2) + �01R

(2) +�02R
(1)
i

+ "m�2
�
J(R(2); R(2)) + J(R(2); R(1)) + A(2)

�
;

(B:3)

�;L;� are de�ned as ��; �L; �� in the list after (A.4) after substituting the global Maxwellian
M0(��; �T ) to �M . Finally,

Lig = J(f
(i)
1 ; g) + J(g; f

(i)
1 )]; �ig = J('

(i)
1 ; g); �ig = J(g; f

(i)
1 );

L0ig =
KX
h=2

"h�2[J(f
(i)
h ; g) + J(g; f

(i)
h )];

�0ig = J(
KX
n=2

"n�2'(i)n ; g); �0ig =
KX
h=2

"h�2J(g; f
(i)
h );

The �rst step is to consider the linear problem associated to (B.3), namely to study (B.3)
with the last terms D(i) := J(R(i); R(i)) + J(R(i); R(j)) + A(i); i = 1; 2; i 6= j given and
F (1); F (2) �xed, independent of R(1); R(2). Moreover remembering that the forces vanish to
the lowest order in ", we assume that the L1 norms of F (i) and their gradients are bounded
by some constant "�F . The role of the constant �F is similar to the one discussed in the
previous appendix and we do not repeat the iterative argument in this case. We will just
provide an estimate for the L2 norm in (x; v) jjRjj2 := jjR(1)jj2 + jjR(2)jj2 for the solution
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R = (R(1); R(2)) of this problem, the rest of the argument being standard (see for example
[ELM98]. We put R(i) =

p
M0	

(i) so that

@t	
(1) + "�1

�
v � r	(1) + F (1) � rv	

(1) � 1

2
	(1)F (1) � v� =

"�2
h
L	(1) +G	(1) + T	(2)

i
+ "�1

h
L1R

(1) +G2	
(1) + T1	

(2)
i
+

h
L01	

(1) +G02	
(1) + T 01	

(2)
i
+ "m�2

D(1)

p
M0

(B:4)

where the relation between the old operators L;�;�;Li;�i;�i;L0i;�0i;�0i and the new ones
L; T;G; Li; Ti; Gi; L

0
i; T

0
i ; G

0
i is of the form

Lf =
1p
M0

L
p
M0f:

It is easy to see that, setting k	k2L2 = k	(1)k2L2 + k	(2)k2L2 ,

1

2

d

dt
jj	jj2L2 = "�2

h

	(1); L	(1)

�
+


	(2); L	(2)

�� 1

2
"

2X
i=1

F (i) � 
	(i); v	(i)
�i

+ "�2
h

	(1);M

�1=2
0 J(M0;

p
M0 	

(2))
�
+


	(1);M

�1=2
0 J(

p
M0 	

(1);M0)
�
+



	(2);M

�1=2
0 J(M0;

p
M0 	

(1))
�
+


	(2);M

�1=2
0 J(

p
M0 	

(2);M0)
�i

+ "�1
h

	(1); L1	

(1)
�
+


	(2); L2	

(2)
�
+


	(1); (G2	

(1) + T1	
(2))

�
+



	(2); (G1	

(2) + T2	
(1))

�i
+
h

	(1); L01	

(1)
�
+


	(2); L02	

(2)
�

+


	(1); (G02	

(1) + T 01	
(2))

�
+


	(2); (G01	

(2) + T 02	
(1))

�i

+ "m�2
2X
i=1



	(i);

D(i)

p
M0

�
(B:5)

First of all, we observe that the terms in the second square braket are non positive [CC]. To
estimate the other terms we will use the strict negativity of the operator L (see (4.20)) on
the space orthogonal to the collision invariants and the following estimate on the operator
J(f; h) (see for example [GPS]): for any Maxwellian M and for any y 2 [�1; 1]

Z
R3

dv
jJ(pMf;

p
Mh)j2

�M
�
Z
R3

dv�jf j2
Z
R3

dv�jhj2 (B:6)
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This inequality and the bounds on the fn's imply the following bounds:

j
 2X
i=1

	(i)Li	
(i)
�j � C k

2X
i=1

p
� �	(i) kL2 k 	(i) kL2k M

�1=2
0 f

(i)
1 kj;s; (B:7)

j
 2X
i=1

	(i)L0i	
(i)
�j � C k p� �	 kL2 k 	 kL2kM�1=2

0

7X
n=2

fn kj;s (B:8)

where �g denotes the projection of a function g on the orthogonal to the invariant space of
L, while ĝ is the projection on the invariant space. Note that the presence of the product
k p� �	 k2k 	 k2 depends on the fact that Li and L

0
i are both orthogonal to the collision

invariants.
Similar estimates hold for the terms involving the other operators. By using the bounds

on the fn's and �n's and after some algebra, the terms in the forth, �fth and sixth rows
are bounded by

C k p� �	 kL2 k 	 kL2
To bound the last term in the �rst square braket of (B.5), we note that

"�1j
2X

i=1

F (i) � 
	(i); v	(i)
�j � �F [k

p
� �	k2L2 + Ck	̂k2L2 ;

and we assume " so small that "2�F < 1=2.
We integrate (B.5) in time between 0 and t0. With the notation 	t( � ) = 	( � ; t), we

get

1

2
k 	t0 k2L2� C

Z t0

0

dt

(
� "�2

h1
2
k p� �	t k2L2 +CF k

p
�	t k2L2

i

+ C("�1 + 1) k p� �	t kL2 k 	t kL2 +"m�2 k D( � ; t) k2L2
) (B:9)

The �rst term in the second line is due to the bounds (B.7) and (B.8). Moreover

k M�1=2
0 f1 kj;s and k M�1=2

0 f1 kj;s are bounded by the regularity of the solutions of the

macroscopic equations for 0 < t < T0 and kM�1=2
0

PK
n=2 fn kj;s� C by Theorem B.1.

Using the inequality

� 1

"2
x2 + (c1"

�1 + c2)xy � (c1 + c2")
2y2=4

valid for any positive ", x, y. with x = jjp� �	jj2, y = jj	jj and suitable constants c1 and
c2, we get (since 	(�; 0) = 0)

k 	( � ; t0) k2L2�
Z t0

0

dtCF

"
k 	( � ; t) k2L2 + kM�1=2

0 D( � ; t) k2L2
#
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In conclusion, by the use of the Gronwall lemma, for " suÆciently small, we get:

sup
0�t�t0

k 	( � ; t) kL2� C(t0; �F ) sup
t2(0;t0]

kM�1=2
0 D( � ; t) kL2 (B:10)

The bounds for the Sobolev norm of higher order in x; v are obtained by studying the
equations for the derivatives as explained in Appendix A. Finally, writing the equations
for the reimanders in the integral form and using the property of the linearized Boltzmann
operators of improving the regularity in v, we get the analogous of Lemma A.2
Lemma B.2

There is an "0 > 0 such that any solution to the linear problem (B.4), with D and Fi given,
after choosing K = 2m satis�es for j > 3, s < s0 and any 0 < " � "0

jjg(i)jjj;s + jj@vg(i)jjj;s�1 � "m�2CF

h
jjD(i)jjj+2;s + jj~��1@vD(i)jjj+2;s

i
(B:11)

jjh(i)jjj;s + jj@vh(i)jjj;s�1 � "m�2CF

h
jjD(i)jjj;s + jj~��1@vD(i)jjj;s

i
(B:12)

The dependence on the force in the bounds (B.11), (B.12) does not a�ect the argument
given in Appendix A to solve the non-linear problem, because in the bounds for Rk the
constant CFk will depend on the norm of Rk�1.

Appendix C

To show formally the convergence of the microscopic one particle distribution functions
ti the solution of the VBE in the Grad-Boltzmann limit, let us consider the hierarchy
for the rescaled correlation functions rjr;jb of jr particles of species r and jb of species b,
de�ned as

rjr;jb(z
r
1 ; � � � ; zrjr ; zb1; � � � ; zbjb ; �) = Æ�(jr+jb)

Nr!

(Nr � jr)!

Nb!

(Nb � jb)!

Z
(��IR3)(N�jr�jb)

dzrjr+1 � � �dzrNrdzbjb+1 � � �dzbNb�N (Æ�1qr1; vr1 � � � ; Æ�1qrjr ; vrjr ; Æ�1qb1; vb1 � � � ; Æ�1qbjb ; Æ�1�))
(C:1)

where z� = (q�; v�) is the phase space point of a particle of species � and �N is the
probability distribution solution of the Liouville equation

@�m�N +
NX
i=1

vi � r�i�N �A`

X
�== �

N�X
i=1

N�X
j=1

r��
i
U`(j��i � ��j j) � rv�

i
�N = 0;

which is valid in �N , i.e. where the hard spheres do not overlap. On the boundary of �N
we assume the boundary conditions

�N (�1; v1; � � � ; �N ; vN ; �m) = �N (�1; v1; � � � ; �i; v0i; � � � ; �j; v0j ; � � � ; �N ; vN ; �m)
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if
j�i � �j j = 1; i 6= j;

where v0i = vi � ![! � (vi � vj)]; v
0
j = vj + ![! � (vi � vj)] with ! the unit vector directed

as �i � �j . The above conditions merely state the conservation of the probability during
an elastic collision. As pointed out before, contacts of more that two particles have null
Lebesgue measure, so they do not a�ect above de�nition.

The rescaled correlation functions satisfy a hierarchy of equations of the form

@�rjr;jb+

jrX
i=1

h
vri � rqr

i
rjr;jb + Æ3

jbX
j=1

rqr
i
V(jqri � qbj j) � rvr

i
rjr;jb

i
+

jbX
i=1

h
vbi � rqb

i
rjr ;jb + Æ3

jrX
j=1

rqb
i
V(jqbi � qrj j) � rvb

i
rjr;jb

i
=

jrX
i=1

h
Br;rÆ;i rjr+1;jb + Bb;rÆ;i rjr;jb+1 + Vb;ri rjr;jb+1

i
+

jbX
i=1

h
Bb;bÆ;i rjr;jb+1 + Br;bÆ;i rjr+1;jb + Vr;bi rjr+1;jb

i
;

(C:2)

where, with the notation zk = (z1; : : : ; zk), we have

(Br;rÆ;i rjr+1;jb)(zrjr ; zbjb) =Z
IR3

dvrjr+1

Z
S2
+

d!(vrjr+1 � vri ) � !
h
rjr+1;jb(z

r
jr+1)

0; zbjb)� rjr+1;jb(zrjr+1; zbjb)
i
;

with
S2+ = f! 2 IR3 j j!j = 1; ! � (vrjr+1 � vri ) > 0g;

(zrjr+1)
0 = (zr1; : : : (z

r
i )
0; : : : ; zrjr ; (z

r
jr+1)

0);

zrjr+1 = (zr1 ; : : : �z
r
i ; : : : ; z

r
jr ; �z

r
jr+1)

and, for any z, z�, the phase points z
0, z0�, �z and �z�are de�ned by

q0 = q; q0� = q + Æ!; v0 = v � !(! � (v � v�); v0� = v� + !(! � (v � v�);
�q = q; �q� = q � Æ!; �v = v; �v� = v�:

Moreover,

(Bb;rÆ;i rjr;jb+1)(zrjr ; zbjb) =Z
IR3

dvbjr+1

Z
S2
+

d!(vbjb+1 � vri ) � !
h
rjr;jb+1((z

r
jr
)0; (zbjb+1)

0)� rjr;jb+1(z
r
jr
; zbjb+1)

i
;
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where
(zrjr )

0 = (zr1; : : : (z
r
i )
0; : : : ; zrjr); (zbjb+1)

0 = (zb1; : : : ; z
b
jb
; (zbjb+1)

0);

zrjr = (zr1 ; : : : �z
r
i ; : : : ; z

r
jr
); zbjb+1 = (zb1; : : : ; z

b
jb
; �zbjb+1):

The collision terms Bb;bÆ;i and Br;bÆ;i are de�ned in a similar way. Furthermore

(Vb;ri rjr;jb+1)(z
r
jr
; zbjb) =

�
Z
IR3

dvbjr+1

Z
�

dqbjb+1
3rqr

i
U(jqri � qbjb+1j)rvr

i
rjr;jb+1(z

r
jr
; zbjb+1)

and a similar expression for Vr;bi . Taking formally the limit Æ ! 0, the limiting correlations
satisfy the following Vlasov-Boltzmann hierarchy:

@�rjr;jb +

jrX
i=1

vri � rqr
i
rjr;jb +

jbX
i=1

vbi � rqb
i
rjb;jb =

jrX
i=1

h
Br;ri rjr+1;jb + Bb;ri rjr;jb+1 + Vb;ri rjr;jb+1

i
+

jbX
i=1

h
Bb;bi rjr;jb+1 + Br;bi rjr+1;jb + Vr;bi rjr+1;jb

i
;

(C:3)

where,

(Br;ri rjr+1;jb)(z
r
jr
; zbjb) =Z

IR3

dvrjr+1

Z
S2
+

d!(vrjr+1 � vri ) � !
h
rjr+1;jb(z

r
jr+1)

0; zbjb)� rjr+1;jb(zrjr+1; zbjb)
i

and, for any z, z�, the phase points z
0, z0� are de�ned by

q0 = q; q0� = q; v0 = v � !(! � (v � v�); v0� = v� + !(! � (v � v�):

Similar modi�cations provide the other terms of the Vlasov-Boltzmann hierarchy.
It is easy to see that if the initial condition of molecular chaos

rjr;jb(z
r
jr
; zbjb ; 0) =

jrY
i=1

fr(zri ; 0)

jbY
k=1

f b(zbk; 0)

is satis�ed, then the correlation functions stay factorized at positive times � and fr(q; v; �)
and f b(q; v; �) are the solutions of the coupled Vlasov-Boltzmann equations
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@�f
r(q; v; �) + v � rqf

r(q; v; �) + F r � rv f
r(q; v; �) = J(fr; fr + f b);

@�f
b(q; v; �) + v � rqf

b(q; v; �) + F b � rv f
b(q; v; �) = J(f b; fr + f b);

(C:4)

where

F r(q; �) = �rq

Z



dq03(rU)(jq � q0j)
Z
IR3

dvf b(q0; v; �); (C:5)

F b(q; �) = �rq

Z



dq03(rU)(jq � q0j)
Z
IR3

dvfr(q0; v; �); (C:6)

and

J(f; g) =

Z
IR3

dv�

Z
S2
+

d!(v � v�) � ![f(v0)g(v0�)� f(v)g(v�)]: (C:7)

Summarizing, we obtained formally the Vlasov-Boltzmann equations for a binary mix-
ture, where the Boltzmann collision kernel terms are due to the short range interaction
while the Vlasov selfconsistent force is due to the repulsive weak long range interaction.
If, instead of the hard core interaction the short range force is given by a �nite range
potential, we would get formally the same equations but with a di�erent cross section.

We want to stress that an important step is missing in order to make the above derivation
rigorous. The �rst rigorous result on the derivation of the Boltzmann equation has been
given by Lanford [Lan] where the convergence of the correlation functions is proven in
L1-norms. On the other hand, the derivation of the Vlasov equation is based on the use
of the variation norm and we have not been able to �nd a norm suited for both terms.
The only known result [GM] is about a stochastic particle systems converging to a Vlasov-
Boltzmann equation with a modi�ed Boltzmann kernel (Povzner) and the proof is based
on martingale methods.
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