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Quantum integrability for the Beltrami-Laplace
operator for geodesically equivalent metrics.
Integrability criterium for geodesic equivalence.
Separation of variables.

Vladimir S. Matveev and Peter J. Topalov

Abstract

Given two Riemannian metrics on a closed connected manifold M " we
construct self-adjoint differential operators Ty, Ii...., Tu_1 : CHM™) =
C%(M™) such that if the metrics have the same geodesics then the op-
erators commute with the Beltrami-Laplace operator of the first metric
and pairwise commute. If the operators commute and if they are linearly
independent, then the metrics have the same geodesics. If all eigenvalues
of one metric with respect to the other are different at least at one point
of the manifold we can globally separate the variable in the equation on
eigenfunctions of the Beltrami-Laplace operator.

1 Introduction.

Let g, § be two Riemannian metrics on the same manifold M ™, They are geodesi-
cally equivalent if they have the same geodesics considered as unparameterized
curves.

Consider the Beltrami-Laplace operator for the metric g

I ;0
e o —taar dt 1]_'7
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where det(g) denotes the determinant of the matrix corresponding to the metric
q-

Denote by G : TM™ — TM™ the fiberwise-linear mapping given by the
tensor g~'g = (g**Ga;). In invariant terms, for any ryp € M" the restriction
of the mapping G to the tangent space T,, M™ is the linear transformation of
Tz, M™ such that for any vectors £, v € T, M* the scalar product g{G(E), 1)
of the vectors G(§) and v with respect to the metric g is equal to the scalar
product (&, v) of the vectors £ and v with respect to the metric g. Consider
the characteristic polynomial det(G — uE) = cop™ + ¢ ™! + ... + ¢,,. The



coefficients ¢4, .., ¢, are smooth functions on M", and ¢g = (—1)". Consider the
fiberwise-linear mappings

S0s 8140 Spey cTM™ = TM™

given by the general formula

k42 k

def {"def(g)\ T k=it
S (det(g)) 266"

=0

We denote by (Sk)j- the components of the tensor corresponding to the fiberwise-
linear mapping Sg. :
Consider the operators

To, Tty Znot : C2(M™) = CO(M™) (1)

given by the general formula

NS T RY R
I = maxi (Sk)av/det(g)g Fzi (2)

Remark 1. In invariant terms the operators I arc given by

Li(f) = div (Sk (grad (f))),

where grad(f) denotes the gradicnt g""(—%% of the function f and div denotes
the divergence.

Rernark 2. The operator 7,,_; is exactly the operator A.

Theorem 1. If the metrics g and § on M"™ are geodesically equivalent then the
operators Iy pairwise commute. In particular they commute with the Beltrami-
Laplace operator A.

Theorem 1 is a 'quantum’ version of the following theorem. Consider the func-
tions I :T*M™ - R, k=0,1,...n— 1, given hy the formulae

def

Ii(x,p) = g% (Sk)Lpip;.

In invariant terms the functions I, are as follows. Let us identify canonicaily
the tangent and the cotangent bundles of AM™ by the metric g. Then the value
of the function Iy on a vector £ € T,M" = T;M™ s given by
def
Le(, ) = g(Sk(£),9). (3)
Consider the standard symplectic form on 7M™, By geodesic flow of the
metric ¢ we mean the Hamiltonian system on T*M" with the Hamiltonian

H{z,§) = 39(,6).



Remark 8. The function Z,,_; is equal to —2H.

Theorem 2 ([14]). If the metrics g and § on M™ are geodesically cquivalent
then the functions I, pairwise commute. In particular, they are integrals in
involution of the geodesic flow of the metric g.

For closed two-dimensional manifolds Theorem 1 was essentially proved in [5].
For two-dimensional manifolds Theorem 2 was proved in [7].

Remark 4 ({14]). Let metrics g, g be geodesically equivalent. If at a point
zo € M™ the number of different roots of the polynomial det(G — pE) is equal
to ny, then at almost all points of Ty M™ the dimension of the linear space
generated by dly,dl,...,dI,_; is greater or equal than n;.

In particular, if the characteristic polynomial det(G — pE) has no multiple
roots at the point rq € M™ then the functions Iy, Ii,...,In_, are functionally
independent almost everywhere in 7*U (1), where U (zo) is a sufficiently small
neighborhood of z;.

If at every point of a neighborhood U{(xp) of the point g € M™ the number
of different eigenvalues of the polynomial det(G — pE) is less or equal than n,,
then at all points of T*U(zq) the dimension of the linear space generated by
dlo,dly, ..., dI,. | is less or equal than n;.

The metrics g, are strictly non-proportional at a point zg € M™ when the
characteristic polynomial det{(G — pE) has no multiple roots at the point zg.

Corollary 1. Suppose M™ is connected. Let metrics g, 3 on M™ be geodesically
equivalent and strictly non-proportional at least at one point of M™. Then the
metrics are strictly non-proportionael almost everywhere.

Corollary 1 follows from the following observation. If we have an integrable
Hamiltonian systems then the dimension of the linear space generated by dif-
ferentials of the integrals is constant along each orbit.

Proof of Corollary 1. Identify canonically the tangent and the cotangent
bundles of M™ by the metric g. Take a geodesic 7: R — M™ and consider the
points xg = v(0), =, = (1) € M". Suppose that the metric g is geodesically
equivalent to the metric g and is strictly non-proportional with g at the point
xo. Let us prove that in each neighborhood of the point 2, there exists a point
z such that the metrics are strictly non-proportional at z.

The geodesic orbit of the geodesic v is the curve 79 : R - TM"
T*M™ (assuming ¥ = (t) € ToyM™ is the velocity vector of v.) Take a
small neighborhood 0®" € TM™ of the point (zg,4(0)) € TM?”. Consider
the union of all points of all geodesic orbits that start from the points of the
neighborhood. Denote it by I72”. Since the metrics are strictly non-proportional
at wg, the differentials dly,dIy,...,dIl,_; of the integrals Iy, I, I, ..., I,,_; are
linearly independent at almost all points of I/2". Evidently the set /2" contains



a neighborhood of the point (xy,%(1)). The integrals Iy, ;,...,J,_1 are then
functionally independent at almost all points of a neighborhood of the point
(z1,%(1)). Using Remark 4, we have that in each neighborhood of z; the-e
exists a point where the metrics are strictly non-proportional. Since each two
points of a connected manifold can be joint by a sequence of geodesic segments,
in each neighborhood of an arbitrary point of M™ there exist points where the
metrics are strictly non-proportional, . e. d.
More general statement is also true.

Corollary 2. Suppose M" is connected and the metrics g, 3 on M™ are geodesi-
cally equivalent. If at every point of a neighborhood U C M™ the number of
different eigenvalues of the polynomial det(G — pE) is less or equal than ny,
then at every point of M™ the number of different eigenvalues of the polynomial
det(G — pE) is less or equal than n,.

A ’quantum’ version of Corollaries 1,2 is as follows.

Corollary 3. Let metrics g, § on a connected manifold M™ be geodesically
equivalent. They are strictly non-proportional at least at one point of M™ | if and
only if the operators Ty, I, ..., Ty are Iinearly independent. More generally,
the dimension of the space generated by the operators is equal to ny, if and only

if the number of different eigenvalues of G is equal to ny at almost every point
of M™.

Now suppose M™ is closed (= compact + without boundary) and connected. Let
metrics g, 3 on M™ be geodesically equivalent,. Suppose the metrics are strictly
non-proportional at least at one point of the manifold. Then we have complete
Liouville integrability for the geodesic ow of the metric g, and complete quan-
tum integrability for the Beltrami-Laplace operator of the metric g. Liouville
integrability means in particular that almost all connected components of level
submanifolds {Iy = Cy, [y = Cy, ..., I, = Ca1}, where Co,Cy, ..., Cr_; are
constants, are n-dimensional tori, and orbits on such tori are windings,
Quantum integrability means that there exists a countable basis

$ = {fl‘fg,...,fm.....}

of the space Ly(M™) such that each f,, is an eigenfunction of each operator Zj.
Moreover, in our case the variables can be globally separated. (In the paper
we will prove the local separation of variables only.) More precisely, take any
function f from the basis . Since f is an eigenfunction of each operator 7,
we have that f is a solution of the system of n partial differential equations

Tef =Mf, k=0,1,..,n—1. (4)

The separation of variables means that there exist global coordinates (may be
with singularities) 2% 2!, ..., 2"~ such that in these coordinates the system (4)
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is equivalent to the system
A Fi(z* A, X k=101 1
mf— k(2% Ag, 1y An1) =0,1,..,n—1, (5)
where for each k € {0,1,...,n - 1} the function F, depends on the variable z*
and on the parameters Ag, Ay, ..., An—1 only. Then f is the product
Xo(a®) X (2. Xy (@™ h)

1

and for each k € {0,1,...,n—1} the function X k 18 & solution of the k-th equation
of (5) so that we reduced the system of partial differential equations (4} to the
system of ordinary differential equations

52
WXk{wk) = Fk(mk:)‘[]a/\la -~->/\n—1)Xk($k)1 k= 01 13---:” -1 (6)

These equations are either on the circle or on the interval with von Neumann
conditions on the ends of the interval.

Does the Liouville integrability of the geodesic flow imply the existence of
a geodesically equivalent metric? Let 9,7 be two metrics on 3™, Consider the
functions I, : T*M™ - R, k = 0,..,n —1, given by (3). Consider the standard
symplectic structure on T*M™.

Theorem 3. Let the functions I, commute and let they be functionally inde-
pendent almost everywhere. Then the metrics 9, § are geodesically equivalent.
K

Consider the operators Z; : C*(M™) — COM™), k= 0,...,n — 1, given by (1).
Corollary 4. Suppose the manifold M™ is connected. Let the operators I, com-
mute and let they be linearly independent. Then the metrics 9, g are geodesically
equivalent.

Let the functions Iy commute. If they are not functionally independent then
the metrics may be not geodesically equivalent.

Consider the tangent bundle TM™. Consider the fiberwise-linear mapping
(. The restriction of G to any tangent space T, M™ is evidently self-adjoint
(with respect to both metrics); then all eigenvalues of ¢ are real, and we have a
decomposition of any tangent space T, M™ to the direct sum Vievie.e v
of eigenspaces.

We will call the set of distributions

VIVZ VM CTL MY, VieVie.. e Vi =T M

integrable, if at a neighborhood of almost every points of M™ there exists a
coordinate system x!, 22, ... 2" such that the vectors tangent to the coordinate
lines lie in the elements of the distribution.



Theorem 4. Let the functions I, commaute and let the set of distributions of the
eigenspaces of G be integrable. Then the metrics g, § are gesdesically equivalent.

Are there many interesting examples of geodesically equivalent metrics on closed
manifolds? The following theorem {essentially due to N. §. Sinjukov [11]) gives
us a construction that. given a pair of geodesically equivalent metrics, produces
another pair of geodesically equivalent metrics. Starting from the metric of
constant curvatire on the sphere, we obtain the metric of the ellipsoid and the
metric of the Poisson sphere.

Let g, § be Riemannian metrics on the manifold M. Consider the fiberwise-

1

linear mapping B : TM" — TM" given by BJ’ = (%{%)H §“faj. By
definition, let us put metric gz equal to Gie B and put metric gg equal to
GioBf. In invariant terms, the scalar product gp(€,v) of arbitrary vectors
§iv € TogM™ is equal to g(BE,v) and the scalar product ggl£, v) is equal to
§(BE&,v). Evidently, the restriction of B to any tangent space TiegM™ is self-
adjoint with respect to the metrics ¢ and § and therefore the metrics g1, Gp are
well-definite.

Theorem 5. Metrics g and § are geodesically equivalent, if and only if the
metrics gp and gp are geodesically equivalent,

Evidently, the metrics g and g arve strictly non-proportional at a point x € M7,
if and only if the metrics gy and gg arc strictly non-proportional at ..

Thus if we have a pair of geodesically equivalent metrics ¢, g, then we can
construct the other pair of geodesically equivalent metries gg, ju. We can apply
the construction once more, the result is another pair of geodesically equivalent
metrics. It is natural to denote it by gy2, gpe since this pair is given by

gpe(&v) = g(B¢,v), gpe(€v) = g(BE,v).
We can go in other direction and consider the metrics gg-1, §y-1 given by
gu- (&) =B ), Gp-1(§v) = g(B "¢, w).

They are geodesically equivalent as well.

To start the process, we need a pair of geodesically equivalent metrics g, g.
We take the following one (obtained by F. Beltrami [1], [2]). The metric g is
the restriction of the Euclidean metric

(d?rl)g + (d;l?g)g + (d;}:”"" )2
to the standard sphere

§gn = {:1.'[“.'1‘2,...,.1!7”']') c Rn-H . (;171)2 + (J:‘;Z)E I {mqul)Q — 1} ]



The metric § is the pull-back {*g, where the diffeomorphism { : S® - §7 i3
given by

def A
= T

where A is an arbitrary non-degenerate linear transformation of R™1, Az means
‘the transformation A applied to the vector x = (2!, 22, en ™Y ard |lz|| is
the standard norm \/{z1)? + (22)2 % | F (z771)2,

Since the mapping ! evidently takes the geodesics of the metric g to the
geodesics of the metric g, the metrics ¢. § are geodesically equivalent. For
these geodesically equivalent metrics g and g, the metric gg is the metric of an
ellipsoid, and the metric gge is the metric of a Poisson sphere. By varying the
linear transformation A, we can obtain metrics of all possible ellipsoids and ali
possible Poisson spheres.

Recall that the metric of the ellipsoid

1y2 232 n4+142
En déf{(ml,x2,...,.r”+]) € R Gl +—(x ) +...+—~—ﬁ($ ) =1}
a1 o Gn41

is the restriction of the metric
(dz’)? + (dz®)® + ... + (dz"+1)?
to the ellipsoid E™. By the metric of the Poisson sphere we, following (3], mean

the restriction of the metric

1
. dz')? + (dz®)® + .. + (dz™¥1)%)
>1)2 z2)2 PRE ((
1;%2_ it

a

n+41
to the ellipsoid E".

The metric of the Poisson sphere has the following mechanical sense. Con-
sider the free motion of an (n+1)-dimensional rigid body in the (n+1)-dimensional
space around a fixed point. The configuration space of the corresponding Hamil-
tonian system is SO(n+1), and the corresponding Hamiltonian is left-invariant.
Consider the embedding SO(n} = SO(n + 1) as the stabilizer of a vector
v € R™'. Consider the action of the group SO(n} on SO(n + 1) by left
translations. The Hamiltonian of the motion is evidently invariant modulo this
action, and the reduced system on 7*SO(n + 1) /SO(n) 2 T*S" is the geodesic
flow of the (appropriate) Poisson metric on the sphere S™, see [3] for details.

Theorem 6 ([14], independently obtained by S. Tabachnikov [12]). The
restriction of the Fuclidean metric

(d$1)2+(d.752)2+...+(d£l’,‘n+1)2

to the ellipsoid

r1y2 232 nt1y2




s geodesically equivalent to the restriction of the metric

1 e () dan 1)
2 (et ey
zl ? ant! 1 2 A1
(&) +(2) + - (21)

to the same ellipsoid.

Theorem 7 (Topalov, [15]). The restriction of the metric

1 Y . 5
( + + (@=t1)2 ((d-rl)" 4 (([.132)‘z + ...+ (drn+l)z) (8)
B e "H
to the ellipsoid
:1y2 w22 ph142
En:{(Il,;Ez,,_,_x?L_*_l)ER"Jr] u_*_g ) +'.'+(.,r; ) :1}
a1 oy Gnt1

is geodesically equivalent to the restriction of the metric
a{de’ oz (da®) 4 bang (do ) - (o de 2 de 42 dem ) (9)
to the same ellipsoid.

The authors are grateful to Professors W. Ballmann, V. Bangert, A.V. Bolsi-
nov, V. Cortes, A. T. Fomenko, E. Heintze, A. Perelomov, S. Tabachnikov for
interesting discussions. The second author was partially supported by MESC’,
grant number MM-810/98. The first author is grateful to Max-Planck Insti-
tute of Mathematics (Bonn) and Max-Planck-Geselischaft for hospitality and
for financial support.

2 Operators 7; in Levi-Civita coordinates.

Let g and g be geodesically cquivalent metrics on M™. Consider the fiberwise-
linear mapping G : TM™ — TM?®, G'- = §'%Faj. Suppose that the number of
different eigenvalues of G is equal to m < n at every point of an open domain
D C M™. Denote by p1,..., pm the eigenvalucs of G. Let k; be the multiplicity
of the eigenvalue p;.

In the paper [4], Levi-Civita proved that for every point P € D there is
an open neighhorhood U(P ) C D and & coordinate system & = (I1,..., %) (in
U(P)), where &; = (x},..... B <d<m, k4 Ryt o = n), such that
the quadratic forms of the metrl(,s g and g have the followmg form:

(](.f T) = A (11,1"1)+ M4, (x ))+"'+

+ A (Zm, T, (10)
Hz,z) = pIII]Al(,1..,1)+p2Hgflg(ig,i’3)+---+

+ Il A (B, T, (1



where A;(%;, ;) are positive-definite quadratic forms in the velocities #; with
coefficients depending on &, the functions I1; and pi are given by

m ¥ (@ = @1)(Bi — B2) - (i ~ ica )biy1 — i) - - (m — i)

def 1 1
¢l. ¢2~--¢m ¢)i !

where ¢, ¢a, ..., m, 0 < g < g < ... < ®m. are smooth functions such that

¢i={ ¢:(Z;), if k=1

i

(12)

constant, else.

It is easy to see that the functions ¢; as functions of p; are given by

1 1
$i = —(p1p2..pm)TH
Pi

We will call these coordinates Levi-Civita coordinates.
It is conventent to put

I = (di— 1) (¢ — pa)*> - (s — Gic1) Py — gi)Rirr (pm ~ ds)*™
def A;

(b = P1)¥170 (s — i1 )R 1By — Gi)Fer1=1 .-y — o) P 1

so that for each i € {1,2,...,m}

H@A,‘ = fli/i,‘.

Evidently (¢; — ¢;)% ~! is independent, of Z;. Hence the coefficients of A; depend
only on Z;. )

Denote by (A;)ag, @, 3 € 1,2, ..., k; the tensor corresponding to the quadratic
form A; and by (/L-)"ﬁ, a,4 €1,2,..., k; the inverse tensor. Denote by

Ai CHM™) = COHM™)
the differential operator
k.
. 1 a PEN a
> =g V dEt(Ai)(Ai)aﬁg;ﬁ-
a,8=1 ¢/ det{A;) "1 i
Denote by o, the elementary symmetric polynomial of degree p of n variables

QSI’ ""¢11¢2! "'5¢27 Tty ¢m) ""¢m -
e i S ————

k1 ko K



Denote by rfp(gb,) the elementary symmetric polynomial of degree p of n — 1
variables

(D] LIRS | ¢11 Q‘bQ, rry ¢21 RS ] ¢ia ety ¢i: LR | Qbma vy @5m .
D i W R e
kq ko ki—1 ki
In particular, if m = n so that all k; are equal to one then @(b;) is the elemen-
tary syminetric polynomial of degree p of variables ¢, ¢, ..., Die1y Pit1s oeer Py

Lemma 1. /n Levi-Civita coordinates the operators Ty are given by

T = (_l)nkk Z U”*kfl(%),‘ii, (13)

i=1 i

Corollary 5. In Levi-Civite coordinates the functions I {as functions on
TM™=T*M") are given by

e d) = (apr Y bty (14)

i=1
In order to prove Lemma 1, we need the following technical lemma.
Let G be the diagonal matrix diag(py, pa, ..., pn), where
1 1
@1 952@3 ¢’n d’z

Consider the characteristic polynomial det HG — ;LE) =cop o+ 4o,
of the matrix . Consider the matrixes S, S, . - Sn_1 given by the general

formula
L5 I

def 1 mt Th—itl
k (det((}‘)) 2 a0

=0
Lemma 2. Sk = (_l)nmkdiag (Un—-k-kl ((’%’1 }1 On—k-1 (&Z)a v Opemf—1 (qgn)) .
Proof. It is casy to see that the coefficients ¢; are given by
- Un--lc
cp = -1 k
( ) (¢1 ¢52 an)k 1

In particular,
1

(Prpa...dp )L
Let us check the lemma for & = 0. We have

1 n¥T
% = () o

1 1 1
= —1" 2.0 Zd‘_ : LEERY)
(1)@W2¢)I%(mwww¢u¢x@@m%) ¢4@@mm0

(—=1)"diag(d20s...0n, P1d3...¢, ... 1 sz---f‘f’n—'z@n,¢1§’52---¢n—2¢n—1))
(_l)ndia‘g (O'nv-l ((51 )a Tn_1 ((132), e (‘bn)) .

det(G) = ¢, =

10



Suppose that the lemma is true for St—1. Then for S, we have

= () o5+ (i) o)

1 .

= diag (¢511 E’ - 51;) diag ((-1)"_k(an_k — Tpil(d1)),
(=1 (nmk = o)), ey (1) (e — Tnx($n))) -

Using that (o, — (Tg{qgi)) = ¢;01-1(¢), we obtain that 5 is equal to

(1) *diag (on—t—1(f1 ), b1 (d2), s Tmr_p_1 (@n))

q. e. d.
Proof of Lemma 1. We have

8

\/det(q 356’

In Levi-Civita coordinates the matrix of G is diagonal

Iy =

;)
det(g)g™ 5.

diag | 01,0 P15 02,10 P21 ooy Prms ooy Prm
k1 ka [

Using Lemma 2, we have that the matrix of S, is diagonal

Sk = (~1)""*diag &kﬁl((ﬁl): ---,Un—k—1(€511, --'ao'n—kfl(ﬁgm)a---;Jn—k—l(ém))

— —

k1 km

In view of (12), op_k— 1(:;30) is independent of 7, so that
s a a
Ty = (—1)"* N ( ) det(g )—(A w1,
2 f?l vz 55 507

Let us calculate the contribution

521 \/W b1 (By) 5 \/ ()&p(ﬁp)‘*ﬁéi—g (13)

of the p-th block to Z,. Let us show that

det(g) 1
11, det(A,)

(16)

i1



does not depend on z,. Evidently,
det(g) = det( Ay jdet{ Ay)..det(A,, ) AF Tk 1Tk

Since A, is independent of ¥, for p #£ ¢, we must, demonstrate that

itk ik
——e (17)
P
is independent of r,,.
If kp is greater than one then ¢p is constant and the statement is trivial. Let

kp be one. Then for q # p the only term in 11, depending on Ty is £(¢p — dy).
Using that

l:Ip = {@p - (ﬁl)k] T (‘I.p . ‘ff’p~ l)kp_l ((f"p-f-] - @p)kr+l toe (.@m - ¢p)km
we have that the terms in I—If‘ ﬂ.’;g...ﬁﬁ;" which depend on 7, are
(C»bp - ¢1)2k1 T (Cb;) - ép—i )M}hl (ﬁ‘bp+l - ¢1J)2kp+1 T (‘fbm - (—f’p)%m-

Thus we can cancel all terms depending on &, in (17).
Using that (16} is independent of &p, we see that (13) is equal to

kp
Un—k—l((ii’p)fi _ Unfk--l(ff)p)
— A, =

1 d PRI ad
; = Y e det(A,) (4,)% 2
I, I ng=1 4/ det(A,) O3 x

P
and 7 is giving by (13), q. e. d.

Lemma 3. If the metrics g, § are geodesically equivalent then the operators Ty
commute.

In order to prove Lemma 3, we need the following technical lemmmas.

Denote by N{z) the number of different eigenvalues of GG at the point z.
By definition, the eigenvalues of G at z € M™ are roots of the characteristic
polynomial P,(t) = det (G — tE),,- Since each two positive-definite quadratic
forms can be simultaneously diagonalized, all roots of P (t) are real.

Lemma 4. For a sufficiently small neighborhood of an arbitrary point z € M™,
for any y from the neighborhood the number N{y} is no less than N(z).

Proof. Take a small € > 0 and an arbitrary root p of P.(?). Let us prove that
for a sufficiently small neighborhood U(z) ¢ M™, for any y € U(xz) there is a
root py, p— ¢ < py < p+ ¢, of the polynomial P,(t).

If ¢ is small, then for a sufficiently small neighborhood U {) of the point z,
for any y € U(x) the numbers p + ¢ and p — € are not roots of £, (t). Consider

12



the circle S, 4 {z€C: |z—p| = e} on the complex plane C. Clearly, the
number of roots (with multiplicities) of the polynomial P, inside the circle is
equal to

LR,
2mi Jg, Py(z)

Since for any y € U(z) there are no roots of P, on the circle S, then the function

1 Pi(z)

2mi [, P,(5)

continuously depends on y € U{z), and therefore is a constant. Clearly it is
positive. Thus for any y € U(z) there is at least one root of P, that lies between
p-+¢and p— e Then for any y from a sufficiently small neighborhood of 2 we
have N(y) > N(z), q. e. d.

A point z € M™ is called stable, if in a neighborhood of x the number of
different eigenvalues of G does not depend on a point.

Denote by M the set of stable points of M™. The set M is an open subset
of M. Obviously

M= || Mp, (18)
1<m<n

where M, denotes the set of stable points with the number of distinct eigen-
values equalling m.

Lemma 5 ({14]). The set M is everywhere dense in M™,

Proof. Evidently the set M is an open subset of M™. Then it is sufficient
to prove that any open subset W C M"™ contains a stable point. Suppose
otherwise, i.e. let every point of an open subset W be a point of bifurcation.
Take a point y € W with the maximal value of the function N on it. Using
Lemma 4, we have that in a sufficiently small neighborhood U(y) C W of the
point y the function N is constant and is equal to N {¥). Then the point y is a
stable point, and we get a contradiction, q. e. d.

Lemma 6. Suppose that the functions P1, 02, ., O satisfy (12). Then for any
,j€{L,2,..,m}and ke {0,1,...n— 1} the function
a1(®i)ok(9;) ~ ok (di)or(d;)
1I;

(19)

18 independent of T;.
Proof. If i = j then a;(d;)ay (é;) ~ Uk(q,?)i)og(q;j) is zero and the statement is

trivial. If k; is greater than one then neither crk(qaj) nor og(q'ﬁj) nor og(;) nor
a(¢;) nor II; depend on #; and the statement is also trivial.

13



Now let k; be equal to one. Without loss of generality, we can assume that

i < j. Denote by ap(e;, gb}) the clementary symmetric polynomial of degree k
of n — 2 variables

P, @15 P2, vy o, "“(r{)i) '--1(»51‘- --'!(.ﬁja "'1(ﬁj: voor Oy veos P
S e N e N’ — ” e ——

Ky ka ki—1 k-1 km

In view of (12}, o4(¢, ¢;) dopends neither on ' nor on & Substitute the
trivial identities

or(d) = o_1(did)p; + o (6, 8;)
ox{d) = Tkt (D1, 6,)¢; +op{i, &)
o{d;) = o1 (G0, )i + 01y, ;)
or(di) = Teo1 (B, b} i + 0k (e, B;)

in (19). We assume that o.., (i, r,Bj) = 1. After a simple calculation, in place of
(19) we obtain

(Ul(ﬁai-ggj)gkrfl((f’i~(5j) - ak(ﬁgiecﬁj)al*l(éiyﬁgj)) (& — ;)
II; ’
which does not depend on 7;, q. e. d.

Proof of Lemma 3. Lemma 5 shows that it is sufficient to prove the statement
of Lemma 3 in the stable points only.
Let us prove that in a stable point the commutator

[In—t—l 1I'n.—k-l} = In—tfl (In—kfl) - Inkkfl (In-lfl)

of the operators T, ;_;, T, ,_, is zero.
In Levi-Civita coordinates we have

Zm (o,lcs ( " 1( ./ij

i (44 (7, (248

("1)k+l[zn--l—l- Infk—l]

(20)

|

Using that a,{¢;) does not depend on F; and therefore commutes with A;, we
have that (20) is equal to

{1 (s [ @ldionld)) iVl 1w ‘7’“(¢1)
(A (5 () ) - (£ (g
m L 7 i 0’1((,?3,‘)0’;@((}%) - Uk(ggi)di('i’j) i

S (g (g ey

14



By Lemma 6, we have that

a1($:i)or($;) ~ ar(i)oi(d;)

1

is independent of Z;. Then the commutator [In_,g_],In_k_1] is equal to

3 ((m(@)ak(é% _ éfc(éﬂﬂ(@)) A, (Aj)) . (21)

ty=1

Since for i # j the coefficients of A; are independent on z; then for any 1, j
./L-(.Aj) = A;(A;) and the sum (21) is evidently zero, q. e. d.

3 When the operators 7, are independent?

In this section we assume that 9, g are geodesically equivalent metrics on M™.
As in previous sections, let us denote by G : TM™ - TM" the fiberwise-linear

mapping given by G’j = §"Go;, and by N{z) the number of different eigenvalues
of G at ¢ € M™.

Lemma 7. Let 7 = (£1,%2,...,Zm) be a Levi-Civita coordinate system for the
metrics g,§ at an open disk D™ C M™. Consider the operators Ip as acting
on C2(D™). Then the dimension of the linear subspace < Ty, Ty,..... T, 1 >
generated by the operators 7y : C2(D™) — CP(D™) is equal to m.

Remark 5. In view of formulae (13, 14), we have that in Levi-Civita coordinates

the sums
n—1 n—1
Z /\ka and Z )\ka
k=0 k=0

vanish simultaneously.

Corollary 6. fet 7 = {(Z1,22,...,Zm) be @ Levi-Civita coordinate system for
the metrics g,§ at an open disk D™ C M™. Consider the restrictions of the
functions Iy to T*D™. Then the dimension of the linear subspace

<Io, Iy, Iny >C CHT*D")
generated by the functions I, : T*D™ S R s equal to m.

Corollary 7. Let M™ be connected. Then the dimension of the linear subspace
<oy Ly, Inmy >C CHT*M™) generated by the functions I : T*M™ — R is
equal to max N{z) and for almost each y € M™

T n

N@=£%Nw-

15



Corollary 8. Let M™ be connected. Then the dimension of the linear subspace
< Zo,Tyy Iy > generated by the operators Iy CHM™) — COM™) s
equal to max N(x) and for almost cach y € M™

ac M

Ny} = max N(r).
(%) Inax N(r)
Remark 6. Corollary 2 (Corollary 3. respectively) immediately follows from
Corollaries 6 and 7 (from Lemma 7 and Corollary 8, respectively).

Proof of Corollary 7. Suppose that for real Ag, A, y-y An_1 the sum

n—1
A (22)

k=0

is zero for all points of T*D", where D™ € M?" is an open disk. Let us prove
that if the manifold is connected then for all points of T*M™ the sum (22) is
zero also. In particular, the dimension of the linear subspace

< Iy Iy, ..., I, 1 >C ("Z(T*Dn)

generated by the functions I : T°D" = R is equal to the dimension of the
linear subspace

<Io, Dy, Ty >CCHT'M™)
generated by the functions [, : T*M"™ R,

Consider a geodesic v that goes through a point of the disk. Let us prove
that for each point P € + the sum (22} is zero at each point of TAM™. Consider
all geodesics that start at the point P and go through at least one point of D,
Denote by W™ € TpM™ the set of initial velocity vectors of these geodesics.
Since the solutions of a differential equation continuously depend on initial data,
the set W” contains an open subset of TpM™.

Identify the tangent and the cotangent bundles of A/ by the metric g. Since
the integrals /; are constant on the geodesics, the funetion (22) is also constant
on each geodesic. By assumption, the function {22) is zero for all points of
T*D"™. Then it is zero for all points of W™ Using that the functions I are
polynomial on Tj5M™, we have that the function (22) is polynomial on THM™.
Since it is zero on an open subset, it is identically zero.

Now if the point P can be joint by a geodesic with a point of the disk, each
point of a sufficiently small neighborhood U/(P) of P can be joint by a geodesic
with a point of the disk. Thus the sum (22) is zero at each point of T (P},
Using that each two points of a connected manifold can he joint by a finite
sequence of geodesic segruents, we have that the sum {22) is zero for all points
of T*A™,

Now let the metrics g, g be geodesically equivalent on M™. Denote by m
the maximum

max N{zx).
re M

16



Take a point P € M" such that N (P) = m. By Lemma 4, we have that the point
P is stable, Therefore there exist Levi-Civita coordinates & = (F1,Z4, ..., )
in a small disk D™ ¢ M®, P ¢ D" Using Corollary 6, we have then that
the dimension of the linear subspace < Iy, Iy, ..., I,_ | >C C?(T*D") generated
by the functions I, : T*D™ — R is equal to m. If in addition the manifold is
connected, the dimension of the linear subspace < Iy, Iy, ..., I, 1 >C 2 (T=M™)
generated by the functions I, : 7*M" = R is equal to m. Combining this with
Corollary 6, we have that the value of the function V at any stable point is m.
Therefore the value of the function N at almost every point of M™ is m, q. e. d.

Proof of Lemma 7. Let the metrics g, § be geodesically equivalent on D",
For each ¢ € R consider the operator F, : C2(D") — C°(D"™) given by

In_ltn_l + In__gtn_z + ...+ 1.

By definition, F; is a linear combination of operators Iy,
Take different #g,t,..., 8, 1. Easy to demonstrate that each 7} is a linear

combination of the operators Ftos Feys s Fe._,- Indeed,
Fio Lty ™ + T atl 24 4+ T, to 'ty L1\ T
T, Tt M+ T at?2 4 4 T, A A T I I S
Fruls Ity + Lot 24 4+ T, A A S | T
The Vandermonde matrix
1 -
t?’:_l t:);z w1
e
-1 s
thy thor 1

is non-degenerate. Therefore the operators Iy are linear combinations of the
operators Fy,, Fy,, ..., F;. _,. Thus the linear span < F;, £ € R > of the family
JF coincides with the linear span < To, Iy, ..., ITn-y >, and our goal is to prove
that the dimension of < F,,t € R > is m.

Using that

i: thon_g1(di)(—1)"F1 = (t — )1 (t — do)*2. (¢t - 2 RO (A L

k=0

we have
n—1 m it
F o= Z [(_1)nktk2 Un—kq—l(ﬁbi)ji'jl
k=0 i=1 I

Il

|
NE
p S

2

[(t R AP e (R Lk S R ‘]

1

.
If
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m—1
i G D e Y L D

k=0

where the differential operators 7, C*D™) = C*(D™) are given by

fﬂc = (_1)?71-—k Z Em;ifl;”'¢i)ji’
i=1 1

where &;(¢;) denotes the elementary symmetric polynomial of degree l of m —~ 1
variables

0‘91 ) ¢23 reey ¢i71 ) éi-}-l& sy 'ﬁm-
If k; > 1 then ¢; is constant. Then for any i € {0,1,...,m}, t € R, the function

(t — ¢:)% 1 is constant also. Hence each operator F; is a linear combination of
the operators Zy, 7, ..., 7,5 —1. Therefore the dimension of the linear subspace

<Zo, D1, Zpnoa >

generated by the operators Z; : C?(D") — C°(D™) is no greater than m.

Let us prove that the operators Ty, 71, ey are lincarly independent so
that the dimension of the linear subspace < Ty, 7y, ..., 7,1 > generated by the
operators Ty, : C*(D"} — C°(D") is precisely m. Evidently the operators A; are
linearly independent so that it is sufficiently to show that the following (mx m)}
matrix

(=11 {

1
(_l)miI(Tm—Q(Qj

) (71)m0m71(§5‘%) (_l)mamgl ((f)rvn)
= 1

} ("l)m_iamfﬂﬁbﬂ} (_l)mwlo'muz((bm}

—an(dn) —o0(2) . —00(m)

is non-degenerate. To prove this, let us multiply it (from left) by the Vander-
monde (m x m) matrix

o 4] . !
L b2 03 .. ¢p?

V=
T
Using that

m—1

2 okt B1 T = (= 81)(E = )t — G}t = dus)on (- 6)

k=0

we have that the sum

m-1
Z AN CATES Sl
k=0

18



is zero for i # j and is equal to (—=1)™ [, for i = J. Then the product VC
is the diagonal matrix

diag {(-1)"Th, (=1)™ ", ..., ~I,)

which is clearly non-degenerate, q. e. d.

4 If the manifold is closed then the operators 7,
are self-adjoint.

In this section we assume that the manifold M™ is closed. Let ¢ and g be
Riemannian metrics on ™. Consider the operators Iy given by (2). Recall
that Ly is a Hilbert space with the following scalar product:

<Y >= dvdV,
Mn

where dV denotes the standard volume form \/W(g)dmldxz...dzz" on M"™,
Lemma 8. The operators T, are self-adjoint.

In other words, < ¢, Tp{3)) >=< T4(¢), v > for any ¢,9 € C?{M™).
Proof.

<O L) > = GLy (1) dV
Mn
1 ¥ - Oy
= —— v d ——
Mn ¢ det(g) Or* (Sk)a v det(g)g Daxd v

— 1 4 / i 614[)
- [n \/MET(%B' det(g)(sk)ag J¢5§dv

i af 6¢ ng
- Mn(Sk)Qg I (3:5‘5) (EE) dv.

Since the manifold is closed, its boundary is empty. Using divergence theo-
rem we have that the integral

1 % )
f . m _8%[:_1 AV det(g){ldv

vanishes for any smooth vector field £. Then < ¢, T (4) > is equal to

i, 07 6¢ (91,!')
‘fw (St)ag™ (5;«-) (55) av-

Using that the restriction of the fiberwise-linear mapping S to any tangent
space Ty, M"™ is self-adjoint with respect to the metric g, we have that the
two-form g**(Sy), is symmetric, and therefore, the operator Zy, is self-adjoint,
q.e. d.




5 Separation of variables.

In this section we assume that the manifold M™ is closed and connected, the
metrics g, g on M™ are geodesically equivalent and are strictly non-proportional
at least at one point. Our goal is to show that we can separate the variables in
the equation

A(f) = Af.

Since the operators Zp are self-adjoint and commute, it is possible to diago-
nalize them simultaneously. That is, there exist a countable basis

¢ = {fl ’ f‘Z: s fm: }

of the space L,(M™) such that each f,, is an cigenfunction of each operator
Zy. Since 7,y is precisely the Beltrami-Laplace operator A, each f,, is an
eigenfunction of A,

It is known that the dimension of any eigenspace of A is finite. Therefore
any eigenfunction of A is a finite linear combination of functions from &, and all
functions from the combination have the same eigenvalue. In particular, if all
eigenvalues of the functions f1. fa, ..., fm, ... are different, then cach eigenspace
of A has dimension one. Then if f is an eigenfunction of A then f = C'f,, for
the appropriate ¢ ¢ R and m € N,

Suppose f is an ecigenfunction of each aoperator Z;. Denote by Ar the cot-
responding eigenvalue. Then f is a solution of the following system of partial
differential equations.

Iy(f)

L(f)

Aof
M S

Il

: (23)
Lno1(f) - An1f

By Corollary 1, the metrics are strictly non-proportional at almost all points
of M™. By Lemma 4, if the metrics are strictly non-proportional at a point
P € M™ then P is a stable point. Therefore in a neighborhood of P there exist
Levi-Civita coordinates (3, y*, ..., ). In these coordinates the metrics have
the form

Mo Ao{y®)(dy®? + TL A (y ) (dy' )2 + -+ My Ap oy (™) (dy™ 12
pollo Ao(y™)(dy®)? + ;L Ay (g ) (dy' Y + - + Py oy A (™ ) (dy™ 12

?

respectively. Here 4; are positive smooth functions of one variable,

def

i = (&~ do)(di — 1) (dy — dic1) (Pis1 — &)+ (Pnoy — &) (24)

and ¢g,d1, ..., Pn-1, 0 < dp < ¢ < ... < Py, are smooth functions such that
for any i the function ¢; depends on #* only.

20



Consider the coordinate system (2%, £!, ..., 2"~!) given by z'(y¥) = f VA (E)dE.

In other words the coordinate lines of the coordinate systems (2° xl, ,sc’"" 1
and (3°,9,...,y™") coincide and for cach i we have (dx')? = A;(3%)(dy")2.
In new coordmates the operators A; are simply {_‘T" and the operators I, are
given by
= (—1)"* S Ok (d) O
11; (Gzh)2”

Then in place of (23) we have

Zo(f)

AGIE

In.gl (f)
(—1)ngz=1ldo) 15 (=1)"2n 1;1(05 1) v (=1)neas 1n¢v; 1) (‘t%zd%f
Tp— n—10n A n—10n_— n 32
(1) 1 ( @o) (—1)" 1 Hzl(oﬁl) (-1)n—1 2n¢1 1) w_m‘fif B

1 1 0
Iy m - Hny (8zn=T)

Mo f
A f
Anmlf
Using that
n—1

DT 0 G = (k= ) (t - @) (= S 1)t ~ fryr)o{t — By)

i=0

we have that for each k,m € {0,...,n — 1} the sum

n—1
i+l gn—1— 101(¢k
g() R

is zero for k # m and is equal to (—1)** for m = k. Then the system (23) is
equivalent to

IBB—::DF = (_1)"1 ()10 + /\1¢10 + ,\21;[)% + o+ /\n—lﬁbgﬁl)f
e (1" Do+ Mo+ a8 + .+ a7 f

TFB:LLJT = - (/\0 + /\1¢nr_1 + /\2(}531_1 + .o+ Aoy 2:})f
'The right-hand side of the k-th equation of (25) depends on z* only, g. e. d.

(25)
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6 Inverse theorems.

Let g be a Riemannian metric on M. Let us identify canonically the tangent
and the cotangent bundles of M™ by the metric g.

Lemma 9. Let M™ be connected. Supposc that for a function f - M™ 5 R the
funection

F:T*M" 5 R F(x, &) "% firgle, &)

(where (x.€) € T*M™ = TM", r e M" and £€ T, M") be an integral of the
geodesic flow of the metric g. Then the function f is constant.

Proof. 1t is known that the Hamiltonian H : T*M"™ - R, H{x,§) def 59(6,8)
is an integral for the geodesic flow of the metric g. Then the ratio % =2fis
also an integral. Using that each two points of M™ can be joint by a sequence
of geodesic segments, we have that [ s constant, q. e. d.

Proof of Theorems 3.4. Let g, § be Riemannian metrics on M™. Consider
the fiberwise-linear mapping ¢ given by the tensor gi"f}aj. From the results
of [6], it follows that if the functions Iy given by (3) are in involution and are
functionally independent then the set of distributions of the eigenspaces of (7 is
integrable; hence Theorem 3 follows from Theoretn 4.

Suppose the set of the distributions of the eigenspaces of G is integrable,
and the functions I given by (3) are integrals in involution of the geodesic flow
of g.

By definition, we have that in a neighborhood of almost each point of M™
there exists a coordinate system 7 = (F1....,8m) (where F; = (z}, ..., :r,f"), (1<
i <m)), such that the matrix of 7 is diagonal

diag PLieoa PLy P2y oo 2 oy Prns s P
Nt S S et

ki ka2 LS

In this coordinate system, the matrixes of the metrics g, § are block-diagonal.

Without loss of generality we can assume that /> pr > o> opy > 0. By
1 -

definition, put ¢; equal to i(pl P2} ™ F1. By definition, put II; equal to

(6i — @) (b — o) - . (B: = i)™ (Pip1 — da) 51 (P — ¢3)Fm .

Then the quadratic forms of the metrics g and g are as follows:

9(1,8) = Mdi(z,5) + Mady(z.d) + - +
+ M Ap (2, ),

§a.) = pIh A (E,80) + polleda(d, 29) + - +
+ pmflmfim(:"}}m),



where fii('f,,:i“ci) are positive-definite quadratic forms in the velocities #; with
coefficients depending on z.

Our goal is to prove that the metrics are geodesically equivalent. 1t is suf-
ficient to prove that the coordinate system Z = (Z1,...,Zm) 15 & Levi-Civita
coordinate system for the metrics. That is we must prove that for each i the co-
efficients of A; depend on Z; only, and that for each i the function ¢; 13 constant
for k; > 1 and depends only on &; for &; = 1.

By Lemma 2, the integrals I; are given by

Li(z, ) = (-1)"F i %%_L@i—)zii(fa Zi).
i=1 t

Denote by (Ai)ag, o, 8 € 1,2,..., k;, the tensor corresponding to the quadratic

form A; and by (zit-)"ﬁ, .3 €1,2,..., k; the inverse tensor. On the cotangent
bundle T M™ the integrals I, are given by

S o km1(8)  pas
. - k= i -0,
L(@p) = (-1 k3 | 3 Al e
i=1 |a,A=1 Hi '
By definition, put
k.
1 & s
Fi = = (A)I 6pz‘apm,6
Hé ,A=1 '

Then the integrals Iy, have the form
I(z,0) = (1" * 3" on_p_1(ds) Fi.
i=1

Lemma 10. Suppose that the functions I are in involution. Then for each
hiloe{0,1,.,n-1} andi,j ¢ {1,2,...,m} the functions
On-ti=1($)Fi + Outy 1{$)F; and opyy1(d:)F + Onta—1 (6;)F;  (26)

are in nvolution. In particular for eachly,ly € {0,1,...,n~1} andi € {1,2, wam}
the functions i )
On—t;—1{@:}Fi  and o, (d)F;

are in involution.

Proof. We have

7

{L,, I, } = (1)t Z {on-t,-1(0a)Fa, 0nt,-1(dg) F5} = 0. (27)
a,0=1
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Evidently {f,,,f;,} is polynomial of third degree in momenta (in other words
the restriction of {I;,,7;,} to each cotangent space is a polynomial of degree
three). Then all cocfficients of this polynomial are zero. Note that the terms
PerPazpyt {where v = 1, k;, s = 1,k t = 1o k), ParPriPat {where
r=1 ke s = 1,00k t = L. k), Pa;Das Pyt (where r = 1,.. k;, s =
L.k t = I, ..., k;) and PerPesPat (where r = Lokj, s =1,.,k, t =
L,..., k;) are found only in

{on 1, (i) F; + Tty <1 (G)Fy 0ty 1 ($:)Fs + Un—.!z-l(éj)Fj} (28)

and all terms in (28} are of this type. Since all coeficients by these terms are
zero, (28) is zero and the functions (26) are in invelution, q. e. d.

Cotnbining Lemma 9 and Lemma 10, we have that for any i {1,2,...,m}
and ! € {0,1,...,n — 1} the function o1(d;) does not depend on z;. Consider the
polynomial

(t — (35'1)"‘:I (t — $2)k2...(t - ¢‘i)k‘.—1“-(t - Qsm)km
= " lop(i) ~ " 2o (G) + .+ (1) 2to,_o(d;) + (=1 o, 1 {ds).

Since the coefficients of the polynomial are independent of #;, its roots are also
independent of Z;. Then for each i € {1,2,...,m} we have that ¢; is constant
for k; > 1 and depends only on z, for k= 1.

The last step is to prove that the coefficients of A, are independent of Z; for
7 # 1. It is sufficient to show that for cach i # J the functions

FII, Fl (29)

are in involution. More precisely, suppose that (29) are in involution. Using
that

ks K
{F:ll, FiI0;}) = > (A) " poip s, > (Aj)amzpz?sz@z
ay,gi=1 T azpa=l !

ki k; -
. ! . (A2
=2y Y [(Az-)“lﬁl—(%w—a;il pppa}
" i i ;

andi=1 ap,3z:=1
kj

kq -
: 1 oo a(Ai)alﬁl
- 2 I:(Aj)hﬁz—w—p”ﬁzpw?lpmm -(30)
a1, di=1 ag,3a=1 3 ? !

we have that all coefficients of the polynomial in momenta (30) are zero. Since
the form A; is non-degenerate, the sum

Z (-r‘i;,- )a2ﬁ2 prz

Bz=1
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is zero, if and only if p; = 0. Then for any a2 € {1,..,k;},a; € {1, ki, G €
{1, ..., k;} we have that )
3(Ai)azﬁl

AL M
Ox y

is zero. Thus the coefficients of A, depend on %; only.
Let us demonstrate that the functions (29) are in involution. Using Lemma 10,
we have that

{Fs + Fj,00(6:)F; + 01{6;) F;} = 0. (31)

By Lemma 10, {F;,a1(¢:)F;} = {F},01(¢;)F;} = 0. Then in place of (31) we
have

0 = {Fiao’l(‘ﬁj)Fj} +{Fy,01(6.) F}

_ kZ OF: 01(3)F,\ , = ( OF; dov(G0)F
(9]31:\ 51? Op s axf

a=1l A=1 z;
_ i 001(6i)F, 0F; | _ s~ ((001(6))F; OF,
= Opee  Oxf a 8PIf 83:?

Since o, (¢;) does not depend on z;, we have that

OF 8o1()F\ 81 (9:)F; BF; \ [ OF; 3o1(¢;) - 01 (i) F
Opre Oz Opzz  OxF | \ Opya Oz

1

and similarly

( OF, aol(ézm) ) (am(rﬁj)ﬂ- oF; ) _ (BFJ- B(o1 () —m{q“sj)m) .

3171? axf apr E)mf N BPI? 33:?
By Lemma 6,
(71{0:) _ 7 (¢5)) ((Ul(tﬂi) — 71(¢;)) . respectively)
II; 1I,

Is independent of &; (of #;, respectively). Then the left-hand side of (31) is
equal to i )
{o1(9:) — 01{¢;))
1,11,
and therefore the functions (29) are in involution. Thus the coordinates (Z1,%2, 0y Tmn)

are Levi-Civita ¢oordinates for the metrics g, g and the metrics are geodesically
equivalent, q. e. d.

{Fz‘ﬁhFjﬁj}u



7 Proof of Theorems 6,7.

Consider the space R**! with the standard coordinates = = (z!,22, ..., ),
Consider the standard sphere

S*C RMY 8" ={z e R (2 + (22 + .+ (2"t =1}
Denote by g, uc:0 the Euclidean metrics
(dx')® + (dz®)? + ... + (da™t')?

on R"*1. Denote by ¢ the restriction of Geuciia to S™. Let 4 be the diagonal
matrix dia,g(ﬁ, —\/%2, . ﬁ). We assume that all a; are positive.

In order to prove Theorems 6,7, we consider the linear transformation
z +—> Ax of the space ™! and construct the corresponding transformation
l:xzw ﬁfﬂ of the sphere S™ and the metric § = I*g on the sphere. Then we

i
construct the fiberwise-linear mapping B given by B} = (gg_((%) - 9oy

and show that the metrics gp, gp are essentially the metrics from Theorem 6
and the metrics gy2, g2 are essentially the metrics from Theorem 7. Therefore
Theorems 6,7 follow from Theorem 5.

Take an arbitrary point x = (¢!, 2%, .., 2"t!) € S™. Denote by T, B*+! and
T, 5™ the tangent spaces at the point = to 27! and to S, respectively. Identify
the tangent space T, R™*! with R™*! by moving the origin of the coordinate
system to the point r. Consider the matrix

A: 132 221 1 2A
\/1%1L T L I
p] Angpl

and the matrix P with the general element P;; = 2'z/. The matrixes A, P
depend on the choice of the point . It is easy to sce that for each vector
v € T, R**1, the vector Puv is the orthogonal projection of the vector v on the
vector normal to the sphere. Then

PP =", (32)
since the square of the projection is the projection. Similarly,
PA’P =P, (33)

since in view of (32), the matrix PA2P commutes with P, takes T, 8™ to zero and
is therefore proportional to the projection P. It is easy to see that the coeficient
of proportionality is 1, since for the normal vector n = {z', 22, ..., z"+1) to the
sphere we have PA?Py = .
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Consider the mapping

L gprtl _y ptl L(:L‘) _ -\/(331)2 + (1‘2)2 4o+ ($n+1}2
%ilﬁ + %?3 NURE i)

Qnt1

The mapping L is a diffcomorphism on R™+! \ 0, takes the sphere S7 to itself
and coincides with the mapping I : i 3 ”j}—i’” on the sphere.
The Jacobtan J of the mapping L at the point z € S is equal to

A—-APA® + AP
Then the pull-back L*g,,q:q of the Eﬁclidean Metric geyeriq is given by

JYy = (A-APA+PAYA-APA® + AP)
= A*-A*pA?4 A%p
~ A’PA*+ IPPA’PA® - A*pA%p
+ PA* - PA*PA®+ PA%P
= A*-ApAtyp
and therefore the metric g is the restriction of the metric given by the matrix

A* — A?PA2 | P to the sphere.
Let us demonstrate that the matrix

G l=A7 - AP - PA 4 PA 2Py P
is inverse to the matrix G = 42 — A2P A% 4 p.
Denote by 1 the identity (n + 1) x (n + 1) matrix diag(1,1,...,1). We have
e

n+1

G'G = (A*-AP_pitypi?py P)A* - A2PA + P)
= 1-A7PA*- P+ PAIPA? + pA?
PA* + AZPAPA? + PPA? - PA-?PA*PA? _ PA2PA?
+ AP - APP_pAp4 PA-?PP4 PP
= 1.

The Euclidean metric goy,eq is given by the matrix 1. Then for any vectors
u,v € T, R we have L* geyesa{G 1, v) = Geuctid(u, v}). Let us show that G—!
takes T,.5™ to T, 5" and therefore coincides with the fiberwise-linear mapping
given by g*®g,; on T, 5" Evidently, T, 5™ is the eigenspace of the matrix P
(with the eigenvalue 0). Then it is sufficient to show that the matrix P commutes
with G=1. We have

G'P = (A?_A"2p_p4i-2Lpi2py PP
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= APP-47?PP-PAP4 PA PP PP
= APP-AP - PA*P+PA PP

= PA? - pPA? - PAPLPA’P4 P

= PAT-A7P-PA 4L PAP 4+ p)

= PG7L

Thus the fiberwise-lincar mapping B and the linear mapping given by G~!
are proportional at 7,.5™ Let us find the coefficient of proportionality. By

o
definition, it is equal to [ 2880} ™' 1ot s demonstrate that 949) ig equal to
q detig) det(g) !

det(G). Indeed, the matrix P commutes with the matrix G~!. Hence the matrix
P commutes with the matrix 7. Then T,S™ is invariant under nultiplication
by the matrix G. Using that the restriction of the linear mapping given by
G to T, S™ is exactly the restriction of the fiberwise-linear mapping given by
the tensor _q"'“_(;rﬂj to T,5™, we have that at the point x, all eigenvalues and
eigenvectors of g'%g, ; are cigenvalues and eigenvectors of (¢, In particular, n
eigenvectors of G lie in 7,5". The only eigenvector, which does not lie in 7,5 "
is the normal vector 7 = (2',22,...,2™1) to the sphere. It is casy to check by
direct calculation that the corresponding eigenvahie is equal to 1. Using that
the determinant is the product of all eigenvalues, we obtain

det(F) ;
— = det(g" 7,:) = det{F).
deilg) det(g* §a;) = det{G)
Let us find the determinant of the matrix . We have
det(G) = det®(J)

= det’(A— APA4’ 4+ APp)

= det;(A)detz(/il2 ~A2PA% 4 A%Pp)

Let us show that
det(A® — A*PA® + A°P) = det(A* — A2P A% 4 P). (34)
In view of P(1 — P) = 0, we have
(A2 - A°PA* + A’P)(1 - P) = (A% - A°PA? + Py(1 - P).

Since the projection of T, R"*' on 7,8 is given by the matrix 1 — P, the
mappings given by (4 — A2PA? + A2P) and (4% — A2PA% + P) coincide
on T;5™. Then there exists precisely one eigenvector v ¢ T.5™ of the ma-
trix (A* — A2PA% 4+ A?P). The corresponding cigenvalue is equal to 1, since
P(A? - A2PA* + A2P) = P. Using that the determinant is the product of all
eigenvalues, we have that the equality (34) is true. Thus

1
mde# (G) = dFt(G)
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and therefore

n+1
- 1 1
det(G) = detQ(A) = @h)E | (z2)2 (enF1)2
@102...Qn41 T+—+"‘+—L
1 az Gn41

Finally, the restriction of the fiberwise-linear mapping B to T, S™ coincides with
the restriction of the linear transformation of 7, R+ given by the matrix

I/‘l
- —1
gziy 4 (32)2 ot gxn+1)2 G
1 az An41

to T,5", where ¢ = (a1a2...¢p21) ™', Then the metrics 9B, §p are the
restriction of the metrics given by the matrixes

C C
. ; G, 1,
{zal})z n ga;‘;)? - (_.EannJ;lllz (1;11)2 N gma?z P @ +1)2

Qn41

respectively, to 7, 5™. Let us demonstrate that the metrics 9B, dp are isometric
(up to a scaling) to the metrics from Theorem 6. First of all, the metrics given
by the matrixes

1
RS CU LI

PCESIE G™! and A2

ant1

coincide on 7, 5". Indeed, since the projection on T;S™ is given by the matrix
(1 = P), it is sufficient to check that

(1-P)G"'(1-P)=(1-P)A2(1-P)

which is trivial in view of (1 - P)P = P(1-P)=0.
Let us show that the restriction of the metric given by the matrix A=2 to
the sphere is isometric to the metric of the ellipsoid. Consider the ellipsoid

132 242 n+142
@ xT xr
{(EI,EQ,...,IH+1)€RH+II ( ) +( ) ++( ) 21}
a) as An+1
Consider the mapping
1 2 n+1
z x x
m: R" 5 Rrtl g 2t 2t et = (—, — —_> )
( ) Va1 4/aa 1/Ont1

The mapping m takes the ellipsoid to the sphere. Its Jacobian is equal to A.
Then the pull-back of the metric with the matrix 42 is given by the matrix

ATA 24 =1,
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and therefore the metric m*gp is (up to a scaling) the metric of the ellipsoid.

Similarly, the metric m”gg coincides (up to a scaling) with the restriction
of the metric given by (7) to the ellipsoid. More precisely, the pull-back of the
metric with the matrix

1
g;,;])?. + (12!2 + N + izﬂ-}] 2 1
1 az Gn 1
is given by the matrix
A2

1
ST B EE

which is exactly the matrix of the metric (7). Thus the Euclidean metric and the
metric (7) induce geodesically equivalent metrics on the ellipsoid. Theorem 6 is
proved.

Let us show that the metrics in*gg:, m* g2 coincide (up to a scaling) with
the metrics from Theorem 7. By definition, the metrics gg2, fg2 are the restric-
tion of the metrics given by the matrixes

2 2
C (071)2 C G—l
(1,1!2 (12)2 (In+|22 1 (1122 £I2!2 £$n+122 1
a) + asz ot thn 41 a1 + aq tot Anyy

respectively, to the sphere. It is easy to check by direct calculations that the
matrix (1 - P)(G7')*(1-P) = (1- P) (A1 - A72PA~%) (1 - P) so that the
matrixes (G~')? and A=* — A72PA-2 pive us the same metric on the sphere.
Then the pull-back m*gg:2 is (up to a scaling) the restriction of the metric given
by the matrix A=? — P to the ellipsoid. Similarly, the pull-back m*gg: is (up
to a scaling) the restriction of the metric given by

1

1
o

to the ellipsoid. Finally, the metrics (8), {9) induce geodesically equivalent
metrics on the ellipsoid, q. e. d.
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