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Abstract

The longitudinal coupling impedance of a semi-infinite circular waveguide
has been analytically calculated. The Wiener-Hopf factorization method has been
applied to obtain an expression of the radiation spectrum at any frequency and
particie energy.

1. INTRODUCTION

The Tlongitudinal impedance of a semi-infinite circular wavequide has been
recently calculated [1] in the low frequency approximation. The problem was
expressed in terms of a pair of integral equations whose solution was found by
applying the Wiener-Hopf technique. The impedance was expressed as a run of two
terms = Z = Z, + Z,, where Z; is a purely imaginary contribution proportional to
1/v* due to the space charge and to the currents induced on the uniform wall,
while Z, is a complex contribution accounting for the radiated fields and is

— given by :
Ky (£b) I,(8)  Iy(x/8) 8
Z3(w) = Zy Ei_)z'fl(ia) I, (Eb) [y T,(eb) ~ TY(X/B) T 2x(1+8) ] (1)

where k = w/gc, x = kb, £ = x/|s[y, fr(ga) = I,{€a)/(n€a), K, and I, , are
modified Bessel functions, Z; is the free space impedance (Z; = 377 @), I't is
obtained by factorization of the function :

L(u) = wadg(@)Ho(a) = r¥(u)r={u) (2)
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where

The factorized functions, required to construct the solution, were numerically
evaluated only at frequencies below the cut-off of the circular pipe.

In this note we will show how to obtain an analytical expression of the
factorized functions which is valid at any frequency.

2. EVALUATION OF THE QUANTITY r;/r+

The application of the factorization method [2] to the function L(u) requires
it to be analytic within a strip in the complex u-plane. Assuming the fregquency x
having a small positive imaginary part e, the required analytic properties are
fulfilled within the strip -e<Im(u} < e. Noting that also n[L(u)] is analytic
within the same strip, it is easy to see that this function may be represented on
the whole complex plane by a Cauchy integral; in particular at the point x/8 it is
given by :

1 | Anll{u)!du | | LnlL{u)]du

in[L/B) ] = anr¥(x/8) + enr™(x/8) = zop [ SRS c [ ASES )
n n

where the integration paths are shown in Fig. 1.

Furthermore the same considerations apply also to the logarithmic derivative
of (Eq. (2)),which is the quantity we need in Eq.(1). We get :

r4(x/8) -1 u_du 1, di(8)  Hi(e)
To(x/8) = 2ni £+ a{u-x/g) [ 2t ANE) * Ho (@) ) (4)

The integrand is singular at the points u = x/8, u = *x and at the zeros W
of the Bessel function Jy(2). Due to the square root @ = vx2-u?, the Hankel
function Ho,l(Q) are multivalued and branch cuts, starting from the points
u =t x, are required to obtain a single-valued Riemann plane. The singularities
and the cuts are shown in Fig.2. For our convenience we chose to cut on the curve
where Im(Q) = 0. The integral (4) can be split into two parts : one integral
without Bessel functions that we call I, and a second one containing the remaining

part of the integrand that we call Iaz.
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The rational function in I, vanishes as u-2 for ]u| -> = therefore we can add
to the integration path a circle of radius R -> « without changing the integral
value (Jordan's Lemmma). We can close the path in the upper complex u-plane where
the integrand function has two singular points at u = x and u = x/B8; the Cauchy
theorem tells us that the integral is equal to 2mi times the residua at the
singular points, or :

I = 2x(148) (5)

Now we want to evaluate I2. To this end we add and subtract the contour C
(shown in Fig. 3) to the original integration path. We obtain :

- _ 1 —udu 1 —udy __
=LA+ LB =557 | guavey Il -%7 | susgey 1) (6)
n+C

where [+] is the expression in square brackets in Eq. (4).

The first integral of Eq. (6) can be evaluated again with the residuum theorem
yielding :

J,(2) H, ()
La=gl3 30(9) -3 éo(n) Vu = /s (7)

For the remaining term I,g one can prove the following results :

1) The integral over the large circle is zero. In fact the J and H term give a
constant contribution of opposite sign.

2) The integral over the small circle around the point u = k is zero, (apply
again the Jordan Lemma).

Accordingly we will get only the contribution over the two sides of the
branch cut. Consider now the J and H terms separately; the former is not
multivalued, and its singularities lie just on the curve Im(Q) = 0, therefore the
contributions on the left and right side of the cut give exactly 2ni times the sum
of the residua at the singular points. The H term, on the other hand, has no poles
but is multivalued. Making a change of variable u -> o we get the final
expression :



.5 1 1 dg Jo(2)Y1(R)-J)(2)Ye(2) :
Izp nEO Wn-x/B + T f /B - /Qijﬁf [ ] (8)

J§(9)+Y§(Q)

3. LONGITUDINAL IMPEDANCE AND RADIATION SPECTRUM

Exploiting the results of Section 2 we obtain the following expression for
the longitudinal impedance :

Ko {ED Ky(gb)
1= 202 o) Ty Ly - i - ) (%)

The sum over n accounts for the modes excited in the pipe and the remaining terms
account for the radiation into free space. In Fig. 4 the real part of the
impedance is shown for several y-values over a wide range of frequencies. It is
worth noting that the spectrum falls off for high enough frequencies after a
peak. The half maximum value corresponds to a frequency kb = y (where b is the
pipe radius). This behaviour of the curves is easily explained : the real part of
the impedance is the radiation spectrum and, for a point charge Q, the energy loss
U may be expressed as [3]

U = 2¢? jm Zp (w) duw (10)
0

For a vrelativistic particle it is reasonable to think that the
radiation from the induced charges on the pipe wall will occur mainly when the
edge of the pipe is seen by the self-field which is confined within an angle
8 = 2n/y. Therefore one can expect the radiation pulse lasting a time 2wb/vyc, and
its spectrum having a bandwith kb = y.

The behaviour of the impedance at kb = 0.1 is plotted in Fig. 5 versus the
energy. For large energies, the curve seems to tend toward a constant value, but

the limit value is not apparent from the results, and there is a non zero slope
even at y = 10°,

The above calculations refer to the case of a charge entering the
semi-infinite pipe. The case of a charge leaving the waveguide has also been
investigated : the expression for the impedance is obtained by replacing B with
-8 in £q. (9) yielding :
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Fig. 1 - Strip of analyticity of L(u) in the complex plane
and the integration paths 711
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Fig. 2 - The integration contour "C" encompassing the branch
cut in the complex U-plane
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3 - Residue contributions at the points u
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Fig. 4 - Real part of the impedance versus

frequency for
several yalues ot gamma.
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5 - Low frequency impedance versus the energy.



