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1. Introduction

The purpose of this short note is to show the following

Theorem. Let M be a compact K�ahler manifold, D be a normal crossing divisor of M .

Denote M n D by M . Assume that � is a nonuniform lattice of SO(n; 1)(n � 3), i.e.,

� n SO(n; 1)=SO(n) is noncompact and of �nite volume with respect to standard symmetric

Riemannian metric. Then M is not properly homotopical equivalent to � n SO(n; 1)=SO(n).

Remark. a) In the compact case, J. Carlson and D. Toledo [1] proved that any cocompact

lattice of SO(n; 1)(n � 3) cannot be the fundamental group of a compact K�ahler manifold.

Corresponding to this, one should conjecture that any nonuniform lattice of SO(n; 1)(n � 3)

cannot be the fundamental group of M nD for a compact K�ahler manifold M and its normal

crossing divisorD; b) ifM is a quasiprojective variety, by Hironaka's theorem [2], topologically,

M is just a smooth projective variety deleting a normal crossing divisor; c) the condition of

n � 3 is obviously necessary.

The idea of the proof is to use harmonic map theory. We assume that the theorem is not

true, namely, M is properly homotopical equivalent to N := � n SO(n; 1)=SO(n). First, we

choose a complete K�ahler metric of �nite volume on M . Second, we construct a harmonic

homotopic equivalence of �nite energy from M (under the metric constructed) to N using

the theory due to Jost-Yau and Jost-Zuo ([3, 4] and [5]). The generalization of the famous

argument of Siu and Sampson [6, 7] to the noncompact case then gives a strong restriction to

this harmonic map. But, this will be a contradiction to our assumption at the beginning of

the proof.

2. The construction of harmonic maps of finite energy

LetM be a compact K�ahler manifold with a �xed K�ahler metric !, D be a �xed divisor with

(at worst) normal crossing condition and D =
Sp
i=1Di be a disjoint union of connected compo-

nents of D. Di consists of some irreducible components D1
i ;D

2
i ; � � � ;D

mi

i (i = 1; 2; � � � ; p). Let

N = � n SO(n; 1)=SO(n) be a noncompact quotient of �nite volume of real hyperbolic space

of dimension at least 3. Assume M := M nD is properly homotopical equivalent to N . We will

construct a harmonic homotopic equivalence from M to N under an appropriate metric (we

will construct it in the following) on M and the standard metric of N .
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Let �ji (i = 1; 2; � � � ; p; j = 1; 2; � � � ;mi) be a de�ning section of Dj
i in O(M; [Dj

i ]), which

satis�es j�ji j � 1 under certain Hermitian metric of [Dj
i ] and de�nes a coordinate system in a

small disk transval to Dj
i . Set �i = �1i 
 � � � 
 �mi

i . One can then take on M

g := �

pX
i=1

@@(�(j�ij)logjlogj�ij
2j) + c!jM ;

where � is a suitable C1 cut-o� function on [0;1) so that �(s) is identical to one on [0; �) and

to zero on [2�;1) for su�ciently small � � 0 and c is taken su�ciently large so that g is positive

de�nite. Then g is a K�ahler metric. Furthermore, one can show that (M;g) is complete and

has �nite volume [8], [4], [5].

Since N is a �nite volume noncompact quotient of real hyperbolic space under the nonuni-

form lattice �, it is well known that N can be simply compacti�ed by adding some isolated

points to its cusps. In particular, near each cusp, it is a topological product of R+ and a torus

and its metric is of form:

d�2 + e�2�d!2;

where d!2 is the 
at metric of the torus.

Before going on our construction, we recall a notion due to Jost and Zuo [5] (for the non-

compact curves case, also see [9]). A loop 
1 in M around D is called small if there exists

a homotopy H : [0; 1] � [0; 1] ! M with H(�; 0) = 
1;H([0; 1] � [0; 1)) � M and H(�; 1) is

a point on D. Thus, 
1 is freely homotopic in M to arbitrary short loop under the induced

metric or the above constructed complete metric.

De�nition. Let G=K be a symmetric space of noncompact type. A homomorphism � :

�1(M) ! G is called stabilizing at in�nity if for every small loop 
1 around a connected

component of D,

inf
z2G=K

dist(z; �(
1)z) = 0

Remark. �(
1), if nontrivial, is strictly parabolic or elliptic. In our present case, it will be

strictly parabolic, as we will see.

In [4], Jost and Zuo obtained
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Jost-Zuo's theorem. Let M be as above with the above constructed metric. Assume that

the representation � : �1(M) ! G is stabilizing at in�nity and reductive. Then there exists a

�-equivariant harmonic map u : ~M ! G=K from the universal covering of M to G=K with

�nite energy on a fundamental domain of M .

Now, we turn back to our construction. Since M is properly homotopical equivalent to N ,

one can get a special homomorphism � : �1(M) �= � � SO(n; 1), which certainly satis�es the

conditions of Jost-Zuo's theorem except stabilizing property at in�nity, which we will show

in the following. Take a splitting M = Mb

S
[pi=1Mi, here Mb is bounded in M , Mi is a

neighborhood of Di. Obviously, any small loop 
1 around D can be assumed to lie in one of

Mi; i = 1; 2; � � � ; p. Since M is properly homotopic to N , corresponding to this splitting, we

also have a splitting of N : N = Nb

S
[pi=1Ni, here Nb is bounded in N , Ni is a neigborhood of

a cusp of N . The homotopy maps Mb into Nb, Mi into Ni; i = 1; 2; � � � ; p. So, if a small loop


1 lies in Mi and represents a nontrivial element of �1(M), �(
1) also represents a nontrivial

element of �, and can be represented by a loop lying in Ni. Since �(
1) is nontrivial and

lies in Ni, by a point compacti�cation of Ni, one has that �(
1) is strictly parabolic. So,

one obtains that � is stabilizing at in�nity. By Jost-Zuo's theorem, we get a harmonic map

of �nite energy from M (under the constructed metric) to N , which induces �, and hence is a

homotopic equivalence.

Remark. In [5], Jost and Zuo �rst constructed a �nite energy map, then they used a variational

technique to get the above harmonic map. In fact, if applying the construction of this �nite

energy map to our present setting, it is easy to see that this map is actually proper and one can

also get the above harmonic map using Schoen-Yau's technique [10]. Then the same reasoning

as in section 3c of [3] derives that this harmonic map is essentially proper.

Summing up the above arguments, we have the following

Lemma 1. Let M and N be as above. Then there exists a properly harmonic homotopic

equivalence of �nite energy from M to N .

3. Some properties of the harmonic maps

The argument in this section is the generalization of that of Siu and Sampson in the compact

case to the noncompact case. Our exposition is general, which obviously includes our present
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case.

Let M be a complete K�ahler manifold with a �xed K�ahler metric !, N = � nG=K a locally

symmetric space of noncompact type. Here G is a semisimple Lie group, K is a maximal

compact subgroup of G, and � is a lattice of G (for standard references see [11] and [12]). Let

g be the Lie algebra of G and t the Lie algebra of K, then one has the Cartan decomposition

g = t+ p such that [p; p] � t; [t; p] � p. Denote by pC the complexi�cation of p. One can then

identify the complexi�cation of the tangent space at any point of N with pC . This is unique

up to the right action of K and the left action of �. Since these actions preserve all relevant

structures, we may regard df(T 1;0
x M) as a subspace of pC , for any map f : M ! N and any

point x 2M .

On the other hand, in general, let h :M ! N be a smooth map from a K�ahler manifold to a

Riemannian manifold. If we denote f!1; !2; � � � ; !m; !1; !2; � � � ; !mg to be local orthonormal

coframes ofM and f�1; �2; � � � ; �ng to be local orthonormal coframes of N , then one can de�ne

hi� and hi� by the equation

h�(�i) = hi�!
� + hi�!

�;

for all 1 � i � n; 1 � � � m, and 1 � � � m. As usual, one can also de�ne the higher order

covariant derivatives hi�� ; h
i
��
; hi�� ; h

i
��
; hi��
 ; h

i
��
 ; h

i
��


, etc. And one has the commutation

formulae concerning higher order covariant derivatives, for example,

hi
��

= hi
��
;

hi
��


� hi
�
�

= �RN
iklmh

k
�h

l
�
hm
 ;

in the second formula, we used K�ahler condition.

Using the above notations, the harmonic map equation is then given by

hi�� = 0:

We say that h is pluriharmonic if it satis�es

hi
��

= 0

for all i; �; �.
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From now on, we assume that h : M ! N is a harmonic map with �nite energy, here M is

a complete K�ahler manifold with a �xed K�ahler metric ! and N is a locally symmetric space

of noncompact type. Fix a point O 2 M . For any positive integral number, take a C1cut-o�

function �k : M ! R+ as follows:

�k � 1; on B0(Rk);

�k � 0; on M nB0(2Rk);

jr�kj! �
2

Rk
; on M;

here, fRkg is a sequence of positive numbers, which is strictly monotone and divergent. One

then has

�2kjh
i
��
j2 = �2kh

i
��
hi��

= (�2kh
i
��h

i
�)� � (�2kh

i
��)�h

i
�

= (�2kh
i
��h

i
�)� � 2�k�k;�h

i
��h

i
� � �2kh

i
���

hi�:

Integrating both sides on M and using H�older inequality, one has

Z
M

�2kjh
i
��
j2 = �2

Z
M

�k�k;�h
i
��h

i
� �

Z
M

�2kh
i
���

hi�

� 2�

Z
M

�2kjh
i
��
j2 +

2

�

Z
M

j�k;� j
2jhi�j

2 �

Z
M

�2kh
i
���

hi�:

As � is su�ciently small, say � � 1
3 , one has

0 � (1� 2�)

Z
M

�2kjh
i
��
j2 �

2

�

Z
M

j�k;� j
2jhi�j

2 �

Z
M

�2kh
i
���

hi�:

On the other hand, using the commutation formulae and the Hermitian negative curvature

condition of N under Sampson's sense, one has

hi
���

hi� = hi
���

hi�

= (hi
���

�Riklmh
k
�h

l
�h

m
�
)hi�

= �Riklmh
i
�h

k
�h

l
�h

m
�

� 0:
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Thus, one has

0 � (1� 2�)

Z
M

�2kjh
i
��
j2 �

2

�

Z
M

j�k;� j
2jhi�j

2

�
c(�)

R2
k

Z
BO(2Rk)

jhi�j
2;

where c(�) is a positive constant depending only on �. As k!1, by the choice of �k and the

�niteness of energy of h, one has hi
��

= 0, i.e., h is pluriharmonic. By the above argument,

one also has for any k

0 =

Z
M

�2kh
i
���

hi� = �

Z
M

�2kRiklmh
i
�h

k
�h

l
�h

m
�

Since the integrand of the right-hand side integral is nonnegative, so, one has on M

Riklmh
i
�h

k
�h

l
�h

m
�
� 0:

On the other hand,

Riklmh
i
�h

k
�h

l
�h

m
�

=< R(@h(e�); @h(e�))@h(e�); @h(e�) >

= � < [@h(e�); @h(e�)]; [@h(e�); @h(e�)] >;

here e1; e2; � � � ; em; e1; e2; � � � ; em are the dual frames of !1; !2; � � � ; !m; !1; !2; � � � ; !m. So,

[@h(e�); @h(e�)] = 0 for all � and �. Thus, one has that if one identi�es @h(T 1;0
x M) with a

subspace of pC , then @h(T 1;0
x M) is an abelian subspace of pC . Therefore, dimC@h(T

1;0
x M)

should not be greater than the rank of N . If one applies this assertion to our case, one obtains

Lemma 2. Let u : M ! N be the harmonic homotopic equivalence of �nite energy in the last

section. Then u has rank at most 2.

4. The proof of the theorem

Assume that M is properly homotopical equivalent to N = � n SO(n; 1)=SO(n); n � 3.

Therefore, by section 2, one has a harmonic homotopic equivalence of �nite energy h from

M (with the constructed metric) to N (with standard symmetric metric); by section 3, this
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harmonic homotopic equivalence has rank at most 2. Now, we will proceed to derive a contra-

diction.

Assume that N has at least two cusps. It is easy to see that the boundary of a suitable

neighborhood of each cusp represents a nontrivial homology element in Hn�1(N;R); by lemma

1, one also sees that the above harmonic map is proper. So, there exists at least some point

at which this harmonic map is of maximal rank n. This is a contradiction (note that if one

assumes n � 4, we need not consider the properness of the harmonic map). Therefore, the

proof is reduced to the case that N has only one cusp. We will use a result of Selberg [13, p.39]

to reduce this case to the case of at least two cusps. More precisely, assuming that N has only

one cusp, we will make a �nite covering N 0 of N , which is of at least two cusps, using Selberg's

result. Then, we make the corresponding covering M 0 of M and lift the above harmonic map

to another harmonic map h0 : M 0 ! N 0 with respect to the corresponding lifting metrics. It

is not di�cult to see that h0 satis�es all properties of h, namely, h0 is a properly harmonic

homotopic equivalence of �nite energy from M 0 to N 0. So, the above argument also implies

that h0 is of maximal rank at some point of M 0. Since h0 is the lifting of h, so, h also has

maximal rank at some point of M . The contradiction is obtained.

Assume that N has only one cusp. Since N is of �nite volume, � is not a parabolic subgroup

of SO(n; 1), namely, there exists an element 
 of �, which does not �x any lifting of the unique

cusp ofN to the boundary at in�nity of SO(n; 1)=SO(n). On the other hand, a result of Selberg

[13, p.39] says that any lattice of SO(n; 1) is residually �nite, that is to say, the intersection

of all subgroups of �nite index of a lattice is its unit. In particular, so is �. Therefore, we can

choose a subgroup of �nite index of � which does not contain the above element 
. A lifting

argument shows that one can actually choose a normal subgroup of �nite index. Corresponding

to this normal subgroup, we have a smooth �nite covering of N , which has at least two cusps

thanks to the properties of 
. This completes the proof of the theorem.
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