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Computer calculation of the de-
gree of maps into the Poincaré ho-
mology sphere

Claude Hayat-Legrand, Sergei Matveev!, and Heiner Zieschang

Abstract

Let M, P be Seifert 3-manifolds. Does there exist a degree one map f: M —
P? The problem was completely solved in [HWZ] for all cases except when P is
the Poincaré homology sphere. We investigate the remaining case by elaborating
and implementing a computer algorithm that calculates the degree. As a result,
we get an explicit experimental expression for the degree through numerical
invariants of the induced homomorphism f,: 7 (M) — 7 (P).

1. Introduction

Let M, P be closed oriented 3-manifolds such that the order n of the fun-
damental group m(P) is finite. Let ¢:m (M) -+ 71(F) be a homomorphism.
Using elementary facts from obstruction theory, one can easily show that

(1)} ¢ is realizable geometrically, 1. e. there exists a map f: M — P such that
fe=

(2) deg(f) mod # depends only on p.

The paper is devoted to the elaboration of a computer algorithm for calcu-
lating the degree. We apply the algorithm to maps into the Poincaré homology
sphere P and under certain restrictions give an experimental explicit formula
for deg( f) through numerical invariants of . The formula reduces the problem
of finding out degree one maps onto P to purely number-theoretical questions.
For background informations see [HWZ] and [HZ].

The calculation of the degree is usually a difficult procedure, even for coun-
crete examples. It requires vast manipulations with group presentations and
calculations in group rings. For instance in {P], a self mapping of the Poincaré
homology sphere is constructed which has degree 49 and induces an automor-
phism of the fundamental group.

2. A little bit of theory

Let f: M — P be a map between closed 3-manifolds such that the order
n of m(P) is finite. We assume that both manifolds are equipped with CW
structures and f is cellular. We also assunie that each manifold has exactly one
vertex, and thqt {’ has honly one 3-cell. Let p: P P, py: M = M De universal
coverings and f: M — P the map induced by f. We describe three items needed
for calculating the degree.

! The research at IHES was partially supported by RFBR grant N 96-01-847



1. THE BOUNDARY CYCLE. Let By, B.,....B; be the 3-cells of M and
B € C3(M; Z) the corresponding 3-chain composed {romn the 3-cells téken
with the orientation iuherited from the orientation of M. Since the 2-cycle
3a € Co(NM: Z) is a sum of spherical cycles, it can be lifted to a 2-cycle in M.
Let 03 € Co(M Z) be alifting of d35;. Then the boundary cycle 83y will be
the first item needed for the caleulation of the degree. By definition, it is the
sum of bowlary cycles 833‘ for the 3-cells B,.

Remark 2.1. The group Co{AM; Z) considered as a 7 (M)-module with
respect to the covering eranslations can be identified with the free =) (M )-modnle
Co(M: Z[m (M)]). To specify the identification, one should fix the orientations
and the base points for the attaching curves of all 2-cells, as well as a base polnt
for M over the vertex of M.

II. FHE CHARACTERISTIC COCHAIN. Choose a point xg in the interior of
the unique 3-ceil B* of P. The set X = p~!'(xg) can be considered as a 0-
dimensional cycle in P with coefficients in Z,,. Since H 1(}3; Za) =0, X bounds
an 1-dimensional chain ¥ in 2 with coefficients in Z,,. Let us point out that X
and ¥ are actually elements of the corresponding chain groups of D, where D is
the decomposition of P dual to the one induced by the cell decomposition of P.
Alternatively, one can imagine X and Y as singular chains with the additional
requireient that ¥ should be transverse to the 2-skeleton of P. Hence, for
any 2-chain o € (3(P; Z), the intersection index e NY € Z, is well-defined.
Therefore we get a homomorphism £p: Co(P: Z) — Z,, that is, a 2-cochain in
Cz(f’; Zn); this is the second item needed.

IIL. THe inDUuCED cHAIN MAP. The third item we need for calculation is the
module homoworphism f,: Co(M; Z[m {M)]) = C2{P; Z[r (P)}). It can be de-
scribed as the chaiu inap induced by f, and takes Co(M; Z) = C4 (M, Z|my (M)])
to Co(P; Z) = Ca(P; Z[r (P)]). Tt is easy to see that f, preserves the module
structures in the sense that for all g € m (M), 0 € Co(M; Z[7(M)]) we have
felge) = fu(g)fu(o), wherve fo:m (M) = m{P) is the induced homomorphism.

Theorem 2.1. deg{f) = £p(f(83a1)) mod 1 .

Proof. Let ot € C1(Q; Z,)). 0% € C3(Q); Z) be two (say, singular) chains in an

orientable 3-manifold @ in general position; in particular, their boundary cycles
are disjoint. Then the linking number lk(do?, 80!} € Z,, is well-defined and can
be calculated as the intersection number o® M do! as well as the intersection
nunber do¥ Not.
_ Thus 0’ Ndot = do*Ne'. Taking Q = P,oo' =Y and ¢® = f.(Fa), we get
felAa) N X = 8f, (ﬁM) NY. It remains to note that, by the definition of the
degree (say, in terms of singular homology theory), the left part of the equality
coincides with deg(f} mod n while the right side is just £p(f.(80a)), by the
definition of £p.

Remark 2.2. It is important to note that £p and B{EM depend only on P
and M, respectively, and do not depend on f.
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3. How to calculate the boundary cycle
3.1. General case

Let M be a CW 3-manifold such that its 2-skeleton K3, has exactly one
vertex. We say that a presentation {ay,...a, | Ri.... Ry} of m (M) is geomnetric
if:

(1) all edges of K3, are oriented and correspond bijectively to the gencrators
1 S I ( P

(2) all 2-cells of I}, are oriented and correspond bijectively to the relations
Rl LRI Rq;

(3) the bhoundary curve of each 2-cell is equipped with a hase point such that,
starting from this point, the curve follows the edges just so as they are
written in the corresponding relation.

Let (aj,...a, | Ry,... Ry) be a geometric presentation of my{Af), and let B
be a 3-cell of A/. The simplest way to calculate the contribution fg to the
boundary cycle made by the boundary of B is to construct a spherical diagram
for the attaching map hp: S — K3, of B. Recall that the spherical diagram
is a cellular decomposition @y of SF such that: (1) every edge of 85 is oriented
and labeled with a generator a;; {2) every 2-cell of fp is oriented and labeled
with a relation R;; (3) the boundary curve of each 2-cell is equipped with a
base point such that, starting from this point, the curve follows the edges just
50 as they are written in the corvesponding relation; (4) the attaching map hp
is cellular and preserves the orientations, labels and bhase points.

Let us fix a vertex v of §§ as a global base point for S7,, and assign to every
2-cell ¢ of S} the following data:

(1) the sign ={¢) = 1 that shows whether or not the orientation of ¢ agrees
with the fixed orientation of S%;

(2) the element g{c) = [hu(v(c})] of m1 (M), where y(e) is a path in S} joining
» to the base point of ¢ and [k (y(c))] denotes the element of @ (M) that
corresponds to the loop hg(y(c)) in K3,

(3) the relation R;, which labels ¢.
(e)

It is convenient to consider the chain group Cy{M, Z) as the free 7 (M)-
module generated by the relations Ry, ..., R,. The proof of the following state-
ment is evident.

Lemma 3.1.1. The contribution Bﬁg made by a 3-cell B of M to LETY
equals 3. 2(c)y(c)Ri(). where the sum is taken over all 2-cells in S§.

3.2. Useful example
Let us consider an informative example. Present the torus 72 = S! x §! as
a CW complex with one vertex, two edges a« = S x {*},¢ = {*} x §', and one



2-cell v, that corresponds to the relation By = at"'a™'t of m(T%) = la.t| By}
Choose a pair o > 0,/ of coprime integers. We exteud the cell decomposition
of T? to a cell decomposition of a solid torus M. M = T?, by attaching
two new cells: a 2-cebl 4 and a 3-cell B. Note that the boundary curve m
of ry lies in @ U and thus can be written as a word in generators a,t. To
make the situation interesting, we require that m wraps totally o times around
a and 4 times around . In other words, the corresponding word (denote it
by wa (e, t)) shonld determine the element aw + 3t in the homolegy group
Hi{eUt; 2). Iu general we cannot take w, g(a,t) = a™t¥ since the presentation
{a,t | at~'a~'t, a"t?} may be not geometric.

Let us describe a simple geometric procedure for finding out wg s(a,t).
Present a regular neighborhiood N of ¢ U# in T? as a disc with two index one
handles. The key observation is that e, being the boundary of a meridional
disc of the solid torns, ean be shifted in N to a simple closed curve 1, which
is normal with respect to the handle decomposition of N. Thercfore, we can
reconstruct mi as follows:

1. Take o parallel copies of @ and | 4 | parallel copies of £ such that the end
points of them lie on the boundary of the disc around the vertex;

2. Join the copies inside the disc to get a normal curve without intersections.

This can be done in two ways, and the right choice depends on the sign
of /3.

It remains only to read off w, g by travelling along m,, see Fig. 1 for the
case o = 5, /3 = 2 when we get w, 3 = a’ta’t.

Lemma 3.2.1. Let K be a CW comples vealizing the presentation (.t |
Ry, Ry). where Ry = at™ a1t and Ry = wagla.t) for o peir o > 0,3 of
coprime integers. Suppose that a solid torus M 1s obtained from I by attaching
a G-cell B. Then O3y = —Ri + (1 — a*t¥) Ry, where ay — e = L.

Proof. To calculate the boundary cycle 83y (which in our case coincides
with the contribution 935 made by B), construct a spherical diagram for B.
It contains only tliree 2-cells ¢|, 2, ¢3 labeled by Ry, Ra, R, and having signs
—1,1, -1, respectively. Let us choose the common base point of ¢, ¢z as a global
vertex v, see Fig, 2.

By Lemma 3.1.1 we get 83 = ~ Ry + R — g(ca) Ry, where g(cz) € my{M)
corresponds to a path y(r3) in $% joining v to the base point of c5. Note that
if we push slightly the loop hg(y(c3}) into the interior of M, we get a circle
that intersects the meridional disc 2 of the solid torus M positively in exactly
one point. It follows that g(cz) can be presented as a*t¥ € m (M), where the
integers 2, y satisfy the equation ay — Sx = 1 and thus serve as the coordinates
of a positively oriented longitude of the torus. |

Remark 3.2.1. The following simple rules can be used for recursive
calculating of the word w, g

wy pla. 1) = a, wy 41 (a,t) = pEi



Figure 1: Simple closed cuwve of the type (o, 3)

Figure 2: Spherical diagram for the 3-cell of M



We 8 (i, 1) = wy gla. at);

Wa o+ (("~ ft) = '“'rh.‘i(”t- ()-

3.3. Boundary cycles of Seifert manifolds

We restrict ourselves to Seifert manifolds fibered over the 2-splere with tlree
exceptional fibers, Lot A = M ((ay. 31): {aa, F2); (g, 33) ) be a Seifert manifold,
where a; > (1,i4,,1 < i < 3, are non-normalized parameters of the exceptional
fibers. Then (M) can he presented by {ay, ¢, ag, t | a;te] #77 a 1% ayazay,
i=1,2,3), but this presentation is not geometric. To improve the shortcoming,
we will use another presentation {a),az,a3,t | R;.1 < j < 7) of the same
group with the same generators, where Ry;—; = ait‘laflt,ﬁ’zj = Wy, s, (@, 1)
for i = 1,23, Ry = a agay, and the words w,,, 3, have heen described above.
The CW complex that realizes this presentation embeds in M such that the
complement cousists of four 3-balls By, 1 < ¢ < 4. First three of them correspond
to solid tori containing exceptional fibers, and the last corresponds to a regular
fiber.

_Theorem 3.3.1. If M = M{(aq, 31); (2, B9); (s, 3s)). then
(D'HM = z;‘izl("n'ﬂ*’ 4 (1 - (1.:;:'1'"")]?-_;_,;) + (Rl + (llR;; + yag ey — (1 — t)R’;’),
where ay; — By = L.

Proof. The first three sunumands can be obtained by Lemma 3.2.1. The
last sutnmand can be obtained in a similar way. The only difference from the
proof of Lenuna 3.2.1 is that the corresponding spherical diagram, instead of
one 2-cell with one odd R-label, contains three positively oriented 2-cells with
labels Ri \ R;; y I?", I

4. How to calculate the characteristic cochain?

We assume that a closed 3-manifold P with order n group m (P) is equipped
with a CW structure suclt that there is only one vertex v, only one 3-cell B, and
the 2-dimensional skeleton K3 of P is a geometric realization of a presentation
By, ... bg )V Qi Q) of m(P) = = (Pyv). We will identify generators and
relations of 7, (P) with edges and 2-cells of K'p, respectively. Fix a base point
2q in the interior of B. For cach i,1 < i < s, choose a loop «; in P with
end points in g such that A7 Nw, is a point in Q;, and the intersection is
transverse and positive. Clearly, the loops ;.1 < @ < 5 generate the group
7 (P; x9) isomorphic to m; (P;v); we will call them dual generators.

Let w be a word in the generators u;. Then the formula p{w){c) = w D
¢, where ¢ € C'Q(P;Z) and +w N ¢ is the intersection number, determines a
homomorphism p(w): Co(P; Z) — Z. It means that we have a cochain p(w) €
C*{(P; Z). It follows from the coustruction that:

(1) pluiy =L

(2) plwyws) = plawr} + w,plws).



These rules describe actually nothing more than a sort of Fox celeuius, see
[CF]. They are sufficient for finding out p(w) for any word w in the generators
;.

Proposition 4.1, Let words wo, ... 1w, w generators 1y present (with-
. ~1 .
out vepetitions) all elements of w1 (P xy). Then §p = Z:.l:“ plw;) mod n is o
characteristic coclhain for P.

Proof. Evident. since the union of paths given by w;, 0 < ¢ < — 1 presents
the 1-chain ¥ such that 81 is the union of all points in p~!{g). |

We may conchude that all what we need for caleulation is a sort of normal
form for elements of 7 (P), that is, a list of words in dual generators that
presents without repetitions all elements of = {F).

5. How to calculate the induced chain map?
5.1 What are logs?

Recall that M, P are closed oriented CW 3-manifolds such that the order
n of m (P} is finite. Let {ay,...ap | By,.. R, and (b,....0 | @Q1,..., Q)
be geometric presentation of their fundamental groups. Suppose that the ho-
momorphisim » = fom (M) - m(P) is given by a set of words h; in the
generators b; that present the elements ¢(a;) of 7 (P),1 < i <. We con-
sider the chain group Co{M, Z[m(A1)]) as a free Z[m;(M)]-module generated
by the set Ry, ..., R,. Similarly, Cy(P, Z[m,(P)}]) is a free module generated by
Q1,...,Q,. Denote by I the kernel of the quotient map F(by,...,bs) = 7 {P),
where F' = F(by,...,b;) is the free group generated by by, ... b,

Let R bhe one of the relations R;. In order to calculate the image f.(R) €
Co (P, Z[m {P)]) of the corresponding 2-cell, one may do the following:
+

{1) Replace each generator «; Lin R by the corresponding word h.iﬂ. We get

aword w e R,

{2) Present w as a product of conjugated relations, that is, in the form w =
[T, vxQi* vy ', where e = +1 and v € F;

{3) Then the image f,(R) is obtained by “taking log”: f.(R) = log{w), where
log{w) = >, ex®Qi, and By is the image of v;. in 7 {P).

We note that log{w) is a multivalued function since w can be presented as
a product of conjugated relations in many different ways. This corresponds to
the fact that  can he rvealized by many different f; this arbitrariness does not
affect the degree. One should point out that finding out log(w) (actually, step
(2} above} is a non-trivial procedure. The problem is to realize it algorithmically.
We solve the problei for the case when P is the Poincaré homology sphere.

5.2. On the fundamental group of the Poincaré sphere.
Later on we denote by P the Poincaré sphere. It is honteoinorphic to the
Seifert manifold A((2,1),(3,1),(5, —4)). Iis fundamental group = (P) consists



Figure 3: Heegaard diagram of the Poincaré homology sphere

of 120 elements and is isomorphic to §L2(Z5) and to the binary icosaliedron
group J*. We will denote it by .

We will use the presentation {a,¢ | Q1,@+), where @, = ®a ? and Qs =
aca~tca='e. This presentation corresponds to the Heegaard diagram of P showy
in Fig. 3. Therefore, the presentation s geometric.

Remark 5.2.1. Looking at Fig. 3, one can easily find out the dual genera-

tors (see Section 4): u) = ¢, up = el

Let us play a little with the relations c?a* = 1, aca™ ca™'c = 1. Our goal
is to get new relations. We will use essentially one basic transformation:

(#): If w; = w, is a relation, then vunv = wwsv is a relation for any words

U, .

Lemma 5.2.1. In m, the following relations are true:

tac™t,  acla = cac;

{1) aca = ¢

(2) ac™2a = cfactac;

1

) —_
actac!;

(3) actacta =¢

(4) actac*ac™! = cac*ac™q;

(5) ¢V =1.

Proof. The first three relations are easy, so we concentrate our attention on
proving the last two.



a). Multiplying @3 = 1 by e tac™!. we get aca™ = ¢~ tac™!:

b). Using a), we get ac™2a = ¢ ¢ lac™! c7lae™ ¢ = ¢ aca laco e =
cacta ! e

e). Let w = acfue™2a. Then from 1) and ¢® = ¢ we have: we™! =

2 _n - 2 3 O
ac” e ~a 1 i 1 =0 T CTa =0 et ](“(L = 3]

d). It follows from ¢} that ¢ = ¢“ww 1" = we™ w0 'e®. On th> other
hatel, the relation «* = ¢ allows one to permute ¢7 with any other word.
Tl we have ¢ Swle? L

w9 _
= acTa

_ —1.~hA
=wetw e = ww T e e = 1. |

The following list L presents without repetitions all 120 elements of m ¢,
clacd, ctactact | actac™%a, where 0 < i <9, 0 < j < 4. The words from L will
be called normal forms.

Lemma 5.2.2. There exists an effective algorithm that transforms any word
in the generators a,c to a normal form presenting the same element of w.

Proof. The normalizing algorithm works with reduced words. Thus, before
and after cach step, one should reduce the word we are working with, By the
a-size of a word 1 generators e, ¢ we mean the total number of occurrences of
a*! in it.

Let w be a word in generators a,c. Steps 1 - 5 below are based on the
corresponeing relations 1 - 5 from Lemuna 5.2.1.

STEP 0. Using the relation a? = ¢, transform w to the form
w=Mackra. . cFracket where m > 0 and ky = 21,22 for 1 <4 <an+ 1
and | Apr |[< 2.

STEP 1. If w contains subwords aca or ac™
or eac, respectively.

STEp 2. If the initial segment of 1 has a form cftac=2a, that is, ks = —2
and m > 2, we replace it by ¢®' ~*actac.

STEP 3. If the initial segment of w lias a form ¥t ac®ac’a, we replace it by
et ge!

1 1

a, we replace them by ctae™

STEP 4. If the initial segment of w has a form %' ac?ac™2ac* a, we replace
'}

it by ef1 " Fagetae?.
STEP 5. Reduce modulo 10 the power k; of the first term ¢t of .

Now we are veady to describe the algorithm. Let us apply to the given word
e Steps 0 - 5 as long as possible. Since Steps 1 - 4 strictly decrcase the a-size,
the process terminates after a finite nuinber of steps. It is easy to verify that
the resulting word is in the normal form. |

5.3. Logs in the case of the Poincaré sphere

The algorithm for calculating logs is similar to the one described in Lemma
5.2.2. The only difference is that instead of operating with words in Fa, ¢} we
will operate with their shadows.

Denote by K the kernel of the quotient map F — w. Let M be the free
m-module generated by @;,0Q2. We define the shadow group S(F) of F to he
the semidirect product MAF, where the action of F on M is induced by the



action of w. In other words, S(F) counsists of pairs (je,w). where p € M, w ¢ F.
Multiplication is given by the vule (v, w)(je,w) = (¥ + Gjr ww), where @ is the
image of « in 7. Note that the unit of the group S(F} is (0.1}, and the invoerse
element. of (p, w) is (—w 'y, 071,

If we F,then any pair {g,w) € S{(F) is called a shadow of w. The shalow
(0,w) is called pure. Similarly, the pair (p, 1) is the puwre shedow of p € M.
Note that any product of shadows can be replaced by a product of pure shadows:
H:':I (A, w;) = (u, 1}HLI((],1U,) = (;:,1)(0,HLI w;), where g = A + i A +
Wy .. Wp— 1 Ak In other words, one can purify the factors.

Let S(K) denote the normal subgroup of S(F) generated by elements (—Q;. (4),
i = 1,2. Note that the left ¢; in the above expression is considered as a gener-
ator of M while the right Q; is the word ®a™? or aca™'ca™ c. We define the
shadow group of 7 as S(7) = S(F)/S(I). Another way to get S(m) is to take
the quotient of S(F) by the relations (0,Q;) = (@i 1),i = 1.2

Lemma 5.3.1. (-, w) € S(K) <= w € I and p = log(w).

Proof. Recall that an element of a group lies in the normal subgroup gen-
erated by some elements if and ounly it it is a product of conjugates of the
generators and their inverses. Thus for some (Ag, v;) € S(F). ¢4 = £1, and
i = 1,2 we have:

(—p,w) € S(I) &= (—p,w) = H()\k,'”k)("EL-Qike(o)f:)("f’k-l’\kv o) =
k

k

H(_Ekﬁth . Uf-(p):-:: ﬁl._l) = (_ Z Ekﬂink ) H(U‘CQZE (Ul:l) = {— 108 w, ’U'?)
k k

hy definition of log (see Section 5.1).
To construct an algoritlun for calculating logs, we need a shadow counterpart
of Lemna 5.2.1.

Lemma 5.3.2. One can calculate A, € M, 0 <4 <3, such that in S(x) the
following relations are true:

S(1) (0,aca) = (Mo, ctac™?), (0,acta) = (A1, cac);
S(2) (0,ac%a) = (Az, cactac);
S(9) (0,ac’ac’a) = (M3, etactac™!);
Si4) (0, actac™ac™ ) = (M. eactac™2a);
S(5) (0,19 = (Xs,1).
Proof. The existence of A; is evident, since both sides of each relation are

shadows of the same element of #. The problem cousists in calculating A;. To
solve it, we repeat the proof of Leinmia 5.2.1 in terms of shadows starting with

10



the relations (0.Q,) = (@, 1) instead of ; =1, ¢ =1.2. In p.u‘timlm we
apply the following shadow version of the hasic tlansfm mation (+) {see Section
3.2):

Sl): I (00w) = (A wa) 18 a relation, then (0, 1avv) = (G, winae) is a relation
for any words u, v.

For example, the shadow versions of items a) and b) in the proof of Lemuna

5.2.1 look as follows:
a).  Multiplying (0,Q2) = {@2.1) by {0,c lac™!), we get (0,aca™!) =
e lae™!) or, equivalently, (0,¢ 'ac 1} = (~Qa, aca™");
b). Using a), we get (0,ac™2a) = (lc e lac™! e lac! e} =
(0, e)(=Q2,aca™ ) (=Qa,aca™ )0, ¢) = (—(F + Faca Qs cacta=e).

We do not present here the values of A; since they are large (especially Az)
in the sense that many of 240 integers presenting each of tliem are not zeros.
Nevertheless, the authors calenlated them, and in the secuel we will think that
they are known. |

(@2,

Proposition 5.3.1. There cxists an effective algorithm that, given w € K,
colculates log{w) € M.

Proof. The algorithm is a shadow twin of the one described in Lemma 5.2.2.
Starting with the shadow (0,) of w, we apply shadow versions of Steps 0 -
5 as long as possible. It means that we use the shadow relations S(1) - S§{5)
from Lemma 5.3.2 instead of the relations {1) - (5} from Lemma 5.2.1. After
each step we purify the words by taking non-zero lambdas to the beginning of
the word. We terminate with a shadow (g, 1) of 1. Then log(w) = p by Lemina
5.3.1, sinee (0,1w) = {§t,1) in S(x) implies (—p,w) € S{K).

6. Computer implementation
6.1. Description and verification of the program

Recall that calculation of the degree of a map f: M — P requires knowledge
of the three items: the boundary cycle f)ﬂM, the characteristic cochain £p, and
the induced chain map f, see Section 2. If M = M((ay, H1); (a2, B )i (s, B3)),
an explicit expression for 88y was obtained in Section 3, Theorem 3.3.1. Propo-
sition 4.1 and the information on 7 = 7, (P) obtained in Section 5.2 show how
one can caleulate £p. The authors made this by hand, without computers. It is
calculation of f that requires a computer.

We assume that f is given by images 7,x;.x3 € F of the generators ¢,a,, a3
of m; (A1), respectively; the image »; of the generator a, can be found from the
relation @i epay = 1. Let us describe the main steps of the computer program.

(1) For each relation R; of the geometric presentation of 7 (M),1 < i < 7,
computer finds out its image w; in F. In fact, it substitutes each generator of
71 (M) by the given word in F that presents its image.

(2) Then computer works according to the algorithm described in Proposi-
tion 5.3.1 and finds out logs of all w;. This is sufficient for obtaining f, since

11



fo(Ri) = logluey).
(3) To get Fuldi3a0). the conmputer substitutes all relation 17, 1n the expression
for dria by corresponding fL(R;).

{4) The computer caleulates the degree by evaluating &5 on Fo(3a1).

An extended version of the program calculates the degree for all possible
homomorphisms (M) = 7 by letting 7,0, 23 run over all 120 elements of 7
each.

The program is written in PASCAL and oceupies about 1000 lines (not in-
cinding commentaries). It works sufficiently fast: the extended version requires
a few seconds to run over all 120% cases. The maximal range of «, 3; is about
1000. The cause of the restriction is that for large oy, 3 the words wq, g, (a;. 1)
can be too long, especially after substituting the generators by their iinages.

The program had passed all verification tests, among them:

- It gives correct answers for evident cases, in particular. for the identity
Lhomomoerphism T —

- It gives the same list of degrees for maps into P for differently presented
homeowmorphic Seifert, manifolds;

- It gives the same degree for maps mto 2 that differ by an inner antomor-
phis of 7. Multiplication of a degree d map M — P by a degree 49 map
P — P inducing the unigue non-trivial element of Qut{r) produces a map
of degree 40d;

- The results of a vast computer experiment completely agree with all known
facts about the degree of maps into P. In particular, computer rediscov-
ered the set of Seifert howology spheres that admit degree one map onto
P. We mean homology spheres M ({a;,5)); (a2, #2): (s, 43)) such that
ay/2,w2/3,a3/5 are integer and aj004/30 = +1, £49 mod 120. They
are the ondy known Seifert homology spheres that admit degree one maps
onto P, see [HWZ].

6.2. Results

Let M = M((ay, 531); (v, 32): (erg, 53)) be a Seifert manifold and (¢, as, a3, |
e:;fﬂ{lt“‘,rr:"i“"\ala.gn.g,i =1,2,3) the standard presentation of 7, ().

The main goal of the computer experiment was to imvestigate the following
question:

Problem 1. Let oy = 2py, a9 = 3pz, ag = 5p3, where p; are relatively prime
with 30 , 1 </ < 3. Does there exist a degrec one map of a Seifert manifold
M = M (e, 3)): (ve, Bo); (a3, 3)) onto P?

Here one shonld point out that conditions 2 | «,3 | 22,5 | @z, and
ged{a. 15) = 1 are necessary for having a degree one map M — P, see [HWZ,
Corollary 9.3]. Also, for the most interesting case when M is a homology sphere
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we have oqanidy + aqagda + asay/d, = 1, which imuplies that p; are velatively
prime with 30, I <i < 3.

Remark 6.2.1. It is known that any homomorphism pon (M) - 7 in-
ducing a degree one map f: A — P must be surjective. Moreover, any map
fiM = P can be lifted to a map f: M — P, where P is the coverirg of P
corresponding to the subgroup G = f.(m (M) C 7. Note that deg{f) = [»: (]

deg( ), where [m: (] is the index of G in 7. If [7: G] > L. it reduces the calcula-
tion of the degree for f to the one for f. which is simpler,

Let M = M((c. 30 ) {az, 2): (as,93)) be a manifold satisfying the con-
ditions a1 = 2p, 0 = 3pa, a3 = Spy and ged(mpaps, 30) = 1. Wo will
assmne also that all g; are odd. This can he easily achieved by transforma-
tions 3; — 4+, 3, = B —aj for i # j. Under that assumption the rule
t = aliar = aoay — e ag = ¢ determines a surjective homomorphism
wo: T {M) = r called standard. Denote by exf, the external antowmnotrphism of
m that takes a to e and ¢ to cac?ec™ . Tt is induced by & map P = P of degree
49,

Lemma 6.2.1. Let o; and 3; sotisfy the above assumptions. Then for any
fromomorplism p:m (M) -+ m the following conditions nre cquinalent:

(1) © is surjective;

(2) @ has the form ¢ = Py, where ¢ w — m is either an inner automorphism
of m or the product of ext, and an inner automorphism;

{7) =(t) = o,

Proof. Denote (1) by v, w(a;) by 2y, and the order of &; by &, 1 < < 3.
Assume that 7 is in the center {1,a?} of 7. Since 27”79t =1 and % = 1, &,
divides 4p;. Note that all possible orders of elements of 7 are contained in the
following list: 1,2,3,4,5,6,10. Recall that p; is not divisible by 3 or 5. It follows
that &y divides 4. Similar arguments show that ks divides 6 and k3 divides 10.

(1) = (2). STEP 1. Since ¢ is surjective, 7 is in the center of 7 and, as
it is shown above, A divides 4. Tt follows that &, = 4. Indeed, the relation
wyaeary = 1 shows that for k) = 1, 2 the image of ¢ would be generated by 7, 22
and possibly «*, the unique element of & having order 2. In this case the image
would be abelian, which contradicts the surjectivity.

It is well known that all order 4 elements of 7 are conjugates of a. Thus,
up to multiplication of 4 hy an inner automorphism of 7, we may assume that

. E . 2 ¥ . . .
ap = a. Since py and 3 are odd, the relation 2™ ™ = 1 implies that 7 = «*.

STEP 2. Recall that ky divides 6. Just as ahove, we cannot have ky = 1,2
because of the surjectivity of . Since #5712 = 1, 7 = a2, and /3 is odd, we

have ky # 3. The only remaining case is ky = 6. Similarly, k3 = 10,

STEP 3. There are only four elements x of 7 such that x has order 10 and
a”'e~! has order 6: ¢, eea™!, and their images under ert,. Certainly, this

13



fact could he ohtained theoretically, but the authors got it by letting a singple
computer program run over all elements of . It implies casily (2).

(2) == (3). Since «* is fixed under all automorphisms of 7, this implicasion
is evident.

(3) == {1). Since 7 = a? is in the center, k. ks, and &y divide 4,6, and
10, respectively (see above). The equality .r'f’“a"’d b= :z:f”'(r2 = 1 s4ys us that
ky = 1,2 1s impossible. Thus &) = 4. We cannot have &y = 1,2, since then
wy =y e7" would have order 4, which is impossible. Thus &y is divisible by 3.
Similarly, &y is divisible by 5. It follows that the order of the subgroup G C o
generated by @y, 2,3 should be divisible by 4.3 and 5. Since 7 contalus no
subgroups of order 60, G = 7. |

To a great extent, Lemma 6.2.1 facilitates the conmputer search for new de-
gree one maps of Seifert manifolds onto 17: under above conditions on aq, i3,
it suffices to check only standerd maps M — P that correspond to the stan-
dard homomorphisiis 7 (M) = #. The result of the corresponding computer
experiment was negative: no new examples of degree one maps. Nevertheless, a,
manual anaiysis of the output had showu that the degrees of the standard maps
are periodical with respect to any of parameters o) = 2p,ay = 3py, o3 = By,
and 3;. Moreover, the periods are different for different 4: 8 for ¢ = 1, 12 for
1 = 2, aud 20 for v = 3. This observation allows one to suggest an explicit artifi-
cial formula for the degrees of standard maps. Since we do not have a theoretical
proof of the periodicity, we present the formula in a form of a conjecture. By
[x]c we denote the residue of & modulo k. In other words, [v]; is the integer
satisfying the conditions & ~ [«]y 1 divisible by & and 0 <[], < k.

Conjecture 6.2.2. Let fo: M ((2pi, 3h); (3pe2, 32); (Bps, ) — P be the
standard map. where ged{prpapy, 30) = 1 and all [3; are odd. Then deg{ fy) =
Ay + Ay + Ay + 39 mod 120, where

A =30 m+] [B—p =2 n pi+s+2] [Bi+p+4
b= 2 |, 2 ] 2 , 9 A

1
2

1+ /3]

Ay =10 [ [ﬁ2+1’2_1]12+[ ] ['Hz_p'—""IL-z ’
3

43

Ay =12 [”*’33] [”‘1’353] +[1—ﬁ§} [11—9;)3;33] |
2 g 2 10 2 5 = 10

If the conjectre is true, then the solution of the degree one mapping problem
can be reduced to purely number-theoretical questions.
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