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Abstract

We prove by means of a 5-dimensional counterexample that an open subset X C C*
which is exhaustable by an increasing sequence (X;);>1 of g-complete open sets in @ is

not necessarily q-complete.
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1. Introduction

Let X be a Stein manifold and D C X an open subset which is
exhaustable by an increasing sequence Dy C Dby C - C D, C ---
of g-complete domains in X. Does it follow that D itself is q-complete?

The answer to this problem is yes if ¢ = 1 where the special case when
(Dj)j21 is a sequence of Stein domains in €* had been solved a long time ago
by Behnke and Stein [2].

If X is arbitrary, the space D is not necessarily g-complete. Vajaitu 15],
gave an example of such situation.

But it is unknown if an open subset D C C™ which is the union of an
increasing sequence of g-complete domains is itself g-complete [3].

In this paper, we give an example of an open subset D C C° which is an
increasing sequence {D;);>1 of 3-complete open subsets, but such that D is
not 3-complete,

For this, we modify a counterexample of Fornaess [4] concerning
a generalization of the Levi problem.

2. 5-dimensional counterexample to a generalization of
the union problem

We consider pairwise disjoint closures discs
1
/_\n={ze®:|z—ﬁ| <rp},m 22
There exist numbers €, > 0 such that

e snzog( |z — —|>

on
in the set A — A, where A={z€C: |z < 1}.
The function A : A — R~ U {—o00} defined by, h(z) = > _ Enlog lz — —-|)

n>2
is subharmonic, and h(z) > 3t on A — | ] An.
n>2
Then, we modify the function h as follows:
Choose k, €N, k, > 2, such that - = < En, and put:

h(z) on A=) A,
H(z) = Loy
Maz(h(z), g-loglslz — 51) =1 on A,



In [4] it is proved that J is subharmonic, and there exist pairwise disjoint discs
D,={z€eQ:|z— L <r,},n>2, relatively compact in A,
such that H is bounded from below on A — | | D, and in some neighborhood

n=2
of 0A,, H = h while on D,,, we have
H(z) = Llog(3z — 1) - 1.

Clearly the domain D € ©° defined by

D= {(z,w) € AxC* ~ {w; = wy; =0} : H(2) — loglw} < 0},
satisfies the following conditions:

1
() If(z,w)eD and z€ A= ] A, then |uw|> 3
n>2
(i) f z€ D, then (z,w)€ D if and onlyif z€ D, and
(2 = Dl < 2¢t

Consider now the homeomorphic map T,, defined,

on €Cx (@€ ~{w =w, =0}), by Loz, w) = ((2 - %)m—'m,w);
and put

Bn = {(n,w) € Cx (@'~ {w1 = wz = wy = 0}) : [n] < 26", (Jwy *+]w,!?) < 1.}

We may choose, by (ii), [, > 0 sufficiently small such that if
(mw) €Cx (€ = {wy = wy = 0}) with |n| < 2%, |wy |2+ |ws|? < I, , then:

(sz) = F;l(n,w) = (%+U(|w1|2+|w2|2)k":w) € an(®4~{w1 =wy = 0})nD

Consider now the open set X in €° defined by: X = DU | J I;}(B,) .
n>2

We claim that X is not cohomologically 3-complete. -

Let f be the holomorphic function on X defined by
flzyw) =z, and let Xo={(z,w) € X : f(z,w) =0}. Then
Xo=~{weC" - {w; = wy =0} : H{0) — logjw| < 0}.

We first prove that H3(Xo, O) = 0. Here O is the sheaf of germs of
holomorphic functions on C*.
We write Xo =Yy N Zy with Yy =C*— {w; = wy = 0}, and
Zo=C* — {w e C*: jw| < HOY

From theorem 15, {1] page 254, We deduce that the restriction map:

H'(C*,0) — H"(Z,0)

is an isomorphism onto if r < dih(O) — 1. But since dih(Q) =4, and
Zy is not a domain of holomorphy, it follows that & (Zy,0) =10
if r=1,2 and H¥Z,,0)F0.



From the Mayer-Vietoris exact sequence of sheaves, we obtain the induced
exact sequence of cohomology groups

— H3(Y U Z5,0) — H3(Yy, 0) @ H*(Zo,0) — H3(X,,0) — 0

where Yo U Zp = C* — {|w| < exp(H(0)),w; = wp = 0} = Yy U Z with
Zy =C* = {ws|? + |wy|* < 2O} Z! is clearly 2-complete, because
the function ¢(z) = |z|* + m is a strongly 2-convex
exhaustion on Zj.
From the exact sequence of cohomology groups:

= H¥(Yo,0)®H(Z),0) — H(YaNZ§) — HY,UZs) — H (Yo, O0)®HY(Z), Ozy) —
We deduce that: H2(Yy N Z}, 0) ~ H*(Yy U Zy, O).
But since ¥(z) = Maz(|2|* + i, 12)? + T s a strongly
2-convex exhaustion function on:
Yo Z5 =C* ~ ({ws)? + Jwy)?® < 27O} U {w; = w, = 0}),
then H3(Yy U Z5, 0) = 0. It follows, from the first exact sequence of
cohomology, that H3(X,, Ox,) ¥ 0.
Consider now the exact sequence of sheaves

0 — Ox % Ox — Ox/fOx — 0.

where (z,w) = z, and ¢(g9) = fog for any g € Oxs,x € X.
We get the induced exact sequence of cohomology groups

H*(X,,0x,) — H*(X,0x) — H*(X,0x) — H%(X,,0x,) — H*(X,0x)

If H?(X,0x) = 0 for p > 3, it follows from the exact sequence of
cohomology groups that H*(X,, Ox,) = 0 which is a contradiction.
We conclude that X is not cohomologically 3-complete.

Theorem 1 -There exists a sequence of 3-complete open subsets (X;);»2 of
X C €° such that
XoCXaC---CclyX;=X

j=2



Proof

Define, for eax:h k>2,
=X — U{ }xC x¢€*

n>k
The subspaces Xk are strongly 3-complete. In fact, the function defined by:

_ 1 _
|z|2 + le2 + exp(}{(z)...glog|w|) + 1—1|z| + Z |z - _l(|w1|2 + |’LU2|2 + |w4|2) k
p<k

1 kp
is a strongly 3-convex exhaustion function on Xj.

+ 1 ==

|w1|'~’ TnP
But X is not 3-complete.
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