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1. Introduction

Clustering analysis is a tool much used in pattern recognition. It has
a wide range of applications in diverse fields such as biology, medicine, high-
energy physics, space research and many others.

The problem that cluster analysis addresses itself to may be stated as
follows: Suppose there is a sample of objects which may be flowers, biological
cell images, interactions in a bubble chamber. Let each object be characterized
by a number (n) of observations or parameters. Then each object may be
represented by a point in an n-dimensional space. How should one partition
this n-dimensional space into regions, such that objects in any one such region
have more resemblance to each other than to objects in other regions. The
aim, therefore, is to identify, in the n-dimensional space, subspaces with a high
object density. Such a subspace will then be the representation of a whole class
of objects. Any subsequent object with a point. representation within such a
subspace would then be assigned to that same class.

Such a partition of the n-dimensional space may be arrived at in one
of two different ways: supervised or unsupervised. Clustering analysis falls in
the category of unsupervised learning.

In supervised classification a representative sample of labelled events
is normally used prior to the actual classification procedure, the label denoting
membership of a class. Class properties in terms of the observations are
established using such a 'training set". Supervision consists of assigning the
labels to the events in the training set. Alternatively, a training set may stem
from an entirely different source, such as a Monte-Carlo procedure which may gener-
ate labelled, artificial events.

In unsupervised learning no labelled training set is used; categories
are identified in the observation space as regions of high event density,
surroundedlbg low density regions. Many methods to achieve this have been
described.  s%) They differ in the assumptions made about the distribution of
the parameters within classes (no assumptions lead to the so-called parameter-
free techniques) and in the amount of other a-priori knowledge that one admits
to start the procedure. For example, one may or may not specify the number of
classes to be identified.

Once an unsupervised procedure has been found applicable to a given
problem, its advantages over supervised classification techniques are:

1) One does not need to provide a separate training set, which may involve
lengthy Monte-Carlo calculations.

11) Appropriately designed clustering techniques may be able to find new,
unexpected categories or subdivisions within known classes.

111) Clustering techniques are insensitive to a slight shift in one or more of
the parameters, which may occur in one batch of data with respect to
another, as long as the batches are treated separately. For example,
in white blood cell recognition, the staining of the cells may differ
considerably between different preparations. This will result in a shift
of the colour parameters in the observation space. Both preparations,
as long as they are not mixed, will yield clusters, but they will occupy
slightly different regions in the observation space. In supervised
classification, unless appropriate calibration is done, such a shift
presents a problem.
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In all classification problems, the result, i.e. the partitioning of the
observation space is difficult to visualize when the dimensionality is greater
than two. It is therefore useful if a procedure uses a built-in criterion to
judge its own performance and/or if it somehow presents the achieved separation
of classes in visual form.

The clustering procedure described here has the following features:

i) It assumes a Gaussian distribution of the values of each parameter within
classes.

ii) Tt uses a criterion function which evaluates the quality of the clustering
achieved.

iii) It is interactive and iterative.

iv) Between iterations it displays in some way the separation of classes
achieved so far and provides information on the state of convergence.

In Section 2 the mathematical model will be outlined briefly. Section 3
gives details about the procedure and in Section 4 the results for a number of
applications will be given.



2. Mathematical Model

Consider a random vector x from a probability density distribution
h(xlb*). The distribution is characterized by a distribution parameter vector
b", which we shall assume to be fixed but unknown. The vector b* may specify a
mixture of M distributions:

M
h(x|b*) = ;4: f(x bl’;) P
=1

where the parameters b, characterize the distribution k, occurring in the mixture
with mixing parameter Or weight Pk'

The problem of cluster analysis may now be stated as follows: Given
a set of observations from a density h(x|b*), find the distribution parameter
vector b which is the best estimate of b*, consistent with this set of observ-
ations. It should be noted that b contains information about the individual
bk as well as about the mixing parameters Pk'

For a given choice b of the distribution parameter vector, define the
information function n(b,b*) as the expected value of the natural logarithm of
the mixture density:

n(b,b*) = Efin h(x|b)} =ﬁn{h(x|b)} h(x|b*) dx

1 ..
It can be shown ) that the vector b that maximizes n(b) rom now on
we will omit the fixed vector b* from the notation) corresponds to the asymptotic
minimum-risk solution.

In ref.1 it is shown that for a given dimensionality of the vector x
and under the assumptions that the category densities are Gaussian (i.e. b
is given by a vector of means my, and a covariance matrix Ij) and separateg
(i.e. the densities are truncated at the category boundaries), maximizing n(b)
corresponds to maximizing

M p
ng® = 2 Py 1n3 K s
T

K

Here |Ekl denotes the determinant of the covariance matrix of category k.

Indeed, as lzk]z is related to the volume in the observation space occupied by
category k, maximizing ng(b) corresponds to finding that partition of the
observation space into regions such that the average probability density is
maximum. A procedure that maximizes ng(b) will therefore tend to locate clusters

in the observation space.




3. Description of the procedure

This procedure is a modified version of a clustering technique
described by Patrick 3). This book also contains the mathematical justification,
of which the previous section is a condensed account.

The essential features of the modified version are as follows:
a) The number of classes to be detected is fixed.

b) It is assumed that initial cluster-nuclei can be defined on the basis of the
observations, or otherwise.

¢) Any event may be assigned to one of the classes, or it may be left
unclassified as an isolated point. This permits the treatment of the
case of clusters superimposed on a background.

d) The procedure uses a criterion function n(b) to guide the partitioning of
the observation space. It is assumed that the multi-variate mixing
distributions are Gaussian and separated.

e) The procedure works interactively, in successive iterations during which
any event may change its class-membership, globally under control of the
user. Updating is performed at the end of each iteration step.

£) Termination of the iteration process is decided interactively by the user.

At the start, cluster nuclei are formed by events fulfilling
selection criteria to be supplied for each class. These criteria may be
specified as regions in one or some of the parameters, or they may be defined
by values other than those used in the clustering procedure. The example
concerning the prism-plot variables in bubble chamber events (Section 4) uses
the latter alternative.

For each cluster nucleus i, the vector of averages, m., the covariance
matrix ¥. and the fraction of events contained in this cluster nucleus, P.
are evalﬁated, thus giving rise to an initial value of n(b), expressing the
quality of the initial clustering solution.

The iteration procedure is then started. In each step, the parameter
values of an event are used and, regardless of whether it is an event already
assigned to a cluster or not, M new values of n.(b) are evaluated, assuming that
the event be assigned to any one of the M exist%ng clusters in turn. The best
assignment corresponds to the larger value Aoy in the sequence

Ani(b) = ni(b] - nold[b) , 1=1,2,....,M
The value An oo and the corresponding value of 1 are recorded together with the
event. No updating of the classes is done at this stage.

The calculation of the sequence Anj is repeated for all events and at
the end, for each class 1 in turn a h}stogram of all the values Anj thus
obtained is displayed on the screen.”’ Events which really belong to class i
will have larger values of anq than other events. Examples of such histograms

are given in figure 2. The user is then asked to provide interactively a

*) The procedure is implemented on a CIC-6600 to which is attached an Argus 500
computer driving a Ferranti refresh display.
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threshold value t; of An;, above which events should be accepted in category i.
This is repeated for al11 categories i.

At this stage the categories are updated. An event not yet contained
in class 1 is entered into that class if for that event both conditions:

An = An. and An: > T,
max 1 1 1

are satisfied. Inversely, an event already contained in class i is removed if
for that event one or both of the conditions:

A An. O An. < T,
nmax % \1 1 1

are satisfied.

A table is then displayed, giving the numbers of events added to and
removed from each of the clusters in the course of the last iteration step.
When the solution stabilizes, these numbers become small. After each iteration
step the user has the choice of terminating the procedure or going into a next
Step.



4.

A.

Applications

The first test to which this program has been submitted is in the field
of white blood cells. Mature white blood cells may be classified in one
of the following five categories: neutrophils, lymphocytes, monocytes,
eosinophils and basophils. These cell types may be distinguished from
each other on the basis of criteria, measured on microscopic images, such
as cell size, colour, shape of the nucleus and many others. A file
containing over 40 of such criteria for each of a total of over 1000
cells was available from previous work “J.

A sample of 100 of these cells was chosen as a sample to test the
program performance. The program was asked to grow clusters corresponding
to neutrophils (NEU), lymphocytes (LYM) and eosinophils (EOS) on a
background of monocytes and basophils. Clustering was to be performed
on the basis of 5 criteria, known from previous work to be among the
best in separating power. Fig.l is a two dimensional projection of the
test sample of 100 cells.

After application of the initial selection criteria, the program
started from a situation as described by the confusion matrix to the left
in Fig.2. In this matrix the first column shows the class names according
to the known classification. In this zero order solution, 58.9% of the
cells belonging to one of the three types considered are correctly
classified. The histograms of An for the three categories are also shown in
Fig.2. Thresholds were assigned according to the arrows. The confusion
matrix to the right shows the classification after the first iteration.
The values of n corresponding to the situation before and after the first
iteration are also given.

In this example, the solution stabilizes after iteration 4. Fig.3
shows the histograms of aAn, the confusion matrices and the values of n
before and after this final iteration. In the final solution 90.4%
of the cells belonging to one of the three types are classified correctly.
All misclassifications could be attributed to failures in the process
of feature extraction, in each case affecting at least one of the five
parameters seriously. It is interesting to note that the right hand peaks
in the histograms corresponding to iteration 4 are better separated than
in the histograms corresponding to iteration 1.

On the same sample of cells the procedure was repeated, starting from
more stringent initial selection criteria. (50.8% correct). This run
yielded after 4 iterations the same solution as the previous one.

A classical data set to illustrate clustering algorithms is the set
consisting of four measurements on a sample of 150 flowers of three
species of iris. These data were listed by Fisher 5). The observation
space is four-dimensional. Fig.4 shows a two-dimensional projection.
Fig.5 displays the same data as Fig.4 but with the three different class-
memberships indicated by different symbols. The result of the program
using the two variables only is given in Fig.6. This result corresponds
to the confusion matrix shown in Fig.7. The percentage of correct
classification is 90%. As can be expected from inspection of Fig.4,
separation of the species versicolor and virginica presents a problem.
Indeed, intuitively there is no reason to prefer the clustering as

in Fig.5 over the one in Fig.6. Also, the n criterion does not favour
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one of these. The clustering criterion takes the value -2.75 for the
solution represented in Fig.5 and -2.74 for the solution of Fig. 6.

The same classification is obtained when using all four variables.

Finally, this clustering technique has been applied to measurements of
particle interactions in a bubble chamber. The parameters used are

the prism plot variables ©), i.e. in the 3-body final states studied here
the total energies of two of the outgoing particles, the Van Hove angle 6)
and a parameter related to the peripherality of the interaction.

Events for three types of interactions were generated artificially
by a Monte-Carlo program.

1. m p -> ptn +n0 at 10 GeV/c.

The data base consisted of 100 events of each of the following
channels.

a) N"(1470) + «° (NM)
b) p + p(765) (RHO)
c) p+a +a° (PHSP)

The objective was to identify clusters corresponding to the N* and
RHO channel on a background represented by PHSP events.

Figs.8 and 9 show the details of the first and last (fifth) iteration.
The insets in Fig.8 are the parts of the histograms with positive aAn.
Of the events generated as N* or RHO, 61.5% are classified correctly
after application of the initial selection criteria. These criteria
were specified as regions in the invariant mass distributions of the
(pr7) and (n7w°) particles combinations for the definition of the N* and
RHO cluster-nuclei, respectively. The percentage of correctly class-
ified events rises to 98% after iteration 5. At that point the situation
is stable. The value of the clustering criterion n rises from 1.54 in
the initial state to 4.91 at the end of the fifth iteration.

2. K'p - p+Ko+nt at 5 GeV/c

The data base consisted of 2010 events, distributed among the resonant
states as follows:

a) K*(890) +p 817 events
b) K*(1420) + p 130 events
c) A(1236) + KO 1063 events
The percentages of events in the different classes were chosen so as
to correspond most nearly to the experimentally observed cross-sections

for the different channels. Practically no phase space is observed.

Fig.10 gives the confusion matrices both for the initial state (after
application of appropriate mass cuts) and for the state after 9
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iterations. The percentage of correctly classified events, which is
42.8% for the initial cluster nuclei, corresponding to n = 3.51 rises to
63.2% in the final state, corresponding to n = 7.306.

These numbers may seem rather satisfactory. However, if this procedure
were used on measurements of real events, as opposed to Monte-Carlo
events, the actual''true' class- membershlps would not be known. In such
a situation only 70% of all events assigned to the category K* (1420)
are expected to stem from that 1ntermed1ate resonant state. These
percentages are much better for the K" (890) and the A(1236), namely
98% and 96%, respectively. The clustering criterion n was also
calculated for the 'correct' solution. This yielded a value of 6.92, i.e.
lower than the final value of 7.36 found by the program. This apparent
paradox is a consequence of the non-validity of the assumption on
which the procedure is based, i.e. the assumption of Gaussian distributions
within classes of the parameters. [t is well known that the prism plot
variables violate this assumption.

Although the results of this method are not entirely satisfactory, as
discussed above, they compare favourably with those obtained with the
prism plot technique. The percentages of true events in the K (890),
K*(1420) and A(1236) channels obtained with this latter technique are
97, 62 and 97, respectively, 8) as compared to 98, 70 and 96 with the
clustering method. The number of unassigned events is 52 with the prism
plot technique versus 32 with the clustering method. The computer time
requirement for this analysis is in favour of the clustering method by at
least a factor of 2 in this particular example.

K'p - prK+n~ at 11 GeV/c
For this reaction, events from each of the following channels were

generated, the numbers of events being proportional to the experimentally
observed cross-sections:

a) K'(890) + p 1250 events
b) K*(1420) + p 262 events
c) a(1236) + K° 214 events
d) N*(1470) + K° 108 events
e) N*(1670) + K° 100 events
£) p+ K™ 66 events

Fig.1l describes the situation before the first iteration and after
iteration 6 in terms of the confusion matrlx and the clustering para-
meter n. The same remarks as for the K p example apply here. Although
the procedure improves the overall correct classification result from 51%
to 91%, corresponding to n = 4.32 and n = 7.30, respectively, if used in
an unsupervised way, some of the reactior channels, especially the
N"(1670) would be much contaminated. Also, the basic assunptions are
violated in this case, as evidenced by the value of n = 6.91 for the
"correct' solution, which is lower than the value of 7.30 achieved by
this procedure.



5. Conclusions

The clustering algorithm described in this text has been applied to

a variety of data sets. In some cases the results are very promising. In
such cases one always arrives at a final situation where in the histograms of
An the peaks for high values of An are well separated from the rest of the
events. A small change in the cut-off values t; will therefore not affect the
stability of the final result. This gives an indication of the applicability
of the algorithm to any given data set, even if the procedure is run in an
unsupervised way.

In the cases where this algorithm does not yield completely satis-
factory results, it still does go a long way toward the correct solution. In
such cases the assumption of Gaussian distributions of all the parameters
within classes is violated. It is believed that even in such cases the solution
provided by this procedure is a good starting point for further investigations.
Such further work would then have to use parameter-free techniques such as
nearest neighbour algorithms.
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Confusion matrix for the solution shown in figure 6. The first

column indicates the true classes, the first row the computed
classes.



ITERATION

1

l 0.008

50 |
*
N 100 |
50 -]
0 0.1
Sy
e
-1.0 -0.5 0.5
‘ 0.008
50 ’
RHO L1100
50
0 0.1
A
& .
~1.0 -~ 0.5 0.5
N* RHO PHSP N* RHO PHSP
N® 55 4 4 N* 69 0 31
RHO § 68 27 > RHO 0 91 9 =4
<t
PHSP 6 1 93 PHSP 0 19 81 o
7 =1.54 7 = 3.96
Figure 8

reaction

Histograms of An for the N* and RHO intermediate states in the

Tp > pr7n® at 10 GeV/c

The figure shows the first iteration.
the parts with positive an.

The insets are expansions of



ITERATION 5

‘—o.ose

N * i
o/
—
. = - ] ,
-1.0 -0.5 0 0.5
l—o.ozz
RHO L
ay
’rJ_rLrLr‘_L -
-1.0 ~0.5 0 0.5
N* RHO PHSP N* RHO PHSP
N* 99 0 1 N* 99 0 1
RHO 0 93 7 — RHO 0 97 3
PHSP 0 0 100 PHSP 0 1 99
’l =4,91

7' = 4.87

Figure 9 Histograms of An as in figure 8, but for the fifth (final) iteration.

62491



K'p » K°pr* AT 5.0 Gev/c
CONFUSION MATRIX AFTER INITIAL SELECTION

K*890  K*1420 DELTA PHSP

K*890 373 0 7 437

K*1420 0 61 2 67
~ n = 3,51
®  DELTA 0 12 426 625
e

PHSP 0 0 0 0

CONFUSION MATRIX AFTER 9 ITERATIONS
K*890  K*1420 DELTA PHSP 3

K*890 767 13 32 5 93.9

K*1420 2 109 13 6 83.8

DELTA 11 34 997 21 93.8 n=7.3
%  PHSP 0 0 0 0
-
o~
© 98.3 69.9 95.7

n FOR "CORRECT" SOLUTION = 6.92

Figure 10 Three intermediate resonant states in the reaction K*p -» K°prn* at5 GeV/c.
The figure shows the confusion matrices before the first iteration
(top) and after 9 iterations (bottom). The quality of clustering is
measured by n. The '"correct' solution is defined at the situation
where each event is assigned its true identity.
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K'p -> K°pni~ AT 11.0 GeV/c

CONFUSION MATRIX AFTER INITIAL SELECTION

K*1420 DELTA N*1470 N*1670 PHSP
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CONFUSION MATRIX AFTER 6 ITERATIONS
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n FOR "CORRECT'" SOLUTION = 6.91

n = 4.32

97.6
83.2
73.8
77.8

82.0

n = 7,30

Five intermediate resonant states in the reaction Kp =+ Kpr~ at

11 GeV/c.

6 iterations.

Confusion matrices before the first iteration and after





