'OBbEAUHEHHBIW

UHCTUTYT
SAEPHBIX
UCCNENOBAHUI

- [lyoHa

E11-98-293

J.Buga!

NUMERICAL SOLUTION
OF THE TWO CENTERS PROBLEM
IN A COMPLEX PLANE2

Submitted to «Computer Physics Communications»

L

lDept. of Mathematics, Technical University, Kosice, Slovakia;
E-mail: busaj@tuke sk
2Suppc:rted by RFFI, grant Ne 97-01-01040




1 Introduction

The two Coulomb centers problem (the problem Z;eZ,) consists in a determina-
tion of wave functions of electron e, driven in a field of two fixed charges Z; and
Z2, which are located on a distance R from each other. It plays a fundamental
role in the theory of collisions. Physical aspects of this task are covered in [1]. In
the applications at account of inelastic processes (for example, passages between
terms testing quasiintersection) the performances of terms in a complex plane
K are required. In an outcome of direct numerical computation of terms in the
complex plane R for a symmetric case were detected series of branchpoints,
which allow to speak about a new type of quasiintersections. These “hidden”
quasiintersections explain not only passages between bound states, but also the
process of ionization [1-3].

2 Algorithm

Stationary Schrédinger equation of the two Coulomb centers supposes a separa-
tion of variables in prolated spheroidal coordinates (4], r; = |r — Ry]:
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where 1 < £ < oo, =1 <y < i, 0 < ¢ < 2%. Substitution in it for the wave
function as in [4,5): ¥ = (£* — 1)V F(6){(1 — 9*)™2p(n)e!™ reduces in the
following equations for f(£) and o(n):
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where a = (Z7 + Z2)R, b= {72 — Z1)R, X - constant of separation.

For real values R, the problem was traditionally solved by the expansions
of unknown functions f and ¢ on polynomials of variables £ and n [6-11]. It
leads to trinomial recurrent equations for factors of expansion. The problem
ZyeZy was solved also by the finite differences [5,12,13] and by the spline-
approximation [5,14] methods with use of continuous analog of the Newton’s
method. In the complex plane R the problem was solved by the expansions of
functions [1-3]. In the present work the Newton’s method applied for a solution
of a nonlinear system of difference equations is considered.

To the equations (2), (3) it is necessary to add the equations circumscribing
a behaviour of functions f(£) and ¢(7n) near the borders of a range of definition.

2



That the equations (2) and (3) made-sense at £ —'1 and 77 — :i:l the reahzatlon
of next equalities is necessary [5]:
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Use of an asymptotics for f(£) in form f(£) ~ €2 - e, ¢ -3 oo, reduces in the
following equation:
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For the factors a and 8 we ha.ve received relations:
. 0 | !

B+ Ef =0, 206+ 2(m+ 1) +a =0. (8)

The considered problem we solved for £ € (1, &), where &m is the large
enough value, for which it is possible to assume good realization of asymptotics
(8). For example, for the computation of the term E3p0 and By, (spectroscopic
labels [2]) at real value R = 0.8 we took £pr > 25 and £y > 45, respectively.

The homogeneous boundary conditions allow to enter a normalization of
the radial and angular function, for example, as:

[ 1s@rde-1=0, / lomPdn-1=0, (9)

1
For complex value R there will be complex also functions f(¢) and ¢(n) and
also unknown quantities E, A and parameters a and b. If we divide segment,

(1,€m) into N¢ equal parts and segment (—1,1) into N, of equal parts and
points of grids we denote &; and 7;, we should determine unknowns:

Re f(&), Im f(&), i=1,N¢+1;  Reop(m), Imop(n), i =1, N, + 1;

and values Re E, Im E, Re A, Im \.

If we put to zeros real and imaginary parts of the complex equations (2),
(3) in interior points { = &,...,én, and 7 = 1,.. ., 7N, respectively, and
equations (4-7) and if to these equations we shall add the equations (9), we
shall receive a system of 2/V; + 2N, + 6 nonlinear equations. The number of
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unknowns is equal 2N¢ + 2N, + 8. For complex functions f(£) and ¢(n) it
is possible (and it is necessary) to add two conditions of a normalization, for
example:

I f(ém) =0, Ime(l)=0. (10)

The problem (2-7), (9), (10) we solved by a Newton’s method. The system
matrix is sparse. It has nonzero columns corresponding to derivatives with
respect to the variables Re E, Im E, Re ), Im A and also nonzero rows cor-
responding to derivatives of the equations of a normalization with respect to
the variables Re f;, Im f;, Rey;, Imyp;. We solved this system by the LU-
decomposition of the system matrix. With the purpose of saving memory,
we produced direct LU decomposition, without of creation of a system matrix
itself.

3 Numerical results

The problem Z:eZ; we solved for Z; = Z; = 1-and m = 0, with the purpose to
compare outcomes with outcomes of works [1-3], which are obtained by other
method. The computation in the complex plane we began always on a real
axes R. On a real axes as initial values Re E we used values from a table from
[5]. As initial approximations of wave functions f (€) and ¢(n) we used either
constant, or linear function with one zero, or cos function with appropriate
number of zeros - all renormalized with respect to (9). . |

The problem is ill-conditioned, durmg a solution there appear very small
values of the module of the dlagonal elements 1;;. Therefore we applied a
regularization, using idea of work [15]. The renorma.hzatlon of unknown func-
tions f and ¢ on each step of Newton’s method promoted to improving and
acceleration of convergence.

First and second derivatives in the equations (2-6) we approximated with
the second order accuracy, in the asymptotic equation (7) we used both first,
and second order accuracy. According to Runge’s rule it is possible by results
of the computation to conclude, that all difference scheme has in these cases
first and the second order accuracy, respectively. -
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Fig. 2

Figure 1 shows surface Re E of a term 3po. This surface was obtained by
caleulation along rays parallel to imaginary axes Im R, beginning always on
real axes Re R. The similar figure is indicated in [2). On Figure 2 the passage
of a term 3po in a term 4po in an outcome of one round movement along the
closed trajectory enveloping a branchpoint is shown. '

The work shows, that the method of finite differences can be used for a
solution of the two centers problem in complex area also, as well as method
based on recurrent equations for factors of expansions of wave functions.
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Byma 4. E11-98-293
Yucnendoe PCLUCHHE 3aNaYu ABYX LIEHTPOB
B KOMIUIEKCHOH TUIOCKOCTH

3anaya JABYX KyNOHOBCKHX HCHTPOB B KOMIUIEKCHOH TIOCKOCTH MEXbSIEPHOTO
PaccToshus R paccMaTpuBaeTcs KaK CHCTEMa HelMHeiiHbix ypaBHeHHH. Cucrema,
KOTOpast NONy4aeTcs B pe3yNnbTaTe NPHMEHEHHS METONA KOHEY HbIX pasHocTeH, pema-
€TCa METOAOM HbioTOHA ¢ Mcronk3oRaHHeM LU-pa3noXeHuss MaTpHubl CHCTEMBI.
Npu Bolumcinennn LU-paznoxenns wu PCHICHHH CHCTEMbl NPHMEHSETCA pery-
NApH3aLHSA.

Pabora BmInosnena g Jlaboparopun  BhIuMCIMTENBHOI TEXHHKH H aBTO-
MaTtu3auuyu QOUAH.

[penpunt O6Lernnennoro HHCTHTYTa SA€pHLIX Hecnenoratui. dybua, 1998

Busa J. ' E11-98-293
Numerical Solution of the Two Centers Problem
in a Complex Plane

The two Coulomb centers problem in a complex plane of an internuclear
distance R is considered as a system of the nonlinear equations. The system, which
arises at use of a finite-differences method, is solved by the Newton’s method
with use of LU-decomposition of the system matrix. At an evaluation of the LU-
decomposition and solution of the system the regularization was applied.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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