ANL-HEP-CP-99-64

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne') under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

B_d^0 MIXING AND CP VIOLATION MEASUREMENTS AT THE TEVATRON

K.L.BYRUM

Argonne National Laboratory, High Energy Physics, Bldg 362, 9700 S. Cass Ave., Argonne, Illinois 60439

We present six time-dependent B_d^0 mixing measurements of Δm_d from the CDF Run I data. The CDF average is $\Delta m_d = .494^{\pm .026}_{\pm .026}(p_s)^-1$. We also present a measurement of the CP-violating asymmetry $\sin(2\beta)$ using a sample of of $B^0/\bar{B}^0 \to J/\psi K_d^0$ decays and report $\sin(2\beta) = .79^{+.41}_{-.44}$.

1 Introduction

In the context of the standard model, the mixing of $B_d^0 \leftrightarrow \bar{B_d^0}$ occurs through the charge current coupling between quarks. This can be described in the context of the Cabibbo-Kobayashi-Maskawa (CKM) matrix which transforms the flavor eigenstates of the quarks into their mass eigenstates. The CKM rotation matrix can be completely determined from three angles and a phase. It is useful to write it in the Wolfenstein parameterization as:

$$V_{CKM} \equiv \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) = \left(egin{array}{ccc} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight) + O(\lambda^4)$$

where $\lambda=\sin(\theta_C)$ and the three other parameters $A,\,\rho,$ and η can be described by the remaining two weak rotation angles and the complex phase that introduces CP violation. Unitary of the CKM matrix can be represented graphically as a triangle in the complex plane. The base of this triangle is scaled to unit length by $A\lambda^3$. This leaves three angles α,β , and γ and two sides which may be measured. $B_d^0 \leftrightarrow \bar{B}_d^0$ mixing constrains the element V_{td} which contributes to one of the triangle sides, while CP violation in the decay $B^0/\bar{B}^0 \to J/\psi K_d^0$ determines the angle β .

This work supported by the U.S. Department of Energy, Division of High Energy Physics, Contract W-31-109-ENG-38.

1.1 $B_d^0 \leftrightarrow \tilde{B_d^0}$ Mixing

A neutral B_d^0 meson can oscillate into its anti-particle state, $\bar{B_d^0}$ through second-order weak processes with a probability equal to:

$$\mathcal{P}(B_d^0(t_0) \to \bar{B_d^0}(t)) = \frac{e^{-t/\tau_B}}{2\tau_B} (1 - \cos(\Delta m_d t)),$$
 (1)

where Δm_d is the frequency of the oscillation and is equal to the mass difference $(\Delta m_d = m_H - m_L)$ between the heavy and light mass eigenstates, τ_B is the mean lifetime of the two mass eigenstates, and t is the proper decay time of the B_d^0 in its rest frame. The asymmetry between the mixed and unmixed state is

$$A = \frac{P(B_d^0 \to B_d^0) - P(B_d^0 \to \bar{B_d^0})}{P(B_d^0 \to B_d^0) + P(B_d^0 \to \bar{B_d^0})} = \cos(\Delta m_d t)$$
 (2)

To measure the time-dependent mixing asymmetry, we need three measurements: (1) the flavor of the B at production, (2) the flavor of the B at decay, and (3) the proper decay time. At CDF, measuring (2) and (3) are relatively easy. The flavor is known by the B reconstruction, and the proper time is measured using the CDF silicon vertex detector (SVX) with a 2-D $r\phi$ resolution of $\sigma_d pprox (13+40/p_T)\mu m$. We use three algorithms for determining the B flavor at production. The soft lepton tagging (SLT) algorithm identifies the flavor of the opposite Bthrough its decay to a lepton. The jet charge tagging algorithm (JetQ) uses a momentumweighted charge average of particles in a b quark jet to infer the charge of the b quark. These two tagging algorithms are referred to as opposite side taggers (OST) since the production flavor is determined by the B opposite the B candidate of interest. The same side tagging algorithm (SST) uses charged tracks surrounding the B to determine its flavor. The effectiveness of a tagging algorithm is characterized by the efficiency, ϵ , which is the fraction of events that can be tagged and the dilution, D, which dilutes the asymmetry due to an imperfect detector, mistags, etc. The statistical accuracy of a sample of tagged events is proportional to $N\epsilon D^2$ where N is the number of events. Figure 1 shows six CDF B_d^0 -oscillation measurements of Δm_d , and the combined average. These measurements exploit all three of the tagging algorithms.

1.2 CP-Violation

To measure CP-violation, we use the CP eigenstate $B_d^0/\bar{B}_d^0 \to J/\psi K_s^0$. For the CP-asymmetry to be non-zero, the imaginary phase between the two decay paths leads to a difference in the decay rate. The CP asymmetry is described by

$$\mathcal{A}(t) = \frac{P(\bar{B}_d^0 \to J/\psi K_s^0) - P(\bar{B}_d^0 \to J/\psi K_s^0)}{P(\bar{B}_d^0 \to J/\psi K_s^0) + P(\bar{B}_d^0 \to J/\psi K_s^0)} = \sin(2\beta)\sin(\Delta m_d t)$$
(3)

The first measurements of $\sin(2\beta)$ were published by CDF³ and OPAL⁴ in 1998. OPAL measured $\sin(2\beta) = 3.2^{+1.8}_{-2.0} \pm 0.5$ using $J/\psi K_s^0$ events. CDF used a sample of $\approx 200~J/\psi K_s^0$ events to measure $\sin(2\beta) = 1.8 \pm 1.1 \pm 0.3$. The CDF events required the J/ψ to be reconstructed in the SVX and used only one tagging method to identify the B at production.

In the present update, we have expanded the earlier result to include ≈ 200 additional events in which the J/ψ is reconstructed in the central tracker (CTC) thus having large uncertainty on the decay time. We have also allowed for multiple taggers for each event. To measure the time-dependent CP asymmetry, we measure the proper decay time and tag the flavor of the B at production. Each event can be tagged with either a SST, an OST or both. When multiple taggers are combined the effective dilution (D) is:

$$D_{eff} = \frac{D_{OST} \pm D_{SST}}{1 \pm D_{OST} D_{SST}} \tag{4}$$

Table 1: Efficiencies and Dilutions of tagging algorithms used for determining the flavor of $B_d^0/\bar{B}_d^0 \to J/\psi K_s^0$

Tag	Efficiency (%)	Dilution (%)
SST	35.5 ±3.7	16.6 ±2.2
SST _{non}	38.1 ±3.9	17.4 ±3.6
SLT	5.6 ± 1.8	62.5±14.6
JetQ	40.2 ±3.9	23.5±6.9
Combined	$\epsilon D^2 = 6.3 \pm 1.7$	

To calibrate the OST algorithms, we use the $B^{\pm} \to J/\psi K^{\pm}$ events which have similar kinematics to the $J/\psi K_s^0$ signal sample and have a known flavor. For the dilution of the SST, we use the result from our previous measurement of $\sin(2\beta)^3$. Table 1 list the efficiencies and dilutions for the different tagging algorithms.

The tagged $J/\psi K_s^0$ events are fit using a negative log-likelihood function. The fit is described by the signal events, the prompt background and the long-lived background. Each component is broken down into a piece with precision lifetime information and a piece with less precise lifetime information. The probability function includes terms for lifetime, normalized mass (M_N) and the tagging efficiency functions. Background asymmetries are constrained by events far from the signal peak at $M_N=0$, and detector asymmetries are accounted for in the fit using a large inclusive J/ψ sample.

The result for $\sin(2\beta)$ is shown in Figure 2a including systematic errors due to the dilutions, Δm_d , τ_{B^0} , and m_{B^0} . The left side of the figure shows the asymmetry versus lifetime using the precision lifetime sample. The solid curve shows the full likelihood fit with Δm_d fixed to the world average and the dashed curve shows the fit with Δm_d floating. The one data point on the right side of the figure is the value of $\sin 2\beta$ obtained from the CTC sample with low lifetime resolution. This result corresponds to a Feldman-Cousins frequentist limit of $0.0 < \sin(2\beta) < 1$ at 93% CL. Figure 2b shows the CDF result compared to indirect results in the $\rho - \eta$ plane 5. The dotted lines correspond to the central values of β from $\sin(2\beta) = .79$. The solid lines represent the 1 σ regions. The oval shaped region shows the 1σ and 2σ intervals from indirect measurements of the CKM parameters 5.

2 Conclusion

We present six measurements of the mixing parameter Δm_d from the CDF Run I data and measure $\Delta m_d = .494^{\pm .026}_{\pm .026}(ps^{-1})$. Using the tagging algorithms developed for these mixing measurements, we measure the CP-violating asymmetry $\sin(2\beta)$ with a sample of of $B^0/\bar{B^0} \rightarrow J/\psi K_s^0$ decays. We report $\sin(2\beta) = .79^{+.41}_{-.44}$ which corresponds to a Feldman-Cousins frequentist limit of $0 < \sin(2\beta) < 1$ at 93% CL.

References

- N.Cabibbo, Phys. Rev. D 10, 531 (1963); M.Kobayashi and K.Maskawa, PTP 49, 652 (1973).
- 2. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
- 3. F.Abe et al., Phys. Rev. Lett. 81, 5513 (1998).
- 4. K.Ackerstaff et al., Eur. Phys. J C3, 1 (1998)
- 5. S.Mele, CERN-EP/98-133, hep-ph/9810333.

Figure 1: Six measurements of the mixing parameter Δm_d from the CDF Run I data.

Figure 2: Left figure is the result of $\sin(2\beta)$ using a negative log-likelihood fit and multiple tags. The right figure shows the CDF result compared to indirect results in the $\rho - \eta$ plane.