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In the following an attempt is made to solve the differential
equations governing the electron motion in an 1deal betatron, when
also the radistion reaction is teken into account. The first order
effect of the rsdiation is well known, being a slow contraction of the
equilibrium orbit. However, it is not yet known whether the radiation
will result in a decrease or an increase in the first order damping of
the betatron ogcillations due to the rising magnetic field. As there
exists evidence in the theory of certain radiation oscillators for
submillimeter waves that the latter might be true, this investigation
seems justified.

The inclusion of radiation terms in the equations of motion compli=-
cates these to such an intent, that a general approximate solution
showing the effect on the betatron oscillations seems impossible, but
it will be shown that at least in a special case the radiating electron

will receive an sdditional damping. Only radial oscillations will be

congidered.

It is found thaet the calculation is most easily carried through in
a flat four-dimensional manifold; the usual three space coordinates
being extended with the time dependent o =1ict. Hereby all coefficients
in our differential eguations become constants. Also the equations

will apply equally well both for low and high energies.
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In addition to this a special system of units is introduced, whereby
all coefficients reduce to unitye. This system has the electronic rest
mass M, and charge € as mass and chaege units. The length and

time units are

e -15 5 =
1L = % 19010 meter, 1T =/ % 6.3-107"" sec,

/A. being the permeahility of free space and ¢ the velocity of light.

The equations of motion for an electron in an electromagnetic field

are now in four-dimensional tensor notation:

b L o L L8 2 LE! S L
(1) F = o —(uimu.);r;u. + wul w LL“—‘F'%:'E 3

the two last terms representating the radiastion reaction. Here

w é/'\k = BA
k2) F:gk" e S e

i1s the electromagnetic field tensor given as the curl of the four-

potential A\K and

: A x*

is the four-velocity; the derivatives c¢f the four space coordinates

with respect to the eigentime T . The Tour-velocity is subject to the

to the restriction
o

(L) Utuo(-——-—l

The electronic motion in a betatron is most conveniently studied
in eylindrical coordinates (r, 9, z, &), and the field described by

an axial symmetric four-potential:

A:A:A\:o)

n - A

o
(5)
A9= &L.;__ %(A—JZJOC) 5
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i.es the magnetic flux at time O through the circie r = const., z=const.
divided by 27 .

The five equations (1), (L) are dependent in such a way that any
one of the four eqé. (1) may be derived from the remaining three and
eq. (L)« We mav therefore disregard one of the egs. (1) and choose the
fourth where u.é = o.c .

We shall assume that the potential A ® has a plane of symmetry
at z=0, thereby enabling us to restrict ourselves to considering only
orbits in this plane, and to disregard also the third of the egs. (1)
with uniui .

The remaining theee equations are now evaluated in terms of the
coordinates and A = %ér,o,u ), giving

BA as (AN} a . -
SiSe= R -anf-A+3r0d +3A20 +1Q

(6) A= — K0 -AnA R+ 43080 +3pAss 22— n2a g

?

v 2

e -wWial= o,

where

g "z & &c
g =l u “‘ =K a2 -wWE-2ant
(7) qu‘ & 2_ z
‘r4nhng +f>..§2_‘*..-4 :
Qﬂd
(8) =6, X =it =W,

W being the energy of the electron in our special system of units.
The underlined terms in the egs. (6) sre due to radiation.

A solution of eqs. (6) is impossihble without disregarding a large
number of terms. It is therefore necessary to study the order of
magnitude of the different terms. This 1s done here by introducing the
well known first order solutions obtained by disregarding ell radiation

terms. Using the relation
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I A
(9) Bz=52(”'/°<‘) T ATA

and noticing that the second eq. (6) then may be integrated once, we
are left with

2
RB, . = L -1,
(10) A= - Z—D_'i'c_/ L= c"_or).sfa,n't)
2 2
AT+ AWyl =0,
Assuming that B, and A are proportional in their time dependence

and choosing C=0, these equations heve the circular solution

Ao
h= /1L = e
o Bo ° A= A(’loJO_J <),
(11) 52_=D°=—E>., s

Bo= B, (ro>) .

By eq. (5) the first of these equations gives the usual result that
at the circular orbit the field B0 is half the average field inside the
orblit.

Following the customary procedure we now study the solutions in the

immediate vicinity of the circular solution (11), writing

(12) =g 1+ x) 5 Se=S,(l+e)

and assuming x and& < l.

Also, we shall sssume a magnetic field varying linearly with radius:

(13) B,= B, (l—mx) ) o< m< 1,

By egs. (5), (11) we then obtain

%

n & I-Mm m 3
w A=A [ nde i (xr T K5
Ao
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Introducing these relations (12), (13), (1)}) in the eqs. (10) and
neglecting terms of second or higher order in the variables x, & , we

obtain the well-known first order solutions

a, O >
S vk I/E?: O*D-S[LL&,L&?+ C;{
(15) Rty
(3 = (B, [ [1-m

S _Ce N
& m Ba VB_:QOS \EQA-GQ’L g C;s]

subject to the conditions

(16 : = ) =
16) <<
BO BO ) BO << Bo
which will slways be fulfilled in a practical hetatron. Cl, 02, 03

are the constants of integration, C, being related to the constant

i
in egs. (10) by

2
(I=m) 2,
The eigentime integrals in egs. (15) may be converted into ordinary

time integrals by

L =
(18) JD‘ T S‘ (
p mﬂd ;qmit‘} dtzu=a

The first order radiation correction to the above solution is

= (-

readily found by inserting this solution in the radiation terms of egs.
(6) and then studving the orders of magnitude of these terms. It 1s

then found that by assuming

Z
(19) B,X B B, << C << B,

o

all radiation terms except the two terms

& L8 4 = a o
(20) = D'bno _jlo 'Slo E;__/Zieo Wc
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may be neglected, as these will be the only ones comparable with the
first order non-radistion terms of egs. (10). The second of these

equations must therefore be interchanged with

(21) A==n's - j/zz& W, A +C_

Again inserting the relations (12), (13), (1L) and solving for
X, & we now find

A (

—_ e—

3 2 Clz T i
ED (* M) BOS B iL rE_’.oQ.BS goﬁm& -+ 6‘3}

Q
£ = ‘+O_M)86§P§°w e —

where one may insert eq. (18) and
¥ " +
2 v S S
(23) Soﬁw,,ah —KBO S
o

to obtain the solutions in terms of the ordinary time.

(22)

To a first approximation the radiation reaction will therefore not
introduce any additional damping factor to the radial betatron oscilla-
tions. To obtain such a damping factor one must sustain at least the
second order terms In x,8E and their eigentime derivatives in our
equations.. However, as our equations then become‘hopelessly involved,
there is little hope to obtain a solution unless we by some means
introduce a very drastic simplification.

Let us therefore investigate the damping of the radial oscillations
in a betatron with a constant guide fileld Bz and a slowly increasing
acceleration field, such that a circular solution Sl is possible,

We shall calculate the oscillations in x about this circular orbit.

By the egs. (6) the circular orbit at r=r, exists if

2
) A= 2B, (1+a28% ),
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Then, as before

D_o =i 8@
(25)

W, = V\“/}_‘:‘,&:‘

2

these quantities now being constants. As before we introduce x,& by

the relations (12), (13), while now (1L) must be replaced by

(26) i e g fety R O L8
A= At a8, (K+ =5 X 5)()_

Then, assuming the conditions
(27) B o<<a << 2,8, <=<a <=1

or, using MKS - u.n'uts)

~12, 2 -
(270) b B, <<o’<< |0 7/15@.3‘ <<a<<]
2

0o_being the amplitude of the first order solution,

(28) X=—g& = A'Cﬂs(s)‘n_‘t) ,

the two first egqs. (&) reduce to
" LR . 3

(29) X —E:b(_\-\-&)(l-t‘a)(wuu-a) 1—!}_"; e,ﬁ X = @Y_<< o B::( 5
xt+e +RxEexke) + (Urm)xk + mBx + X328 + Axxe

2. 2
—2rir2 + 2282 (4x+5e) = D[<<a®a,],
Eq. (29) is now solved for & which inserted into eqg. (30) leaves

(30)

us with

(L
LTS

2 . 2 xX
X+ Bo=-m)x o B (1-am)xk + (am) (K% + x%) - 2 B
o

+4QTBLIK + (4-Sm)rZRE x + CO[&GB:] =0

This equation may be solved in a relatively simple manner if we chose

(32) = %"‘

(31)
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and disregard the terms of order a3Bg. Then one integration may be

performed at once giving:
2
X}

2 9 o X .
(33) X+ 2 BK-'—'Bx—\-E&x———5—§+4Qf@4X=Q,

As we are only interested in oscillations about the stable circular

orbit, r=r_, we may choose the constant C= 0. Solving eq. (33)

for ; we obtain

(3l) X+ B (—K—- 4402 B2 )=@[<< /?-f&Bfl.

The only radiation term left in this equation is the smallest term
‘%QZES?QT , which will give us the radiation damping of the oscille-
o~o
tione This term is an order of magnitude less than the term in xe.

Therefore the solution of eq. (3li) will not deviate mueh from the solu-

tion of the equation

" 2 4 ,/ 2 — s
(35) X+5°<'§’<’,7>’<)=§LJL§&B°]
which we shall denote x=F(7).

lnen 1et us try a solution to eq. (3L) of the form
(36) x = gl%) F(v)

%CV) being the wanted damping factor.

Inserting and using eq. (35) for F(%¥), we arrive at the equation:
(37) 24F = | kil B 52
Y -\"‘f/szo%F \DBOF %(%-—l) ("MDBac?—ﬁjF

As X-.;%F‘ is close to the solution of eq. (35), the function é('t')
must be elose to unity and its derivatives very small. We may there-

fore in the first spproximation neglect the terms to the right in eq.
(37), whereby
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—2&38:?
(38) %C\L‘)'—_’— const., ,

and by suitable choice of the timeUT=0 the constant may be set equal
to unitys. Checking back on the neglected terms in eq. (37) we find that
the solution (38) is correct provided

\ Wo

. = TESSE

The oscillations will therefore receive a positive damping, which,

(39) T <<
o

inside a certain time interval may be taken to be exponential.

It remains to solve the eq. (35) for x=F(?). Substituting

<L gaol de
(10) REE . Rmw=ca 2
&z 1 2
btai 2= = L L
we obtain <\JT = % )cﬂL( 3

and upon integration |

IRk ol SRS
Y,

=[] - Ry

Inserting S)_:*%ﬁ’.and integrating once more gives
n

(h1)

2 2
(L2) SP_T-‘%G = a/Lc.C,D-S 2 Q?—CZ——K— e ALY

\JC;_‘—;(’-

Here C, and 03 are the integration constants.,

Observing that the second term on the right will be small compared
to the first term, this transcendental equation may be solved for x
by inserting the first order solution

R I ¥ (SL,,_‘Z:-r- C_g)

in the small second term; hence
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i &
e k-\-bm (.Q.,Lrl\'—\-c_ )

=C.cos|Q vy 0. % , L T

2 [n,l-'\' > 6 5m(‘_§1h:t;+ca)

or approximately

(L3) x= Fv)= L JCos (Sl L+C.3>+' |C |-\-SL~:2'(SLQT+Q32‘"

Actuallﬁ we ﬁave mede an error in our computation aé the series
(hl) and (li2) will diverge in the vicinity of x=02. We must therefore
check our solution (lj3) by insertion in the original eq. (35). Doing
this we find that the solution (l;3) is indeed correct under the conditions

(27).
Combining eqs. (36), (38) and (i3), we may write the solution of

eq. (3l)s 4

~2ngB.
(4ly) x=c_ze O,t'.JS(S‘L‘t‘*rC'_,> L-rs.w LT +0_3j

On the basis of the above calculation it does not seem unreasonable

to assume that also in a betatron with increasing field Bz and N1#:§é "
the radiation reaction will cause an additional damping in accordance
with the function (38). Of course this radiation damping will not be
comparable with the damping caused by the increasing magnetic field.
Changing to conventional units end ordinary time the damping factor

(38) becomes -
—a4 0% 408,3 -

(45) g\(t) -

(BO in gauss, r in em, t in sec.)

For a 250 MeV Betatron with r6=100 cm and Bo= 20,000 the relaxation
time for the radiation damping then will he sbout % millisec. at the

highest ‘energies.



