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/\
1, Vector Potential Expansions.
The Mark T F.F,A.G. magnetostatic field so far considered is governed by the
follewing boundary conditions on the median planey
E‘-,LV-’:E/ O) -0
(1) B.(""/ 5, O) =0
A
: ’L wfson [ M Y= - Na )]
Bz(”'/g/ 0) = = ( ‘ f (
The magnet peles for a field sat¥fying these conditiong will have efther &
very large and incenvenient gap-widening in the radial direction, or will require
a complicated and likewise inconvenient set of electrical poleface windings
P
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cemented to the iron surface if the gap width is to be kept constant or nearly
constant, For this remson it may therefore be advantageous to censider also the

field with the boundary cenditions?

B,,ﬁ”':’»o) =0
B, 1,80 =0 .
- (NB‘&“M) S o
(2) 2 (ILJQJO)" Ea(%—__o)i(e M &.\.{ aum (MPM./TC— A/&)]

mn = \M‘te.cae,r such t- 1 0% Ne—Jrm < 0

The spiralling feature of the fields governed hy the conditiens (1) and (2)
is recognized by the set of logarithmic spirals
& (% +C)
(3) r = rge 3 C = arbitrary const,
for which the argument of the sine-function reduces to the constant C. By com-

bining the eqs. (2) and (3) one obtains the vertical component
! K Yy
\ —(N6+Q) -—LC_-Q—%%,; Mﬂ) P
. M ) . M =+ + A l
(k) E?_(nbe )8, 0) B e [\_ sl

showing that on the median plane this field will be constant along any spiral
. inside a given magnet sector. Hence; for field (2) the unwanted feature of field
(1) is practically removed.

Evidently, if one can obtain a vector potential for the complex field which
satisfies the boundary conditions
iyl
B 1) =0 “poxo !

(5) Bs(n,ejo) =0 = censtunts
(F; /Lo 56 S>

B, (~50)= TA e

it will be an essy matter of superposition and proper choice of constants to
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~ construct the vecter potemtials for the fields governed by the conditions (1) or
(2).
A vector potential for the field (5) may be determined on the forms
bl Y -8 d-\-&.+ W
A =T (% k80 -5) Z Srden R (2)
QN\- G- % * *-\ A
l&
Az(n'ﬁ})_ o,
where the functions R, and (D, of the vertical coordinate z have to be de-
termined such that both Maxwell's equations and the boundary conditiens (5) are
satisfied.
By the potential (6) the field B = wxA is _
- L( 'Q""' ~xf - %> o L+ e
B, ) = —Te > ®) (=)
3!&» 6-&
(7) B (IL Z) \"'\ e‘(‘ - ¥ )-S— :-4~+ A+~ R Lz>
o X 6.2 VERARIIN
B, (n82 ) =T PR >Z. L% R )
-+ (u-\-"r + W+ i[b} ®w~z~a (z>l
Maxwell's equations require that ché' = Q3 which is true if simullanecusly
R (2)= 42 R, o) by (x+ S+ +1p) ©,, 4() = O
(&) @K(z)-\— L X (o&-\- 24w ‘\(::3 Rma(ZB
~ + (e(-\-g-\-u.-\-\.e\)(oc-r S+ ur c,/.;) @M+a(=—> =0

(x+2>+ Wt "'f’) RLL?-) -y @i(z} =0
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for all integers . .
The boundary conditions for these differential equations may be written down
by inserting z = O in egs. (7) and comparing the résult with eqs. (5):

) |
R“(,O\ © } for all imte_%e‘“s W
@‘i(o\ =0

(%) 0

; W -]
LX Ruko‘) . (eu- D4 Wt u(&;} @W(o) = {

1, w=-1

For the gystem (8), (9) one readily finds the solution:
O) ‘)1)6) ¢ty

-..‘)
Rla=20 o Vk.“{
%) ! ~2,-4, -6, =8,

2
! Z
R_3(’-) = -ty 2

| 22
R (2) = R Lz)[xm_(« Q'Yv\-‘t-\-\.(b)l e (Fm-1)

-an-| an|
= - o[- (it e emaipy] -
dn
" B’*_' (¥=Am+4+ k(éﬂ m\ 3("‘“1)%%')

(10)

0,\,2,3%

o -0 frae{ YT

/

e, ()= o+ 2+ L(s

2

6 () == (=tp) %

e
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| L=dm 4+ e . .
_;(z§= @—3%+1( )d an+*r+£\§ (o(—;l'm‘fn{g)ll (Qn '>

-~ —(ot-Z'n +2+L (s)[x ouc(s)}{_{‘ =(2- L+ip 3}
[\‘“ ol— Q(YH-“HLF;)] (&M’)\ J (% 7() 3/ 4} )

Inserting this solution into the series (6) we obtain the vector petentiaml:

ez),_..bgrp Nad L(‘:ﬂm&__“@_g)zb
T A olt| x(c;QM, —y0- 3)2:

U=

Rine

(11) A,a( x) z) - K(.. )

A, (e z)g

vhere
D =%
A

- 'n.-\ X ~mor 4t )
D a-m(a«' i)L ~n F’J

" (@ )\[15 SO G

e amedrgy] L (=204, )

- (

v o<+Q,+f..F
E?La - (og-i,‘ln-r-ﬂ,-t-L{g,)D% y (’VL I)Q) 3, )

(12)

The fields (1) snd (2) &re now regurded as superpositions of & flutter-field
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involving the flutter~factor f and a non~-flutter field. The following table

shows how the constants should be chosen in the eqs. (11) and (12) to give the

different parts of the two types of fields considered.

(51) flutter] K | v M
e }
H“ttu. k [ (I—L},,(- i Sa iBof/l;K Vee ;WI\%(M&f\Q pact

The vector potentials obtained in this murmer mmy be expressed as follows:

For field (1):

W= |

, r M!M.!L"’N > _ 2 2
A UL)@) z) - Boh’ C(%—_DY-\-\S&,{E_L( B G)Z- F::_ (71«> }

PN

: w2 o r o & ’3.:1_- = A
(13) Ae(.u/g z) - Bo'z.o(;t‘o)k \Z_{Gufgmh-lwe AL, Na)] (Ti)
U=0

A Z(a}e} 7‘) =0
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. vhere

CF = —gNf |
e . an._ e _.n‘ g 2
‘(lh) hn“ a,n (Q’n ‘) [\l (K An+4 4 M)J
s (dm ),E/Q (ktu M)}[’Vz* (k=240 M)J
[N (k';l"‘*‘t”“‘f).] (n=2,24% ")
| 6 ) | -
G 1) B G GQ L‘f_&‘_‘%__%_-c-‘r)(‘ﬁ:@n-\ 2)
 'n. n=l An (Rr=t)

- —(%«)")7 KAk-2) (k- 4) 5 (k=am14) (k=212
. (=423 )

c f

H =
¢ i M
& _ k=Intd+eM _-
] . ~'(n=‘/,2‘,3/ )

n v N | L J
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For field (2): )
b\ (/\/8 - m
A, (82)= B (/Lu) =

an A ReDd =B

Az(.’zzajz):' 2
where

$=—5b¥

S":\_____ &n(&'n ,)\_LKN3 (k Q'M‘f)_]
" - g%.'?f[(%” R[5 2

Eﬁu)ﬁ- (k= A~ ‘t)a] J
(n- 2, )

8

ZF+®U S O
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Ty =— g (=)

me lm"' Q (, k—=2An -+ /1"'\’ e M
= an(am AU It )]

(19) M)o'
_ 2 - k‘& ‘ e
- (___;m ‘0 & )\!\j (\ eV (et Y N 3 (k-eM) |
N g kA Y] =R )
o L
Uo k+ ol
» kdn+d ,
(20) U:,L’ 'L_/y_i( S’n 3 (7')"'"" //‘Q/ 5/ “”)
M
Vo= HS
(21) o k—dn+l+M | _ 5 e
W oN(-ck) n (=132 )

z
The results (13) and (17) are exmct. The power series in <—/Z7—> involwed in
these results will converge for 2 < -

&
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2. The Equations of Motion.
The equations of motion for =& chs‘.rged particle (mass m, charge q) moving in

a magnetostatic field given by its vecior potentinl X are most readily derived

from Jacobi's principle:
@)

Cds

(v |
where p = m v is the momentum of the particle and d S is the vector element of
arc length mlong the orbit. In the case of a magnetostatic field the momentim
has a constant modul p = i§| 3 hence the varistion (22) mmy be taken between
definite limits.

Using cylindrical coordinates
T = T T A T, 4z
d= T dr+ T, ds +T,

(23) J , cﬂ.z-
/ \ ) 2 ) _ &
cQS; -— /127+-/Z?a“+-21)2‘ 0Q€9 ) R = ‘I]; 3 & = c{EP

snd introducing
(2h) o= —A
P
one obtains from eq. (22):
(2)
. - ) . _
(25) g l_\j /Lz-r /)jz-f- z_’l s &A_‘f /LO{a't" 2 O‘ZJ szE'

()

O.

I

Here Jacobi's principle (22) in three dimensions (r, e, z) is converted inmto
& Hamilton's principle im two dimensions (r,z) with e as independent variable.

* This variation principle is now converted to its canonical ferm
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() ‘
Saeth’) )P/LIPZ- E)&S =0
q3) '
(26)
| v R -
phé °0&
@ BT 5w 0 RT%2

Of/heing the Lagrangian in eq. (25).
Solving the egs. (27) for r’ and z° gives

' )h{c (?m 'L\F Py
e oz g !
%= (rmeF (1= ()= e

By introducing these velocities inte the second eq. (26) cne obtuing the
Hamiltonian |

. e 1 e iy

. 2
(299 K= "ﬂ-\} |—(p- %) (P- z.‘) — ra,
which now give us the cenonical equations of motion (28) and

oo | P |
o= FT 4 F(art) S ean) + (e V(o) + 5 (00)

(30)

\:13 = [~ BB’_-Q,L)% (2cbn) + (&—-ad% (/zoq,_)ﬂ +§5_(/z.ae>)
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here written on dimensionless form.

If one, @s in section 1., chooses & gage such that the a,~ component vanishes
the eqs. (28), (30) may be written |

) . o
opeor
F’ — .
=z’ = | '
o e J \, | =&~ Qh-)z" P

(31)

~

‘ ) .
| N2 o

R = EET i, saltedn) + 57 (1)
»

P>) 2
B = 3z (o) + 52(r 40

Choosing the reference circle of radius r, in the customary way such that

we obtain from eq. (2))

el

(33) o, = A

B
The five quantities @ ‘a—(/l a,) -&-(Q an) 2 (/)_.ﬂ
S : ' hy anNTeTA), S ReRe) , o 9)
md =5 (na,)  involved in the differentisl equations (31) may now be
derived for the twe types of fields here considered from the eqs. (13), (17) mnd
(33). 'The result is listed in the following:
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For field (1): |
; | g ohe)S 0 (2
o, = (%;)K* (\QQ SLE n “— w (’b)

%_(hoqm) = (%D)VTRQ

(34 Dz

where F?,, a3, HQ sare given by egs. (1), (18), (16); and
L= (k-am+l+iM)Fy ]

=~ m
n &(M-_‘;\)Q)gj.;...)

- dn Ff
= (k-dn+ )&,

F
G
G
H'Y\

2% 0
Hy = 21 fy

\

(35)

2 P33 ~=23pP

- th 6’}1 >(,YL=OJ1/&-JV“.>.
= (k—an+2+ M) Hy

—
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For field (2):

—,%(Ne - Q% m)
e ¢

ALY & MBI (3)

. K “*(NB -A¥ /m)
%:(’1 sz.} (h—o) e

{ (\QLEF LM - A)o)_]} &)

K(ND Qulm)
=0 Q’L> "(/\Q <

G6) ‘ | LS +(RLLT1 b(MQM%(: N&)]g(%fw-!

k|
", = (%)

)Vl x

W=

—

n e -—A—K(NO—&'WWB

2 (nag)= bi'o) e

. Ve o (b Ne)j}(—if“

>z iiu°+4wl-\/1 UM 7, A)o)J}@L

where S3, T3, U, V9§ are given by (18), (19), (20), (21), and
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(k - + |> S |

S ,
5 An S,‘,,, _ (i@=l,2,2>/-~)
T, =(k-2*n+l+UVl)Tn

N
T = an T )
Uq‘m-‘-- (k-&m-:l)()qf
L A Uy, [
\'/V'L = (k=2n+2 M) \/MD
Vo = 2" \/,,10

(37)

C
3
i
f\
=
fl
ko
—
LL)
_

I

g3

3. The Rate of Convergence. Truncation of the Series.

All péﬁer series in (%)Linvolved in the differential equations of motion
(31) will converge for Z < JU 3§ a condition which is necessarily fulfilled in any
machine. However; on account of the large values of the parameters k, N and M,
the convergence will be relatively slow, especially at the beginning of the series.
In digital computor work it will therefore be necessary to carry a fairly large

number of terms in the series before any truncation is permissible.
)

Th& truncation of the series should be pqe—rformed by replacing the sums Z\
w=
and 2 __ of equations (3L), (36) by > and respectivelys

W=D U == '
the series thereby being replaced by polynomials containing q or (g + 1) terms.

By using this procedure the errors introduced by the truncation will not’ destroy
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 the important Liouvillian character of the _netiam Oné Wwill thereby be calcu~
lating the Liouvillian motion of a charged particle in an approximately Maxwellian
field. (One mmy if desired and with the same result use one mumber q-= q, for the
G,' S and U series representing the influence of thé non~-flutter field, and &
diffefent number q = q, for the F, H, T and V series representing the flutter
fleld.) | |

The rate of convergence of the F, H, T and V series may be studied in an

approximate way by assuming that
(38) M >> k and N,

which will be nearly true in any machine or xodel,
The truncated series involved in the calculation are then approximately the

following:

2 oo 2
RN (A RS U w@—-“(M ~)

P)
occuring in the expression for 5‘;’"(/1.&95 for both field (1) and (2),

w0 B |+©‘(M,,) 5‘(M,L) -"'-\-(agr )‘(M )%'_

occuring in the expressions for >z (‘D.DQ,.‘} and B—z (/LAB) for both

fields, and
2 & 4 \ z -
w O gi——! *'ZI'E(M/T) +é(m§_)+~\..+@(‘MA_}%

)
occuring in the expressions for a, and D—E}RDQ,‘_) for both fields.,
Each term in the series above will be approximately the same as in the

exact series. The approximate series may therefore be used to determine the
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accuracy of the truncated exmct series.
| The series C need not be considered because this will comrerge faster than
- the series B and has the same number of terms as B. |
| Also, the G, S and U series need not be considered in this connection, as
they will always converge more rapidly than the F, H, T and V series.

It follows from the above that the rate of convergence is solely
determined by the magnitude of the parameter M, Also, it follews that the number
q of terms necessary to obtain @ certsin degree of accuracy in the truncated
series will depend on the largest value of M % one wishes to handle with the
equations.

The following table shows q as @ function of this largest value of H% and

the least number of correct significant figures wanted in the truncated series:

[  TABLE ‘QOF _ 9 |
Max. {Min. no. of correct significant {:'gjur‘es !
1 (mMR) | “ 6 g | o |
/ 3 4 s é
2 s e | b g
oy > | s o | |
3 lo | 12 14 /6

 The accuracy of the calculations performed with the eqs. (31) will of course

depend on the choice of gq. However, no analytical method has yet Been found to



w8

predeteraine q such that a certain degrte of acmacy is obtaiﬁcd ia the ramerical

‘:esults;



