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Abstract

This thesis reports on the sensitivity of the BABAR detector to the study of CP

violation in the B system. Due to the presence of �0's in most channels of interest to CP

violation studies, an electromagnetic calorimeter with high e�ciency and good energy

resolution for low energy photons is needed for good �0 and thus B mass resolution.

A beam test of a prototype CsI electromagnetic calorimeter and its response to low

energy electrons and pions is presented. Measurement of the CKM angle � requires the

study of the decay B �! �+��, but this is complicated by the presence of penguin

diagrams. A clean measurement of � and isolation of these penguin diagrams requires

the use of isospin symmetry through the study of B decays to �+��, �+�0 and �0�0. The

branching ratio of B �! �0�0 is expected to be � 10�7 implying large statistical errors.

In addition a heavy contamination from continuum background is expected which will

introduce further systematic errors. These errors will feed into the errors on the penguin

correction. A maximum likelihood �tting procedure has been developed to �t the data

in preference to event counting to minimise these errors.
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Preface

The BABAR experiment involves a collaboration of physicists and engineers from

research institutions and universities all over the world, with a common aim of building a

detector for CP violation studies in the B system. During the three years of my studies for

the PhD, I have been closely involved with members of the collaboration in building the

detector. In September 1995, I was involved in the testing of a prototype electromagnetic

calorimeter at PSI (Zurich). In particular my work was focused on the analysis of the data

for pions and electron interactions, the results of which were included in a BABAR note.

In addition I have presented work on a simulated response of the detector to CP violation

studies at BABAR workshops and conferences. The results of my work as presented in

this thesis gives the collaboration an insight of what the real detector will be capable

of measuring and to what degree of accuracy. It also provides strategies that could be

adopted for better precision measurements.
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Chapter 1

The Standard Model and CP

violation

1.1 Introduction

Towards the end of the nineteenth century it had become possible to give a satisfactory

account of almost all physical phenomena by applying the laws of classical physics. How-

ever an overwhelming amount of experimental evidence around the turn of the century

showed some limitations on the classical theory. The development of quantum mechanics

and relativity in the twentieth century explained many of these di�culties and demon-

strated that classical theory could be obtained as an approximation of these new theories.

The development of quantum �eld theory was necessitated by the desire to develop a con-

sistent theoretical framework for describing quantum mechanics of relativistic particles,

i.e. particles with velocities approaching the speed of light. Modern particle physics was

built solidly on these two theories.

The Standard Model (based on locally gauge-invariant quantum �eld theory) appears

to give a successful description of all the phenomenology of particle physics. The gauge

particles are the quanta of the �elds. The model provides a list of the physical �elds

and describes the non-linear interactions that occur between these �elds. There are three

forces { the strong, the electromagnetic and the weak. There are three symmetries of

strong interactions that are not conserved in weak processes. These are the symmetries

C (charge conjugation which relates particle to antiparticle), P (parity which relates a
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left-handed particle to a similar right-handed one) and T (time-reversal invariance which

relates a process or state to the time-reversed process or state). In the Standard Model

all weak decays violate C and P but conserve CP with the exception of a very small part

that violates CP. This is explained by the CKM (Cabibbo-Kobayashi-Maskawa) matrix

which describes the mixing of the quarks. This violation occurs because there is a single

phase that remains in the CKM matrix after all possible rede�nitions that can remove

such phases have been made. An important prediction of the model's explanation of CP

violation is the existence of large, calculable asymmetries in the decays of B mesons to CP

eigenstates. Excess of matter over antimatter in our universe is one of the key puzzles in

cosmology. The Standard Model provides an explanation to this by CP violation. This is

however an inadequate explanation since the size of the e�ect is too small to fully account

for the photon to baryonic ratio in our universe. Up to this present time, CP violation

has only been observed in the Kaon system. Experiments such as BABAR are currently

being designed and built in order to measure CP violation in the B system. BABAR will

begin operation in 1999. In this thesis, a study of CP violation in B decays to �� with

the BABAR detector is presented.

1.2 The Standard Model

The term Standard Model was originally used to mean the Glashow{Weinberg{Salam

model of electroweak interactions. There are three classes of �elds in the model|spin

0 (scalar), spin 1 (vector) and spin 1/2 fermionic �elds. The fermionic �elds make up

all matter in the universe. The quarks and leptons are the quanta of these �elds. The

four known forces between particles are the strong, the weak, the electromagnetic and

the gravitational forces. Only the �rst three of these forces have been incorporated

successfully into the Standard Model. In the model, it is required that all fermionic

�elds be invariant under local SU(3) 
 SU(2) 
 U(1) transformations. The theory is

a gauge theory with two principal sectors: QCD (the strong interaction sector) and the

electroweak sector. The force between two matter �elds arises from the exchange of a

quantum of a vector or gauge �eld and thus it has an associated gauge group. For a matter

�eld to experience a force, it must couple to the associated gauge �eld and have a non-
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zero value of the gauge charge. U(1) is the gauge group for electromagnetic interactions

which has a local phase or gauge invariance. The gauge boson required by invariance of

the theory under U(1) transformation is labelled B�. The gauge boson that mediates this

force is the photon. The group charge is the electric charge. The gauge group for weak

interactions is the SU(2) group. The associated gauge bosons necessary to maintain the

invariance of the theory are called W
�
i , i = 1, 2, 3, with � indicating a spin one boson.

There is one boson for each of the three generators of the SU(2) transformation. Their

electromagnetic charge states are related by:

W+ = (�W 1 + iW 2)=
p
2

W� = (�W 1 � iW 2)=
p
2

W 0 =W 3:

SU(3) is the gauge group for strong interactions. The associated gauge bosons that

mediate the force are labelled G�
a , where a = 1, 2,...8, since there is one spin-one boson

for each of the eight generators of SU(3). These bosons are called gluons. The charge

of the gauge group is called colour, and can take one of the three values red, green or

blue. The theory that describes the interactions of these gauge bosons is called quantum

chromodynamics (QCD).

The fermionic �elds are divided into two classes: quarks and leptons. There are six

quarks and six leptons. These classes are further divided into 3 generations of particles

each of which contains a weak isospin doublet of quarks and leptons (see table 1.1). These

are all left-handed fermions. The right-handed states exist as singlets with the exception

of the neutrino whose right-handed state has not been observed. The same structure

exists for the anti-fermions and there is no left-handed anti-neutrino.

In the Standard Model all fermions and bosons are massless, holding the lagrangian

invariant under SU(3)C
 SU(2)L
 U(1)Y transformations. The scalar �elds are a by-

product of the mechanism by which particles acquire mass, with the lagrangian still

maintaining its gauge invariance, a process called spontaneous symmetry breaking. The

quantum of the scalar �eld is the spin zero Higgs particle.
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QUARKS LEPTONS

Electric Electric

Generation Flavour charge Flavour charge

1 u +2/3 �e 0

d -1/3 e �1
2 c +2/3 �� 0

s -1/3 � �1
3 t +2/3 �� 0

b -1/3 � �1

Table 1.1: The physical properties of fermionic matter.

1.2.1 Electroweak uni�cation

Uni�cation of electromagnetic and weak interaction into one single theory invariant under

the combined transformation of SU(2)L
 U(1)Y was achieved in the 1960s by Weinberg

and Salam after being �rst proposed by Glashow. It predicted the existence of a weak

neutral current and massive vector bosons (W�, Z0). The weak neutral currents were

discovered in 1973 by GARGAMELLE at CERN [1] and the massive vector bosons were

later discovered in 1983 by the UA1 and UA2 collaborations at CERN [1]. The fermions

are arranged into three left-handed doublets

0
B@ u

d

1
CA ;

0
B@ c

s

1
CA ;

0
B@ t

b

1
CA ;

0
B@ �e

e�

1
CA ;

0
B@ ��

��

1
CA ;

0
B@ ��

��

1
CA

and right-handed singlets: u, c, t, d, s, b, e�, �� and ��. The Standard Model lagrangian

for fermionic �elds is

Lf =
X
f

fi
�D�f; (1.1)

where f is the fermionic �eld and

D� = @� � ig1
Y

2
B� � ig2

� i

2
W i

� � ig3
�a

2
Ga
�: (1.2)

Y is the generator of U(1) transformations, � i (where i=1,2,3) are the Pauli spin matrices,

the generators of SU(2) transformations, �a (where a=1,...,8) are 3 � 3 matrices, the

10



generators of SU(3) transformations, g1, g2, g3 are the coupling constants for the U(1),

SU(2), SU(3) groups respectively.

The e�ective (interaction) lagrangian for U(1) interactions for the �rst generation of

leptons in SU(2) space is

Lf (U(1)) =
g1

2
[YL(�L


��L + eL

�eL) + YReR


�eR]B�: (1.3)

For SU(2) interactions the e�ective lagrangian for the �rst leptonic generation in

SU(2) space is given by

Lf (SU(2)) =
g2

2
[�L


��LW
0
� �

p
2�L


�eLW
+
� �

p
2eL


��LW
�

� � eL

�eLW

0
� ]: (1.4)

The �rst term of eqn. 1.3 predicts that the neutrino interacts electromagnetically which is

a contradiction to experiment. A way of solving this problem is by combining equations

eqn. 1.3 and 1.4 into one single equation, i.e. U(1) 
 SU(2) which we call electroweak

uni�cation. This is achieved by introducing two �elds, A� and Z�, and assuming that

the electromagnetic �eld A�, is a combination of B� and W 0
� de�ned as follows:

B� =
g2A� + g1YLZ�q

g22 + g21Y
2
L

; W 0
� =

�g1YLA� + g2Z�q
g22 + g21Y

2
L

W 0
� = cos �WZ� + sin �WA�; B� = � sin �WZ� + cos �WA�;

where

sin �W =
g1q

g22 + g21

; cos �W =
g2q

g22 + g21

:

The e�ective lagrangian for SU(2)L
 U (1)Y can be split into two parts, LNC , a

neutral current contribution where the incoming and outgoing fermions have the same

electric charge, and a charge current contribution, LCC , where the incoming and outgoing

fermions have a charge di�erence of one unit. For all three generations of fermions the

neutral current lagrangian of SU(2) 
U(1) has the general form

LNC =
hP

i �
i
L


�(�g2 sin �W �3
2
)�iL �

P
j �

j

R

�g1 cos �W

Y
2
�
j
R

i
A�

+
hP

i �
i
L


�(�g2 cos �W �3
2
+ g1 sin �W

Y
2
)�iL +

P
j �

j

R

�g1 sin �W

Y
2
�
j
R

i
Z� (1.5)

and the charge current has the form

LCC = � g2

2
p
2

X
i

�iL

��+�

i
LW

+
� + �iL


����
i
LW

�

� (1.6)
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Fermion I I3 Y Q

uL; cL; tL 1/2 1/2 1/3 +2/3

uR; cR; tR 0 0 4/3 +2/3

dL; sL; bL 1/2 -1/2 1/3 -1/3

dR; sR; bR 0 0 -2/3 -1/3

eL; �L; �L 1/2 -1/2 -1 -1

eR; �R; �R 0 0 -2 -1

�eL; ��L; ��L 1/2 1/2 -1 0

Table 1.2: Charge and Isospin values for SU(2) 
 U(1)Y fermionic �elds.

�� = �1 � i�2;

where the electric charge is given by e = g2 sin �W = g1 cos �W . Y is the weak hypercharge

and is given by Y = 2(Q� I3), where I3 is the the third component of weak isospin and

Q is the electric charge. The doublets have total weak isospin I= 1/2. Table 1.2 shows

the values for I, I3, Q and Y for the fermionic �elds.

Equation 1.1 shows no mass terms in the lagrangian. Experimental observation of

massive W and Z bosons implies there must be mass terms in the lagrangian. However

introducing mass terms directly into the lagrangian will break SU(2) 
 U(1) gauge in-

variant symmetry which is necessary for the theory to be renormalisable, and therefore

predictive. Mass terms are introduced by the coupling of a scalar �eld called the Higgs to

the particle �elds while still maintaining the symmetry. The process is called the Higgs

mechanism. Searches for the Higgs boson are one motivation for multi-TeV hadron col-

liders such as LHC (expected to begin operation in 2005). Searches for the Higgs boson

in e+e� collisions at LEP have set a lower limit of 69.4 GeV/c2 on the mass (MH) [2].

1.3 CP violation in the Standard Model

Although parity violation was discovered in 1956 it was thought at that time that the

combined operator CP would be conserved in all weak processes. This was later discovered

not to be true when CP violation was �rst observed in the Kaon system (see section 1.3.7).

Other evidence of CP violation is the existence of non-zero baryon number in the universe.
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CP violation is also expected to show up in the B system. In the Standard Model, the

only source of CP violation is the CKM matrix, (discussed further in section 1.3.1).

For the past two decades experiments have been designed to investigate CP violation

and provide a stringent test of the Standard Model explanation. Experiments at Fermilab

and CERN have measured CP violation parameters in the neutral Kaon system. Searches

at LEP for CP violation in the B system [3] have been made, however the sensitivity is

not enough for expected e�ects as predicted by the Standard Model. In the next few years

experiments such as CLEO III at CESR, BELLE at KEK, BABAR at SLAC, LHC-B

at CERN, CDF, D0 and BTEV at Fermilab and HERA-B at DESY will join in these

searches. BTEV and LHC-B will operate with pp collider machines at centre of mass

energies >1 TeV. The BTEV experiment has a long term goal of carrying out precision

studies of CP violation, mixing and rare decays of b and c quarks in the forward direction

at the Fermilab Tevatron collider which produces 1011 b hadrons and 1012 c hadrons in

107s at a luminosity of 1032 cm2s�1. The LHC-B experiment will have �ve times this

cross section for bb production at the same luminosity. CLEO, BELLE and BABAR use

e+e� collider machines at a much lower centre of mass energy. HERA-B will study CP

violation in the B system using an internal target at the HERA proton ring. At a centre

of mass energy of 40 GeV, HERA will produce up to 109 B hadrons per year, su�cient

for a CP discovery experiment and for the study of many other topics in B-physics. CDF

is a general purpose experiment for the study of pp collisions at centre of mass energy of

1.8 TeV. It is optimised towards the physics of large mass scales, but has been upgraded

with a silicon vertex detector for B physics. The D0 experiment aims to undertake CP

violation studies with the Fermilab Tevatron collider. Although the D0 detector has

been optimised for high pT physics, its extensive muon detection system combined with

triggering capabilities on relatively low-energy muons makes it feasible to study b-physics

as well. Despite the huge cross section for bb pair production at pp colliders, the total

inelastic cross section is enormous. The ratio �bb=�tot � 1=200 at LHC-B [4] compared

to 1.2/3.5 for BABAR at centre of mass energy of 10.58 GeV. Extracting bottom physics

with this large background will be a tremendous challenge. However because of the very

much higher cross section a better precision is expected to be achieved at the hadron

colliders.
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Full exploration of B physics will require a combination of both hadron machines

and e+e� B factories, with hadron machines providing the ultimate measurements of CP

asymmetries and rare decays, whereas e+e� storage rings are likely to prove superior in the

study of general B decay dynamics, because of the larger numbers of accessible channels

and possibly smaller backgrounds. Section 4.8 discusses the current experimental limits

of these experiments and the CP reach estimates.

1.3.1 CKM matrix

The CKM (Cabibbo-Kobayashi-Maskawa) matrix describes the mixing of the d, s and

b quarks. In weak interactions the weak eigenstates of the quarks are not the same as

the mass eigenstates since mixing occurs between the d, s and b quarks. The relation

between the mass eigenstates and weak eigenstates is given by

0
BBBBB@

d0

s0

b0

1
CCCCCA = V

0
BBBBB@
d

s

b

1
CCCCCA ; (1.7)

where

V =

0
BBBBB@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CCCCCA :

Unitarity of the matrix V requires it has three real parameters and one unknown phase.

From which we have

VtdV
�

tb + VcdV
�

cb + VudV
�

ub = 0: (1.8)

This relation can be represented as a triangle in the complex plane (�g. 1.1(a)), where

� = arg

 
� VtdV

�

tb

VudV
�

ub

!
; � = arg

 
�VcdV

�

cb

VtdV
�

tb

!
; 
 = arg

 
�VudV

�

ub

VcdV
�

cb

!
: (1.9)

There exist many parametrisations of the CKM matrix. One example is that of Wolfen-

stein [5]

VCKM =

0
BBBBB@

1� �2

2
� jVubjexp(�i
)

�� 1� �2

2
A�2

jVtdjexp(�i�) �A�2 1

1
CCCCCA ;
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Figure 1.1: (a) The unitarity triangle, showing the CKM angles �; � and 
 and the

lengths of the sides of the triangle in the complex plane. (b) each of the sides of the

triangle has been divided by the magnitude of VcdV
�

cb.

where � = Vus = sin �c and �c is the Cabibbo angle. Dividing the magnitudes of all

three sides of the triangle by jVcdV �

cbj, the unitarity triangle can be rescaled as shown

in �g. 1.1(b) where � + i� = Vub=�Vcb and 1 � � � i� = Vtd=�Vcb. We then have,

jVtdj exp(�i�) = A�3(1 � � � i�) and jVubj exp(�i
) = A�3(� � i�). Figure 1.2 shows

examples of three weak decay processes. The matrix element of the decays is given by:

M(n �! pe��e) =
Gp
2
[up


�(1� 
5)un][u�e
�(1� 
5)ue]

M(�� �! e��e��) =
Gp
2
[u��


�(1� 
5)u�][ue
�(1� 
5)u�e]

M(� �! �+��) =
Gp
2
[ud


a(1� 
5)uu][u�+
a(1� 
5)u��];

where G is the weak coupling constant.

In the Standard Model:

�(�+ �! �+�L) 6= �(�+ �! �+�R) (P violation)

�(�+ �! �+�L) 6= �(�� �! ���L) (C violation)
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Figure 1.2: Examples of weak decay processes (a) the � decay n �! pe��e, i.e. d �!
ue��e, (b) � decay: �+ �! �+�� and (c) � decay: �� �! e��e��.

but

�(�+ �! �+�L) = �(�� �! ���R) (CP invariance):

A phase in the CKM matrix generates CP violation as follows. The charged current

matrix element for qiqj ! qkql is

M = (uk

�(1� 
5)Vkiui)(uj
�(1� 
5)Vjluj)

y

= VkiV
�

jl(uk

�(1� 
5)ui)(ul
�(1� 
5)uj);

where u are the appropriate Dirac spinors. If we can show that the CP transformed

matrix element satis�es MCP = M y, then the theory conserves CP. Otherwise, CP is

violated.

Under C

u �! uC = CuT

u �! uC = �uTC�1;
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where C�1
�C = �
T� and C�1
�

5C = (
�


5)T .

Under P

P�1
�(1 + 
5)P = 
y�(1� 
5);

where 
y0 = 
0; 

y

i = �
i.
Then under the combined operator CP we have

uk

�(1� 
5)Vkiui �! �Vkiui
y�(1� 
5)uk;

where

MCP = VkiV
�

jl(ui

�(1� 
5)uk)(uj
�(1� 
5)ul):

Now

M y = V �

kiVjl(ui

�(1� 
5)uk)(uj
�(1� 
5)ul):

MCP = M y provided Vij are real. It follows that in the three generation model where

VCKM has a complex parameter, CP is violated. This shows up in K0�K
0
and B0�B

0

mixing.

There are two types of CP violation, direct CP violation which comes via interference

of two decay amplitudes, and indirect CP violation (mixing-induced) due to interference

between two paths to a given �nal state. These are discussed separately in the following

sections.

1.3.2 Direct CP violation

Direct CP violation is a di�erence in the direct decay rate between B �! f and B �! f

without any contribution from the mixing of B and B amplitudes. This occurs both

in charged decay channels and in neutral decay channels. Consider a general decay

B+ �! f and its charge conjugate process B� �! f . In order that these two processes

have di�erent rates, two amplitudes, AT from the tree diagram and AP from the penguin

diagram (see �g. 1.3) must contribute with di�erent CKM phases (�T 6= �P ) and di�erent

�nal state interactions (�T 6= �P ). The weak phases, �, come from the CKM matrix, and

reverse sign in going from the decay to the CP-conjugate decay. However the strong

phases � are the same for both the decay and the CP-conjugate decay since such phases

are due to strong-interaction rescattering and hadronisation and since QCD is sensitive
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Figure 1.3: Diagrams contributing to the processes (a) B+
u �! �0K+ and (b) B0

d �!
�+��.

to colour only, it is irrelevant whether a quark or anti-quark is involved. The amplitudes

can be written as:

A(B+ �! f) = jAT j exp(i�T ) exp(i�T ) + jAP j exp(i�P ) exp(i�P )
A(B� �! f) = jAT j exp(�i�T ) exp(i�T ) + jAP j exp(�i�P ) exp(i�P ):

The rate asymmetry is given by [6]

jAj2 � jAj2 = 2jATAP j sin(�T � �P ) sin(�T � �P ): (1.10)

The penguin diagrams are a loop diagram with the emission of a hard gluon (or photon)

from the loop to account for the mass di�erence between the b quark and s or d quark

produced when the W is re-absorbed. This e�ect suppresses the kinematic factor of

the penguin relative to the tree diagram by a factor of order �(mb)=4�. This makes it

di�cult to make �rm predictions of CP-violating e�ect in exclusive charged B-decays

since the relationship between the free-quark decay diagrams and the exclusive meson

decay amplitudes is model dependent [6]. Also the strong phases that contribute to the
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asymmetry cannot be reliably predicted. There are a few calculations of the asymmetry

in these processes based on model-dependent estimates of the tree-to-penguin ratio of the

amplitude. All such model-dependent calculations involve large theoretical uncertainties

[6].

1.3.3 Indirect CP violation (B0
� B

0
mixing)

An initial B0 may decay to a �nal state f, via two chains B0 �! B0 �! f , B0 �!
B

0 �! f . Indirect CP violation is due to B0 � B
0
mixing, i.e. interference between the

amplitudes of the two decay paths. The two mass eigenstates of the B meson can be

Figure 1.4: B0 � B
0
Mixing Diagrams.

written as:

BL = pjB0 > +qjB0
>

BH = pjB0 > �qjB0
>;

where L and H indicate the light and heavy mass eigenstates. The widths of the two

mass eigenstates are nearly equal and thus also the lifetimes.

� = (�H + �L)=2; �� = �H � �L:
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The mass di�erence is given by �M = MH � ML: The proper time evolution of an

initially (t=0) pure B0 or B
0
is given by:

jB0(t) > = exp(��t=2) exp(�iM1t)

�
n
cos(�Mt=2)jB0 > +i(q=p) sin(�Mt=2)jB0

>
o

(1.11)

jB0
(t) > = exp(��t=2) exp(�iM2t)

�
n
cos(�Mt=2)jB0

> +i(p=q) sin(�Mt=2)jB0 >
o
; (1.12)

where M1 is the mass of B
0 and M2 is the mass of B0 (M1 = M2 by CPT invariance). If

jp=qj =1 and neglecting the e�ects of ��, the probability that an initial B0(B
0
) decays

as a B
0
(B0) is then

P (t) =
1

2
e��t(1� cos�Mt): (1.13)

De�ning the amplitudes of B0 and B
0
to a CP eigenstate f by:

A � A(B0 �! f) = A1e
i�T ei�T + A2e

i�P ei�P

A � A(B
0 �! f) = A1e

�i�T ei�T + A2e
�i�P ei�P

and

� =
q

p

A

A
;

the time-dependent rates for initially pure B0 or B0 states to decay into a �nal CP

eigenstate at time t is given by:

�(B0(t) �! f) =
1

2
jAj2e��t �h
(1 + j�j2) + (1� j�j2) cos(�Mt) � 2Im� sin(�Mt)

i
(1.14)

�(B
0
(t) �! f) =

1

2
jAj2e��t �h
(1 + j�j2)� (1� j�j2) cos(�Mt) + 2Im� sin(�Mt)

i
: (1.15)

The time dependent CP asymmetry is then de�ned by:

af(t) =
�(B0(t) �! f)� �(B

0
(t) �! f)

�(B0(t) �! f) + �(B
0
(t) �! f)

=
(1� j�j2) cos(�Mt)� 2Im� sin(�Mt)

1 + j�j2 : (1.16)

There are two contributions to the asymmetry. The cos term is the asymmetry due to

CP violation in the decays of the B0 and B
0
to the CP eigenstate f . It follows from the
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equation that j�j must not be equal to one for direct CP violation to occur. This requires

having two amplitudes A1 and A2 with di�erent CKM phases �T 6= �P and di�erent

�nal states hadronic interactions, �T 6= �P . The second term, which is the sin term, is

the asymmetry induced by the interference of amplitudes of the B0 and B
0
via mixing.

Eqn. 1.16 can be written as a(t) = a�(t) + a+(t); where

a�(t) =
�2Im�
1 + j�j2 sin(�Mt): (1.17)

This asymmetry requires measuring the time order of the B0 and B
0
decays to the �nal

state f . The second asymmetry

a+(t) =
1� j�j2
1 + j�j2 cos(�Mt); (1.18)

can be measured without determining the time order of the two B decays. For jA2=A1j �
1, to �rst order in jA2=A1j,

2Im�

1 + j�j2 ' � sin(2�) + 2
jA2j
jA1j

cos(2�) sin(�T � �P ) cos(�T � �P ) (1.19)

1� j�j2
1 + j�j2 ' �2

jA2j
jA1j sin(�T � �P ) sin(�T � �P ); (1.20)

where � = �M + �D. The unknown �nal state interaction phases makes it impossible

to determine sin 2� from measurements of the two constant coe�cients describing the

asymmetries a�(t) and a+(t). With the exception of situations where jA2=A1j is very
small, large values of sin(�T��P ) signi�cantly modify small values of sin 2�. The e�ect of
the penguin amplitude is expected to be small for Cabibbo-allowed decays (corresponding

to b �! ccs), signi�cant for \once-Cabibbo-suppressed" decays (b �! ccd, b �! uud)

and very large for \twice-Cabibbo-suppressed decays" (b �! uus) as shown in Table 1.3

[7]. In the approximation of neglecting penguin contribution, i.e. assuming only one

decay amplitude occurs, then jAj = jAj and that no CP violation occurs in the mixing,

so jp=qj = 1, then j�j = 1. The rate equations in eqns. 1.14 and 1.15 then become:

�(B0(t) �! f) = jAj2e��t [1 + sin(2�) sin(�Mt)] (1.21)

�(B
0
(t) �! f) = jAj2e��t [1� sin(2�) sin(�Mt)] : (1.22)

The cos term in eqn. 1.16 vanishes and the time dependent rate asymmetry is

a(t) = sin(2�) sin(�Mt); (1.23)
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Quark Final Spectator Penguin

process state coupling coupling jA2=A1j
b �! ccs Ks	 �2 (�5 to �4) �s

12�
ln

m2
t

m2
c

�6 to �3

b �! ccd D+D� �3 (�4 to �3) �s
12�

ln m2
t

m2
c

�4 to �

b �! uud �+�� (�4 to �3) (�3 to 2�3) �s
12�

ln m2
t

m2
c

2�3 to 1

b �! uus Ks�
0 �5 to �4 �2 �s

12�
ln m2

t

m2
c

� to ��2

Table 1.3: Spectator and penguin couplings in B
0

d decays to CP eigenstates.

where e�2i�M = q=p and e�2i�D = A=A. The time integrated asymmetry is then given by

a =
sin(2�)(�M=�)

1 + (�M=�)2
: (1.24)

1.3.4 Isospin and SU(3) symmetry

As we have seen in section 1.3.3, the time-dependent CP rate asymmetry a(t) / sin 2�,

neglecting penguin contributions. If we take penguin contributions into account, then

we have a(t) / sin(2� + �+�), where �+� depends on the strong and weak phase con-

tributions due to direct CP violation [8] (see eqns. 1.19 and 1.20) and the situation

becomes more complicated. In order to get clean information on the CKM phase �, �+�

has to be measured. The strong phases are incalculable thus rendering �+� incalculable

as well. However there are two techniques that can be used to separate the weak and

strong phases: isospin analysis and SU(3) symmetry. The formalism of isospin analysis

is discussed in the next section and an example of its application is described in chapter

4.

1.3.5 Isospin analysis

This analysis described in chapter 4 is based on isospin symmetry. The idea is to

use isospin to relate the three amplitudes A+�(B0
d �! �+��), A00(B0

d �! �0�0) and

A+0(B+ �! �+�0), and similarly for the CP-conjugate processes. Figs. 1.3 and 1.5

show the tree and penguin diagrams for the three decays. The tree diagrams generally

represents the QCD-corrected left-handed four-fermion terms of the low-energy e�ective

22



Figure 1.5: Diagrams contributing to the processes (a) B+
u �! �0�+ and (b) B0

d �!
�0�0:

Hamiltonian. The penguin diagrams describe the W-loop QCD-induced terms due to

pure gluon exchange. In the next-to-leading order approximation, the e�ective Hamilto-

nian for charmless B meson decays can be parametrised as [9]

H =
GFp
2

"
VubV

�

uq(c1O
u
1 + c2O

u
2 )� VtbV

�

tq

10X
i=3

ciOi

#
+ h:c: (1.25)

where h.c is the hermitian conjugate, and ci are the so-called Wilson coe�cients. Oi are

de�ned as:

Ou
1 = q�


�(1� 
5)u�u�

�(1� 
5)b� (1.26)

Ou
2 = q
�(1� 
5)uu
�(1� 
5)b (1.27)

O3 = q
�(1� 
5)b
X
q0

q0
�(1� 
5)q0 (1.28)

Q4 = q�
�(1� 
5)b�
X
q0

q�0
�(1� 
5)q0� (1.29)

O5 = q
�(1� 
5)b
X
q0

q0
�(1 + 
5)q0 (1.30)

Q6 = q�
�(1� 
5)b�
X
q0

q�0
�(1 + 
5)q0� (1.31)
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O7 =
3

2
q
�(1� 
5)b

X
q0

eq0q
0
�(1 + 
5)q0 (1.32)

O8 =
3

2
q�
�(1� 
5)b�

X
q0

eq0q�0
�(1 + 
5)q0� (1.33)

O9 =
3

2
q
�(1� 
5)b

X
q0

eq0q
0
�(1� 
5)q0 (1.34)

O10 =
3

2
q�
�(1� 
5)b�

X
q0

eq0q�
�(1� 
5)q0�: (1.35)

O1; O2 are the tree level and QCD corrected operators and q is either a d or s quark. O3�6

are the strong gluon-induced operators. O7�10 are electroweak operators and are due to


 and Z exchange and \box" diagrams at loop level. This leaves O1;2 with two isospin

components, two isospin components for the electroweak penguins and only one isospin

component for the strong penguin. The electroweak penguin contribution compared with

the strong penguin contribution is suppressed by a factor �em=�s and therefore neglected.

However some model calculations suggests that this may not be a valid approximation

[9]. The �I = 3/2 operator occurs purely as a tree diagram, but �I = 1/2 operator has

both tree and penguin contributions. For B0
d decays to �+��, �0�0 and B+

u �! �+�0

�nal states, q = d. The �nal state pions have isospin I = 0, 1, or 2. By Bose symmetry

total isospin I for the two �nal state pions is 0 or 2. The e�ective Hamiltonian contains

�I = 1/2 and �I=3/2 amplitudes. The �I = 1/2 component will contribute to decay

amplitudes with I = 0 and 1 in the �nal states and the �I = 3/2 component will

contribute to amplitudes with I=1 and I=2 in the �nal states. The ratio of penguin to

tree amplitudes for B+ �! �+�0 is:

Atree(B
+ �! �+�0) = �GFp

2
V �

ubVud(c
0

1 + c02)(1 + �)T (1.36)

Apenguin(B
+ �! �+�0) =

GFp
2
V �

tbVtd
3

2
(c07 + �c08 +

c09 + �c010 + �c09 + c010 +

2

3
(�c07 + c08)(2W +X))T; (1.37)

where � =1/N, N being the number of colours, W=m2
�=(md +mu)(mb �md),

X=m2
�=2md(mb � md) and T=if�0 [f

+
B��(m

2
B � m2

�) + f�B��m
2
�]. f�0 (= 93 MeV) is the

pion decay constant. The ratio of penguin and tree amplitudes in the factorisation
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approximation i.e. independent of form factors, is then given by

jApenguin(B
+ �! �+�0)j

jAtree(B+ �! �+�0)j � 0:016(jVtdj=jVubj); (1.38)

neglecting a small contribution of about 0.005 due to strong isospin. The ratio of penguin

to tree amplitudes for B0 �! �+�� is 0.07(jVtdj=jVubj). For B0 �! �0�0, the ratio

is 0.23(jVtdj=jVubj). The larger penguin e�ect in B0 �! �0�0 is attributed to colour

suppression of the tree contributions. From eqn. 1.38 we can assume that the process

B+ �! �+�0 arises solely from the tree diagram (�I=3/2) i.e. there is no penguin

contribution. Making this assumption, we then expand the amplitudes for B0
d �! �+��,

B0
d �! �0�0 and B+

u �! �+�0 (A+�, A00 and A+0 respectively) in terms of I=0 and

I=2 pieces. Writing �+�� = (�+1 �
�

2 + ��1 �
+
2 )=

p
2 and similarly for �+�0 and evaluating

the Clebsch-Gordan coe�cients, we obtain:

(1=
p
2)A+� = Ai2 � Ai0

A00 = 2Ai2 + Ai0; A+0 = 3Ai2 (1.39)

where Ai0 and Ai2 are the amplitudes for a B to decay to a �� with I = 0 and 2

respectively. There is a similar relation for the CP-conjugate processes. These give the

triangle relations:

1p
2
A+� + A00 = A+0 (1.40)

1p
2
A

+�
+ A

00
= A

�0
; (1.41)

where A
+�

, A
00
and A

�0
are the amplitudes for the charge-conjugated processes B

0

d �!
�+��, B

0

d �! �0�0 and B� �! ���0 respectively.

Since only a tree-level diagram is involved in charged B decays,

Ai2 = jAi2jei�T ei�i2 ; Ai2 = jAi2je�i�T ei�i2 ; (1.42)

where �i2 is the I = 2 �nal-state-interaction phase and �T is the tree-level CKM phase.

Thus jAi2j = jAi2j and jA+0j = jA�0j. For neutral B decays there are both tree and

penguin contributions to Ai0 . Also mixing has to be taken into account to measure

jA+�j, jA+�j, jA00j and jA00j. The time dependence of B0
d �! f and B

0

d �! f decays

is given in eqn. 1.12. The existence of a cos(�Mt) term in eqn. 1.16 is due to direct
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Figure 1.6: Isospin triangles in B �! ��.

CP violation. In the approximation of neglecting penguin contributions, jAj = jAj and
j�j = 1 and the cos(�Mt) term disappears. The sin(�Mt) term is CP violating due to

interference of the amplitudes of A and A. Its coe�cient for the �+�� �nal state is given

by

Im�+� = Im

�
e2i�

�
1� z

1� z

��
= Im

2
4e2i�

2
41� jzje�i�
1� jzje�i�

3
5
3
5 ; (1.43)

where from eqns. 1.39 and 1.42

z � Ai0=Ai2; z � Ai0=Ai2: (1.44)

� and � are as shown in �g. 1.6. If penguin contributions are neglected, then z = z and

Im�+� = sin 2�. On the other hand if we take penguins into account, then z 6= z and

we then need to determine their magnitude and phases to measure �. Hence we need to

evaluate the equation

Im�+� = Im

2
4e2i�

2
41� jzje�i�
1� jzje�i�

3
5
3
5 : (1.45)

Ai2 in �g. 1.6 can be obtained from jA+�j in eqn. 1.39. Using simple trigonometry from
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the triangles of �g. 1.6, z, jzj, � and � can all be evaluated. Eqn. 1.45 can be written as

Im�+� = Im
h
e2i�M+�

i
; (1.46)

where M+� is the term in square brackets and can have four di�erent phases: �"+� and

�% which are functions of jzj, jzj, � and �. Thus we have

Im�+� = jM+�j sin(2�� "+�); (1.47)

Im�+� = jM+�j sin(2�� %+�) (1.48)

which leaves a fourfold ambiguity in the determination of sin 2�. Eqn. 1.46 can be

expanded fully as

Im�+� = 2[sin 2�(jAi2j2 � jAi2j(jAi0j cos � + jAi0j cos �) + jAi0jjAi0j sin(� � �))

+ cos 2�(jAi2j(jAi0j sin � � jAi0j sin �) + jAi0jjAi0j sin(� � �))]: (1.49)

We have thus shown that the value � can be separated from penguin contribution using

isospin symmetry.

1.3.6 Current experimental limits of CP violation studies in the

B system

The BABAR, CLEO III, BELLE, CDF,D0 and HERA-B experiments are likely to detect

CP violation in B meson decays but are unlikely to answer all the important questions.

For instance measurement of the CKM Matrix element 
 requires a very high luminosity

and will probably not be attained at B-factories, HERA-B, CDF orD0. Another problem

is that recent experimental work suggests that the branching fraction of B0 �! �� may

be smaller than was expected [10]. Table 1.4 shows early predictions of the CP sensitivity

expected to be achieved on sin 2� and sin 2� by BELLE, BABAR, BTEV and LHC-B.

The Bs mixing parameter is large, which means that excellent time resolution and large

statistics are needed to measure it. The above problems suggests that the future of these

investigations lies with hadron collider experiments which provide a much higher rate of

B hadrons to work with.

27



Experiment Data sample �[sin 2�] �[sin 2�]

BELLE 100 fb�1 0.092 0.062

BABAR 30 fb�1 0.085 0.059

BTEV 500 pb�1 0.100 0.042

LHC-B 500 pb�1 0.039 0.023

Table 1.4: CP reach estimates for BELLE, BABAR, BTEV and LHC-B accumulated on

the �(4S) resonance. The results are based on a GEANT Monte Carlo simulation of the

detectors done for the Technical Design Reports [12][13][14].

The Standard Model predicts very low rates and small e�ects in mixing and CP

violation in charm. Thus charm physics provides an excellent place for any discovery of

new physics beyond the Standard Model. On a time scale and performance, BTEV and

LHC-B would represent a next generation of hadron collider experiment beyond HERA-B,

CDF and D0. BTEV is a better charm experiment than any current or planned because

of its huge event rate, powerful trigger and vertexing capability. Hence any signal from

new physics is likely to be observed in the charm sector at BTEV [14].

1.3.7 CP violation in the neutral Kaon sector

The strangeness hypothesis requires there to be two distinct neutral Kaons{ aK0 andK
0
.

These are the strong interaction eigenstates of de�nite 
avour. The weak interactions

split linear combinations of these states into ones with de�nite mass and lifetime. The

weak eigenstates of the K0 �K
0
system can be written as:

jKS > = pjK0 > +qjK0
> (1.50)

jKL > = pjK0 > �qjK0
> : (1.51)

Under CP invariance, q = p so that KS would be CP even and can couple to the CP even

2� state, which is short-lived. The KL is CP odd and long-lived since it cannot decay

to 2� but only to three-body �nal states. The discovery in 1964 [15] that the long-lived

neutral Kaon also decays to 2� showed that CP is not a valid symmetry of the weak

interactions. CP violation in the Kaon system is similar to the B system. There are two
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contributions: K0 �K
0
mixing and direct CP violation. For KL and KS decays to two

�nal state pions, if there is CP violation, eqns. 1.50 and 1.51 can be written as:

jKS > =
1q

2(1 + j�j2)
�
(1 + �)jK0 > +(1� �)jK0

>
�

(1.52)

jKL > =
1q

2(1 + j�j2)
�
(1 + �)jK0 > �(1� �)jK0

�
; (1.53)

where

� =
ImM12 � 1

2
iIm�12

i�m� 1
2
(�S � �L)

: (1.54)

M12 =< K0jM jK0
>, �12 =< K0j�jK0

> and �m = mL �mS.

If we de�ne:

jK1 > � jK0 > +jK0
> (CP = +1) (1.55)

jK2 > � jK0 > �jK0
> (CP = -1); (1.56)

then the weak interaction eigenstates KS and KL may be written as:

jKS > =
1p

1 + �2
(jK1 > +�jK2 >) (1.57)

jKL > =
1p

1 + �2
(jK2 > +�jK1 >): (1.58)

The parameter � describes the amount of the \wrong" CP eigenstate in the weak eigen-

states. We may de�ne

�+� � A(KL �! �+��)

A(KS �! �+��)
= j�+�jei�+�; (1.59)

and similarly

�00 � A(KL �! �0�0)

A(KS �! �0�0)
= j�00jei�00 : (1.60)

If KL �! �� is purely due to mixing then, �+� = �00 = �. This implies

j�+�j = j�00j (1.61)

and

�+� = �00 = arctan
�

�m

�S � �L

�
; (1.62)

where �+� and �00 are the phases of �+� and �00 respectively. If there is direct CP

violation in addition to the mixing, we have K decay amplitudes given by

A(K �! ��) = AIe
i�I ; (1.63)
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CP Parameter E731 Results NA31 Results

Re(�0=�)� 10�4 7:4� 5:9 23� 6:5

�s[�10�10s] 0:8929� 0:0016 0:902� 0:005

�m[�1010�hs�1] 0:5286� 0:0028 0:5351� 0:0024

�� �1:6� 1:2 0:2� 2:6

�+� 42:2� 1:5 46:9� 1:4

Table 1.5: Recent published measurements of CP parameters in the neutral Kaon system

from the FNAL E731 detector at Fermilab and NA31 experiment at CERN.

where I = 0, 2 is the isospin of the �nal state and �I is the �� scattering phase-shift at

the K mass.

We then have:

�+� = � + �0 (1.64)

�00 = �� 2�0; (1.65)

where

�0 =
ip
2
Im

�
A2

A0

�
ei(�2��0): (1.66)

It then follows that:

Re

 
�0

�

!
� 1

6

0
@1�

����� �00�+�

�����
2
1
A (1.67)

j�+�j2
j�00j2

� 1 + 6Re(�0=�): (1.68)

The deviation of the ratio j�+�j2=j�00j2 from unity is a signal for direct CP violation.

However the deviation (Re(�0=�)) is expected to be small. Recent results from experiments

at Fermilab in the neutral Kaon system have given values of the CP violation parameters

Re(�0=�), �s, �m, �� and �+�. The results are given in Table 1.5 [16]. The value of

Re(�0=�) from the NA31 experiment at CERN does not well agree with the value from

Fermilab. The Standard Model prediction of Re(�0=�) is (3� 4)� 10�4 [16] which agrees

better with the Fermilab value than with the NA31 value. However both experiments

are on the way to improve the level of precision. Two new experiments, FNAL E832 at

Fermilab and NA48 at CERN hope to determine �0=� with a precision in the range of
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1� 2� 10�4. Using new beams and detectors they will increase the statistics (the results

quoted are statistically limited) and reduce systematic uncertainties. The CPLEAR

(low-energy antiproton ring for the study of CP violation) experiment at CERN has also

CP Parameter Value

j�+�j[�10�3] 2:312� 0:043� 0:032

�+�[deg] 42:7� 0:9� 0:6

�00[deg] 50:8� 7:1� 1:5

Re �+�0[�10�3] 6� 13� 1

Im �+�0[�10�3] �2� 18� 3

�m[�1010�hs�1] 0:5274� 0:0029� 0:0005

Table 1.6: Recent measurements of CP parameters in the neutral Kaon system from the

CPLEAR experiment at CERN. The results are based on data collected from 1990-1994.

�m was measured from semileptonic neutral K decays [17].

published results of measurements of CP violating parameters in two and three pion

decays of the K meson. The results are given in Table 1.6 based on the 1990-1994 data.

Another experiment, KLOE (K LOng Experiment), is designed to study Kaon physics

at the Frascati INFN Laboratory (LNF) in Italy. It is schedule to begin in 1998. At

a luminosity of 5 � 1032 cm2s�1, 5 � 1010 �s will be produced per year which then

decay to two neutral Kaons. The KLOE detector is designed with a large geometrical

acceptance to contain long-lived Kaon decays, good momentum and spatial resolution,

good reconstruction e�ciencies and background rejection. It aims to measure �0=� with

a sensitivity of � 10�4.

Due to large hadronic uncertainties a measurement of �0=� from K0 decays to �� pro-

vides limited useful information on the CKM quantities. Current experiments probably

represent limit possible in sensitivity for the K system. With experimental developments

now made possible, the B system will be a useful area to look for CP violation with

better precision. However rare decay K0
L �! �0�� o�ers interesting opportunities for

precision measurements comparable to the B system. Several activities are under way

to pursue this decay mode. The Standard Model prediction of the branching ratio is

(2:8� 1:7)� 10�11 [18]. Fermilab and KEK hope to measure the branching ratio with a
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sensitivity in the order of 10�12 [19].
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Chapter 2

CP violation with BABAR

2.1 Introduction

The PEP-II collider and the BABAR experiment have been designed primarily to study

CP violation in B decays. The PEP-II collider (expected to begin operation in 1999) is

an asymmetric e+e� collider with two independent rings, located on top of each other.

At PEP-II, electrons and positrons will be accelerated to energies of 9 GeV and 3.1 GeV

respectively and stored separately in the storage rings. The beams will then be collided

head on with the aid of quadrupole magnets Q1, Q2, Q4, Q5 and B1 (see �g. 2.1) which

will focus the beams to an interaction region. The centre of mass energy is 10.56 GeV

corresponding to production of the �(4S) resonance. The �(4S) will then decay to

charged and neutral B mesons

e+e� �! �(4S) �! B+B�; B0B
0

where the pairs of charged and neutral B mesons are produced in approximately equal

amounts. The asymmetric collision provides a boost of �
 equals 0.56 in order to produce

a measurable decay length for the B mesons. The initial luminosity is 3� 1033cm�2s�1.

Surrounding the interaction point is the BABAR detector.

The main aim of BABAR is to explore in detail the Standard Model predictions

concerning CP violation in the B sector and in particular to measure the asymmetries

in B0 mesons decay to CP eigenstates. It will also measure the magnitudes of Vub, Vcb

and Vtd of the CKM matrix (see section 2.2). The CP asymmetry measurements will

also give values for the CKM matrix elements jVubj and jVtdj (see eqns. 1.8 and 1.9 of
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chapter 1). Accurate measured values of the CKM matrix elements over-constrains the

unitarity triangle and gives the lengths of of its sides. This provides a useful means of

probing the source of CP violation. Other elements of the CKM matrix have already

been determined by other experiments. jVudj has been measured from nuclear � decays

and jVusj has been precisely measured using K �! �e� decays. jVcdj has been measured

from neutrino and anti-neutrino charm production and jVcsj has been determined from

charm decays. Measurements of jVcbj and jVub=Vcbj have been made from semileptonic B

meson decays. The results of the measured values are shown in Table 2.1

Q1

Q1

Q1

Q1

Q2Q4

Q4
Q5

Q2

Q5

B1

B1 B1

B1

9 GeV

3.1 GeV

9 GeV

3.1 GeV

7.5–7.5 0–2.5–5.0 2.5 5.0
–30

–20

–10

0

10

20

30

x 
 (

cm
)

z  (m)

Figure 2.1: Plan view of the interaction region. The low-energy beam enters from the

lower right and exits from the upper left. The high energy beam enters from the left and

exits on the right. The vertical scale is highly exaggerated [11].

In �gure 2.2 plots of the 95% con�dence level allowed regions in the (�, �) plane of the

unitarity triangle from current Standard Model measurements of �md, �k and Vub=Vcb

are shown. Each shaded region correspond to the (�, �) values satisfying the equations

relating to a measurement at the 95% con�dence level (see equations of appendix A).

The lines marking the boundaries of each region are the solutions in the (�, �) plane

for the upper and lower limits of the relating measurement. The intercept of the various
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CKM element Measured Value

jVudj 0:9744� 0:0010

jVusj 0:2205� 0:0018

jVcdj 0:204� 0:017

jVcsj 1:01� 0:18

jVcbj 0:040� 0:005

jVub=Vcbj 0:08� 0:02

Table 2.1: Results of measurement of CKM matrix elements as given in reference [20].

Allowed

γ

α

β

Figure 2.2: Plots showing the 95% con�dence level region in the (�, �) plane of the

unitarity triangle from current measurements of �md, �k and Vub=Vcb. The intersection

of the shaded regions gives an indication of the allowed region for the apex of the triangle.
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shaded zones signi�es the Standard Model allowed region for the apex of the triangle. It is

expected that measurements of CP asymmetry parameters will impose further constraints

on this allowed region. BABAR will measure the elements Vcb and Vub from semi-leptonic

B decays such as B �! D�l�l (l is a lepton and �l is the lepton neutrino) and B �! Xul�l

(Xu = �, �, or !) respectively. In addition to these measurements, BABAR will also

make searches for rare B decays such as B �! ��, s
, l+l� (l = � ,�, or e), 

 and

also study charm, tau and two photon physics. Rare B decays o�er a search for new

physics. The Standard Model prediction for the branching ratio of B �! 

 is very

low (6 � 10�10). This leaves plenty of opportunity for nonstandard e�ects to dominate.

Dileptonic B decays such as B �! �e and �e are forbidden in the Standard Model.

Search for such decay modes can expose weaknesses in the model [21]. Measurement

of the branching ratio of B �! �� will give the value of the product f 2BjVubj2, where
fB is the B-meson coupling constant. From this the CKM matrix element Vub can be

determined. With expected high D meson production rates at PEP-II, searches into DD

mixing and CP violation in the charm sector will be feasible. Tau physics studies will

be more di�cult at BABAR due to expected large backgrounds from qq and two-photon

physics. However with the expected large data sample, it will be possible for BABAR to

uncover interesting physics beyond the Standard Model.

2.2 Overview of measurements to be made

2.2.1 Measurement of Vub and Vcb

In semi-leptonic B decays, leptons from b �! u decays are primary leptons whilst b �! c

decays produce both primary and secondary leptons, the secondary leptons coming from

charm decays. For B decay to a charm �nal state, the lowest hadronic mass possible is

that of the D0 meson. This puts a limit of 2.32 GeV/c on the lepton momentum in the B

rest frame. For b �! u, the lowest hadronic mass possible is �0 and the lepton momentum

limit is 2.64 GeV/c. Hence by �tting the theoretical lepton momentum distribution to

the experimental data, the relative contributions from b �! u, b �! c and D meson

decays can be determined and the magnitudes of the ratio of jVubj=jVcbj can be �xed as
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well as the B meson semi-leptonic branching ratio. The �t function is of the form

T (p) = CcbTcb(p) + CubTub(p) + CcsTcs(p):

Ccb, Cub and Ccs are the free parameters that will be obtained from the �t. Tcb, Tub and

Tcs are the theoretical momentum distributions for leptons from semi-leptonic decays

b �! c, b �! u and D meson decays. This method was used by CLEO, however it is

model dependent and subject to theoretical errors. Another method is by measuring the

charge and angular correlations of dilepton events. The measured correlations can be

used to separate the primary and secondary leptons. Two classes of leptons are de�ned:

isolated and non-isolated leptons. Isolated leptons are de�ned in the �(4S) centre of

mass frame as those with no other charged track in the same hemisphere, i.e. at an angle

of less than 90o. This favours primary leptons from semi-leptonic B decays whilst the

other class of lepton which is the complementary to the other, favours secondary leptons.

The total energy of charged particles and photons in the same hemisphere as the lepton

(for primary and secondary leptons) are correlated with the momentum. This helps to

separate primary from secondary leptons. This method is not model dependent and

hence free from theoretical errors. The statistical and systematic errors are better than

the previous. A much better alternative method used by CLEO [22; 23] is by measuring

the invariant mass of �nal hadrons in B-meson semi-leptonic decays. This selects b �! u

and b �! c transitions more e�ciently than the previous methods. The previous methods

are basically centred on placing bounds on the lepton energy in the centre of mass frame

to isolate the two transitions. To select b �! u transitions, it is required that

El > (m2
B �m2

D +m2
l )=mB;

where El (l = e, �, or �) is the energy of leptons in the centre of mass frame of �(4S),

mB is the mass of the B meson and mD is the mass of the D meson. Since BABAR will

use an asymmetric collider, the momenta of the leptons in the laboratory frame will have

to be boosted to that of the centre of mass frame of �(4S). The disadvantage of this

procedure is that it only selects 20% of b �! u transitions. A more e�cient way is to

measure the invariant mass of the �nal state hadrons mx. To select b �! u events we

require that mx < mD; where mD is the mass of a D meson. With this method more

than 90% of b �! u events are selected.
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2.2.2 Measurement of Vtb

Indirect measurements of jVtbj will come from B0�B0
mixing (see �g. 1.4). The di�erence

in the mass eigenstates of the two B mesons from the graphs is predicted to be [24]

�M =
G2

6�2
jVtbj2j2m2

WmBf
2
BBB�BS(m

2
t =m

2
W ) (2.1)

where G is the Fermi coupling constant for weak decays, fB is decay constant of the

B meson, BB is parameter describing the degree to which the two graphs dominate the

mixing, �B is a QCD correction and

S(x) � x

4

"
1 +

3� 9x

(x� 1)2
+

6x2 lnx

(x� 1)3

#

where x = m2
t=M

2
W .

2.2.3 CP asymmetries in neutral B decays

Measurement of CP rate asymmetries in neutral B decays to CP eigenstates such as

B0
d �! J=	K0

s , J=	K
0
L, J=	K

�, D+D�, D�+D��, �+�� and �� will be one of the im-

portant aspirations of BABAR in verifying CP violation. At PEP-II the �(4S) produced

from the asymmetric e+e� collision is boosted in the forward direction. The boost energy

is 6 GeV. The �(4S) decays to B0B
0
pair in a coherent state. This implies one neutral

B meson cannot oscillate independently of the other. Since 
avour is not conserved in

weak interactions, the B0 meson can transform to a B
0
or the B

0
to a B0 before de-

caying. Thus we have interference of the amplitudes of the mixed and unmixed decays

which leads to an asymmetry between the B0 and B
0
. Due to this oscillation it is almost

impossible to determine whether a B decay to a �nal state f was initially a B0 or a B
0
at

time t0 without tagging. The boost of 6 GeV ensures that the B mesons produced do not

decay at their point of production. The very short lifetime of the B meson implies that

without the boost the two B mesons will only travel a distance of 20 �m before decaying.

This accuracy is beyond the capability of current detectors and will make it impossible

to measure the decay positions. With the boost from the asymmetric collider, the two

B mesons have a total momentum of about 6 GeV/c. Their average 
ight path before

decay will then be about 250 �m. This makes it possible to measure the decay positions.

By tagging, we reconstruct one B decay to CP eigenstate f and determine the 
avour
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of the other from its semi-leptonic decay. The 
avour of one B tells the 
avour of the

other. The time-dependent asymmetry is a function of the proper lifetime di�erence (t)

between the two B mesons and is given by

a(t) =
N(B0 � tag �! f)�N(B

0 � tag �! f)

N(B0 � tag �! f) +N(B
0 � tag �! f)

= D sin(2�) sin(�Mt); (2.2)

where � = �, � or 
. D is the dilution factor and describes how much the amplitude of the

Figure 2.3: Flight paths of the B0
d and B

0

d mesons produced at the �(4S) resonance.

time dependent CP-asymmetry is degraded due to wrong tags. It has two contributions

known as Dt and Dr with Dt = 1 � 2w, where w is the wrong tag fraction due to

tagging misidenti�cation. The second contribution, Dr, is due to the �nite resolution of

the measured proper time di�erence (t) and is given by Dr = e�
1
2
(x�t=�)2 , where � is the

lifetime of B0, x = �M� is the mixing parameter, and �t is the resolution in t. The total

dilution factor D is the product of Dt and Dr.

2.2.4 CP sensitivity

Measurements of sin 2� will come from decay modes, B0 �! �+��, �� and a1�. The

decay modes B0 �! J=	K0
s , J=	K

0
L, J=	K

�, D+D� and D�+D�� will give values for
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CP Mode Branching Expected CP Reach

Ratio No. Events �[sin(2�)]

�+�� 1:2� 10�5 432 0.20

�� 5:8� 10�5 2088 0.11

a1� 6� 10�5 2160 0.24

Combined 0.085

J=	K0
s 5� 10�4 2160 0.098

J=	K0
L 5� 10�4 2160 0.16

J=	K� 1:6� 10�3 788 0.19

D+D� 6� 10�4 993 0.21

D�+D�� 7� 10�4 3130 0.15

Combined 0.059

Table 2.2: Assumed branching ratios, cross sections and CP-reach estimates for B decays

to CP Modes.

sin 2�. In Table 2.2 [25] the results obtained from a fast parameterised Monte Carlo

simulation of the BABAR detector conducted for the BABAR Technical Design Report,

showing the number of events expected for B decays to CP modes for a standard year's

running at design luminosity (corresponding to an integrated luminosity L=30fb�1) and

the CP sensitivity for sin 2� and sin 2� is presented. The combined sensitivity for sin 2�

and sin 2� is �0:085 and �0:059 respectively. Chapter four of this thesis reports a new
study of the BABAR detector and the expected sensitivity on sin 2�.

2.3 The detector

The BABAR detector has as its main elements: a silicon vertex detector, a drift chamber,

an internal re
ected Cherenkov radiation detector (DIRC), an electromagnetic calorime-

ter, a superconducting solenoid and an instrumented 
ux return (hadron calorimeter).

The DIRC and drift chamber form the particle identi�cation system of the detector.

Figs. 2.4 and 2.5 show a cross-sectional and three-dimensional view of the detector.
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Figure 2.4: Cross-sectional view of the BABAR detector (dimensions are in mm).
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Figure 2.5: Three-dimensional view of the BABAR detector.
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2.3.1 The silicon vertex detector

The design of the vertex detector is based on a double-sided microstrip detector. It is

made up of �ve layers and is located between the beam pipe and the drift chamber. The

detector has a total of 340 silicon detectors and 150,000 readout channels. The total

area of the detector is 0.94 m2 and covers a solid angle of 17:20 < �lab < 1500 which is

equivalent to �0:95 < cos �cm < 0:87. The main task of the detector is to reconstruct

the decay vertices of the two B mesons. The mean separation (�z = ZCP � Ztag) of

the two B mesons is 250 �m. The target position resolution required for CP asymmetry

measurements is �(�Z) = 50=pt�15 �m (addition in quadrature) and the target angular

resolution is �� = 1:6 mrad=pt (with pt in GeV/c). This is well within the reach of the

silicon detector. For particles with low transverse momenta (pt <100 MeV/c), which may

not be reconstructed in the drift chamber, the silicon detector may be used to provide

tracking information and thus acts as a tracking device as well as a vertex detector.

The main source of background in the vertex detector comes from bremsstrahlung and

Coulomb scattering of beam particles from residual gas molecules in the beam pipe,

the result of which produce high energy particles which create electromagnetic showers

of electrons and photons. The ionization produced by these particles causes radiation

damage and may eventually degrade the performance of the silicon sensors and the front-

end electronics.

2.3.2 The drift chamber

The chamber is designed with low Z materials which includes a mixture of helium and

butane gas and aluminium wires. It has been designed with the aim of minimising the

amount of material in the chamber, thus permitting the best possible measurement of

the relatively low momentum tracks necessary for CP asymmetry studies. It is 280 cm

in length and occupies a radial space between 22.5 cm and 80 cm, just outside the vertex

detector. It covers a polar angle of �0:87 < cos �lab < 0:96. The chamber is �lled with

a mixture of helium and butane gas in a ratio of 80:20, with a radiation length of about

800 m. The target momentum resolution is �(pt)=pt = [0:21 + (0:14 � pt)]%. For low

momentum particles, i.e. particles with momentum less than 1 GeV/c, the ionization

loss (dE/dx) information provides a means of particle identi�cation. Thus it can be used
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for �=K separation up to momenta of 700 MeV/c. However most of the charged particles

at PEP-II fall within this low momentum range. Apart from its function as a particle

identi�cation device, it forms part of the trigger system for BABAR. Another important

use is for reconstruction of secondary vertices such as K0 which will be missed by the

vertex detector.

2.3.3 The DIRC

The DIRC (Detection of Internally Re
ected Cherenkov light) meet an additional re-

quirement for detection of particles of momenta greater than 0.7 GeV/c. It occupies the

barrel region and covers a solid angle of 25:50 < � < 1470 It comprises of 156 quartz

bars arranged in a 12-sided polygon around the beamline. Each quartz bar is 4.7 m long,

1.75 cm thick and 3.5 cm wide. Charged particles passing through the detector emit

Cherenkov photons which are carried through internal re
ection to a photon detector

(photomultiplier tubes) located at the ends of the bar. The angle of emission of the

detected Cherenkov photons is proportional to the velocity of the transversing charged

particle. From this relation and information from the drift chamber of the particles mo-

mentum, the mass of the charged particle can be measured. The DIRC provides a �=K

separation up to 4.3 GeV/c. The main source of background are: photons from syn-

chrotron radiation, beam-gas interactions, radiative Bhabha, cosmic rays and phototube

dark noise. These backgrounds might also a�ect the performance of the detector.

2.3.4 The electromagnetic calorimeter

A high sensitivity is required for measuring the CP violation asymmetries. This requires

a high e�ciency and good resolution for e�ective reconstruction and tagging of the two

B0 mesons. Achieving this high e�ciency and good resolution implies a need for a

calorimeter with an excellent photon energy resolution and e�ciency at low energies (as

low as 20 MeV) to give a good �0 and B mass resolution. The ideal choice to meet

this requirements is the CsI(TI) calorimeter. It is made up of 6780 CsI crystals doped

with thallium iodide. The thallium iodide doping is for enhancing the light yield of

the crystals. The calorimeter is located between the DIRC and the superconducting

solenoid. It consists of two sections: the barrel and the forward endcap. The barrel
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Figure 2.6: Schematic of a single radiator bar of a DIRC counter. The trajectory of the

particle is shown by connected dotted lines and those of the photons are shown by lines

with arrows.
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section is cylindrical, comprises 5880 crystals, weighs 23.5 tonnes and covers a solid angle

of �0:8 � cos � � 0:89. It has a volume of 5.2 m3. The forward endcap weighs 3.2 tonnes

Figure 2.7: Side view of the calorimeter, dimensions (in mm) showing the barrel and

forward endcap.

with a solid angle coverage of 0:89 � cos � � 0:97. It has a total volume of 0.7 m3. The

crystals have trapezoid cross sections and tapered along their lengths. Each crystal is

4:8 � 4:7 cm at the front face and 6 � 6 cm at the back face. They vary in length in

0.5XO steps from 17.5X0 in the forward part of the barrel to 16.0X0 in the backward

part, with 17.5X0 in the forward endcap, where X0 is the radiation length (1.86 cm). The

readout system consist of silicon PIN photodiodes coupled to low-noise charge-sensitive

preampli�ers. This could be attached either directly with optically conductive glue to

the ends of the crystals or indirectly by means of wavelength shifters. The idea of the

wavelength shifters is to shift the scintillation light emitted from the crystals to a more

sensitive region of the photodiode. Results of tests using both techniques are presented

in chapter 3. For reasons of simplicity the direct coupling solution was ultimately chosen.

At a polar angle of 900 the target energy resolution for photons is [25]

�E

E
=

1%
4

q
E(GeV )

� 1:2%
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Momentum Events Electron �+ ��

Generated 1000 5000 5000

0.5 GeV/c 926 3 7

1.0 GeV/c Surviving 968 1 1

5.0 GeV/c 972 0 1

Table 2.3: Results of a GEANT study of e=� separation.

and the target angular resolution is [20]

�� =
3q

E(GeV )
� 2 mrad:

The calorimeter serves three main purposes: (1) a neutral trigger, (2) �0 detection and

(3) lepton identi�cation (e=� and e=� separation) for tagging purposes. A simulation of

the full BABAR detector and the expected �0 detection e�ciency is discussed in chapter

4. Results of a GEANT study of e=� separation done for the BABAR Technical Design

Report is shown in Table 2.3 [26]. The main source of background is the low-energy

photons from showers of lost beam particles. Mean photon energies from these showers

can be as low as 500 keV which is below the detection power of the calorimeter to be

detected as extra photons. This degrades the energy resolution of the calorimeter and

also causes radiation damage. Results from the testbeam of the prototype calorimeter is

shown in chapter 3.

2.3.5 Superconducting solenoid

The superconducting solenoid provides a magnetic �eld of 1.5 T with a hexagonal 
ux

return. It is energised with a constant current of 7110A. The current density is graded

in three regions connected in series. The central region is 1728mm long with 240 turns

and the each of the two end regions is 864mm long with 240 turns. The current density

in the end region is twice that of the central region.
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2.3.6 Hadron calorimeter

The hadron calorimeter is made of large iron structure called the instrumented 
ux return

(IFR). It consists of three main parts: the barrel, backward and forward endcap. The

barrel extends radially from 1.78 to 3.01,m and is divided into sextants. The length of

each sextant is 3:75m and the width varies from 1.88 to 3.23,m. Each endcap consists of

hexagonal plates divided vertically into two parts. The calorimeter provides an external


ux path for the magnetic �eld of the superconducting solenoid and serves as a muon

identi�cation device and a neutral hadron detector. Muon identi�cation is very important

for B meson tagging. The main goal of the detector is to achieve the highest possible

tagging e�ciency. As a neutral hadron detector, it will allow the detection of K0
L and

other neutrons which escape detection by the other detectors. This enables the study

of CP-violation channels such as B0 �! J=	K0
L. A study of the detector done for the

Technical Design Report, showed a 2% misidenti�cation of pions as muons and a K0
L

detection e�ciency of 68% [26]. Background sources such as cosmic rays, lost beam

particles, synchrotron radiation etc. are expected to be negligible due to shielding of the

detector by the CsI calorimeter, magnet and return 
ux steel.
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Chapter 3

Testbeam results of the BABAR

prototype calorimeter

3.1 Introduction

The electromagnetic calorimeter has a very essential and crucial role to play in the

BABAR experiment since most of the channels of interest for CP violation studies con-

tain one or more �0's which need to be detected and well reconstructed. In September

1995, a prototype calorimeter for BABAR was tested in the \�M1" beamline at the Paul

Scherrer Institute (Zurich). The aim of the test was to obtain results needed for the

design of the calorimeter, to make measurements to validate the Monte Carlo and to

start the learning process of operating and calibrating a CsI calorimeter. The \�M1"

secondary beam was derived from a primary proton beam with beam rate of 50MHz

or 20 ns between pulses with a pulse width of 1 ns, incident on a 7mm thick graphite

target (TM). The distance of the beam line from the TM target to the experimental area

was 20.6m. The beam was a mixture of electrons and pions with momentum range of

100MeV/c to about 450MeV/c. There was almost equal amounts of electrons and pions

at 215MeV, more electrons than pions at lower energies and more pions than electrons at

higher energies. Two planes of multiwire proportional chambers were used to measure the

position and direction of the beam particles and the timing was done with scintillators.

Particle identi�cation was done by using the time of 
ight. The 20.6m 
ight path gives

large time separation for electrons and pions. However with the 20 ns repetition rate of
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the machine some momentum ranges are not usable, since the 
ight time di�erence is

an integral multiple of 20 ns. Figure 3.1 shows the time di�erence between electrons and

Figure 3.1: Apparent di�erence in arrival time between pions and electrons at the ex-

perimental hall versus beam momentum (This �gure was produced by P. Dauncey of the

Rutherford Appleton Laboratories, UK and R. Seitz of Dresden University, Germany).

pions and which momentum ranges would be usable. Assuming a 2 ns resolution on the

arrival of the beam particle, then the momentum ranges giving three sigma separation

are:

� p < 105 MeV/c;

� 125MeV/c < p < 150MeV/c, optimum 135MeV/c;

� 210MeV/c < p < 325MeV/c, optimum 250MeV/c.

The prototype electromagnetic calorimeter used for the study was a 5 by 5 array of CsI

crystals, as a small scale version of the �nal detector of 6580 crystals. The size of each

crystal was 5 � 5 cm at the front face, 6 � 6 cm for the back and 36 cm long. Each crystal
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was wrapped in 140 �m Tyvek, 25�m of Aluminium and 160�m of Te
on(PTFE) and

placed inside a 250�m thick kevlar box. The crystals were enclosed in a light-tight and

radio frequency tight environmental box with a cooling system to keep the temperature

within 10 C of 180C. The box was mounted on a turntable which could thus be rotated

at several angles for data taking. Data was also taken for the staggered con�guration of

the crystals for studying the barrel section of the real BABAR calorimeter, and data for

gaps and material between the crystals was taken for studying endcap barrel interface.

The experimental setup is shown in �g. 3.2. The scintillation light emitted from the

Figure 3.2: The experimental con�guration. A Monte Carlo simulation is shown of an

electron passing through the �rst set of wire chambers, the small scintillator, the second

wire chambers and the large scintillator, before showering in the crystal matrix.

crystals was sensed by two photodiodes (to compare the performance of the two) coupled

to the back of each crystal. Thirteen of the crystals were coupled directly with two 20

� 10mm2 Hamamatsu S 2744-08 photodiodes, with a Silicon Nitride upper layer. The

other twelve crystals were coupled to two photodiodes (S 3588-03 model 5400) of active

area 30 � 3mm2 glued on the adjacent lateral faces to a 3mm2 thick wavelength shifter

of surface area 5 � 5 cm2. The purpose of the wavelength shifter was to shift the emitted

light to a higher wavelength and thus increase the quantum e�ciency. Signals from the

two photodiodes were then ampli�ed and shaped separately by P196 preampli�ers and a

shaper attached to the photodiodes. The signals were then connected to a set of receiver
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boards to an ADC-32 12 bit ADC which digitised the signals and then passed them on

to a DAQ system (see �g. 3.3).

Event triggering was done at intervals of 20�sec with an AND of the two beam

scintillators. Calibration was done with both electron and pions. Each crystal was �rst

calibrated with electrons at 215MeV/c at normal incidence to the front face of the crystal.

Each diode produced two outputs: low gain and high gain. The calibration constant for

the high gain output was 80 keV per ADC channel and 2MeV per ADC channel for the

low gain. It was assumed that the number of ADC counts is linear with energy over the

range energy range up to 325MeV (80% of maximum beam energy). This assumption

was valid due to linearity of light yield with energy and electronic gain. Calibration with

pions was done with 9 central crystals and was based on a speci�ed energy loss of pions

[27]. The calibration constants from both methods were found to agree to within 0:5%.

Figure 3.3: General schematic of a crystal readout scheme.

Electronic noise was monitored using pedestal runs which were recorded at 3 minutes

intervals alongside the data. A pedestal event was triggered with a 1KHz internal clock

outside the 20�s data window. Fig. 3.4 shows noise measurements from pedestal events

for both low and high gain channels (for direct readout and wavelength shifter). The mean
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Figure 3.4: Single channel noise obtained from pedestal events for all low gain and high

gain channels. The direct readout are shown as the hatched histograms [27].

noise measurement per photodiode for direct readout, the wavelength shifter (WLS) and

for both combined is shown in Table 3.1. The mean noise for all high gain channels

was measured to be 411 keV and 881 keV for all low gain channels. Full details of the

Low Gain Channels High Gain Channels

Noise (keV) Noise keV

All 881 411

WLS 846 349

Direct 921 450

Table 3.1: Mean noise measured per photodiode for wavelength shifter (WLS) and direct

readouts and for both combined [27].

experiment are described in Ref. [27]. Analyses of these data were carried out using both

electrons and pions and a comparison was made with Monte Carlo predictions.
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3.2 Response to electrons

The electron spectrum at 215MeV is shown in �g. 3.5. This was obtained by taking the

0
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800

1000

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

E(GeV)

Figure 3.5: Measured energy for electrons at 215MeV showing low energy tail.

energy deposited in the 25 crystals for each electron event. A threshold of 0.5MeV was

put on this energy, requiring that the energy deposited in each crystal for each electron

event be more than 0.5MeV. It can be seen that the response of the calorimeter to

electrons has a relatively narrow, asymmetric peak, with a tail on the low energy side

and which is due to the e�ect of bremsstrahlung. It is interesting to �nd a function that

will �t this shape.

3.2.1 Fitting of the electron spectrum

Three di�erent �t functions: (1) a Single Gaussian; (2) a Logarithmic Normal Distri-

bution; (3) a Product of Landau and a Gaussian; were each �tted to the data at three

energy points: 100, 215 and 405MeV respectively. The energy resolution is de�ned as

�E = FWHM=2:36, where FWHM is the full width at half maximum. The relative
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energy resolution is
�E

E
=
FWHM

2:36Ep

; (3.1)

where Ep is the energy at the peak of the distribution. The resolution function described

by a single Gaussian is

f(x) = Ne�0:5(
x��

�
)2 ;

where � is the mean of the distribution and � is the standard deviation or error on the

mean and N is the normalisation. The �t of a single Gaussian to the data at 215MeV is

shown in �g. 3.6. It can be seen from the �gure that the tail at the lower edge of the data

is the principal cause of the poor �2. The energy resolutions and the means (�) obtained

from the �ts to the data at 100, 215 and 405MeV respectively were:

Figure 3.6: Electron energy distribution at 215MeV with a �tting to two di�erent func-

tions.

� (4:46� 0:02)% � = (93:55� 0:36)MeV at 100MeV;

� (3:46� 0:04)% � = (207:78� 0:02)MeV at 215MeV;

� (2:50� 0:15)% � = (400:25� 0:38)MeV at 405MeV.
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The second function tested was the logarithmic normal distribution. The purpose was

to �t the tail of the data. This function has three parameters a, b and c. It is given by

f(x) =
a

x0 � x
e(�(

ln(x0�x)�b

c
)2)

The full width at half maximum is given by

FWHM = x0 � e(b�0:5c
2) 2 sinh(

p
2c)

x0e0:5c
2�b � 1

Comparing this function to a normal distribution, the variable x has been replaced by

ln(x0 � x) where x0 is the endpoint of the distribution (a parameter for �tting the tail),

b is the mean (�) and c is the error on the mean. The �t result at 215MeV is shown in

�g. 3.6. The energy resolutions from the �ts were:

� (4:04� 0:02)% � = (91:25� 0:67)MeV at 100MeV;

� (3:19� 0:03)% � = (208:19� 0:53)MeV at 215MeV;

� (2:71� 0:03)% � = (400:02� 0:25)MeV at 405MeV.

The third function tested was a product of Landau and a Gaussian. This is a product

of a Landau distribution with a tail on the left multiplied by a Gaussian to damp the

Landau. The function is given by

f(x) = N � denlan(
�1 � x

�1
)e

�0:5(
�2�x

�2
)2
:

It has �ve parameters. �1, �1 are the mean and mean error of the distribution. �2, �2 are

the mean and width of the additional Gaussian and N is the normalisation. The denlan

function can be found in the CERN program library manual and is given by

�(�) =
1

2�i

Z c+i1

c�i1
e(�s+s ln s)ds; (3.2)

where c is real. The results of the �t to the data at energies 100, 215 and 405MeV

respectively is shown in �g. 3.7. The energy resolutions obtained from the �ts were

� (3:01� 0:20)% � = (90:55� 0:42)MeV at 100MeV;

� (2:40� 0:21)% � = (210:02� 0:73)MeV at 215MeV;

� (1:95� 0:20)% � = (400:86� 0:34)MeV at 405MeV;
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Figure 3.7: Electron energy distributions at three energy points: 100, 215 and 405MeV

with a �tting to a product of landau and a Gaussian function.
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Function 100 MeV 215 MeV 405 MeV

Single Gaussian 24.48 9.87 5.58

Log Normal distribution 12.12 7.65 3.21

Product of Landau and a Gaussian 5.57 5.70 2.46

Table 3.2: Chi-squared per degree of freedom for the di�erent �t functions at each energy

point.

The �2 per degree of freedom was much better than any of the 2 other functions (see

Table 3.2). The product of Landau and a Gaussian thus proved to be the best of the

three functions and hence was used for �tting the electron spectrum.

3.2.2 Energy resolution vs energy

With the product of Landau and a Gaussian a study was made of:

� the energy resolution vs energy;

� the e�ects on this of materials between and in front of the crystals;

� the beam hitting the crystal face at an angle;

� summing the energy deposited over nine crystals instead of twenty �ve.

The energy resolutions vs energy was determined using Monte-Carlo simulations and

data at the �ve energy points 100, 135, 215, 320 and 405MeV. The energy resolution is

shown as a function of energy in �g. 3.8. The �tting to the data and the Monte Carlo is

parameterised by
�E

E(GeV )
=

a

4

q
E(GeV )

� b

E(GeV )
� c;

where the term a is the empirically observed low energy behaviour, b is electronic noise

contribution and c is a constant term due to shower leakage 
uctuations, inter-calibration

errors and non-uniformities in the crystal response. The target energy resolution laid

down in the TDR is
�E

E(GEV )
=

1%
4

q
E(GeV )

� 1:2%:
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Figure 3.8: Energy resolution vs energy for Monte Carlo and data. Also shown are the

TDR goal without electronic noise.
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This excludes electronic noise contribution which was assumed to be negligible for typical

clusters of 16 to 25 crystals.

The Monte Carlo are �tted by:

�E

E(GeV )
=

(1:41� 0:09)%
4

q
E(GeV )

� (1:61� 0:11)� 10�3

E(GeV )
� (0:3� 0:02)%

The real data is �tted by:

�E

E(GeV )
=

(1:50� 0:10)%
4

q
E(GeV )

� (1:59� 0:10)� 10�3

E(GeV )
� (0:10� 0:01)%

From �g. 3.8 we could see that the Monte Carlo and data agree reasonably well but

showed a signi�cant deviation from the BABAR Technical Design Report proposal. The

reason for this di�erence is that the TDR resolution is without electronic noise. All three

however agree with 1/fourth root of energy dependence. Fig. 3.9 shows plots of energy

resolution vs energy with 9 crystals compared with 25 crystals, with the beam hitting

the crack of the centre crystal. The solid curve is the �tted function to the data for the

25 crystals and the dotted curve is for the 9 crystals. The resolution from the 9 crystals

was worse than for the 25 crystals. This is attributed to side leakage, the 
uctuations in

energy lost beyond the sides of the 9 crystals array is more than for the 25 crystal array.

The resolution for the 9 crystals is given by

�E

E(GeV )
=

(2:1� 0:10)%
4

q
E(GeV )

� (1:98� 0:13)� 10�3

E(GeV )
� (0:70� 0:05)%

and for the 25 crystals

�E

E(GeV )
=

(1:50� 0:10)%
4

q
E(GeV )

� (1:59� 0:10)� 10�3

E(GeV )
� (0:10� 0:01)%:

In Table 3.3 results of energy resolution vs energy with no material in front of the crystal

stack, and the e�ects on the resolution when materials are put in front and in between

the crystals are shown. In run 1, no materials were put in front of crystals. This was

the normal set-up. For run 2, columns 1 and 2 of the crystal stack were moved 5mm to

the left, leaving an air gap. Run 3 gives the resolution for 2mm of aluminium plus 4mm

air \sandwich" put 11mm away from the front of the crystal stack. For run 4, 5mm of

aluminium plate was put 12mm in front of the crystal stack. For run 5, the air gap in

stack 1 was �lled with 1 mm of carbon �bre. For run 6, the air gap was �lled with 1 mm
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Figure 3.9: Energy resolution vs energy for data - solid curve 25 crystals, dotted curve 9

crystals.
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Run Con�guration (�E=E(GeV ))%

1 No material in front of stack 2.40

2 5mm Air gap between crystal columns 1&2 2.40

3 2mm Al + 4mm Air, 11mm in front 2.41

4 5mm Al, 12mm in front 2.57

5 Air gap in 2 �lled with 1mm of carbon �bre 2.98

6 Air gap in 2 �lled with 1mm sheet of Aluminium 3.62

Table 3.3: Energy resolutions obtained at 215MeV for di�erent crystal con�gurations.

Energy(MeV) 0 mrad 14 mrad 56 mrad

135 2.58% - 2.71%

215 2.40% 2.58% 2.58%

405 1.95% 2.01% 2.44%

Table 3.4: Energy resolution vs energy for di�erent beam angles at three energy point

sheet of aluminium. It can be seen from the table that the energy resolutions obtained

for runs 5 and 6 were worse, with run 6 being the worst of all. The purpose of placing

materials in between the crystals stack as in runs 5 and 6 was to study the e�ects on

the resolution due to the endcap/barrel interface in the real BABAR electromagnetic

calorimeter. Table 3.4 shows the energy resolution vs energy for di�erent beam angles to

the face of the crystal stack This study was done at 3 energies, 135, 215 and 405MeV,

and three beam angles, 0, 14 and 56mrad. The 0 mrad was the normal incidence and

was the situation where the beam hits the crack of the central crystal whilst 14mrad is

the situation where the beam hits the centre of the central crystal in the 5 by 5 array.

The reason for choosing these angles for the studies was due to the fact that one of

the chief aims of the beamtest was to study projective versus non-projective cracks in �

for BABAR. Given the fact that the crystal taper is 14mrad, 0 and 56mrad are truly

projective. There is a suggestion of a slight decrease in resolution as the angle increases.
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3.3 Response to pions

3.3.1 Introduction

GEANT Monte Carlo has two codes available: GHEISHA and FLUKA, which are

used to simulate hadronic interactions. GHEISHA (Gamma-Hadron-Electron-Interaction

SH(A)ower code) is a general code to handle interactions, showers and tracking of all par-

ticles within the materials setup and de�ned by the user. The GHEISHA code generates

hadronic interaction with the nuclei of the current tracking medium, evaluating cross-

sections and sampling �nal state multiplicity and kinematics. The elastic and inelastic

cross-sections are parameterised using data from interactions of pions, Kaons and protons

on free protons. The parameterisation is based on the QCD parton model and describes

the cross-sections on free protons in terms of quark scattering amplitudes which are

determined from a �t to the cross-section data on the free protons [28].

FLUKA (Fluctuating KAskade) is a stand alone program which simulates showers

from high energy particles (� TeV) to energies as low as 20MeV. It uses many models for

di�erent energy regions. One example is the \pre-equilibrium and evaporation model"

which is applied to energies below 300MeV. This model involves two stages: the pre-

equilibrium stage and the evaporation stage. The pre-equilibrium stage involves the

intranuclear cascade (INC) algorithm and the exciton model [29; 30]. At this stage non-

stopping hadrons (those with energy above the cut-o� energy) are made to interact elastic

or inelastically with the nucleus. The secondary nucleons from the pion interactions are

converted to \excitons" [29] if their energy is below the energy threshold, otherwise they

are passed on for further tracking. In the exciton model, independent-particle-model

states are classi�ed according to the number of particles and holes (\excitons") excited

from the even-even ground state. A full description of this model is given in Refs. [29; 30].

The evaporation stage follows at the end of the exciton chain. At this stage the residual

nucleus is a thermal equilibrated system with a certain amount of excitation energy that

can be spent in particle evaporation.

At the start of an event, the hadronic packages, GHEISHA or FLUKA is called. This

generates the hadronic interaction and calculates the hadronic cross sections and the

distance for the next hadronic interaction. Tracking of the particle is done throughout

63



the particles trajectory. Tracking is done in de�ned step sizes. For a particle of a given

energy the step size depends on the intrinsic properties of the particle (mass, charge,

lifetime, etc.), and on the characteristics of the medium. After the elastic or inelastic

interaction, if there are new particles and their energy is below the energy threshold, they

are not stored but only their kinetic energy is stored. A routine is called which leads to

nuclear absorption of negative pions, Kaons and neutrons. However if the particle can

decay (eg. �+, K�), it is forced to decay [31]. If the energy of the particle is greater

than the cut-o� energy, they are passed on for further tracking. For each step size, the

trajectory and total energy loss of the particle is stored. This is repeated for each volume

the particle enters

It has been suggested for sometime that FLUKA provides better agreement with

low energy pion energy deposition spectra than does GHEISHA. To allow this e�ect to

be studied some low energy positive beam data was taken at PSI in addition to the

negative beam data used in the other studies. The momentum range was 100MeV/c to

about 450MeV/c. The pion events were selected from the data by the time of 
ight and

making cuts on pion probabilities of 5%. 100k �� and �+ events at momentum points

215 and 405MeV/c were simulated with FLUKA and GHEISHA and compared with the

data.

3.3.2 Results

A simulated event is shown in �g. 3.10. The deposited energy spectra for pions of the

indicated polarity and momentum are shown in �g. 3.11 along with predictions from the

FLUKA and GHEISHA Monte Carlos. At 215 MeV/c FLUKA �ts the data better at

the upper shoulder of the peak whilst GHEISHA does better at the lower shoulder. For

405 GeV/c negative pions both programs do equally badly away from the peak, although

the deviations are di�erent. A clear distinction is shown in the 405GeV/c positive pion

data where FLUKA shows better agreement than GHEISHA. The lower energy tail of

the data is due to interaction of pions with nuclei in 
ight. This part of the data is not

well simulated by FLUKA due to the fact that the inelastic cross-sections for negative

pions calculated in FLUKA is lower than their actual values. Although neither of the

two programs matches the data perfectly, possibly as a result of a poor approximation
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of the cross sections for nuclear interactions for low energy hadrons in both programs,

what is clear is that FLUKA does indeed provide, overall a more adequate description

of the data than GHEISHA. A previous report from BELLE showed that there were

signi�cant di�erences in the results of the FLUKA and GHEISHA simulations and the

GEANT/FLUKAMonte Carlo simulations agrees better with the experimental data than

using GEANT/GHEISHA.

Based on the results presented here, the cross sections for hadronic interactions has

been modi�ed in a new version of GEANT.
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Figure 3.10: Simulation of a �� event at 215 MeV.
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Figure 3.11: The energy deposited in CsI(Tl) by pions
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Chapter 4

The sensitivity of the BABAR

detector to CP violation studies

4.1 Introduction

In chapter 1 the use of isospin symmetry to extract sin 2� from penguin contamination

was demonstrated. This requires measurement of the time dependent rates of B decays

to �0�0, �+�0 and �+�� as well as their conjugate decays and which requires tagging to

identify the B and B with the exception of the charged B decay which is self-tagged (the

charge of the B is identi�ed by the charge of the pion from the decay).

Since a precise measurement of the vertex for B �! �0�0 and B �! �0�0 is not

possible, only integrated rates can be obtained. Extraction of these decay rates will not

be simple. There are two complications which conspire to make this task a di�cult one:

the anticipated low branching fractions due to colour suppression of the tree diagram of

the decay process, and the experimental problems in reconstructing the required �nal

state. Current theoretical predictions place the branching in the order of 10�7. CLEO

measurements give an upper limit as 9�10�6 [32]. This small branching fraction has two

implications. Firstly the low event rate will lead to signi�cant statistical errors. It also

makes the channel particularly susceptible to continuum contamination. In addition to

these there are also di�culties in the reconstruction of the B meson from an all neutral

�nal state since the only available information is from the electromagnetic calorimeter

(EMC) clusters.
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B �! �+�0 and B �! ���0 involve only tree diagrams. If a negligible electroweak

penguin contribution is assumed, then the rates of B and B are the same and only

one decay rate measurement is needed. CLEO measurements of the upper limit of the

branching ratio is 2� 10�5 [32]. This channel relies on a good particle identi�cation for

Kaon and pion separation.

B decays to �+�� allow one to measure the mixing parameter sin 2�. Measurement

of this also requires a good �=K separation and good vertex resolution to measure time

di�erence between the B and B decays. CLEO's upper limit for the branching ratio is

1:5� 10�5 [32].

In all three studies a maximum likelihood �tting procedure has been developed in

preference to event counting to achieve e�ective separation between signal and back-

ground. The ability of the BABAR detector to make measurements of these rates and

the sensitivity on sin 2� due to penguin contributions is demonstrated. In general BB

events give negligible background in the B �! �� mode thus the dominant background

source is from continuum qq events. A description of the Monte Carlo simulation is given

below.

4.2 Monte Carlo simulation

The analysis to be discussed is based on Aslund (Asymmetric LUND). This is a BABAR

fast parameterised Monte Carlo simulation package. Events are generated with JETSET

7.3 [33]. Once an event is generated, i.e. �(4S) decaying to a pair of B mesons, a routine

called \asmxcp" mimics the e�ect of mixing (if there is no CP eigenstate) or CP violation

(if one of the B mesons decays to a CP eigenstate) by charge conjugating one or both of

the B mesons and all of the daughters with a probability that depends on the decay times.

A particle table is then created and detector simulation follows. The detector response

to charged particles is simulated by a subroutine called \trksim" and the response to

neutrals is simulated by the subroutine \neusim". The beam pipe, vertex detector and

the drift chamber form the tracking system. The drift chamber, the electromagnetic

calorimeter and the DIRC form the particle identi�cation system. A description and

resolution parameters of the detectors are set in a data �le by the user which are read
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by the two subroutines. Track identi�cation probabilities from each possible particle

identi�cation system are calculated based on these error parameters. There are two

ways of operation in \trksim": (a) uses a routine called \trackerr" to develop a simple

diagonal parameterisation of error matrix of each track based on estimates of the errors

from parameters previously generated, and the track acceptance is determined by simple

geometrical cuts, and (b) uses \trackerr" to generate a complete error matrix for each

track, and determine acceptance by counting hits on the track [34]. Mode (a) is a faster

process and is appropriate in situations where large number of events is needed but a

detailed understanding of the resolutions is not essential e.g. combinatorial backgrounds.

Mode (b) is much slower and appropriate for studies of speci�c channels where a detailed

knowledge of the resolution is required. The subroutine \neusim" uses the information

provided by \trackerr" on the electromagnetic calorimeter to smear the energies of the

neutral tracks and calculate the four vectors of the tracks from information of track

positions in the calorimeter. Photon resolution is based on parameterised histograms

obtained from a full GEANT simulation of the BABAR detector (BBSIM). In GEANT,

the hadronic package FLUKA, is chosen. Photons with ranges of energy and angles are

generated with a 
at distribution in energy and isotropic in direction in the centre of mass

system and passed through the detector. Showers were then reconstructed from the hits

in the EM calorimeter using a clustering algorithm method. For each photon generated

the energy resolution is given by xE = (Erec�Egen)=Egen and angular resolution is given

by �� = (�rec � �gen), where Erec is the reconstructed energy and Egen is the generated

energy and similarly for the angle �. Histograms of the distributions of xE and �� are

then made for various bins of energy and cos �lab. The histograms are read into Aslund

and for each photon generated and entering the electromagnetic calorimeter, generates

a random variable distributed according to the shape of the histogram corresponding to

energy and angular range the photon belongs and calculates the reconstructed energy. A

full description of this method is given in reference [35]. The version of Aslund used for

this analysis had certain known problems which are:

� Charged tracks due to neutrals that decay beyond the �rst tracking layer are not

handled properly by \trackerr". The position of the decay is not accounted for, so

all tracks are treated as if they come from the origin. This has an e�ect of worsening
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the mass resolution of the reconstructed B meson;

� It gives a rough estimate of the true signal resolution for the following reasons: (a)

no correct modelling of electromagnetic showers i.e. no split o�s are included; (b)

assumes 100% track matching e�ciency; and (c) due to the substantial boost on

the �0 from the B decays, the opening angle of its decay to two photons is small,

hence an overlap of clusters will be formed in the calorimeter which reduces photon

e�ciency. This is not accounted for in Aslund.

The best determination of signal resolution can be obtained from full reconstruction.

4.2.1 Obtaining the event sample

For the study presented here, the expected number of B �! �� events for a year at

design luminosity, which equals 3:6�107�R, where R is an assumed branching fraction,

is generated. For each decay mode, 8:1�106 qq continuum events is expected. Generating

this huge continuum events will take a lot of CPU time. In order to reduce the time and

burden on the CPU, cuts were applied at the generator level with the intention of rejecting

a signi�cant fraction of the continuum events before the detector simulation is made. The

cuts have been kept loose in order to avoid the introduction of bias into the �nal event

sample. The generator cuts applied for the continuum sample corresponding to each

decay mode and the rejection factor obtained are given in Table 4.1.

4.3 Tagging

For �+�� and �0�0 decay modes, separate measurements of the B0 and B
0
rates is needed

and these require tagging. The idea of tagging is to identify the 
avour of the B mesons.

Thus events are studied where one of the B mesons from the coherent B0B
0
state decays

to the CP violation mode being investigated, and the other B meson decays to a tag

mode. The decay products of the tag mode is then used to identify the 
avour of its

parent B meson. By knowing the 
avour of the tag mode, the 
avour of the CP mode

can be easily deduced.

In this study a standard BABAR tagging package called CORNELIUS (the combined

optimal reconstruction with neural network and likelihood for identi�cation usage) has
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Decay Mode Cut Rejection Factor

�0�0 4:0 < MB < 6:5GeV=c2 0.95

1:5 < plabB < 6:0GeV=c

�+�0 4:0 < MB < 6:5GeV=c2 0.97

1:5 < plabB < 6:0GeV=c

�0�0 4:0 < MB < 6:1GeV=c2 0.98

1:5 < plabB < 6:0GeV=c

Table 4.1: A table of cuts applied to continuum events at generator level and the rejection

factor obtained for the three decay modes. MB is the invariant mass of the B meson and

plabB is its momentum in the �(4S) rest frame.

been used. CORNELIUS [36] uses a set of event related discriminating variables to eval-

uate the probabilities of an event to come from a B0 or a B
0
meson. It uses four di�erent

techniques to evaluates these probabilities but there are no signi�cant di�erences in the

outputs of these four. One of these techniques which has been used here is the param-

eterised technique. This is a statistical method where the probabilities are evaluated

using a likelihood analysis. With this method the correlations among the variables are

accounted for but not fully exploited [37]. For any given event the output from this which

is the tag value and which gives the probability of the event to come from a B or B take

values between �1 and 1. A negative tag value implies the tag particle was from a B

and a positive tag value implies from a B. It is worth mentioning that version V00-01-03

of CORNELIUS used here assumes perfect particle identi�cation, hence a degradation of

mis-tag probability should be expected in the more realistic situation.

4.4 Methods for separating the signal from the back-

ground

There are two methods which can be adopted to separate the signal component of the

data from the continuum: (a) an event counting method and (b) a �tting method. In

the event counting method, a series of cuts are made to the data and optimised to obtain
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the best possible signal to background ratio. The aim is to keep the level of background

contamination to the minimum. This method however can lead to signi�cant reduction in

signal e�ciency and hence worsens the statistical error, making it unsuitable for channels

with low branching ratios. Also systematics errors from background contamination are

incurred since it is almost impossible to obtain a pure event sample. In the �tting method

the aim is to use all available information from the data to make the best possible

measurements of the signal and background components. This is achieved by making

�ts to the data using a maximum likelihood method. The advantages of this approach

over the previous is that the background contamination does not have to be estimated

from the Monte Carlo thereby eliminating systematic uncertainties. Also a better signal

e�ciency is achieved.

4.4.1 The maximum likelihood method

In the maximum likelihood method a likelihood function L, which is a measurement of

the quality of a given hypothesis is de�ned in general as [38]

L =
Y
i

f(xi; �) (4.1)

where f(xi;�) is a probability density function (p.d.f) for each independent measurement

of a set of quantities xi and � are the unknown parameters to be determined. The motive

is to optimise these parameters to obtain the maximum value of L. In most situations it

is convenient to consider the logarithm of the likelihood function i.e.

L = lnL (4.2)

=
nX
i=1

ln f(xi; �):

For the studies presented here L is de�ned as

L =
X
n

� ln
f(xi; �)R

f(xi; �)d(xi)
; (4.3)

where n is the number of events and the p.d.f is a sum of the p.d.f's of the signal

and background components of the data as de�ned in the sections that follow. The

denominator is the normalisation. The minimisation of L is done with the function

minimisation and error analysis package (MINUIT) [39].
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4.5 Event selection

To obtain the most e�ective signal measurement and a better determination of the back-

ground components of the data (the combined sample of signal and background distri-

butions) from the �t described above, it is essential that events which fall in regions

far from the signal region and which can degrade the quality of the �t due to statistical


uctuations in these regions have to be removed. This is achieved by making cuts against

a set of discriminating variables. For those discriminating variables that will be used in

the �t, the cuts are made at sideband regions around the signal just enough for the �t to

trace the line shape of the background.

4.6 Fitting strategy

In a low statistics environment as expected in the very early life of the experiment and

as considered here, in order to avoid having poor convergence of the �t, it is necessary

that the number of parameters in the �t are kept to the minimum. This will require

developing a strategy to �x some of these parameters. The strategy is to �x the signal

line shape according to the Monte Carlo which however is at the expense of introducing

more systematic errors. However in a low statistics environment the statistical errors

dominate over the systematic errors. As more statistics becomes available as the experi-

ment proceeds, it will then be possible to determine all the parameters directly from the

�t without the need for the Monte Carlo. For the continuum there will be no statistical

limitation and hence the line shape can be determined directly from the data at any stage

in the experiment. A way of achieving this will be shown in the sections that follow.

4.7 B0 �! �0�0

From �gure 4.1 there are signi�cant di�erences in signal and background distributions

and hence the discriminating variables selected are:

� M� = the invariant mass of the �0

� MB = the invariant mass of the B0
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Cut % of events % of events passed No. of combinatorial

passed with a correct solution solutions per event

No Cuts 98 77 808

0:11 < M� < 0:155 90 57 20.60

(GeV=c2)

4:65 < MB < 5:55 56 55 1.09

(GeV/c)

0:15 < p� < 0:40 49 48 1.05

(GeV/c)

�0:85 < cos �� < 0:85 43 42.8 1.04

jtagj > 0:05 39.8 39.2 1.04

No. Solutions = 1 39.8 37.0 1.00

Table 4.2: Signal e�ciencies for the applied cuts. The quoted e�ciencies are cumulative.

� p� = the momentum of the B0 in the �(4S) rest frame.

� cos �� = Cosine of the B sphericity angle in the �(4S) rest frame.

� tag = the tag value.

M�, MB and p� are discriminating quantities which depend on the kinematics of the

event whilst cos �� is an \event shape" based quantity. For B decays to �0�0, �+�0 or

�+��, the two B mesons decay in independent directions, leading to a 
at distribution in

cos �� whilst for the background the events are jet-like with a cos �� distribution peaked

at �1 and 1. Cuts are made against these variables with an additional cut requiring

that only one combinatorial solution in a given event passes. Events are rejected if more

than one solution is found. This cut helps to reduce the background from misconstructed

events, without signi�cantly a�ecting signal e�ciency. In �gure 4.1 projections of the

event distributions are shown. Plots are shown for true signal events, their associated

combinatorial background and for continuum events. Table 4.2 shows the cuts applied

in selecting the events and the e�ciencies obtained. The background e�ciency obtained

after all cuts is (9:0 � 0:3) � 10�6. Projections for the selected events are shown in
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Figure 4.1: Projections of the event distributions for (a-d) correctly constructed signal,

(e-h) combinatorial background, and (i-l) continuum background. No cuts are applied

for the �0 mass plots. For all other plots it is required that 0:11 < M� < 0:155GeV=c2.

No further cuts have been applied. The plots are shown with arbitrary normalisation.
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�gure 4.2. Distributions for the tag are shown for the selected signal and continuum

events in �gure 4.3. After event selection, �ts are then made to the data to separate the

signal and background and extract the parameters required. The discriminating variables

selected in constructing the �t function areMB, cos �
� and the tag value which were found

to have no correlations with each other. The discriminating variable M�0 is neglected

since it was found that out of the �0 candidates selected from the continuum 89% are

true �0's, and p� is neglected due to possible correlations with MB. The p.d.f function

f(MB; cos �
�; tag) is the sum of the B, B and continuum contributions and is de�ned by

f(MB; cos �
�; tag) = Ngsig(MB):hsig(cos �

�):s(�tag) (4.4)

+Ngsig(MB):hsig(cos �
�):s(tag)

+gback:hback:

Thus the log likelihood function L as de�ned in eqn 4.3 is given by

L =
X
n

� ln
f(MB; cos �

�; tag)R R R
f(MB; cos ��; tag)d(MB)d(cos ��)d(tag)

: (4.5)

N and N are free parameters which give the relative probabilities of the B and B with

respect to the background contribution. The aim of the �t is to optimise the free pa-

rameters to get the minimum value of L. The MB distribution for the signal as shown

in �gure 4.2 can be parameterised by two functions: (a) a Gaussian (see eqn. B.1 of

Appendix B.1) or (b) a log normal distribution (see eqn. B.2 of Appendix B.1). The

Gaussian does not account for the lower mass tail of the distribution and thus the log

normal provides a better �t as seen in �gure 4.4. The disadvantage of using the log

normal distribution over the Gaussian is that it has one extra free parameter which will

be unfavourable in a low statistics environment as discussed in section 4.6. The MB dis-

tribution of the background is �tted by the function given in eqn. B.3 of Appendix B.1.

Figure 4.2d shows that the distribution in cos �� for the signal is 
at and a constant was

used in the �t. The parameterisation of the background component has been chosen to be

Gaussian in j cos ��j plus a constant term (see eqn. B.4 of Appendix. B.2). The function

s in eqn. 4.4 is given by

s(x) =
Z x

�1

�(x0)dx0: (4.6)

In minimising L, the free parameters in the �t functions are determined from the Monte

Carlo, leaving only N and N as free parameters to be determined by the �t. The
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Figure 4.2: Projections of event distributions after selection for (a-d) signal, (e-h) con-

tinuum background. The relative normalisation is arbitrary.
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tag value for B decays to π0π0

tag value for B
–
 decays to π0π0

tag value for the continuum

Figure 4.3: Tag value distributions for (a) B �! �0�0; (b) B �! �0�0 and (c) continuum

events.
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Figure 4.4: Comparisons of the �t functions used with the actual distributions. The func-

tions are the solid lines, and the Monte Carlo distributions are the crosses. (a) shows the

signal MB described as a Gaussian; (b) describes signal MB using a log normal distribu-

tion; (c) shows the continuum MB distribution; (d) shows the signal cos �� distribution;

and (e) shows the continuum cos �� distribution.
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Rate of Measured Rate of Measured

B �! �0�0 Rate B �! �0�0 Rate

0.0 (0:9� 0:8)� 10�6 0.0 (0:02� 0:65)� 10�6

1� 10�6 (1:8� 0:9)� 10�6 1� 10�6 (0:63� 0:76)� 10�6

5� 10�6 (4:8� 1:4)� 10�6 5� 10�6 (4:7� 1:3)� 10�6

9� 10�6 (8:3� 1:7)� 10�6 9� 10�6 (7:7� 1:7)� 10�6

Table 4.3: Table of measured branching fractions for a series of �ts.

systematic errors arising as a result of determining these parameters from the Monte Carlo

are discussed in section 4.7.2. The �t functions compared to their respective components

within the data are shown in �gure 4.4.

4.7.1 Fit results and interpretation

The mis-tag probability, �, determined from the tag distributions in �gure 4.3 is 0.2.

Given bm and bm as the uncorrected B and B fractions determined from the �t, the

measured rates for B �! �0�0 and B �! �0�0 are given by:

br =
(1� �)bm � �bm

(1� 2�)E
(4.7)

br =
(1� �)bm � �bm

(1� 2�)E
; (4.8)

where E is the signal reconstruction e�ciency. The statistical errors arising from these

�ts for a selection of branching fractions are shown in Table 4.3 and the projections for

these �ts are shown in �gure 4.5. If the expectation values of the errors for the given

branching fractions are to be the mean of the B and B errors as given Table 4.3, then the

time evolution of errors given in terms of the statistical signi�cance is shown in �gure 4.6.

The statistical signi�cance is de�ned as the number of observed events divided by the

error of the measurement. It gives an indication of how well these branching fractions

can be measured with time. For branching fractions of 9� 10�6, 5� 10�6 and 1� 10�6,

the expected number of events for a year's running at design luminosity are 324, 180 and

36 respectively.
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M(B) (GeV/c2) cos θ*

M(B) (GeV/c2) cos θ*

M(B) (GeV/c2) cos θ*

M(B) (GeV/c2) cos θ*

Figure 4.5: Projections showing results from a selection of �ts. The crosses are the

distributions from the Monte Carlo, the overall �t is the solid line, and the dashed line

is the extracted continuum component. Plots are shown for a B �! �0�0 rate of (a-b)

0.0, (c-d) 1� 10�6, (e-f) 5� 10�6, and (g-h) 9� 10�6. The rate for B decays is assumed

to be identical to the B rate.
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Figure 4.6: Projections of the statistical signi�cance of the �t measurement of the branch-

ing fraction for branching fractions of (a) 9� 10�6; (b) 5� 10�6; and (c) 1� 10�6.
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4.7.2 Evaluation of systematic errors

Some possible systematic errors in the �t arise from uncertainties in the mis-tag proba-

bility, the signal reconstruction e�ciency and the signal and background line shapes It

Figure 4.7: Sensitivity of the �t results to the measured mis-tag probability. The results

shown are for a �t where the rate of B �! �0�0 is 5� 10�6, and the rate of B �! �0�0

is zero. The curves are for the calculated rates of (a) B �! �0�0 and (b) B �! �0�0.

will be possible to determine the mis-tag probability directly from the data by studying

the tag results of events where both the B and B decay to tag modes. The degree of

uncertainty in the determination of this can be a potential source of error as seen in

eqns. 4.7 and 4.8. The sensitivity of the measured rates to the mis-tag probability has

been investigated by performing a �t with a B �! �0�0 branching fraction of 5� 10�6

and no B events. By stepping the assumed mis-tag probability a variation in the mea-

sured rates is observed with no strong sensitivity in the 0.2 region (see �gure 4.7). The

systematic errors from the reconstruction e�ciency is unavoidable since the Monte Carlo

is the only way of determining the e�ciency. The degree of accuracy to which the Monte

Carlo can determine this to be the true value in the data will determine the level of this
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error. For this study it is arbitrarily decided that the reconstruction e�ciency can be

determined to within �5% (�reco). Systematic errors arise due to the uncertainties in the

determination of the signal line shapes from the Monte Carlo. The systematic errors due

to �xing of the parameters in the background function are negligible. The reason being

that in the real data there will always be enough continuum events and hence it will be

possible to extract the background line shape of the �t function from the data to any

degree of accuracy by considering sideband regions around the signal in MB and cos ��

distributions. To investigate the e�ect of this on the measurements made, the resolution

on the Mmean
B (�) has been varied with respect to the optimal value. If it is assumed

that the Monte Carlo can be trusted to within �5%, then an error of �2% is observed on

the measured cross section as seen in �gure 4.8(a). By varying Mmean
B about the optimal

value and assuming that the distribution can be determined to within �10MeV=c2, an

error of �2% is also observed. A conservative estimate of �6:5% is chosen as the system-

atic error if it is assumed that a Gaussian rather than a log normal distribution is used

to describe the MB line shape. The overall error on the measured rates is then obtained

by adding in quadrature the statistical error and the systematic errors and is given by

�total = �fit � �reco � �lineshape: (4.9)

The time evolution of errors showing the e�ects of the systematics is shown in �gure 4.9.

4.8 B+ �! �+�0

Plots in �gures 4.10 and 4.11 show signi�cant di�erences in signal and background dis-

tributions hence the selected list of discriminating variables is:

� MB = the invariant mass of the B+;

� p� = the momentum of the B+ in the �(4S) rest frame;

� cos �� = cosine of the B sphericity angle in the �(4S) rest frame;

� Prob(�) = the probability that the selected charged particle is a pion;

� Prob(k) = the probability that the selected charged particle is a Kaon.
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Figure 4.8: Variation of the measured cross section with respect to (a) the FWHM of

the signal MB distribution and (b) the mean of the signal MB distribution. Curves are

shown for the B �! �0�0 and B �! �0�0 components. The true rates for B and B

decays has been taken to be 9� 10�6 for these �ts.
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Figure 4.9: Time evolution of errors when the rate of B �! �0�0 is 5 � 10�6. Curves

are shown for (a) the statistical error arising from the �t and (b) the statistical and the

systematic errors added in quadrature.
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Cut % of events % of events passed No. of combinatorial

passed with a correct solution solutions per event

No Cuts 98.6 73.5 24.4

0:11 < M� < 0:155 96.6 70.5 23.9

5:0 < MB < 5:55 70.7 69.8 1.05

(GeV/c)

0:15 < p� < 0:40 60.3 59.6 1.03

(GeV/c)

�0:85 < cos �� < 0:85 50.1 49.5 1.02

Prob(�) > 0:05 46.9 46.4 1.02

and Prob(k) < 0:05

No. Solutions = 1 46.9 45.9 1.00

Table 4.4: Signal e�ciencies for the applied cuts. The quoted e�ciencies are cumulative.

Cuts are made against these variables with an additional cut requiring that only one

combinatorial solution in a given event passes these cuts. The bene�ts of this additional

cut is as explained in section 4.7. Figures 4.10 and 4.11 show projections of the event

distributions obtained from the simulation. Plots are shown for true signal events, their

associated combinatorial background and for continuum events.

Table 4.4 shows the cuts applied and the e�ciencies obtained. The background e�-

ciency of (7:33�0:30)�10�6 is obtained after all cuts. Projections for the selected events
are shown in �gure 4.12. In �tting the data two discriminating variables are considered:

MB and cos ��. The aim is to minimise the log likelihood function L given by

L =
X
n

� ln
f(MB; cos �

�)R R
f(MB; cos ��)d(MB)d(cos ��)

; (4.10)

where f(MB, cos �
�) is the sum of the B and background distributions as de�ned by

eqn. 4.11.

f(MB; cos �
�; tag) = Ngsig(MB):hsig(cos �

�) (4.11)

+gback:hback;
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Figure 4.10: Plots of reconstructed �0's for (a) signal, (b) combinatorial (c) continuum

and projections of the selected discriminating variables for (b-d) correctly constructed

signal, (f-h) combinatorial background, and (j-l) continuum background. No cuts are

applied for the �0 mass plots. For all other plots it is required that 0:11 < M� <

0:155GeV=c2. The plots are shown with arbitrary normalisation.
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Figure 4.11: Projections of pion and Kaon probability distributions for (a-b) correctly

constructed signal, (c-d) combinatorial background and (e-f) continuum background. The

plots are shown with arbitrary normalisation.

90



Figure 4.12: Projections of event distribution after selection for (a-c) signal, (d-e) con-

tinuum background. The relative normalisation is arbitrary.

91



where N is a free parameter to be determined by the �t and which gives the relative

probabilities of the B and background contributions. The signal distribution is param-

eterised by a Gaussian, i.e. gsig(MB) as de�ned in eqn. B.1 of Appendix B.1. The

parameterisation of the background distribution, i.e. gback(MB) is de�ned in eqn. B.3 of

Appendix B.1. The cos �� distribution for the signal is 
at as shown in �gure 4.12(c),

Figure 4.13: Comparisons of the �t functions used with the actual distributions. The

functions are the solid lines, and the Monte Carlo distributions are the crosses. (a) shows

the signalMB described as a Gaussian, (b) describes signal cos �� distribution, (c) shows

the continuum MB distribution and (d) shows the continuum cos �� distribution.

thus a constant was used in the �t. The background distribution is parameterised by

92



a Gaussian with a constant term (eqn. B.4 of Appendix B.2). In minimising L all free

parameters in the signal (see eqn. 4.10) are determined from the Monte Carlo and the

parameters in the background function have been �xed by considering sideband regions

around the signal in the in MB and cos �� distributions of the data, leaving N as the

only free parameter to be determined by the �t. The systematic errors as result of this

are discussed in section 4.8.2. The �t functions compared to their respective components

within the data are shown in �gure 4.13.

4.8.1 Fit results and interpretation

Given bm1 as the B fraction determined from the �t and the signal reconstruction e�-

ciency, the measured rate for B �! �+�0 can be obtained.

Rate of B �! �+�0 Measured Rate

0:25� 10�5 (0:35� 0:08)� 10�5

0:5� 10�5 (0:58� 0:10)� 10�5

1:2� 10�5 (1:33� 0:13)� 10�5

2� 10�5 (1:98� 0:14)� 10�5

Table 4.5: Table of measured branching fractions for a series of �ts.

Table 4.5 shows the statistical error from the �t for a selection of the branching

fraction. Projections of the �ts are shown in �gure 4.14. The e�ects of systematic errors

are discussed in section 4.8.2. The evolution of errors with time are shown in �gure 4.15.

The errors are quoted in terms of the statistical signi�cance of the measurement.

4.8.2 Evaluation of systematic errors

Sources of systematic errors that have been considered are the uncertainty in the signal

reconstruction e�ciency and the uncertainty in the signal and background line shapes.

For this study the systematic error arising from the signal reconstruction e�ciency has

been arbitrarily chosen to be within �5%. In determining the systematics due to signal

line shapes, the MB resolution used in the �t has been varied with respect to the optimal

value. The error on the observed number of events due to this e�ect assuming that the
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Figure 4.14: Projections showing results from a selection of �ts. The crosses are the data,

the overall �t is the solid line, and the dashed line is the extracted continuum component.

Plots are shown for a B �! �+�0 rate of (a-b) 1:2 � 10�5, (c-d) 0:5 � 10�5 and (e-f)

0:25� 10�5
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Figure 4.15: Projections of the statistical signi�cance of the �t measurement of the

branching fraction for branching fractions of (a) 1:2 � 10�5; (b) 0:5 � 10�5; and (c)

0:25� 10�5.
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Figure 4.16: Variation of the measured cross section with respect to (a) the FWHM of

the signal MB distribution and (b) the mean of the signal MB distribution. Curves are

shown for B+ �! �+�0. The true rate has been taken to be 2� 10�5 for these �ts.
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Figure 4.17: Time evolution of errors when the rate of B+ �! �+�0 is 0:5�10�5. Curves
are shown for (a) the statistical error arising from the �t and (b) the statistical and the

systematic errors added in quadrature.
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Monte Carlo simulation can be trusted to within �5%, is �3% (see �gure 4.16(a)). If it

is assumed that the mean of the MB can be determined to within �10MeV=c2, then an

error of �1% can be observed (see �gure 4.16(b)). The systematics due to the background

line shape is negligible for the same reasons as discussed in section 4.7.2. The �nal error

on the measured rate is then given by

�total = �fit � �reco � �lineshape: (4.12)

Adding the errors in quadrature results in the plot given in �gure 4.17.

4.9 B0 �! �+��

From �gures 4.13 and 4.14 signi�cant di�erences are shown in signal and background

distributions. Thus the selected discriminating variables are:

� MB = the invariant mass of the B0;

� p� = the momentum of the B0 in the �(4S) rest frame;

� cos �� = cosine of the B sphericity angle in the �(4S) rest frame;

� Prob(�) = the probability that the selected charged particle is a pion;

� Prob(k) = the probability that the selected charged particle is a Kaon;

� tag = the tag value;

� t = the time di�erence between B0 and B
0
decays.

Cuts are made against these variables with an additional cut requiring that only one

combinatorial solution in a given event passes these cuts. There is no e�ect on signal

e�ciency as a result of this additional cut. Figures 4.18 and 4.19 show projections of the

event distributions obtained from the simulation. Plots are shown for true signal events,

their associated combinatorial background and for continuum events. Projections of

the tag distributions for the B, B and the continuum are shown in �gure 4.21. Table 4.6

shows the cuts applied and the e�ciencies obtained. Projections for the selected events

are shown in �gure 4.22. An overall background e�ciency of (1:29 � 0:04) � 10�5 is
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Figure 4.18: Projections of the selected discriminating variables for (a-c) correctly con-

structed signal, (d-f) combinatorial background, and (g-i) continuum background. The

plots are shown with arbitrary normalisation.
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Figure 4.19: Projections of time di�erence for (a) correctly constructed B decays to

�+��, (b) correctly constructed B decays to �+�� and (c) continuum background. Plot

(d) is the time di�erence resolution for B �! �+��, i.e. the di�erence between the

reconstructed time di�erence and that from the Monte Carlo truth information. The

plots are shown with arbitrary normalisation.
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Figure 4.20: Projections of pion and Kaon probability distributions for (a-b) correctly

constructed signal, (c-d) combinatorial background and (e-f) continuum background. The

plots are shown with arbitrary normalisation.
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Figure 4.21: Tag value distributions for (a) B �! �+��; (b) B �! �+�� and (c)

continuum events.
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Figure 4.22: Projections of event distribution after selection for (a-c) signal and (d-f)

continuum background. The relative normalisation is arbitrary.
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Cut % of Events % of Events Passed No. of Combinatorial

Passed With a Correct Solution Solutions per event

No Cuts 99.1 85.7 1

5:0 < MB < 5:55 85.7 85.7 1

(GeV/c)

0:15 < p� < 0:40 77.9 77.9 1

(GeV/c)

�0:85 < cos �� < 0:85 63.6 63.6 1

jtagj > 0:05 62.8 62.8 1

Prob(�) > 0:05 55.8 55.8 1

and Prob(k) < 0:05

jtj < 100 55.1 55.1 1

(10�12s)

No. Solutions = 1 55.1 54.9 1

Table 4.6: Signal e�ciencies for the applied cuts. The quoted e�ciencies are cumulative.
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obtained after all cuts.

In constructing the �t function the discriminating variables considered here are: MB,

cos ��, the tag value and t. The log likelihood function L to be minimised is given by

L =
X
n

� ln
f(MB; cos �

�; tag; t)R R R R
f(MB; cos ��; tag; t)d(MB)d(cos ��)d(tag)d(t)

; (4.13)

where f(MB; cos �
�; tag; t) is the sum of the B, B and continuum contributions as de-

�ned by eqn. 4.13. MB, cos �
�, the tag value and the time di�erence (t) are treated as

independent variables.

f(MB; cos �
�; tag; t) = gsig(MB):hsig(cos �

�):s(�tag):P (t) (4.14)

+gsig(MB):hsig(cos �
�):s(tag):P (t)

+gback:hback:Pback:

The free parameters N and N which form part of the P (t) and P (t) functions, scale the B

and B components relative to the background. From the signal distribution in �gure 4.18

the most appropriate parametrisation is a Gaussian. Thus the �t function gsig(MB) is as

de�ned in eqn. B.1 of Appendix B.1. The background distribution is parameterised by

the function gback(MB) as de�ned in eqn. B.3 of Appendix B.1. Figure 4.22(c) shows the

distribution in cos �� for the signal component is 
at and a constant was used in the �t.

The background is �tted by the function described in eqn. B.4 of Appendix B.2. The

function s is as given in eqn. 4.6. The time di�erence (t) component for the signal is

described by the functions P (t) and P (t) for the B and B decays respectively. P (t) is

the time dependent rate for B decays to �+�� and P (t) is the time dependent rate for

B decays to �+�� (see eqns 1.14 and 1.15) de�ned as follows:

P (t) =
An

2
e�jtj=�

n
1 +R+� cos�Mt�K+� sin�Mt

o
(4.15)

P (t) =
An

2
e�jtj=�

n
1� R+� cos�Mt +K+� sin�Mt

o
; (4.16)

where An = N + N (the normalisation), R+� = (N � N)=(N + N) = (jA+�j2 �
jA+�j2)=(jA+�j2 + jA+�j2) (the direct CP violation parameter), �M = 0:46 (the mass

di�erence), � = 1:5ps (the B lifetime) and K+� is the parameter containing sin 2�. jA+�j
and jA+�j are the amplitudes of B and B respectively. The above equations hold in the

ideal case of a detector with perfect time resolution. In the more realistic situation of
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Figure 4.23: Comparisons of the �t functions used with the actual distributions. The

functions are the solid lines, and the Monte Carlo distributions are the crosses. (a) shows

the signal MB described as a Gaussian, (b) shows the continuum MB distribution, (c)

describes signal cos �� distribution, (d) shows the continuum cos �� distribution, (e) plot

of time di�erence distribution for B decays and (f) the time di�erence distribution for

continuum events �tted with a double Gaussian.
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a detector with �nite resolution (�t), the correct equations are obtained from a convo-

lution of the above equations with the Gaussian errors on t (see eqns. B.6 and B.16 of

Appendix B.3). The time di�erence (t) component for the background is parameterised

Figure 4.24: Plot of time di�erence distribution for the continuum �tted with a single

Gaussian.

by the double Gaussian given in eqn. B.17 of Appendix B.3. The choice of a double

Gaussian over a single Gaussian is for the fact that it gives a better �t as can be seen

in �gures 4.23f and 4.24. In minimising L the only free parameters to be determined

by the �t are N , N and K+�. All others have been determined in the same manner as

discussed in sections 4.7 and 4.8. The systematic errors as a result of this are discussed in

section 4.9.2. Plots of the �t functions compared to their respective components within

the data are showed on �gure 4.23.
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Rate of Measured Rate of Measured

B �! �+�� Rate B �! �+�� Rate

0:3� 10�5 (0:21� 0:06)� 10�5 0:3� 10�5 (0:22� 0:06)� 10�5

1:1� 10�5 (0:88� 0:11)� 10�6 1:1� 10�5 (0:94� 0:11)� 10�5

1:3� 10�5 (1:06� 0:11)� 10�5 1:3� 10�6 (1:13� 0:12)� 10�5

1:5� 10�5 (1:23� 0:13)� 10�5 1:5� 10�5 (1:32� 0:13)� 10�5

Table 4.7: Table of measured branching fractions for a series of �ts with input value of

sin 2� = 1.

4.9.1 Fit results and interpretation

The measured fraction of B �! �+�� and B �! �+�� events within the sample are

given by eqn. 4.17 and 4.18 respectively:

br2 =
(1� �2)bm2 � �bm2

1� 2�2
; (4.17)

br2 =
(1� �2)bm2 � �2bm2

1� 2�2
; (4.18)

where bm2 and bm2 are the corrected B and B fractions as measured by the �t and �2 is

the mis-tag probability which is measured to be 0.16. From this and the reconstruction

e�ciency the measured rates can be obtained. Evidence of CP violation can be observed

from the values of R+� and K+� obtained from the �t. R+� 6= 0 implies direct CP

violation and K+� 6= 0 implies CP violation due to mixing (see chapter 1). K+� is given

by (see eqns. 1.14, 1.19 and 1.49)

K+� =
4

jA+�j2 + jA+�j2
[sin 2�(jAi2j2 � jAi2j(jAi0j cos �

+jAi0j cos �) + jAi0jjAi0j sin(� � �))

+ cos 2�(jAi2j(jAi0j sin � � jAi0j sin �)
+jAi0jjAi0j sin(� � �))]: (4.19)

If R+� = 0 and it is assumed that there are no penguin diagrams, then K+� = sin 2�.

For R+� = 0 and K+� = 1, the measured value of K+� from the �t is 0:949 � 0:082.

The statistical errors arising from the �t for a selection of branching fractions are given
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Figure 4.25: Projections showing results from a selection of �ts. The crosses are the data,

the overall �t is the solid line and the dashed line is the extracted continuum component.

Plots are shown for a B �! �+�� rate of (a-c) 1:5 � 10�5, (d-f) 1:3 � 10�5 and (g-i)

0:3� 10�5.
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Figure 4.26: Future projections of the statistical signi�cance of the �t measurement of

the branching fraction for branching fractions of (a) 1:5 � 10�5, (b) 1:3 � 10�5 and (c)

1:1� 10�5.
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Figure 4.27: The observed asymmetry for �t = 0:87ps (�z resolution of 146�m).

in Table 4.7. Figure 4.25 shows projections for these �ts. For these �ts it has been

assumed that the B and B rates are identical. Taking the expectation value of the errors

to be the mean of the B and B errors in a given �t, then the time evolution of errors are

shown in �gure 4.26. Figure 4.27 shows the �tted CP asymmetry for a time di�erence

resolution (�t) of 0:87ps (�z resolution of 146�m). The plot shows larger statistical

errors for negative than for positive time di�erences. This could possibly be attributed

to mis-tagging of the B and B events. The plots of the measured errors on sin 2� vs (a)

the cross section for B �! �+�� and B �! �+�� and (b) the �z vertex resolution are

shown in �gure 4.28. The e�ect of systematic errors is discussed in section 4.9.2.

4.9.2 Evaluation of systematic errors

Sources of systematic errors which have been considered here are the uncertainty in

the mis-tag probability, the uncertainty in the signal reconstruction e�ciency and the

uncertainty in the signal and background line shapes. The mis-tag probability can be

measured from the data in the same way as discussed in section 4.7.2. Figure 4.29 shows
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Figure 4.28: Plots of measured errors on sin 2� vs (a) the cross section for B �! �+��

and B �! �+�� assuming they are identical and (b) the �z resolution.
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the sensitivity of the measured cross section to the mis-tag probability from a �t in which

there were no b events and the rate for B �! �+�� is 1:5 � 10�5. The dependence

Figure 4.29: Sensitivity of the �t results to the measured mis-tag probability. The results

shown are for a �t where the rate of B �! �+�� is 1:5�10�5 and the rate of B �! �+��

is zero. The curves are for the calculated rates of (a) B �! �+�� and (b) B �! �+��.

varies as a function of the mis-tag probability with no strong sensitivity in the region

of 0.16. In determining the systematics due to signal line shapes, the MB resolution

used in the �t has been varied with respect to the optimal value. Assuming that the

Monte Carlo can be trusted to within �5%, then the error on the observed number of

events due to this e�ect is �1% (see �gure 4.30a). If it is assumed that the mean of

the MB can be determined to within �10MeV=c2, then an error of �2% is observed (see

�gure 4.30b). The systematic error due to the background line shape is negligible for

same reasons as discussed in section 4.7.2. For this study it was arbitrarily decided that

the reconstruction e�ciency could be determined to within �5% (�reco). The �nal error

is given by

�total = �fit � �reco � �lineshape: (4.20)

Adding the errors in quadrature results in the plot given in �gure 4.31.
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Figure 4.30: Variation of the measured cross section with respect to (a) the FWHM of

the signal MB distribution and (b) the mean of the signal MB distribution. Curves are

shown for the B �! �+�� and B �! �+�� components. The rates for B and B decays

has been taken to be 1:5� 10�5 for these �ts.
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Figure 4.31: Time evolution of errors when the rate of B �! �+�� is 1:5� 10�5. Curves

are shown for (a) the statistical error arising from the �t and (b) the statistical and the

systematic errors added in quadrature.
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4.10 Sensitivity to penguins

As discussed in section 4.9.1, if the CP asymmetry parameter R+� = 0 and assuming

there are no penguin diagrams, then eqn. 4.19 is quite simple, i.e. K+� = sin 2�. On

the other hand if R+� 6= 0, i.e if there are penguin diagrams, then one needs to measure

the amplitudes Ai2, Ai2, Ai0, Ai0, A
+�, A

+�
and the angles � and � to extract sin 2�

(see chapter 1). However it is worth noting that whilst measurement of R+� 6= 0 will

signify an observation of CP violation and hence penguin diagrams, R+� = 0 will not

necessarily mean penguin diagrams are negligible. The reason is that for small values of

jAP j=jAT j (� 0:1) [43],

R+� ' �2 jAP j
jAT j

sin(�T � �P ) sin(�T � �P ) (4.21)

and

K+� ' sin 2�+ 2
jAP j
jAT j sin(2� + �T � �P ) cos(�T � �P ); (4.22)

where AT , AP , �T , �P , �T and �P are as de�ned in eqn. 1.10. Since we have no knowledge

of sin(�T ��P ) sin(�T ��P ) we cannot conclude that the penguin diagrams are negligible.
The useful thing to be done in this situation is to proceed to carry on the full isospin

analysis to extract sin 2�.

To evaluate the sensitivity on sin 2� for a given R+� 6= 0 and K+� = 1 with branching

fractions of B and B decays to �0�0, �+�0 and �+�� as given in the �rst column of

Table 4.8, measured errors on the branching fractions and K+� from the �t with the

triangular relations given in �gure 1.6 have been used to obtain the missing variables in

eqn. 4.19 and hence solve for sin 2�. However there is a four-fold discrete ambiguity

since only cos � is measured (see chapter 1, eqns. 1.47 and 1.48). Table 4.9 shows the

measured values of sin 2� for the four pairs of � and � given the input values of the �rst

column of Table 4.8.

In order to investigate the e�ect on the results in Table 4.9 as the two triangles

in �gure 4.32(a) is increased, the B �! �0�0 branching fraction is varied, it has been

changed to 5�10�6 keeping all others the same, the e�ect on the isospin triangles is shown
in �gure 4.32(b). The purpose is to increase the e�ect of the penguin contamination. The

e�ect on the results are shown in Tables 4.10. It can be seen from �gure 4.32 that the
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Assumed rate Measured rates

B0 �! �0�0 0:2� 10�5 (0:24� 0:10)� 10�5

B
0 �! �0�0 0:3� 10�5 (0:25� 0:11)� 10�5

B0 �! �+�� 1:1� 10�5 (0:85� 0:10)� 10�5

B
0 �! �+�� 1:0� 10�5 (0:80� 0:10)� 10�5

B+ �! �+�0 1:0� 10�5 (1:21� 0:13)� 10�5

K+� 1.0 0:99� 0:11

Table 4.8: Table of measured branching fractions from the �ts. It is assumed that

R+� 6= 0 i.e. the rates of B and B are di�erent for decays to �+�� and �0�0.

� (radians) � (radians) sin 2�

2.35 2.11 0:98� 0:10

2.35 �2:11 0:85� 0:13

�2:35 2.11 0:80� 0:14

-2.35 �2:11 0:99� 0:10

Table 4.9: A table showing the four measured values of sin 2� from the data in Table 4.8.

� (radians) � (radians) sin 2�

2.35 1.84 0:95� 0:16

2.35 �1:84 0:78� 0:19

�2:35 1.84 0:72� 0:20

�2:35 �1:84 0:97� 0:14

Table 4.10: Results of the four values of sin 2�. The size of the penguin diagrams has

been increased by increasing the B �! �0�0 branching fraction to 5 � 10�6. All other

rates in table 4.8 have been kept the same.

117



Figure 4.32: Isospin triangles showing the sides of the triangles from (a) the assumed

rates in Table 4.8 and (b) the assumed rates in Table 4.8 but with B �! �0�0 rate of

5 � 10�6. The labels in the diagrams correspond to the de�nitions in �gure 1.6 with

a � A+�=
p
2, b � A00 and c � A+0.
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angle � � � in �gure 4.32(b) is slightly larger than that in �gure 4.32(a). Now, in the

situation where R+� = 0 and the B and B rates are the same so that the two triangles sit

on top of each other, then the results of measurements are given in Table 4.11. Figure 4.33

� (radians) � (radians) sin 2�

2.35 2.35 0:99� 0:10

2.35 �2:35 0:92� 0:10

�2:35 2.35 0:88� 0:11

�2:35 �2:35 0:99� 0:10

Table 4.11: Results showing the measured values of sin 2� given R+� = 0 and equal rates

of B and B.

shows the 95% con�dence level region in the (� �) plane of the unitarity triangle from the

results of sin 2� in Table 4.11 (the value of sin 2� used is the truth set that satisfy all the

four solutions in the table), choosing sin 2� to be 0:700� 0:059 (the quoted error is from

the TDR studies [25]) and current measurements of �md, �k and Vub=Vcb. Each shaded

region corresponds to the (�, �) values satisfying the equations relating to a measurement

at the 95% con�dence level (see equations of Appendix A) and obtained by scanning the

(�, �) plane. The lines marking the boundaries of each region are the solutions in the

(�, �) plane for the upper and lower limits of the related measurement. From Table 4.11

the combined solution will imply our measurement of sin 2� lies between 0.77 and 1.09.

At the 95% con�dence level (1.96�) this implies 0:66 < sin 2� < 1:18. For sin 2�, at the

95% con�dence level we have 0:58 < sin 2� < 0:81. The procedure followed was to scan

the (�; �) plane, �nding (�; �) pairs such that equation A.6 (see appendix A.4) satis�es

0:66 < sin 2� < 1:18 and equation A.7 (see Appendix A.4) sati�es 0:58 < sin 2� < 0:81.

These truth pairs of (�; �) are what is seen lying in the horizontally shaded region in

�gure 4.33. The other shaded regions in �gure 4.33 have been obtained in a similar

manner. For example, the region shaded with the diagonal lines (�md constraint) was

obtained using equation A.3 in Appendix A.2. At the 95% con�dence level the measured

value of �md lies between 0.42 and 0.50 (i.e. 0:465� 1:96�, where � is 0.024). Equating

these values to equation A.3 give a region bounded by two circles with centres at (1; 0),

where solutions for the lower limit (i.e. 0.42) and the upper limit (i.e. 0.5) mark the
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boundaries represented by the solid curves. The allowed region for the apex of the

triangle is the intersection of the shaded regions. It can be seen from the plots that

the measurements of sin 2� and sin 2� have imposed a much tighter constraint on the

currently known allowed region for the apex of the triangle shown in �gure 2.2.

Figure 4.33: Plots showing the 95% con�dence level region in the �, � plane of the

unitarity triangle using results of sin 2� in Table 4.11, sin 2� equals 0:700� 0:059 (from

the TDR) and current measurements of �md, �k and Vub=Vcb. The intersection of the

shaded regions gives an indication of the allowed region for the apex of the triangle.
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Chapter 5

Conclusions

5.1 Introduction

In this chapter a brief summary is presented of the results showing the capabilities of the

BABAR detector to make measurements of CP violation in the B system.

5.2 Test beam results

In chapter 3 a description has been made of the response of a prototype CsI electromag-

netic calorimeter to a beam of electrons and pions in the energy range 0.1 to 0.4GeV.

The calorimeter was a 5�5 array of CsI crystals, which is a small scale version of the �nal
detector of 6580 crystals. The size of each crystal was 5� 5 cm at the front face, 6� 6 cm

for the back and 36 cm long. The electron energy resolution showed good agreement with

the goal stated in the BABAR Technical Design Report; in particular the 1= 4
p
E depen-

dence expected was achieved. The measured resolution was 1:5%= 4
p
E compared with

1%= 4
p
E used in the TDR. However electronic noise in the prototype test which will be

removed in the �nal system contributed at least part of this worse resolution. For pions,

the distribution of deposited energy was not perfectly reproduced by the FLUKA and

GHEISHA Monte Carlo code, possibly as a result of a poor approximation of the cross

sections for nuclear interactions for low energy hadrons in both programs. However in

this energy region studied it is clear that FLUKA provides a more adequate description

of the data than GHEISHA.
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5.3 B decays to ��

B decays to �+�� allow the measurement of the CP asymmetry parameter sin 2�. In

chapter 4 a new technique using a maximum likelihood method has been developed to

extract this parameter in the absence of penguin diagrams. For a year's data the error

on sin 2� was calculated to be 0.082.

However the possible presence of penguin diagrams implies that the angle extracted

from the �tted asymmetry parameter contains additional e�ects. Making a clean mea-

surement of sin 2� requires an analysis in which isospin symmetry is used to relate the

three amplitudes of B and B decays to �+��, ���0 and �0�0. In this analysis the

penguin contamination is calculated using isospin triangles and equations relating the

measured amplitudes to sin 2�. The fraction of the measured asymmetry due to pen-

guin contamination can be determined; as this fraction increases the error on sin 2� gets

slightly worse. The allowed region of the (�, �) plane corresponding to this measurement

has been determined. The intersection of this region with the region currently allowed by

other measurements gives an indication of the size of the additional constraint imposed

by one full year of BABAR data.
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Appendix A

Relating measurements to the CKM

parameters: A, �, �

Points in the �, � plane for the apex of unitarity triangle are obtained by evaluating the

equations relating the given measurements and the CKM parameters: A, �, � as given

below.

A.1 jVbcj and jVbu=Vbcj measurements

jVbcj and jVbu=Vbcj are related by the equations:

jVbcj(A) = A�2; (A.1)

jVbuj
jVbcj

(�; �) = �
q
�2 + �2: (A.2)

A.2 �mBd
measurement

�mBd is related by

�mBd(A; �; �) =
G2

6�2
A2�6[(1� �)2 + �2]

�m2
WmB(fB

q
BB)

2�BS(mt=m
2
W ); (A.3)

where G, fB, BB and S(mt=m
2
W ) are as de�ned in section 2.2.2. In the usual unitarity

triangle representation, this can be seen as the constraint of a circle with centre (�, �) =

(1, 0) [40].
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A.3 j�Kj measurement

j�K j is related by

j�Kj(A; �; �) =
G2

6
p
2�2

m2
W

�mK

mKf
2
KBKA

2�6�[��1S(mc=mW )

+A2�4(1� �)�2S(mt=mW )

+�3Sij(mc=mW ; mt=mW )]; (A.4)

where fK is the decay constant for the K meson, �1, �2 and �3 are the QCD correction

factors [41], BK is the K meson mixing parameter, mc, mt, and mW are the masses of

the charm quark, top quark and W boson respectively, �mK is the KL and KS mass

di�erence, the function S is as de�ned in section 2.2.2 and Sij(xc; xt) is de�ned as [42].

Sij(xc; xt) = xc

"
ln
xt

xc
� 3xt
4(1� xt)

� 3x2t lnxt
4(1� xt)2

#
: (A.5)

Equation A.4 speci�es a hyperbola in the (�, �) plane.

A.4 sin 2� and sin 2� measurements

Applying simple trigonometrical relations on the unitarity triangle, measurements of

sin 2� and sin 2� are related to the CKM parameters: A, � and � as follows:

sin 2�(�; �) =
2�(�2 + �2 � �)

(�2 + �2)((1� �)2 + �2)
(A.6)

sin 2�(�; �) =
2�(1� �)

((1� �)2 + �2)
: (A.7)
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Appendix B

Formulae used in the analysis of

B �! ��

B.1 The MB component

The Gaussian function used to �t the B mass distribution of the signal component of the

data is de�ned as

gsig(MB) = exp

"�1
2

�
MB �Mmean

B

�

�2#
: (B.1)

A �t function to a log normal distribution is given by

gsig(MB) =
1

X0 �MB

exp

2
4�

 
ln(X0 �MB)�Mmean

B

�

!2
3
5 ; (B.2)

where Mmean
B is the mean value of MB, � is the error on the mean and X0 is a free

parameter for the tail.

The background component is �tted with the function given by

gback(MB) =MB: exp(p
2
1):

 
�1�

�
MB

5:65

�2!
:

s
1�

�
MB

5:65

�2
; (B.3)

where p1 is a free parameter.

B.2 The cos �� component

The cos �� distribution for the continuum component of the data is �tted by

hback(cos �
�) = exp

2
4�1
2

 j cos ��j � 1

�1

!2
3
5+ c (B.4)
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where �1 is the error on the Gaussian and c is the constant term.

B.3 The time di�erence (t) component

The convolution of the time dependent rate for B decays to �+�� with the Gaussian

errors on time di�erence t is given by (see references [44; 45; 46])

P (t0) =
An

2

Z
1

�1

e
�(t�t0)2

2�2
t e��jtj

n
1 +R+� cos�Mt�K+� sin�Mt

o
dt (B.5)

=
An

p
�

8

h
g(t0)e�

2�2t =2 + e�t
02=2�2t (R+�h(t0) +K+�j(t0))

i
(B.6)

where:

g(t0) = e�t
0

erfc(t0+) + e��t
0

erfc(t0
�
) (B.7)

h(t0) = RefW (
��M�tp

2
+ it0+)�W (

��M�p
2

+ it0
�
)g (B.8)

j(t0) = ImfW (
��M�tp

2
+ it0+)�W (

��M�tp
2

+ it0
�
)g (B.9)

and t0
�
is de�ned as

t0
�

=
��2t � t0p

2�t
: (B.10)

The complex error function W(x) is de�ned as

W (x) � e�x
2

erfc(�ix): (B.11)

Erfc is a standard fortran function, � = 1=� and An

p
�=8 is the normalisation.

In evaluating eqn. B.5, use has been made of the following integrals [46]:

Z
1

0
e�(az

2+bz+c) sinKz dz = �1
2

r
�

a
e�cIm[e

(b+iK)2

4a erfc(
(b+ iK)

2
p
a

)] (B.12)

Z
1

0
e�(az

2+bz+c) cosKz dz =
1

2

r
�

a
e�cRe[e

(b+iK)2

4a erfc(
(b+ iK)

2
p
a

)] (B.13)

where a, b, c and K are real constants. Then applying eqn. B.11, B.12 and B.13 the

convolution with a single Gaussian G(t; t0) = e
(t�t0)2

2�2
t gives:

Z
1

0
G(t; t0)e��t sin�Mt dt = �

p
�

2
e�t

02=2�2Im[W (
��M�tp

2
+ i

��2t � t0p
2�t

] (B.14)

Z
1

0
G(t; t0)e��t cos�Mt dt =

p
�

2
e�t

02=2�2tRe[W (
��M�tp

2
+ i

��2t � t0p
2�t

]: (B.15)
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The convolution for the B component can be evaluated in the same way to obtain

P (t0) =
An

p
�

8

h
g(t0)e�

2�2t =2 � e�t
02=2�2t (R+�h(t0) +K+�j(t0))

i
: (B.16)

The time di�erence (t) component for the background is parameterised by a double

Gaussian given by

Pback(t) = N1e
�

1
2
(t=�1)

2

e�
1
2
(t=�2)

2

; (B.17)

where N1 is the normalisation and �1, �2 are the Gaussian errors.
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