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1 Introduction

"In this parer we describe two realizations (in C++ language) of constrained mini-
mization for x?-like functionals. One of them is the algorithm of the FUMILI code,
which was available for users as a part of CERN library [1). The description of this
algorithm was published in Russian f2] at the end of the 1960s. Due to the fact
that the access to this publication is not easy for an English reader, we give a short
description of the FUMILI algorithm. This algorithm is now coded in the C++
language.

The second part is the realization of the idea rroposed by one of the authors (LN,
Silin) for solving the constrained minimization problem in a general case, when con-
straints are of arbitrary type (arbitrary equalities and inequalities) {3]. Technically,
here constraints are taken into account by the method of penalty functions {though
there are other ways of doing it {3]). The algorithm described below was tested on

the model data for the calibration process pp = dnt under the conditions of the
ANKE setup {4).

2 Algorithm of FUMILI .

For simplicity, let us assume that the function to be minimized has the form !
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where f;{;,8) are the measured functions at the points 7, F; are the vahies of the
measured {unctions, o; are their errors, § are parameters to be estimated.
The mintmum condition is
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where m is the number of parameters.
Expanding the left side of eq. 2 in parameter increments and retaining only lincar

terms we get
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Here B is some initial value of parameters. In a general case:
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1all the following can be easily gencralized to the case where the covariance matrix of the function
f; has non-diagonat terms :



In the FUMILI algorithm an approximate expression for 32x2/88,80; is used
when the last term in eq. 3 is discarded (it is often done, not always wittingly, and
sometimes causes trouble), i.e.;
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Then the equations for parameter increments are
ax? 0 .
- +ZZik-(9kL9k)=0, i=1=m.
98; j=go &

A remarkable feature of the algorithm is the technique for step restriction. For an
initial value of the parameter &° a parallelepiped Py is built with the center at #° and
axes parallel to the coordinate axes ;. The lengths of the parallelepiped sides along
the i-th axis are 2-b;, where b, is such a value that the functions f3{(8) are quasi-linear
all over the parallelepiped. If the step A gives a new point §' = 8 4 A outside
Py, the crossing 8" of the vector Af with the surface of P} is found and taken as a
new value for the parameter. After selection of the new value for the parameter, it is
checked, whether the function reduction is big enough compared with the expected
on the quadratic approximation. If it is not, the step reduction is performed. Some
parallelepiped lengths can be increased too.

In addition, FUMILI takes into account simple linear inequalities in the form:

B < 9, < gex, (4)

They form a parallelepiped P (P, may be deformed by P). If the value of the
parameter lies on the surface of P and the gradient component is such that x? is not
going to increase outside P, the corresponding parameter is fixed.

Then the step is caleulated for all non-fixed parameters and if some parameters,
tying on the surface of P, go beyond P, one of them is temporary fixed too (the
parameter, for which the ratio |A8;|/(/(Z-1);; is maximal) and so on.

The criterion for the end of the iteration process is the requirement that all
parameters are fixed due to-only the gradient sign and step increments for non-fixed
parameters
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where ¢ is a small figure ~ 0.01. Because the number of fixation combinations is
finite, the number of steps will be finite, at least in the convex quadratic case.

Very similar step formulae are used in FUMILI for the negative logarithm of the
likelthood function with the same idea of linearizing the functional argument.



3 Minimization of y? functionals with arbitrary
constraints

3.1 Formulation of the problem

Again, let us assume that the function to be minimized has the same form eq. 1,
but in addition to simple linear constraints (eq. 4) there are two more types of
constraints: nonlinear inequalities and equalities

a, < p.(0) < by, r=1+%mg, (5)

¥ (8) = ¢, s=1=+m,. (6)
Here ¢r(9), 1,1’),(67) are the regular functions of the parameter ; a,, b,, m, are the low
and upper boundaries of the inequalities and their number; ¢,, m, — any constant
and number of equations. Here regularity is taken to mean continuous second-order
derivatives. The problem of taking into account the constraints in the form of the
equalities of type (eq. 6) was solved before [5, 6, 7]. As for the constraints in the
form of inequalities (eq. 5), the authors did not know a simple solution until one of
them (I.N. Silin) proposed a method for taking them into account [3]. According to
(3], any constraint of the form a, < ¢,(#) < b, can be replaced by a simple inequality
and equality
ar <t < by, (7)
6 (8) = o (8)
Here ¢, is an additional variable constrained by two boundaries a,, b,, {(eq. 8) is a
constraint in the form of the equation. You can see that constraints {eq. 7) have the
same form and structure as (eq. 4), so we can combine them and introdunce just one
type of simple constraint:
B < f; < 0P,
where index ¢ changes in a wider range: ¢ =1,...,m,....m+my and for i > m

— min __ max __
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Then the problem of constrained minimization in a general case can be reformu-
lated as follows: find a minimum of function {eq. 1) under the constraints:

gEin < g, < grex, i=1,..,m, ...,m+mg, (H
£.(9) = d,, u=1,..,my, ..., Mg+ m,, (10)
where for 1 <u < my, & = ¢y, dy = t, and for my < w < my+m, &, = Wy

du = Cu—md-

After such reformulation the number of the parameters to be fitted and of the
constraints in the form of simple inequalittes of type {eq. 9) becomes m+my; number
of constraints in the form of equations of type (eq. 10) becomes my + m,.
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When non-simple constraints are only equations they can be taken into account
cither by the method proposed in {7] or by the peualty function method. Here we
use the latter. In such an approach the minimuam of the function
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Here T is the penalty factor (normally it is sufficiently big number), o,, 7, are for.
mally calculated errors of constraints. Iu a penalty methed function a minimum of
eq. 11 is searched for as T — co.

3.2 [Iteration scheme

Let us rewrite eq, 11 in the form
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and w, = ¢2/T. Under a chosen T the minimum condition is
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In both equation 12 and 13 derivatives are taken only for those parameters which
are not fixed; ie. k£ i7, r+m # i, where 7; is the index of a fixed parameter. The
functions on the left side of ¢q. 12 and cq. 13 depend on mt + my parameters. Near
the minimum we can expand the loft sides of the equations in parameter incremoents
retaining only linear terms. For eq. 12 we have
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We wrote eq. 15 in the approximation of the functional argument lincarization
method [8], in which the derivatives 3*¢/06,06, are discarded. All values of functions
and derivatives are taken at the current values of the parameters. Let us also remark



that index { (I # ¢;) in the second term runs over indices of non-fixed parameters.
Analogically, for eq. 13:

m a .
(br = Brom] + 3 a‘; <88 = 80y = 0. (15)
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From eq. 15 we have for the non-fixed parameter 8, ,,, (r = 1 + my)
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Substituting eq. 16 into eq. 15 we will obtain after some algebra:

Gk+ZZH-69;:O, (17)
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A remarkable feature of the last expression is that the index [ runs only over
non-fixed parameters [ = 1 = m, the index r runs only over those inequalities for
which additional parameters ¢, (eq. 8) are fixed!

Finally, the solution of eq. 17 is

80 =—~(Z71.G).

The increments of the additional parameters 8¢, = 86,.,, are caleulated according
to formula 16.

The advantage of this iteration scheme is that the matrix inversion only of order
m x m is done irrespective of the number of constraints.

4 Test

Both realizations described above are coded in C+4- and tested on the model data
for the calibration reaction pp — dz™ under the conditions of the ANKE setup [4].
According to the plans, ANKE will consist of three sub-detectors: a side detector, for-
ward and backward ones. At the moment the side detector is fully assembled, for the
forward detector only a scintillation hodoscope is ready. The side detector consists of
two scintillation hodoscopes (START, STOP), two proportional chambers with three
sensitive planes each. It permits one to reconstruct all the kinematic parameters of
the ejectiles passing through the side detector. The scintillation hodoscope in the
forward detector is capable of measuring the coordinates of the particle and its time
of flight.



The first data were obtained in May and July this year, accuracies are being
studied. The main calibration process for the analysis of detector performance is
the reaction pp — dr'. so we took this process for the tests. A number of events
were simulated for the beam kinetic energy Tieam = 425 MeV with the 7t meson
passing through the side detector and the deuterons passing through the scintillation
hodoscope of the forward detector. Simulation was done by the GEANT code with
all physical processes switched on except the decay of 7+ mesons. In the case where
the kinematic parameters of the beam proton and secondary =t are known, there
1s one constraint in the form of an equality, namely the missing mass of the process
should be equal to the mass of the deuteron:

(Ehearn + Mp - Err+)2 - (ﬁbeam - ﬁw+)2 = Mnfz, (18)

where Epeam, Eq+ are the energies of the beam proton and the secondary 7+ me-
SO, Pheam: Px+ are their 3-momenta, M,, M, are the masses of the proton and the
deuteron respectively.

As was said above for the deuterons which are detected by the forward hodoscape,
their coordinates and time of flight (TOFy) will be measured, as we hope, with the
accuracies permitting 4c fit (using all 4 conservation laws}, Because at the moment
not all accuracies are known, we assumed that their coordinates and times of flight
are between some boundaries and put requirements in the form of three inequalities:

Ymin < ¥ < Ymaxs Zmin € 24 < Zmay, tnin < TOF, < tnaxe (19)

The first two requirements come from the geometrical dimensions of the scintil-
lation hodoscope, the last one from the simulation data. Three functions yq, z4, #4
were expressed as functions (in the form of polynomials to the third order inclusive)
of two angles of the pion in the laboratory system of coordinates.

The total number of fitted parameters was 6, the first three are angles Bzz.0y,
of the pion relative to the beam proton and the pion momentum in the laboratory
system. The last three parameters were additional parameters £, corresponding to
three inequalities (eq. 19). Initial pion angles were always 0, initial momenta were
calculated as a function of these angles. The coordinates of the pion detected in
the side detector were expressed as functions of three pion variables — two angles
and momentum. The total number of events was ~ 3000, the maximum number of
iterations was 40,

Two fits corresponding to two different realizations, described above, were per-
formed. In the first fit the constraint in the form of non-linear equation (eq. 18)
was disabled, in the second it was enabled. In figure 1 the accuracies for the both .
realizations are shown. Figures 1a,1b,1c are for first fit, figures 1d,1e,1f are for the
second one. It is necessary to stress drastic improvement of accuracy in Ap/p in the
second case, which is the result of additional constraint.

Each event was fitted for three values of the penalty factor 7. The initial value
was selected by the formula

T =100. Ze®

T can
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FIGURE 1. Accuracies of the particle kinematic parameter determination.



1 [ [l r [
1200 el 350 R,
F Nean 9,688 Mear 5502
F RM! @ 2673 -01 BNS 0191
1000 F S 30 :
|
800 | 250
[
[f 200
500
i 150
400 -
r 100
200 L 50
OLIJEJII\ILLA_LIIFIILI O P Y II\II‘HI'M)«IJL]
g 95 10 105 1 9 95 10 105 11
60,"/60,2 80,7 /80,7
]200 F Ertries ZUE[ [E IEnnEnes E“
!:Z" e omen| A0 e VT
1000 f ( 1200
800 E 1000 -
[ 80O [
500 L 5
600 |
400 3
400
200 200
0 lilulhnlmJ:u: 0 IS N
9 95 10 105 11 g 95 10 105 1
6P12/5P2J (§X2)12/(6X2)23

FIGURE 2. Iliustration of Richardson approximation.



where iy, is the number of experimental points, n.,, is the number of constraints.
In our case nep, = 6, 72gen = 4.

Each successive value of T was ten times larger than the previous one. According
to [3], in this case we should have the convergence according to Richardson, i.e. the
difference of parameter values in the minimaum Az, = p3 — p2 should be 10 times
smaller than Ay, = p, — p1. Here p; means the value of the fitted parameter for the
first value T}, po for the second T and p; for T3.

In figure 2 the ratios AG22/AG2L, AG22/AGZL, Ap®2/Ap?, A(x))®/A(?)? are
shown. It is seen that they are close to 10, it means that the statements made in [3]
are correct.

5 Conclusion

Two codes are developed for minimization of y*like functionals in the C++ language.
One of them is realization of the FUMILI code with constraints in the form of
simple boundaries. The second one is the minimization with constraints of any type.
With FUMILI as a starting point, the C++ code is developed and tested cn model
data. The results of the test show high performance of the algorithms developed.
In conclusion, the authors express their gratitude to the colleagues from the ANKE
collaboration for the necessary details,
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Obivoz C.H. u np. : E10-98-318
Munkmusauns ¢ orpanuyeniamu g cpene C ++

OcHoBbiBasics Ha HACAX, MPEAIOKEHHBIX ONHMM M3 aBTopoR (Cunun W.H.),
paipaboTano  nporpammuoe ofecneyenne  mng PHTHPOBANKA  panHBIX
C orpannueHusMy. Orpanndenns MOTYT GbiTb NPOMIBOABHOIO THIA (paBericTeamu
W HEpABEHCTBaMM). B mcnomszosan NPOCTEHIIHA M3 BOMOXHBIX HOOX0N0B.
UlInpoko useecraas fiporpamma FUMILI peanuzosana wa s3nike C . Orpanuyenns
8 thopme Hepasercre ¢ (0) = a 3amennuce paseHCTBaMH BUAa @ (B) =1 u npocTeiMy
HCPABEHCTRAMH THHA ! 2 a. TTpu pacemoTpennu PABEHCTB IPUMEHANCS METOR KBanpa-
THUHLIX IITPAHLIX hyHK LML, Iporpammuoce obecnevenye TECTHPOBATOCE Ha MO-
ACMEHBIX NAHHBIX ycTanoBKH ANKE (COSY, Forschungszentrum litich, Germany).

Pabota Bwinonmeuaz Jaboparopuu ADEPHBIX  fipobnem o Jla6oparopun
BLIMHCTHTENbHON TEXHHKH M aBTOMATH3AlHMK OHAH

NMpenprnr Ofsenunenyoro HHCTHTYTa AUEPHLIX MCCNCLOBANMIT. Ny6ua, 1998

Dymov S.N. et al. EI10-98-318
Constrained Minimization in C ++ Environment

Based on the ideas, proposed by one of the authors (ILN.Silin), the suitable
software was developed for constrained data fitting. Constraints may be
of the arbitrary type: equalities and inequalities. The simplest of possible ways was
used. Widely known program FUMIL[_)was realized to the €4+ language.
Constraints in the form of inequalities @ (8} > a were taken into account by change
mto equalities ¢ (8) =+ and simple inequalities of type 1 2 a. The equalities were
taken into account by means of quadratic penalty functions. The suitable software
was tested on the model data of the ANKE setup (COSY accelerator,
Forschungszentrum Jilich, Germany).

The investigation has been performed at the Laboratory of Nuclear Problems
and at the Laboratory of Computing Techniques and Automation, JINR.
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