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Abstract

We measured the anelasticity of a tungsten fiber by using a torsion balance.
From the result we concluded that the spring coustant increases along with the
angular frequency. This measurement supports the statement that the anelasticity
of a torsional fiber causes a systematic error in the measurement of the Newtonian
gravitational constant using the time-of-swing method.
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1 Introduction

The anelasticity of suspension fibers has been inspected in recent years con-
cerning interferometric gravitational wave (GW) detectors by several authors
[1-3]. Since the damping characteristics in the suspension and the mirror, it-
self, generally affect the thermal noise spectrum of suspended mirrors and of
their internal vibration, it has been important to fix the damping model [4].
The experimental results published so far support an empirical anelasticity
model showing that the loss coefficient is constant in frequency. If this is true,
the spring constant of a fiber with such anelasticity should be dependent on the
frequency. On the other hand, the present Newtonian gravitational constant
was measured by a torsion balance using the time-of-swing method, which
supposes a constancy of the spring constant of the torsion fiber. One of the
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authors pointed out a possible systematic error involving the Newtonian grav-
itational constant [5}, and Luther experimentally showed the expected change
in the torsional constant of a tungsten fiber applied to his new torsion balance

[6].

We have measured the frequency dependence of the torsional spring constant
of a tungsten fiber based on the systematic change in the inertial moment of a
suspended balance. This measurement was complementary to a measurement
of the mechanical loss.

2 Characteristics of Anelasticity

The anelasticity of a spring is represented by a complex spring constant. Sup-
pose that it is represented by a function of angular frequency, k.(w) + ik;(w),
where k;(w)/k.(w) = ¢(w) is experimentally a function of small magnitude.
Since k;(w) is assumed to be constant for a wide range of frequencies, it can
be expressed by

ew” w>0
ki(w) = (1)
—e(—w)* w <0,

where o and € are positive and « is small compared with unity, thus satisfying
the Kramers-Kronig relation, which arose from the causality principle. Also,
the real part of the spring constant should be

2¢
kr (W) = —w?, (2)
T
where « turns out to be 2¢/7m. Eq. 2 represents the frequency dependence of
the spring constant.

The velocity damping model assumes that the damping term in the equation
of motion is proportional to the velocity. We can thus write the equation of
motion as

d?0(t)  do(t)
7z T

I + kO(t) = Neao(t), (3)
where I is the moment of inertia of the torsion balance, 6(t) the torsion angle
of the balance, b the damping coefficient, k the spring constant, and Ne,.(t)
an external torque. In the case of velocity damping, the quality factor (Q) is



where wy = /k/I is the eigen angular frequency of the torsion balance.

Contrary to the velocity damping model, the anelasticity model can be repre-
sented in the frequency domain of the equation of motion as

(—1w? + k(1 +i6(w))) 8 (w) = New(w). (5)

From Eq. 5 the quality factor (@) of the torsion balance at the eigen angular
frequency is

Q= : (6)

If ¢{w) is independent of the torsional angular frequency, the quality factor
of Q is independent of the torsional angular frequency.

3 Experimental procedure

We used a torsion balance to measure the spring constant of a tungsten fiber
(see Fig. 1). The fiber was 50 pm in diameter and 0.38 m in length. The bal-
ance consisted of three parts, where two masses with horizontal shafts were
symmetrically connected at the center part. The masses were made of copper.
The horizontal shafts were made of brass. The center part, made of alminium,
was suspended by the fiber. The moment of inertia of the balance was changed
by displacing the position of the mass. This was done by replacing the hori-
zontal shafts with ones having different lengths. The total mass of the balance
was 0.122 kg.

The balance was set in a vacuum of about 10™* Pa. We mounted a tiny right-
angle-prism at the center part of the balance and measured the angle of the
balance using an optical lever. He-Ne laser (632.8 nm, 0.5 mW) was used.
The refleted beam position was detected by a photodiode array having 46
photodiode segments. Since the distance from the balance to the photodiode
array was 0.80 m and the segment pitch was 1 mm, the angular resolution
of the optical lever was 0.006 rad. The sampling frequency of the torsional
angle of the balance was 1 Hz. We calculated the period of the swing using
the time-series data (see Fig. 2). We fitted the signal every two cycles with a
sinusoidal function of

6(t) = asin (wt + ) + d, (7)

where the amplitude (a), torsional angular frequency (w), initial phase (),
and offset (d) were fitted parameters. Based ou a successive series of angular



frequency measurements we made a histogram and evaluated the angular fre-
quency by another fitting of the histogram with a Gaussian distribution. In
each run, we changed the moment of inertia of the balance and measured the
variation in the angular frequency of the balance. We precisely measured both
the mass and length of the balance and caluculated the moment of inertia (see

Table 1).

From these measurements, we obtained the spring constant of the torsion fiber
during each run (see Table 2). These are plotted in Fig. 3 as the torsional spring
constant of the tungsten fiber,

k= T (8)

We also measured the quality factor (Q) of the torsion balance (see Table 2).
The amplitude decay was fitted in each run by a function of a (t) = age™ 7,
where 7 is the relaxation time and ay is the initial amplitude. The measured
Q) at different frequencies is plotted in Fig. 4 as

Q = woT. (9)

4 Discussion

We measured the spring constant of a tungsten fiber used in a torsion balance.
If we applied the velocity damping model to the fiber, the spring constant was
constant in frequency. We fitted the measured spring constant with a function
k. (w) = constant and obtained Y*/N = 11.5/5, where N is the degree of
freedom. Fitting the measurement with Eq. 2 produced

¢! =698 + 100, \*/N =2.2/4 (10)

(Fig. 3). From this we concluded that the spring constant increases along
with the angular frequency. This value should be compared with the observed
mechanical loss. Measurements showed that the quality factor of the fiber was
constant from 3.7 mHz to 13.6 mHz within the error of the measurment, that
is the result of fitting the quality factor with a function ¢ = constant was

Q = 3338 + 58. (11)

The value of @ in Eq. 11 is greater by 5-times that in Eq. 10. However, the
trend of change is inaccord with the theoretical model of anelasticity. This
discrepancy would be smaller if the change rate becomes less. If we applied
the velocity damping model, the quality factor should have been inversely
proportional to the torsional frequency (see Eq. 4), which did not satisfy the
measurement. We can therefore say that the anelasticity model is correct for a



tungsten fiber, and that ¢ (w) is independent of the torsional frequency. This
measurement supports the statement that the anelasticity of a torsional fiber
causes a systematic error in the measurement of the Newtonian gravitational
constant using the time-of-swing method.
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Table 1
Error budgets for the spring constant (k)

ppm

statistic: Aw 110-210

systematic: Position of the masses 130-200

Mass of the masses 43
AT 160-220
total: 270-440




Table 2

dambbell | moment of inertia frequency | the spring constant | quality factor
(kg - m?) (Hz) (N -m/rad)
1 3.322 x 107> | 1.360 x 1072 2.422 x 1077 3.2 x 103
2 5.395 x 107> | 1.066 x 1072 2.422 x 1077 3.5 x 103
3 7.884 x 107° | 8.821 x 1073 2.422 x 1077 3.2 x 103
4 1.109 x 1075 | 7.435 x 1073 2.421 x 1077 3.3 x 103
5 2.470 x 10™* | 4.980 x 1073 2.419 x 1077 3.1 x 103
6 4.463 x 107% | 3.701 x 1073 2.420 x 1077 3.3 x 10°




\

Fig. 1. Setup of the torsion balance and the optical lever where 1 is the laser source;
2 and 5 are lens; 3, 4, 7 and 8 are mirrors; 6 is a photodiode array; 9 is a fiber; 10
and 11 are the mass; 12 and 13 are horizontal shafts; 14 is a right-angle-prism.
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Fig. 2. Swing of the torsion balance.
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Fig. 3. Frequency dependence of the real part of the spring constant. The dotted
line shows the result of fitting the spring constant with Eq. 2. The dashed line shows
the result of fitting the spring constant with a constant.
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Fig. 4. Frequency dependence of Q. Some errors are within the markers. The dotted
line shows the result of the fitting measured @ with a constant. The dashed line

shows the result of the fitting

measured @ with Eq. 4.






