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1
Chapter 1IntroductionThe theory of Quantum Chromodynamics (QCD) is a �eld theory describing theinteractions of quarks and gluons. It constitutes the part of the Standard Modelof the strong and electroweak interactions, based on a SU(3)
 SU(2)
U(1) localgauge symmetry, that describes the strong interactions.Apart from the tests to con�rm SU(3) as the gauge symmetry group of thetheory, tests of the theory can be performed comparing di�erent measurements ofthe only free parameter of the theory: the strong coupling constant, �s. Its valueappears in the description of a very large number of observables like the total e+e�annihilation cross section, the hadronic width of the Z boson, the � lepton lifetime,the jet structure at LEP, etc.The four LEP experiments have extensively studied the hadronic decays of theZ boson up to now. The strong coupling constant, �s, has been measured with alot of di�erent methods giving a precision that is now below 4%. The errors arelarger than the typical quoted uncertainties in other Standard Model parametersThe reason is the di�culty of performing QCD calculations, both at higher orderin perturbation theory and in the non-perturbative regime, where e�ects due tohadronization are important.This thesis presents a new test of QCD based on a new measurement of �sfrom the study of scaling violations in fragmentation functions. The study ofscaling violations in structure functions in deep-inelastic lepton-nucleon scatteringplayed a fundamental role in establishing QCD as the theory of strong interactions.



2 IntroductionQCD predicts similar scaling violations in the fragmentation functions of quarksand gluons. In an electron-positron collider this translates into the fact that thedistributions of the scaled-energy x � 2E=ps of �nal state particles in hadronicevents depend on the centre-of-mass energy, ps. These scaling violations comeabout because with increasing ps more phase space for gluon radiation and thus�nal state particle production becomes available, leading to a softer scaled energydistribution. As the probability for gluon radiation is proportional to the strongcoupling constant, a measurement of the scaled-energy distributions at di�erentcentre-of-mass energies compared to the QCD prediction allows to determine theonly free parameter of QCD, �s.In principle, variations with energy of the x distributions would establish theexistence of scaling violations and allow the determination of �s. However, the factthat the �nal state avour composition depends strongly on the centre-of-massenergy (abundance of u-type quarks at PEP and PETRA energies and majorityof d-type quarks at LEP energies), and that the fragmentation functions dependon the quark mass, means that the e�ect would be biased by di�erences betweenfragmentation functions for the di�erent quark avours. Therefore, in order todisentangle scaling violations arising from gluon radiation from e�ects due to thechanging avour composition independently of Monte Carlo modeling, �nal stateavour identi�cation is needed.Problems come also from the di�culty of measuring the fragmentation functionsdirectly. These fragmentation functions would contain only the particles producedafter the fragmentation of the original quarks produced in the e+e� annihilation.Instead, the scaled-energy distributions contain particles produced on the decayof the hadrons coming from the fragmentation process. The e�ect on the scalingviolations of considering the particles after fragmentation and decay has to becontrolled in order to have a reliable measurement of the strong coupling constant.Other e�ects that must be controlled are the corrections that the fragmentationof the quarks (a non-perturbative phenomenon) can induce in the perturbativeequations describing the scaling violations.The work presented here uses inclusive scaled-energy distributions of stablecharged particles measured at PEP, PETRA, TRISTAN and LEP together withALEPH measurements of the distributions in bottom-, charm- and light-quark



Introduction 3enriched samples, an inclusive sample, and a gluon jet sample. These data, obtainedin 1992 and 1993, correspond to approximately 40 pb�1 taken at a centre-of-massenergy around 91.2 GeV. They amount to close to 1.2 million hadronic decays ofthe Z.Chapter 2 describes the theoretical framework of the analysis, which is basedon the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equationswith splitting kernels and coe�cient functions computed to next-to-leading or-der. Chapter 3 gives a description of the ALEPH detector, emphasizing the partsof the apparatus used for the analysis. The tracking reconstruction and specialavour tagging algorithms needed for the analysis are described in chapter 4. Themeasurement of the ALEPH data used in the analysis is described in chapter 5.The Chapter 6 provides a description of the the scaling violations analysis andthe results. The �nal summary and conclusions are given in chapter 7. A list ofappendices give some more detailed information on the formulae and data used.



4
Chapter 2Theoretical FrameworkThis chapter describes the necessary ingredients for the analysis of scaling violationsof fragmentation functions and the measurement of the strong coupling constantfrom them. After a brief introduction on the theory of Quantum Chromodynamicswith special emphasis in the running coupling constant in section 2.1, section 2.2describes how the fragmentation functions are related to the measurable scaledenergy distributions. This relation is obtained using the mass-factorization pro-cedure, which is also described there. This leads to ps dependent fragmentationfunctions. The change of these fragmentation with the energy is described by per-turbative QCD, and is discussed in section 2.3. This can allow to extract �s fromthe measurement of the scaled energy distribution at di�erent energies. Section 2.4describes some e�ects that could change the perturbative energy evolution of thefragmentation functions and that have to be taken into account in order to get areliable measurement of the strong coupling constant. Finally, section 2.5 gives ascheme of the analysis performed to measure the strong coupling constant.2.1 QCDThe theory of Quantum Chromodynamics was formulated about twenty yearsago [1]. It constitutes the part of the Standard Model [2] that describes the stronginteractions of coloured spin 1/2 quarks with massless coloured spin 1 gluons.The fermions of the theory were formally introduced as constituents of mesonsand baryons in the Gell-Mann-Zweig model [3]. It was realized that quarks are



2.1 QCD 5naturally associated with the pointlike constituents, called partons [4], discoveredin deep inelastic lepton-nucleon scattering [5].The concept of colour [6] was introduced in order to avoid spin statistics pro-blems appearing in baryons made out of three quarks with the same avour, asthe �++ resonance. Assigning to the quarks a new quantum number, colour, cor-responding to a new symmetry, solved this problem. The number of colours wasmeasured from the partial decay width of neutral pions into photons, which is pro-portional to N2c [7], and from the total hadronic cross section in e+e� annihilations,proportional to Nc [8].The gauge bosons of QCD are called gluons. They were introduced to explainhadrons as dynamically bound quark states. An important fact of QCD is thatgluons carry colour charge. Thus, they couple to other gluons, as well as to thequarks. As a consequence, vacuum polarization e�ects produce an anti-screeningof the bare QCD charges, which results in a strong interaction at large distancesand weaker at short distances. This explains the fact that quarks are not ob-served as free particles and leads to the concepts of con�nement [9] and asymptoticfreedom [10].2.1.1 QCD lagrangianThe QCD Lagrangian density is the Yang-Mills Lagrangian for an unbroken SU(3)local gauge invariant symmetry. It can be written asL = �14Ga��G��a + q�(i 6D �m)q�+ LGF + LGhost (2.1)with Ga�� = @�Aa� � @�Aa� + g fabcAb�Ac� (2.2)D� = @� � ig Aa� T aF : (2.3)q� = fu�;d�; s�; c�;b�; t�g represents the quark �elds with colour �, � having Nc(three) degrees of freedom. m = fmqg represents the quarks masses. Aa� is thegluon �eld, a being the gluon colour index that has N2c � 1 (eight) degrees offreedom. fabc are the group structure constants and T aF , the Nc-dimension groupgenerators in the fundamental representation. g is a gauge coupling constant relatedwith the strong coupling constant, �s, through �s = g2=4�.



6 Theoretical FrameworkLGF and LGhost are, respectively, the gauge �xing and ghost terms. The gauge�xing term is included to allow the inversion of the gluon propagator, as in anygauge theory with massless gauge bosons. The ghost term has to be included innon-abelian theories, where the gauge bosons interact among themselves, to cancelnon-physical contributions in those diagrams where these interactions appear. Theyare given by LGF = � 12� (@�Ga�) (@�Ga�) (2.4)LGhost = @�'ar�ab'b (2.5)r�ab = �ab @� � g fabcA�c (2.6)being � a gauge �xing constant, which is, for example � = 1 in the t'Hooft-Feynmangauge and � = 0 in the Landau gauge, and 'b massless, hermitian, scalar �eldswith Fermi-Dirac statistics called ghosts �elds.The Feynman rules deduced from this Lagrangian can be found in any text-book [11]. From them, it can be deduced that the amplitude for a quark changingits colour from � to � by emitting a gluon of type c is proportional to g(T cF )��,and that the one for a gluon of type a changing to b by emitting a gluon of typec is proportional to gfabc. From these dependences, it can be seen that the groupstructure constants and generators play an important role in strong interactionsand deserve a more careful study.2.1.2 Group structure and colour factorsThe predictions that can be made with the Lagrangian of eq. (2.1) are dependentof the gauge group used to construct it. It is well established that the gauge groupof QCD is SU(3). However, it is instructive to formulate the dependence on thegroup in a more general way.The structure constants of any group are related to the generators of the group,T a, through the relation hT a; T bi = ifabc Tc: (2.7)Two important representations of the group are the fundamental (NF � NF ) =(Nc �Nc) representation, which, in the case of SU(3) is(T aF )�� = �a��2 (2.8)



2.1 QCD 7begin �a the Gell-Mann matrices, and the adjoint (NA�NA) = (N2c � 1�N2c � 1)representation, (T aA)bc = �ifabc: (2.9)The following relations between the generators of the group can be deducedTr �T aFT bF� = TF �ab ; Tr �T aAT bA� = CA�ab ; (T aFT aF )�� = CF ��� (2.10)being CF the Casimir factor of the fundamental (fermion) representation, CA theCasimir factor of the adjoint (gluon) representation and, TF the factor that connectsboth representations through TF = NFCF=NA. They are called `colour factors' anddepend only on the gauge group of the theory. In QCD (SU(3)) they are given byCF = N2c � 12Nc = 43 ; CA = Nc = 3 ; TF = 12 : (2.11)Since a factor CF frequently appears accompanying the coupling constant �s, it iscommon practice to de�nea = �sCF2� ; X = CACF ; Z = nf TFCF (2.12)which are the so-called couplant and the factors that parametrize the gauge struc-ture of the underlying theory. nf is the number of active avours, ie., the number ofdi�erent quarks that can be produced at the energy in which the QCD calculationsare being done. Physically, they correspond to the ratio of the gluon-self couplingto the quark-gluon coupling (X) and the ratio of the gluon to qq splitting to thequark-gluon coupling (Z). The two constants have been measured by the four LEPcollaborations [12] and found in agreement with the SU(3) structure.2.1.3 The running coupling constant and RGEThe Lagrangian (2.1) contains only a free parameter: the gauge coupling constant,g, or equivalently, �s. Supposing this is a small number, perturbation theory canbe applied in order to get physical predictions. When this is done, there appear cal-culations of Feynman diagrams that contain loops which are ultraviolet divergent.These divergences are �rst regularized [13] and then removed by absorbing theminto the rede�nition of the physical bare parameters through some renormalizationprocedure [14].



8 Theoretical FrameworkThe renormalization scheme most widely used for QCD calculations is the Mo-di�ed Minimal Subtraction scheme (MS). In this scheme, the integrals are regu-larized following the dimensional regularization procedure computing the integralsin a D dimension space-time with D = 4� �. In this scheme, when computing theultraviolet divergences in the space of dimensionD, there appear terms of the form1� + ln 4� � E (2.13)which are divergent when � tends to zero. TheMS renormalization scheme consistson absorbing the terms in eq. (2.13) into the rede�nition of the physical bareparameters. In this procedure, an arbitrary scale, �, appears in order to conservethe correct dimensions of the Lagrangian of eq. (2.1).The regularization procedure allows, then, to de�ne renormalized quantities, P ,as functions of the unrenormalized ones, PU , in the formP (�s;m; �) = ZP (gB;mB; �; �) � PU (gB;mB) (2.14)which are �nite when the regularization parameter � tends to zero.In the renormalization procedure, the dependence on the arbitrary parameter� is introduced. Since any physical quantity must not depend on the value of �,provided bare parameters gB;mB, are kept �xed, the total derivative with respectto � of eq. (2.14) must be zero:�2 dd�2P (�s;m; �)����gB ;mB ="�2 @@�2 + �(�s(�)) @@�s +Xi 2m2i mi(�s(�)) @@m2i #P (�s;m; �)�����gB;mB � 0: (2.15)This is the renormalization group equation (RGE). mi = mi(�) are the runningmasses and �s(�) is the running coupling constant. mi(�s(�)) is the mass anoma-lous dimension that will determine the functional form of the running masses withthe scale �. It is given by the expression [15]�2dmi(�)d�2 �����gB ;mB = mi(�)mi(�s(�)): (2.16)The �-function controls the renormalization scale dependence of �s through�2d�s(�)d�2 �����gB;mB = �(�s) = �Xi�0 �i ��s� �i+2 : (2.17)



2.1 QCD 9The expansion of (2.17) is known up to three loops [16]. In the analysis, the two�rst coe�cients are needed�0 = �11 � 23nf�� 4 (2.18)�1 = �102 � 383 nf�� 16; (2.19)which turn out to be independent of the regularization scheme used. These expres-sions and eq. (2.17) allow to write an explicit solution for the running of �s:�s(ps) = �s(�)w  1 � �1�0 �s(�)4� lnww ! (2.20)with w = 1� �0�s(�)4� ln �2s ; (2.21)which is exact to leading and next-to-leading logarithm accuracy, i.e. it containsall terms of the full solution of the type �ns (�) lnm(�2=s) with m = n� 1; n� 2.The scale � at which the strong coupling constant becomes in�nite is implicitlyde�ned as �s(�) = 4��0L  1� �1�0 lnLL ! (2.22)with L = ln �2�2 : (2.23)Equation (2.22) is renormalization scheme independent. However, the expressionsfor the physical cross-sections are scheme dependent, and therefore, the �tted valueof � depends on the renormalization scheme.In this analysis of scaling violations, a representation is chosen that expressesthe running couplant, a(s), as a function of the strong couplant at a reference scale,MZ, through a(s) = a(M2Z)w  1 � a(M2Z)b1b0 lnww ! (2.24)with w = 1 � a(M2Z)b0 ln(M2Zs ) (2.25)where b0 = 2CF �0 and b1 = � 2CF �2 �1: (2.26)



10 Theoretical Framework2.2 Scaled energy distributionsThe single inclusive particle spectrum produced in the process e+e� ! hadrons canbe written as a sum of a `transverse' (T ), a `longitudinal' (L) and an `asymmetric'(A) cross section:d2�(s)dx dcos � = 38(1 + cos2 �)d�T (s)dx + 34 sin2 �d�L(s)dx + 34 cos �d�A(s)dx (2.27)Here � is the polar angle of the produced particle with respect to the beam direction.The Lorentz-invariant variable x is de�ned through x = 2(k � Q)=(Q � Q) where kis the 4-momentum of the produced hadron and Q the 4-momentum of the virtualphoton or Z. In the centre-of-mass frame of the collision (which is the laboratoryframe of an e+e� collider if initial state radiation can be neglected) it reduces tox = E=Ebeam.The �rst term, proportional to (1 + cos2 �), has its origin in fragmentation ofthe original quarks while the second one would not be present in a theory withoutgluon radiation. A physical insight on their origin can be given considering theinitial and �nal spin states. In high energy e+e� annihilation, the electron andpositron spins are oriented along the beam line in such a way that the system isin a state of angular momentum of the form jJ; Jz >= j1;�1 > corresponding tothe transverse polarizations of the virtual boson formed in the collision. Then, twoparticles are emitted forming an angle � with the beam line in a state of angularmomentum characterized by jJ; Jz0 >= j1;�1 >, where z0 is the axis de�ned bythe direction of the outgoing particles. The transition amplitude for this event tohappen is then proportional to< 1;�1je�i�Jy j1;�1 >= d1�1;�1 = 12(1 � cos �) (2.28)which, averaging its square over the initial states, gives the expected angular be-haviour. If now, a gluon (of spin 1) is radiated from one of the outgoing quarks,the �nal state could be characterized by jJ; Jz0 >= j1; 0 >, thus giving termsproportional to d10;�1 = �sin �p2 ; (2.29)which are the ones appearing in the longitudinal term in eq. (2.27).The third term, proportional to cos �, has its origin in parity-violating termsthat will not be used in this analysis.



2.2 Scaled energy distributions 11Integration over cos � of eq. (2.27) yields the scaled energy spectrum.1�tot d�(s)dx = 1�tot d�T (s)dx + 1�tot d�L(s)dx ; (2.30)which carries most of the weight in this analysis of scaling violations.2.2.1 Fragmentation functionsIn perturbative QCD, an expression can be computed for the transverse and lon-gitudinal cross-sections. In the naive parton model, the transverse di�erentialcross-sections is given byd�T (s)dx = 2�0(s) � Xi=u;d;s;c;bwi(s)D0;i(x) (2.31)and the longitudinal cross-section is zero. In eq. (2.31), �0(s) is the Born crosssection at a centre-of-mass energy ps � Q, wi(s) are the relative electro-weakcross sections for the production of primary quarks of type i, given in appendix A,and D0;i(x) are the bare fragmentation functions that give the probability of havinga hadron of fractional beam energy x coming from the fragmentation of a quark oran antiquark qi and de�ned as the mean of the fragmentation function of a quarkand an antiquark of the same avour, asD0;i(x) = 12 (qi(x) + qi(x)) : (2.32)The fact that the total energy carried out by all fragments is equal to that of theoriginal parton implies the following sum rule for the bare fragmentation functionsZ 10 dxxD0;i(x) = 1: (2.33)Proceeding beyond the zeroth order in �s, before the quark fragments into thehadron, it can radiate a gluon. Therefore, the di�erential probability that a partonwith scaled energy between z and z + dz is produced, and then fragments to ahadron with scaled energy between y and y + dy can be written as d�T;Lqdz (s)!dzD0;q(y) dy +  d�T;Lgdz (s)!dzD0;g(y) dy (2.34)



12 Theoretical Framework
a)

b)Figure 2.1: Feynman graphs for the parton subprocess Z! qqg. The two real gluon emissiondiagrams (a), and the virtual corrections (b) have to be added.where (d�T;Lq(g)=dz(s))dz is the probability of �nding a quark (gluon) with energyEq(g) = 12zps (2.35)in an angular momentum �nal state j1;�1 > (transverse) or j1; 0 > (longitudinal),and D0;q(g)(y) dy is the probability that this quark (gluon) fragments into a hadroncarrying fractional energy y = Eh=Eq(g): (2.36)The integration of eq. (2.34) over the internal variables results in the scaled energydistributions of eq. (2.30):d�T;Ldx (s) = Z 10 dz Z 10 dy �(x� yz) � "d�T;Lqdz (s)D0;q(y) + d�T;Lgdz (s)D0;g(y)# : (2.37)The experimental variable, x, is related to the two inside parton variables throughy = x=z: (2.38)The cross sections for the production of real quarks or gluons are given bythe Feynman diagrams of �gure 2.1(a). Their calculation contains infrared orsoft divergences, and collinear or mass singularities. The �rst ones occur whenthe energy of the emitted gluon goes to zero. The second ones occur when thegluon is emitted parallel to the quark, ie., the mass of the quark tends to zero. The



2.2 Scaled energy distributions 13virtual diagrams of �gure 2.1(b) contain, on top, ultraviolet divergences that cancelafter renormalization. However, some infrared divergences and mass singularitiesremain. All the divergences will cancel when the total cross-section is computed(the integral over x of the scaled energy distribution), but the di�erential cross-section of eq. (2.37) leads to a functional formd�T;Ldx (s) = 2�0(s) Z 1x dzz Xi=u;d;s;c;bwi(s)D0;i �xz� ���(1� z) + �s2� RT;Lq (z) ln� sm2�+ �s fT;Lq (z)�+Gluon terms (2.39)where the contribution coming from the gluon fragmentation functions is not spe-ci�ed for simplicity. m is a scale that appears in the regularization of the masssingularities.The coe�cient accompanying the logarithmic part does not depend on theregularization scheme used but the fq functions do. Moreover, the formula is notonly regularization scheme dependent but is also divergent as m ! 0. Since thecross-section is a measurable quantity, the bare fragmentation functions, whichcannot be measured, should have some mass dependence that cancels the masssingularities.The way to solve the problem consists in factorizing all the mass singularitiesin a rede�nition of the fragmentation functions, which then becomeDi(z; �2F ) = Z 1z dyy D0;i  zy! �"�(1� y) + �s2� RT;Lq (y) ln �2Fm2!+ �s gT;Lq (y)# (2.40)and are scale dependent. Di(z; �2F ) are called the e�ective fragmentation functions.Introducing the expression (2.40) into eq. (2.39) givesd�T;L(s)dx = 2�0(s) Z 1x dzz � Xi=u;d;s;c;bwi(s)Di(x=z; �2F ) �h�(1� z) + �scT;L1q (z; �s; �2F =s)i+Gluon terms (2.41)where cT;L1q is de�ned ascT;L1q (z; �s; �2F =s) = fT;Lq (z)� gT;Lq (z)� 12�RT;Lq (z) ln �2Fs ! (2.42)



14 Theoretical Frameworkand contains all the non-divergent terms that have not been absorbed in the de-�nition of the e�ective fragmentation functions. This procedure is called massfactorization and its validity is ensured by the general factorization theorem [17].The separation of the singular part in eq. (2.39) from the remaining �nite part takesplace at a factorization scale, �F , which relates the short distance (`partonic') tothe long distance (`hadronic') e�ects. The functional form of the cT;L1q (z; �s; �2F =s)depends on the factorization scheme adopted and the regularization procedure usedto control the infrared divergences.After the inclusion of the gluon terms in eq. (2.39) and absorbing the �(1� z)of eq. (2.41) into the rede�nition of the so-called coe�cient functions, CT;Lq , thetransverse and longitudinal cross-section have the general formd�T;L(s)dx = 2�0(s) Z 1x dzz CT;Lq (z; �s(�F ); �2F=s) Xi=u;d;s;c;bwi(s)Di(x=z; �2F )+ 2�0(s) Z 1x dzz CT;Lg (z; �s(�F ); �2F=s)Dg(x=z; �2F ) : (2.43)Formula (2.43) reduces to the parton model formula, (2.31), at �rst order. Thecoe�cient functions have been computed up to next-to-leading order and theirexpressions are given in section B.1 in appendix B for the factorization schemeused in this analysis. In �rst order, the only one not equal to zero is CTq = �(1�z).Since what is usually measured is the scaled energy distribution, 1=�totd�=dx,expression (2.43) will contain the ratio of the total cross section, �tot, to the Borncross section, �0. This can be computed with the explicit expressions for thecoe�cient functions and integrating the di�erential cross-sections (2.43). Up to�rst order in �s, the integrals give�T = �0 ; �L = �s� �0: (2.44)Thus, the ratio of the two cross sections is given by�tot�0 = 1 + 32 �s2�CF = 1 + 32a: (2.45)Equations (2.44) and (2.45) show that, up to �rst order in �s, the total cor-rection to �tot comes only from the longitudinal cross section. Higher orders havebeen computed for the �s corrections to the total cross section [18], but not thecontributions of the transverse and longitudinal cross sections separately.



2.3 Evolution of the fragmentation functions 152.3 Evolution of the fragmentation functionsAlthough the e�ective fragmentation functions cannot be computed perturbatively,their change with energy is predicted in perturbative QCD. Equation (2.40) alreadysuggests a logarithmic dependence with some energy scale. The change of thee�ective fragmentation functions with energy is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [19] that can be written asdDj(x; s)d ln s = Xi=u;d;s;c;b;g Z 1x dzz Pij(z; �s(�R); �2R=s)Di(x=z; s) ; (2.46)where the splitting kernels Pij are known to next-to-leading order accuracyPij(x; �s(�R); �2R=s) = �s(�R)2� P (0)ij (x) +  �s(�R)2� !2 P (1)ij (x; �2Rs ) (2.47)The renormalization scale, �R, relates the splitting functions at a given scale psto the strong coupling constant at the renormalization point �R. The indices i; jrun over all active quark avours and the gluon. Equation (2.46) shows that thelogarithmic energy change in the e�ective fragmentation functions is due to pro-cesses in which a quark or a gluon (partons) with a given scaled energy higher thanx (the scaled energy of the observed hadron) radiate becoming another parton offractional energy z (the probability of this being proportional to the correspondingsplitting kernel) that afterwards fragments into the hadron. The probability of thelast fragmentation is given by the probability of having a hadron of scaled energyx in a jet of energy z � Ebeam. The integral takes into account all the cases withz > x.Up to �rst order in �s, the dependence on ln s of the quark fragmentationfunctions is due to two processes: the quarks can radiate a gluon and then fragment;or they can radiate a gluon which then fragments to the hadron. Analogously, thechange in the gluon fragmentation function can be due to the gluon that producestwo quarks that then fragment, or it can produce two gluons which then fragmentto the observed hadrons. Since in the expression (2.43) for the measurable crosssections, the gluon fragmentation function enters to order �s, the change of thegluon fragmentation function is already next-to-leading order.In higher order, other possibilities arise. A quark can split into a quark ofa di�erent avour, or to an antiquark of the same or di�erent avour before thefragmentation takes place.



16 Theoretical FrameworkThe evolution equations resum all the leading logarithmic terms of the solutionof the fragmentation functions. Thus, they contain all the diagrams with anynumber of single gluon emission and before the fragmentation takes place. Thesediagrams are called ladder diagrams.It is most convenient to write the coupled system of evolution equations in (2.46)in terms of singlet and non-singlet parts de�ned asS(x; s) = 1nf � Xi=u;d;s;c;bxDi(x; s) and Ni(x; s) = xDi(x; s)� S(x; s) (2.48)where the singlet and non-singlet components have been de�ned with the x-weigh-ted particle spectra. This de�nition, which slightly deviates from common practice,results in a less singular behaviour for x! 0. The evolution equations then becomes ddsNi(x; s) = Z 1x dzPN (z; �s(�R); �2R=s)Ni(xz ; s) (2.49)for the non-singlet components, while the energy evolution of the singlet compo-nents is described by the coupled systems ddsG(x; s) = Z 1x dz �PGG(z; s; �R)G(xz ; s) + PGQ(z; s; �R)S(xz ; s)�s ddsS(x; s) = Z 1x dz �PQG(z; s; �R)G(xz ; s) + PQQ(z; s; �R)S(xz ; s)� (2.50)where G(x; s) � xDG(x; s) is used. The terms containing PQQ and PGG are calledthe diagonal parts, and PGQ and PQG, the o�-diagonal parts. The expressions ofthe splitting kernels used in the analysis are given in section B.2 in appendix B.2.4 Power-law correctionsThe theory described in section 2.3 concerning the energy evolution of the frag-mentation functions is not complete. All the equations were developed with theassumption of zero quark mass. Also, the coe�cient functions of eq. (2.43) givenin the appendix B are deduced with this hypothesis. This may not be a good ap-proximation, at least for charm and bottom quarks, and the e�ects of their massesin the change of the functional form of the e�ective fragmentation with the energycould induce some corrections that should be controlled. The fact that the theorydescribes energy evolution of scaled-energy distributions and that what is usuallymeasured is the scaled-momentumdistributions can also produce some corrections.



2.4 Power-law corrections 17The fragmentation functions have been de�ned after the fragmentation stage.It is known that heavy avour quarks fragment in a heavy hadron that carriesmost of the initial quark momentum and some light hadrons that share the restof the initial momentum. This would produce a hard fragmentation function that,after decay, would �nally give the softer observed fragmentation function for theseavours. The decay step is not governed by QCD and it should not be considered inthe scaling violations analysis. Since the fragmentation functions before the decayare not easy to measure, it is necessary to work with some rede�ned fragmentationfunctions that include the decay of the heavy hadrons. The fact that the energyevolution is made in the �nal fragmentation function is only a practical matterand, again, the e�ects should be studied and controlled.Finally the fragmentation itself is a non-perturbative phenomena. Therefore,there can be non-perturbative corrections to the energy evolution of the fragmen-tation functions. This is a less known e�ect that has to be parametrized somehow.2.4.1 Kinematic correctionsThe simplest power-law correction appears when the momentum fraction, xp =2p=ps, of the charged particle is used instead of the energy fraction, xE = 2E=ps.The relation between the two approaches is given byxE = xp + 2m2xps +O(1=s2): (2.51)The largest corrections come from considering the minimumvalues of x and energiesin the analysis. However, even for values of xp � 0:1, which are the lowest valuesused, and for ps = 22GeV and taking m as the mass of the proton, the correctionis not larger than the bin width of the distributions measured by the experiments.For any other values of m and xp used in the analysis, the correction would besubstantially smaller than the bin width. Thus, this correction is believed to besmall for the range of values of xp and centre-of-mass energies used in the analysis.2.4.2 Heavy quark massesThe coe�cient functions and splitting kernels presented in section 2.2 assumed nomass for the quark production and fragmentation. This is a good approximation for



18 Theoretical Frameworkthe light quarks, but for heavy quarks, and especially for the b quark fragmentation,this could not be the case.In case the masses of the quarks are considered, the coe�cient functions haveto be recomputed. In [20] a full list of all the coe�cient functions up to order �sis given.As an example, the coe�cient function CLg is modi�ed toCLg (z; �s(�F ); �2F=s) = a(�F )2�0(s) � (�(a)(s) "��+ z2 + 2z � 4z ln 1 + �z1� �z+2�z(2 + �)1� zz �+�(v)(s) "�2�z ln 1 + �z1� �z + 4�z 1� zz #) (2.52)where �z = q1� �=(1 � z) and � = 4m2=s being m the mass of the heavy quark,and �(v);(a)(s) the vector and axial contributions to the electroweak Born crosssection (appendix A). When the mass is set to zero, � ! 0 and �z ! 1, andexpression (2.52) reduces to the one given in eq. (B.1).From eq. (2.52) it can be seen that all the corrections coming from using thezero-mass coe�cient functions instead of eq. (2.52) are of order �, that is, at leastO(m2=s). Thus, these corrections are expected to be small. Since they can bereabsorbed into the de�nition of the fragmentation functions at one energy, theyonly a�ect the evolution process.The expressions for the other coe�cient functions can be found in [20]. Theconclusion that the corrections goes as m2=s also holds for the rest of coe�cientfunctions. Thus, in the analysis of scaling violation, the coe�cient functions givenin appendix B, which assume zero quark mass, are going to be used for all the quarkavours and the remaining di�erences will be included in a global parametrizationof the power-law corrections.2.4.3 Heavy quark decaysThe evolution equations will be applied to the total fragmentation functions, afterdecay of the heavy hadrons. The corrections resulting from the use of these frag-mentation functions instead of the ones that would result from the quark fragmen-tation alone, before decay, are described in this section.



2.4 Power-law corrections 19The probability of �nding a particle with scaled energy x after fragmentationand decay of a quark is de�ned byTi(x; s) = Z 10 Di(y; s)dy Z 10 'i(z; s)dz � �(x� yz); (2.53)where 'i(z; s) is the energy distribution of the decay products scaled to the energyof the parent hadron. x = 2Ed=ps is the fractional energy of the �nal decayproduct, y = 2Eh=ps is the fractional energy taken by the hadron right afterfragmentation, and z = Ed=Eh = x=y. The index i refers to the di�erent quarkspecies. The total fragmentation function is then given byTi(x; s) = Z 1x dyy Di(y; s) 'i  xy ; s! : (2.54)The evolution equations hold for the fragmentation functions Di(y; s). But themeasured cross sections are related with Ti(x; s). The derivative of the latter withrespect to ln s can be decomposed in two terms@Ti(x; s)@ ln s = A+B; (2.55)with the following de�nitionsA � Z 1x dyy 'i  xy ; s! @Di(y; s)@ ln s (2.56)B � Z 1x dyy Di(y; s) @'i(x=y; s)@ ln s : (2.57)The evolution equations can be applied to A, which can be written asA = Z 1x dyy 'i  xy ; s!Xj Z 1y dzz Pij(z; �s(�R); �2R=s)Dj �yz ; s� : (2.58)Delta and step functions can be introduced in (2.58) and the order of integrationcan be exchanged in such a way that A can be written asA = Xj Z 1x dzz Pij(z; �s(�R); �2R=s) Z 1x=z d�� Dj(�; s)'j  x=z� != Xj Z 1x dzz Pij(z; �s(�R); �2R=s)Tj �xz ; s� : (2.59)The left side of (2.55) together with the result in (2.59) have the same structureas the DGLAP evolution equations applied to the total fragmentation functions,



20 Theoretical FrameworkTi. Thus, the term in B would constitute a non-QCD correction to the evolutionequations coming from the decay e�ects included in Ti. The B term contains aderivative of the decay function, 'i, which can be written asZ d� �  � � xy! @'i(�; s)@ ln s : (2.60)The decay spectrum, 'i(�; s), can be computed as the Lorentz boost of the restframe spectrum, �i(E?). If E? is the energy of the decay product in the heavyhadron rest frame and �? the angle of the decay particle with respect to the lineof ight of the heavy hadron in the centre-of-mass frame, the observed energy ofthe decay product can be written asE = 12�ps =  E? (1 + � cos �?); (2.61)where  = Eh=m and � = q1� 1=2, being Eh and m the energy and mass of theheavy hadron, respectively. This allows to write 'i as'i(�; s) = Z d cos �? �(1� cos �?) �(cos �? + 1) �Z dE?�i(E?) � "� � 2E?ps (1 + � cos �?)# ; (2.62)which can be integrated over cos�? to �nally have the following expression:@'i(x=y; s)@ ln s = @@ ln s Z E�E=� dE?E? �i(E?)ps2 1� (2.63)where � is de�ned as � = s1 + �1� � : (2.64)The amount of correction can be explicitly obtained if a decay to two particles isconsidered. In this case, eq. (2.63) can be simpli�ed so that B from eq. (2.57) canbe written as: B = Z 1x dyy Di(y; s)s @@s 242y  1� 4m2y2s !�1=235 (2.65)whose �rst term is of order m2=s.In [20], a di�erent approach based in the moments of the total fragmentationfunctions arrives to the same conclusion, ie., that the power-law correction comingfrom the decay of heavy hadrons is of order m2=s. At LEP energies, for example,this correction is of the order of 0.2% multiplied by the fraction of bb.



2.4 Power-law corrections 212.4.4 Hadronization e�ectsThe hadronization e�ects are the least well known e�ects in the evolution. Theyhave not been computed explicitly for the fragmentation functions neither for theirevolution. In deep-inelastic scattering, they are known to go as 1=Q2 [21]. However,no clear statement on their dependence with Q has been given for the case of e+e�collisions.Nevertheless, the fact that corrections to the thrust and sphericity variableshave been shown to go as 1=Q � 1=ps [22, 23], suggests that the corrections tothe evolution of the fragmentation functions could also follow the same behaviour.A simple hadronization model can help to have an insight in this hypothesis.The model [20] is given by a colour-connected pair of partons that produces lighthadrons which occupy a tube in (y; pt)-space, being y and pt the rapidity and thetransverse momentum of the produced hadrons with respect to the line in whichthe partons move away. De�ning �(pt) as the density of hadrons in the (y; pt)-space,the energy and momentum of a tube of length Y is given byE = Z Y0 dy d2pt �(pt) pt cosh y = � sinh Y (2.66)P = Z Y0 dy d2pt �(pt) pt sinh y = �(cosh Y � 1) � E � � (2.67)where � = Z d2pt �(pt) pt: (2.68)sets the hadronization scale.The momentum of the system receives a correction of order �=E = 2�=ps.Thus, it is expected that the hadronization process introduces corrections of theorder 1=ps.The hadronization corrections have not been explicitly computed for the evolu-tion of the fragmentation functions. Their dependence with the energy is supportedby some arguments as the one explained above. Thus, they have to be parametrizedin the analysis. This parametrization will be explained in section 6.4.



22 Theoretical Framework2.5 Measurement of the strong coupling constantIn section 2.3, it has been shown that the e�ective fragmentation functions evolvewith the energy in a way that is predictable by perturbative QCD. This evolutiondepends on �s. Therefore, data at di�erent centre-of-mass energies can be used toextract a value of the strong coupling constant in an analogous way as it is donein deep-inelastic scattering with the structure functions, which evolve followinganalogous evolution equations as the fragmentation functions in e+e� annihilation.Schematically, a QCD test based on measurements of inclusive cross sections atdi�erent centre-of-mass energies, can be visualized as shown in �gure 2.2. Assuminga given set of fragmentation functions is speci�ed at an initial factorization scale�i, perturbative QCD relates those fragmentation functions to an observable crosssection through eq. (2.43) which, after inclusion of the non-perturbative power-lawcorrections, can be compared with experimental data (horizontal arrows). Thenatural choice is �i = psi and �f = psf . Since the fragmentation functions arenot calculable in perturbative QCD they can be adjusted such that the theoreticalprediction agrees with the data at a given energy. However, having once �xed theinitial conditions, a QCD test can be performed by comparing the QCD predictionfor various centre-of-mass energies to actual measurements. The energy evolution(vertical arrows) of the fragmentation functions is described by perturbative QCDthrough eq. (2.46). Here the renormalization scale �R appears, i.e. the energyvariation of the fragmentation functions at the scale � is expressed as function of� and the renormalization point �R. The natural choice is �R = �.An important fact in the scheme presented is that there are evolution equationsInput Measurement at Ecm = psiD(x; �2i ) ! QCD(�2i ; si) ! d�(si)dx ! NP� terms ! d�(si)dxe#QCD(�2; �2R)# Measurement at Ecm = psfD(x; �2f ) ! QCD(�2f ; sf) ! d�(sf )dx ! NP� terms ! d�(sf )dxeFigure 2.2: Scheme of the scaling violations analysis



2.5 Measurement of the strong coupling constant 23for fragmentation functions corresponding to each avour and the gluon, and noneof them have been isolated so far at any energy. In fact, they cannot be measureddirectly, but their value should be inferred from their relation to the measurablecross-sections as described above. The measurement of the fragmentation functionfor each avour would have little importance if avour composition would be thesame at all the energies. But this is not the case as it is shown in �gure A.1. Sincethe b quark fragmentation function is softer than the ones from the other avoursand the fraction of b quarks is larger at LEP, a softer scaled energy distributionwould be measured at LEP even in the absence of QCD e�ects. This means thatavour-tagged distributions are needed, at least at one centre-of-mass energy, to�x the fragmentation function for di�erent quark species and disentangle this e�ectfrom the QCD scaling violations.Also, the measurement of the gluon fragmentation function is needed since itenters in the evolution equations at next-to-leading order level. A direct measure-ment of the gluon fragmentation function can be obtained from three-jet events,where jets from well separated gluons are tagged by default when the other twojets contain long-lived particles. Additional information on the gluon fragmenta-tion function can be extracted from the longitudinal and transverse cross sectionswhich are related to the gluon fragmentation function according to [20]1�tot d�Ldx = �s2� Z 1x dzz " 1�tot d�Tdz + 4� zx � 1�Dg(z)#+O(�2s); (2.69)with has yet uncalculated termsO(�2s). Truncating the above expression at O(�s),the parameter �s becomes an e�ective leading-order coupling constant which mustnot be confused with the next-to-leading order running coupling constant appearingin eqs. (2.43), (2.46). Because of this, it will be referred to as �s in the following.The measurement of all distributions needed for the analysis of scaling violationswill be described in chapter 5. The following two chapters present the detector, andthe main tools and algorithms needed to perform the measurement of the scaledenergy distributions for di�erent avour enriched samples.



24
Chapter 3The ALEPH detectorThe ALEPH detector [24, 25] (ALEPH:`Apparatus for LEP PHysics') is one ofthe four large detectors installed in the LEP accelerator. The other three areDELPHI [26], L3 [27], and OPAL [28]. It was designed to study in detail theparameters of the Standard Electroweak model, to test QCD at large Q2 and tosearch for new physics (such as the top quark, the Higgs boson or supersymmetricparticles) in the e+e� interactions that take place in the LEP accelerator. Thedetector was conceived to be as hermetic as possible covering the maximumallowedsolid angle and to collect as much information as possible from each event. Thischapter describes the ALEPH detector with special emphasis in those parts usedin the analysis.3.1 LEPThe Large Electron Positron storage ring (LEP) [29], is a nearly circular acceleratorsited at the European Centre of Nuclear Research (CERN) in Geneva. It is locatedinside a nearly horizontal tunnel of 26:7 km of circumference, at a depth between80 and 137m spanning the French and Swiss territories (�gure 3.1). It consistsof eight arcs and eight straight sections. The beams are formed by bunches ofelectrons and positrons that circulate inside the beam pipe. They are acceleratedin opposite directions and cross in eight or sixteen points in case the number ofbunches per beam is four or eight, respectively, although they are steered to collideonly in the four points where the detectors are installed. The collisions in the otherpoints are avoided by a system of electrostatic separators.
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Figure 3.1: The LEP ring.The accelerator program comprises two phases. In the �rst (current) phase,LEP accelerates, stores and collides electrons and positrons at a centre-of-massenergy around 90GeV and produces Z bosons with a luminosity (the number ofevents per time per unit of cross-section) that has been growing every year andthat is now above 1031 cm�2s�1. In the second phase, to start in 1996, an increaseof the centre-of-mass energy up to 180GeV will allow the production of W pairsat a foreseen luminosity close to 1032 cm�2s�1.The LEP injection chain can be seen in �gure 3.2. It starts with the LINearACcelerator (LINAC) which accelerates electrons and positrons in two stages. Theelectrons are �rst accelerated up to 200MeV. Part of the electrons are used toproduce positrons and the rest, together with the positrons are accelerated up to600MeV. After the LINAC, the particles are inserted into a small circular e+e�accelerator (EPA). From there, they are inserted to the PS accelerator, where theenergy is taken up to 3:5GeV. The particles are injected to the SPS accelerator,rising to an energy of 20GeV. Finally, they are injected to the LEP main ring andaccelerated to an energy of ' 45GeV with a current up to 6:0mA per beam.The running and optics con�guration of LEP has changed with time trying
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Figure 3.2: Scheme of the LEP injectors and accelerators.to reach higher luminosities. While in the �rst years of operation (from 1989to Oct. 1992), four bunches of electrons were circulating inside the acceleratorand were colliding in the interaction points every 22�sec, in the 1993 and 1994running periods collisions of 8 bunches spaced 11�sec gave a considerable increasein luminosity. For the 1995 running period, a scheme of four bunch trains ofelectrons and positrons consisting of two, three or four equally spaced wagons isexpected to produce 50K Z per day in each collision point. Table 3.1 gives themain parameters of LEP.3.2 The ALEPH detector: general descriptionThe ALEPH detector is located at experimental point number 4 in a cavern 143munder the surface. It is a 12m diameter by 12m length cylinder positioned aroundthe beam pipe (tube of 10 cm of radius that forms part of the accelerator). In theALEPH reference system, the z direction is along the beam line, positive in the



3.2 The ALEPH detector: general description 27Parameter ValueCircumference 26667.00mAverage radius 4242.893 mBending radius in the dipoles 3096.175 mDepth 80-137 mNumber of interaction points 4Number of bunches per beam 4-8RMS bunch length 11.67 mmHorizontal bunch sigma 200 �mVertical bunch sigma 12 �mInjection energy 20 GeVMaximum beam energy (phase I) 55 GeVRF frequency 353 MHzMaximum total current per beam 0.006 ALuminosity 1031cm�2s�1Vertical ��V 5 cmHorizontal ��H 25���V cmTable 3.1: Main LEP parameters.direction followed by the e�, thereby slightly di�erent from the local horizontaldirection due to the fact that the accelerator is slightly tilted. The positive xdirection points to the centre of LEP, and is horizontal by de�nition. The positivey direction is orthogonal to z and x and deviates 3:5875mrad from the local verticaldirection.The detector consist of subdetectors, each of one specialized in a di�erent task.The tracking devices allow to reconstruct the trajectories of charged particles andto classify them using the ionization left in the detectors. The electromagneticand hadronic calorimeters give a measurement of the energy of the particles, beingalso the only detectors capable to give position information for the neutral par-ticles. Muons are identi�ed using the muon chambers and/or the �nal planes ofthe hadronic calorimeter. Specialized detectors situated at low angle give a precisemeasurement of the luminosity. Some other subdetectors monitor the luminosityand the background. Finally, the trigger and data acquisition system is used tomanage everything and record the useful information. A brief description of thesedevices follows.
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Figure 3.3: Schematic view of the ALEPH detector. (1) LuminosityMonitor. (2) Inner TrackingChamber. (3) Time Projection Chamber. (4) Electromagnetic Calorimeter. (5) SuperconductingCoil. (6) Hadronic Calorimeter. (7) Muon Chambers. (8) Beam Pipe.Main detectorsA particle leaving the interaction point would encounter the following subdetectors(�gure 3.3):{ The Mini Vertex DETector (VDET), fully operational since end 1991, is adouble sided silicon strip device with two layers of strips parallel (z) andperpendicular (r�) to the beam, situated around the beam pipe, providing



3.2 The ALEPH detector: general description 29a very accurate vertex tagging of tracks coming from the interaction point.The coordinate spatial resolution is 10�m in r� and 13�m in z.{ The Inner Tracking Chamber (ITC) is a cylindrical multiwire drift chamber.It contributes to the global ALEPH tracking and is also used for the triggeringof charged particles coming from the interaction region. It can provide upto eight precise r� coordinates per track, with an accuracy of 100�m percoordinate.{ The Time Projection Chamber (TPC), the central track detector of ALEPH,is a very large three-dimensional imaging drift chamber. It provides up to27 three dimensional coordinate points of each track. The single-coordinateresolution is 173�m in the azimuthal direction and 740�m in the longitu-dinal direction. From the curvature of the tracks in the magnetic �eld, theTPC gives a measurement of transverse particle momenta, pT , with an accu-racy of �pT=p2T = 0:6 � 10�3 (GeV=c)�1 at 45GeV, if it is used together withthe ITC and the VDET. The chamber also contributes to particle identi�ca-tion through measurements of energy loss (dE=dx) derived from about 340samples of the ionization for a track traversing the full radial range.{ The Electromagnetic CALorimeter (ECAL) is a sampling calorimeter con-sisting of alternating lead sheets and proportional wire chambers read out inprojective towers. A granularity about 1� � 1� is obtained. The ECAL mea-sures the energy and position of electromagnetic showers. The high positionand energy resolutions achieved lead to good electron identi�cation and allowto measure photon energy even in the vicinity of hadrons.{ The superconducting coil is a liquid-Helium cooled superconducting solenoidcreating, together with the iron yoke, a 1:5T axial magnetic �eld in thecentral detector.{ The Hadronic CALorimeter (HCAL) is a sampling calorimeter made of layersof iron and streamer tubes. It measures energy and position for hadronicshowers and, complemented with the muon chambers, acts as a muon detec-tor. The readout is performed twice: using cathode pads forming projectivetowers and using digital readout of the streamer tubes for muon tracking andalso for triggering. It also provides the main support of ALEPH, the large



30 The ALEPH detectoriron structure serving both as hadron absorber and as return yoke of themagnet.{ The MUON chambers (MUON), outside HCAL, are two double layers oflimited streamer tubes which measure position coordinates of the muons,only detectable particles reaching this subdetector.Luminosity and beam monitoringAn accurate luminosity measurement is required for the precise measurement ofcross-sections. This is provided by four detectors for small angle Bhabha scatteringinstalled around the beam pipe:{ The Luminosity CALorimeter (LCAL), is a lead/wire calorimeter similar toECAL in its operation. It consists of two pairs of semi-circular modulesplaced around the beam pipe at each end of the detector.{ The SIlicon luminosity CALorimeter (SICAL) was installed in September1992 on each side of the interaction region. It uses 12 silicon/tungsten layersto sample the showers produced by small angle Bhabhas. It improves thestatistical precision of the luminosity measurement by sampling at smallerangles than LCAL. The systematic error of the luminosity is also reducedthanks mainly to the greater precision in the positioning of its components.{ The very small Bhabha CALorimeter (BCAL) located behind the �nal focusquadrupoles, is used to give a measurement of the instantaneous luminosityand also as a background monitor. It is a sampling calorimeter made of tung-sten converter sheets sandwiched with sampling layers of plastic scintillator.A single plane of vertical silicon strips is used to locate the shower position.The optimization of LEP performance needs also some monitoring of the beamconditions which is accomplished by:{ The Small Angle Monitor of BAckground (SAMBA) is positioned in frontof the LCAL at either end of the detector. It consists of two multi-wireproportional chambers at each end, read out in two rings of 8 pads per ring.It is used as a background monitor.



3.2 The ALEPH detector: general description 31{ The BeamOrbit Monitors (BOMs), located around the circumference of LEP,measure the mean position and angle of the beam orbits which are used byLEP to optimize the beam conditions, and by ALEPH to determine the (x; y)position of the beam spot as a starting point for o�ine reconstruction of theprimary vertex.Trigger systemNot all the collisions that take place at LEP are useful for the physics that ALEPHis willing to study. The large amount of non-useful events have to be �ltered outin order to avoid ine�ciencies in the detector and a large amount of unused data.For example, if an event is decided to be recorded, it takes up to 45�sec for theionization electrons to reach the end-plates of the TPC and the electromagneticcalorimeter takes up to 61�sec to be cleared and ready for the next event. Sincethree bunch crossings occur in this time, this operation must be performed onlywhen the event will be useful, otherwise large ine�ciencies would be introduced.The purpose of the trigger system is to produce a signal that starts the readout ofthe events. It is desirable to keep all the electron-positron collisions and to reduceas much as possible the rate of background events. The trigger system has beenorganized in a three-level scheme:{ Level one decides whether or not to read out all the detector elements.Its purpose is to operate the TPC at a suitable rate. The decision is takenapproximately 5�s after the beam crossing from pad and wire informationfrom ECAL and HCAL and hit patterns from the ITC. The level one ratemust not exceed a few hundred Hz. If the decision is not to take the event,the TPC is reset and kept ready for the next event.{ Level two re�nes the level one charged track triggers using the TPC trac-king information. If the level one decision cannot be con�rmed, the readoutprocess is stopped and cleared. The decision is taken approximately 50�safter the beam crossing (the time at which the TPC tracking information isavailable). The maximum trigger rate allowed for level two is about 10Hz.{ Level three is performed by software. It has access to the information fromall detector components and is used to reject background, mainly from beam-



32 The ALEPH detectorgas interactions and o�-momentum beam particles. It ensures a reduction ofthe trigger rate to 3{4 Hz, which is acceptable for data storage.This trigger scheme has to be rather exible since it has to be able to rejectthe background and keep signals from possible new physics events. Therefore theavailable electronic signals from di�erent ALEPH detector components allow for avariety of triggers which, together, cover all possible types of events.Data Acquisition System and Event ReconstructionThe data acquisition system allows each subdetector to take data independently,process all the information taken by the detector, activates the trigger system atevery beam crossing, writes the data in a storage system and monitorizes andregulates continuously all the detector and electronic system.The DAQ [30] architecture is highly hierarchical. Following the data and/orcontrol ow from the bunch crossing of the accelerator down to storage device, thecomponents found and their tasks are briey described below:{ Timing, Trigger and Main Trigger Supervisor: synchronize the readout elec-tronics to the accelerator and inform the ReadOut Controllers (ROCs) aboutthe availability of the data.{ ROCs: initialize the front-end modules, read them out and format the data.{ Event Builders (EBs): build a subevent at the level of each subdetector andprovide a `spy event' to a subdetector computer.{ Main Event Builder (MEB): collects the pieces of an event from the variousEBs and ensures resynchronization and completeness.{ Level three trigger: as seen, performs a re�ned data reduction.{ Main host and subdetector computers: The main machine (an AXP Clus-ter) initializes the complete system, collects all data for storage and providesthe common services. The subdetector computers get the `spy events' andperform the monitoring of the large subdetectors (TPC, ECAL, HCAL).
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Figure 3.4: Schematic representation of the ONLINE and FALCON cluster.The data taken by the online computers is called raw data and is reconstructedquasi online. In less than two hours after the data is taken, the event reconstructionand a check of the quality of the data is done, thus allowing ALEPH to have afast cross-check of the data and correct possible detector problems. This task isperformed by the Facility for ALeph COmputing and Networking (FALCON) [31].The year by year continuous increase of CPU power of the machines has madethe hardware and software of FALCON develop in order to accommodate to theavailable performance and requirements.In its current con�guration, FALCON consists of three processors (three DEC-AXP machines with a total power of ' 60 CERN units 1), connected as sketchedin �gure 3.4. Each of the processors runs the full ALEPH reconstruction programJULIA (Job to Understand Lep Interactions in ALEPH) [32] which, for each eventof the raw data �le, processes all the information from the di�erent subdectectors.Other programs also run to compute the drift velocity in the TPC (PASS0), or toanalyze the quality of the data taken (RunQuality).After their reconstruction, the events are written in POT (Production OutputTape) data �les and transmitted to the CERN computer center where they are1A CERN unit is equivalent to an IBM 168 CPU unit, approximately 1=6 of an IBM 3090processor or about 1.2 Mops.



34 The ALEPH detectorconverted into di�erent data types more suitable for physics analysis. The eventsare ready to be analyzed only a few hours after the raw data have been taken.3.3 Subdetectors relevant to the analysisThe measurement of the scaled energy distributions and the selection of hadronicevents need only the use of tracking devices, especially the TPC and the ITCthat determine the polar angle and the momentum of the particles. However, theselection of avour-tagged samples of events needs the VDET detector and also theuse of the calorimeters.The tracking detectors are described in detail in the following sections. Alsoa description of the electromagnetic and hadronic calorimeters is given, althoughless detailed due to their more limited importance for the analysis.3.3.1 The Mini Vertex DetectorThe VDET is formed by 96 silicon wafers each of dimension (5:12 � 5:12 � 0:03) cmarranged in two coaxial cylinders around the beam pipe. The inner layer has ninewafers in azimuth, with average radius of 6:5 cm, and the outer has 15 waferswith average radius of 11:3 cm, both layers being four wafers long. Each waferhas 100�m strip readout both parallel (r�) and perpendicular (rz) to the beamdirection. Particles passing through a wafer deposit ionization energy, which iscollected on each side of the wafer.The advantage of the VDET is that it pinpoints a track's location in space quitenear to the beam pipe. VDET hits are used by extrapolating a track found by theITC and/or the TPC to the VDET and then re�tting the track more precisely usingVDET hits which are consistent with it. The addition of VDET to the trackingimproved the momentum resolution at 45GeV to �pT=p2T = 0:6 � 10�3 (GeV=c)�1from �pT=p2T = 0:8 � 10�3 (GeV=c)�1 when only TPC and ITC were used [34].Using VDET, together with the other tracking detectors, the spatial coordinatesof the origin of a 45GeV charged track's helix (impact parameter) can be found towithin about 23�m in the r� view and 28�m in the rz view measured from dimuonevents. For lower momentum tracks, this parameter is measured from hadronic Z



3.3 Subdetectors relevant to the analysis 35
Figure 3.5: Cut-away view of the VDET.decays. The resolution on the impact parameter can be parametrized as [35]�(�) = 25�m+ 95�mp (GeV=c)�1: (3.1)This allows tracks produced by decays of short-lived particles to be separated fromthose at the primary interaction point with good e�ciency.3.3.2 The Inner Tracking ChamberThe Inner Tracking Chamber (ITC) [36] using axial wires made of gold and tungstenprovides up to eight r� points for tracking in the radial region between 16 and 26 cm.It also provides the only tracking information for the level one trigger system. Itis able to identify roughly the number and geometry of tracks, due to its fastresponse time (the trigger is available within 2{3 �s of a beam crossing) and allowsnon-interesting events to be quickly rejected.The ITC is operated with a gas mixture of argon (50%) and ethane (50%) atatmospheric pressure.The ITC is composed of 8 layers of sensing wires (operated at a positive po-tential in the range 1:8� 2:5 kV) running parallel to the beam direction, located



36 The ALEPH detector
Figure 3.6: The ITC drift cells.forming hexagonal cells with the central sense wire surrounded by six �eld wiresheld at ground potential (�gure 3.6). The sense wires detect the ionization of par-ticles passing close by. The measurement of the drift time gives the measurementof the r� coordinate within about 150�m. The z coordinate is found by measuringthe di�erence in arrival times of pulses at the two ends of each sense wire, but withan accuracy of only about 3 cm. The particles with polar angles between 14 and166 degrees pass through the 8 layers.3.3.3 The Time Projection ChamberThe Time Projection Chamber (TPC) [37] was designed to obtain high precisionmeasurements of the track coordinates, to get good momentum resolution and tomeasure the dE=dx depositions of charged particles.The time projection chambers use the techniques of the ionization chambersto measure the transverse (x-y) coordinates, while measuring the time to detecteach ionized bunch of electrons gives the position in the z coordinate. In the caseof ALEPH, the charged particles create ionization in the gas that �lls the TPC.The electrons produced in this ionization are driven by an electric �eld to theend-plates where wire chambers are located. There, a secondary ionization takesplaces and the position where this happens gives the r� coordinate. The timeneeded for the electrons to reach the end-plate gives the z coordinate. Due to



3.3 Subdetectors relevant to the analysis 37the 1:5T magnetic �eld produced by a superconducting solenoid surrounding theTPC whose axis is parallel to the TPC symmetry axis, the trajectory of a chargedparticle inside the TPC is a helix, and its projection onto the end-plate is an arc ofa circle. By measuring the sagitta of this arc, one obtains the curvature radius thatis proportional to the modulus of the component of the momentum perpendicularto the magnetic �eld.The TPC is a cylindrical structure of 4:4m long with 35 cm and 180 cm of innerand outer radius, respectively (�gure 3.7). Its volume is delimited by two coaxialcylinders which hold the end-plates. The dimensions were designed to reach 10%resolution in transverse momentum for the highest possible momenta (muon pairsproduced at the LEP energy of 90GeV per beam). The resolution �pT in transversemomentum pT (GeV/c) is proportional to the resolution in the measurement of the

Figure 3.7: Scheme of the TPC.



38 The ALEPH detectorsagitta �s (mm): �pTpT = 0:027pT �sl2B (3.2)where B(T) is the modulus of the magnetic �eld and l(m) is the length of theprojected trajectory. This was optimized by choosing the largest practical leverarm l = Rmax �Rmin ' 1:4m.The device is divided into two half-detectors by a membrane which is situatedin the plane perpendicular to the axis and midway between the end planes. Thiscentral membrane is held at a negative high voltage (�26 kV) and the end-platesare at a potential near ground. The curved cylindrical surfaces are covered withelectrodes held at potentials such that the electric �eld in the chamber volume isuniform and parallel to the cylinder axis.The TPC volume is �lled with a nonammable gas. Traversing particles willionize it producing electrons that will be drifted towards one end-plate by the elec-tric �eld of 110V=cm. The argon(91%) + methane(9%) gas mixture was chosenbecause with this mixture is possible to reach high !� values (! = cyclotron fre-quency; � =mean collision time of the drifting electrons). This causes the electronsto drift mainly along the magnetic �eld lines and thereby reduces the systematicdisplacements due to the electric �eld inhomogeneities.The electrons produced by the ionization are ampli�ed in the proportional wirechambers positioned in the end-plates. There are 18 wire chambers (`sectors')on each end-plate. In each end-plate, there are six sectors of type K (Kind),surrounded by a ring of alternating sectors of type M(Mann) and W(Weib). Inorder to get a minimum loss of tracks at boundaries, the sectors are arranged inthe `zig-zag' geometry that can be seen in �gure 3.8 in order to get a minimumloss of tracks at boundaries. The gaps between the sectors must be as small aspossible. High precision in the alignment of each chamber with the others is alsorequired because each radial track is measured by two di�erent wire chambers.The wire chambers consist on three layers of wires (�gure 3.9):{ The gating grid [38] prevents positive ions produced in the avalanches near thesense wires from entering the main volume of the TPC, distorting the electric�eld. Potentials of Vg ��Vg (Vg ' �67V) are placed on alternative wires ofthe grid. A �Vg of 150V was chosen to block both the passage of positive
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Figure 3.8: View of a TPC end-plate.
Figure 3.9: View of a TPC wire chamber.



40 The ALEPH detectorions to the drifting volume of the chambers and the incoming electrons in thewire region. The gate is opened 3�s before every beam crossing. If a positivetrigger signal arrives, the gate is kept open, otherwise the gate is closed after� 5�s.{ The cathode wires keep the end-plates at null potential and together withthe central membrane create the electric drift �eld.{ The sense wires are read out to give the energy deposition (dE=dx) [39] forparticle identi�cation and the z measurement of the tracks. For the esti-mation of the dE=dx, a truncated mean algorithm is used, taking the meanof the 60% smaller pulses associated with a track. The achieved resolutionis 4.6% for electrons in hadronic events (slightly better for low multiplicityevents). The �eld wires are kept at null potential to create equipotentialsurfaces around the sense wires.The ionization avalanches created around the sense wires are read out by thesignal induced on cathode pads at a distance of 4mm from the sense wires. Thepads are connected to preampli�ers via wires passing through the structure whichsupports the wire grids.3.3.4 The Electromagnetic and Hadronic CalorimetersThe electromagnetic [40] and hadronic calorimeters consist both of a barrel andtwo end-caps located around the TPC. While the electromagnetic calorimeter isplaced inside the coil, the hadronic calorimeter is placed outside, which makes itbe also the return of the magnetic ux of the magnet (�gure 3.10).Both are sampling calorimeters where the main active material is gas. Theirbarrels are divided into modules of 30� and 15� in azimuthal angle, �, for the ECALand HCAL, respectively. The end-caps of the ECAL and HCAL are also dividedin modules of 30� and 60� in �, respectively.The barrel modules of the two calorimeters have a small rotation angle betweenthem to avoid cracks in all the calorimeter system. The modules of the end-capsare also rotated with respect to the ones in the barrels.
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Figure 3.10: Overall view of the Electromagnetic and Hadronic calorimeters.The barrels are 4:8m and 6:3m long for the ECAL and HCAL respectively.The ECAL extends from an inner radius of 1:85m to an outer radius of 2:25m andthe HCAL from 3m to 4:68m.The modules of the electromagnetic calorimeter, with a total thickness of 22radiation lengths, consist on 45 layers of lead and wire chambers full with 80%xenon and 20% CO2 gas. The structure of a single layer consists (�gure 3.11) ona lead sheet, a wire chamber plane (anode plane) made of open-sided aluminiumextrusions and a pad plane (cathode plane) covered by a graphited mylar sheet.The cathode pads are connected internally forming towers which point to the
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Figure 3.11: View of an ECAL stack layer.interaction point. Each tower is read out in three sections in depth (`storeys'). Thesize of the pads is approximately 30 � 30mm2 leading to a high granularity (73728towers). In addition to the signal of the pads, an analog signal is also availablefrom each anode wire plane. These signals are used for testing and calibrating themodules and also for triggering.The achieved energy resolution for electrons and photons is [35]�EE = 0:178qE=GeV � 0:019; (3.3)and the angular resolution for charged tracks with j cos �track j< 0:98 is [35]��;� = 0@ 2:5qE=GeV + 0:251Amrad: (3.4)The hadronic modules have 22 iron sheets, each one with a width of 5 cm andan external plane of 10 cm, with a total amount of iron of 1:20m (7:16 interactionlengths), which is enough to contain the hadronic showers at LEP energies. Between



3.3 Subdetectors relevant to the analysis 43the iron sheets, there are modules of streamer tubes �lled with a mixture of argon(21%), CO2 (42%) and isobutane (37%).Three di�erent kinds of signals are read out in the hadronic calorimeter: signalsfrom the pads situated outside the modules containing the streamer tubes, whichare used to measure the energy of the showers; signals from the strips situatedalong the streamer tubes modules, which give the pattern of the streamer tubes inthe event and are used as a `tracking' of the showers; and the signal from the wires,which measures the energy released in the planes and is used mainly for triggering.The energy resolution is given by [35]�EE = 0:85qE=GeV : (3.5)



44
Chapter 4Event reconstruction andsimulationThis chapter gives a description of the reconstruction processes and tagging algo-rithms needed in the measurement of the scaled energy distributions for chargedtracks that will be described in chapter 5. The track reconstruction is describedin section 4.1. A brief explanation of the energy and position reconstruction withthe calorimeters is presented in section 4.2. The calorimeter and track informationis used in the energy ow algorithm described in section 4.3, which is used byone of the event shape avour tagging algorithms. This algorithm and the impactparameter tag algorithm are described in section 4.4. Finally, section 4.5 explainsthe Monte Carlo simulation chain in ALEPH and gives a brief description of thehadronic Monte Carlos used in the analysis.4.1 Tracking in ALEPHBefore any measurement of the momentum and track parameters is performed, theraw data coming from the tracking detectors have to be processed and track coor-dinates have to be measured in order to join them together to �nally form a trackhelix. The next sections describe the coordinate �nding of the three subdetectorsand the track reconstruction from them.



4.1 Tracking in ALEPH 454.1.1 Coordinate �ndingTPC The TPC measures the ionization induced by a charged particle traversingthe gas volume of the chamber. The cloud of charge is projected onto the TPCend-plates (by the electric �eld) and is measured by the sense wires and the pads.The information coming from both is grouped in hits, which contain the pad orwire number, the pulse length and the arrival time of each pulse, and digitizations,that contain pulse-height samples, ie. the details of the pulse shapes [41].The pad-hit data are grouped into two-dimensional clusters; starting with onepulse, another pulse on an adjacent pad is included if it overlaps the �rst by atleast one sample. In order to separate, or at least recognize, within each clusterthe contributions coming from di�erent particles, all clusters are analyzed again,this time with the digitization information considered. Peaks that are su�cientlyisolated from others form subpulses. For each subpulse, both a charge estimateand a time estimate are made from digitizations. These estimates are used by thecoordinate algorithms. For each good subcluster a three dimensional coordinate iscalculated and errors are determined from the widths, in space and time, of thesubcluster. The r� coordinates are calculated by using a Gaussian model of thepad response if only a few pads are involved, or simply by taking a charge-weightedaverage of the positions if many pads are involved. The z-coordinate is alwaysdetermined from a charged weighted average of time estimates of the individualsubpulses. All coordinates are corrected for misalignment and distortions of thedrift �eld.The cluster sizes in the end-plates are � 1:5 cm in r� and � 2 cm in z. Thus,there are cases in which the clusters belong to more than one track. However, theprobability that two tracks overlap all their clusters is small.The r� spatial resolution depends on the di�usion (which, in turn, depends onthe drift distance), the alignment of the electric and magnetic �elds, the localizationof the avalanche in the sense wire, the angle to the track with respect to the pad andon electronic noise and errors in the calibration. An overall resolution �r� = 173�mis measured. The resolution in the z coordinate is �z = 740�m.ITC The ITC also produces three dimensional coordinates from the raw dataconsisting on the wire (channel) number, and the time values in r� and z.



46 Event reconstruction and simulationThe z coordinate is reconstructed from the di�erence in the arrival times of thesignals to the two ends of the wire.To obtain the nominal r� coordinate the wire number is used. The r� TDCvalue is used to calculate the drift-time. The relationship between the drift-timeand the distance is not linear. The drift-time value is used to generate two coordi-nates one on each side, azimuthally, of the anode wire. The proper location of thecoordinate can only be obtained at the tracking stage when the angle of the trackthrough the drift cell is known.The r� resolution depends on the drift time, the error being worse close toboth anode and �eld wires than in between. The resolution is parametrized as aparabola in azimuthal drift-distance with the minimum of approximately 100�moccurring mid-way between the anode and �eld wires.VDET The raw data of the Vertex Detector contain the list of channels (and itspulse-height) in the event with a signal above a de�ned threshold and the sevenchannels at each side of it. Hits are reconstructed by averaging the charge-weightedposition of adjacent strips that have at least three times the mean noise charge. Thecorrelation between the charge measured in the two views is used to identify double-track clusters. Monte Carlo studies show that the vertex detector hit associationis correct for 98% (90%) of the hadronic Z decay tracks with hits in both (one)layers.4.1.2 Track reconstructionOnce all the coordinates have been found, the tracking [42, 43], is done startingin the TPC by �rst merging coordinates consistent with an arc of helix less than� radians to form a chain. The chains that are determined to belong to the samehelix are linked together into a single track candidate.Finally, the �ve helix parameters, as de�ned in �gure 4.1, are determined by a �tof a helix to the pad coordinates within the �rst half turn of each track candidate.To account for multiple scattering within the �t, the coordinate error estimates areincreased in accordance with the material traversed by the track from its origin.The �t is allowed to remove outlying coordinates and to break a track between two
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48 Event reconstruction and simulationsimulation. In hadronic Z events, 98.6% of tracks that cross at least four pad rowsin the TPC are reconstructed successfully. The small ine�ciency is due to trackoverlaps and cracks. The Monte Carlo simulation has been found to reproducethe track e�ciency to better than 10�3 by studying dilepton events from the datathemselves. The e�ciency of associating a vertex detector hit to an isolated trackis about 94% per layer, within the geometrical acceptance.Systematic e�ects in the tracking parameters come from electric and magnetic�eld inhomogeneities, uncertainties in the small angle between the axes of theelectric and magnetic �elds, and from the systematic errors in the drift velocity.The distortions induced by these e�ects can be corrected and a�ect mainly thetrack parameters related with the position of the tracks.A transverse momentum resolution of�(1=pT ) = 0:6 � 10�3 (GeV=c)�1 (4.1)is measured (for 45GeV muons). At low momentum,multiple scattering dominatesand adds a constant term of 0.005 to �(pT )=pT .4.2 Energy and position reconstruction with thecalorimetersTo reconstruct the calorimetric energy, the hit storeys are combined to �nd topo-logic clusters (a cluster being a group of spatially connected storeys, having at leastone corner in common). In the ECAL, the triggered storeys are scanned and the�rst cluster is created if the energy of the storey is larger than a certain amount(thigh = 90MeV). Then the neighbouring storeys are scanned and they are addedif their energy is larger than tlow = 30MeV. In a similar fashion, in the HCAL, thetower information is also reconstructed in the form of clusters.To associate clusters with charged tracks, the track is extrapolated step-by-stepto the ECAL region. At each step, the ECAL geometry package is used to determinewhich storeys are intercepted by the track. Then the clustering algorithm is used todetermine if the storey, or its neighbours, are hit and to which cluster they belong.A track and a cluster are associated if one point of this track is in one storey of thecluster or in a storey which has at least one corner in common with the cluster.



4.3 Energy ow determination 49The position of the showers is calculated by an energy-weighted mean of theposition of the individual storeys or towers in the cluster. This is corrected for theusual `S-shape' distortions present in all the granular detectors that tend to biasthe reconstructed position towards the center of the cell that has the maximumsignal.The information from the calorimeters is used in the particle identi�cation al-gorithms giving good electron and muon identi�cation e�ciencies and photon and�0 reconstructions.4.3 Energy ow determinationThe energy ow algorithm [35] is used in the event-shape algorithm for avourtagging in hadronic events. A description of the algorithm is given in this section.The simplest way to determine the energy ow of an event recorded in theALEPH detector is to make the sum of the raw energy found in all calorimetriccells without performing any particle identi�cation. This method yields a resolutionof �E=E = 1:2=qE=GeV for hadronic decays of the Z. The energy ow algorithmdeveloped in ALEPH improves this resolution by making use of track momentaand taking advantage of the photon, electron and muon identi�cation capabilities.A �rst cleaning procedure is done to eliminate poorly reconstructed tracks, V 0'snot compatible to originate from the nominal collision point, and noisy channelsand fake energy deposits in the calorimeter towers.After the cleaning, the charged particle tracks are extrapolated to the calorime-ters, and groups of topologically connected tracks and clusters (called `calorimeterobjects') are formed. Each calorimeter object is then processed using the followingsteps.1. All the charged particle tracks coming from the nominal interaction pointor belonging to a reconstructed V 0, are counted as charged energy assumingthey are pions.2. The charged particle tracks identi�ed as electrons, are removed from thecalorimeter object, together with the energy contained in the associated elec-tromagnetic calorimeter towers. If the di�erence between this calorimeter



50 Event reconstruction and simulationenergy and the track momentum is larger than three times the expected re-solution, this di�erence is assumed to come from a bremsstrahlung photon,and is counted as neutral electromagnetic energy.3. The charged particle tracks identi�ed as muons, are removed from the calori-meter object, together with a maximum of 1GeV from the closest associatedelectromagnetic calorimeter cluster (if any) and a maximum of 400MeV perplane �red around the extrapolation of the muon track from the correspon-ding hadron calorimeter cluster.4. The photons and �0's are counted as neutral electromagnetic energy and areremoved from the calorimeter object.5. At this stage, the only particles left in the calorimeter object should becharged and neutral hadrons. The charged hadron energy has already beendetermined in the �rst step, but the neutral hadron energy has not beenaccounted for. Although possible in principle via a speci�c pattern recog-nition, a direct identi�cation of neutral hadrons is di�cult and has not yetbeen attempted for the energy-ow reconstruction. Here, a neutral hadron isidenti�ed as a signi�cant excess of calorimetric energy: in a given calorime-ter object, the remaining energy left in the calorimeters is summed, after�rst scaling that from the electromagnetic calorimeter by the ratio of thecalorimeter's response to electrons and pions. If this sum exceeds the energyof any remaining charged particle tracks, and the excess is both larger thanthe expected resolution on that energy when measured in the calorimeters,and greater than 500MeV, then it is counted as neutral hadronic energy. Theratio of the electromagnetic calorimeter's response to electrons and pions hasbeen determined to be � 1:3 with test-beam data. However, in order toaccount for the fact that low energy photons often escape identi�cation inthe preceding step of this analysis, the ratio is modulated according to thepenetration of the particle and is taken as 1.0, 1.3 and 1.6 in the �rst, secondand third segments in depth of the calorimeter, respectively.This is repeated for all the calorimeter objects of the event and results in a set of`energy-ow objects' (electrons, muons, photons, charged or neutral hadrons), alsocalled particles, characterized by their energies and momenta. To this list are added
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Figure 4.2: Distribution of the total energy for well-contained hadronic events for the 1992 data(points) and Monte Carlo (shaded histogram)all the clusters found in the luminosity monitors, where no particle identi�cationis available. This list is expected to be a close representation of the reality, i.e. ofthe stable particles actually produced by the collision. Since the neutrinos escapeundetected, they cannot be in the list but they should be detected indirectly bythe presence of missing energy in the event.The energy-ow resolution can be determined from the data using a sampleof selected hadronic events. Figure 4.2 shows the distribution of the total energyfor well-contained hadronic events A Gaussian �t to the total energy distributiongives a peak value of 90.5GeV (62% from charged particles, 25% from photonsand 13% from neutral hadrons), with a resolution of 6.2GeV. It is well reproducedby a sample of 700,000 fully simulated hadronic events in which a peak value of



52 Event reconstruction and simulation90.7GeV and a resolution of 6.5GeV are obtained. The jet angular resolution is18mrad for the polar angle and 19mrad for the azimuthal angle.4.4 Flavour tagging algorithmsTwo avour tagging algorithms developed in ALEPH have been used in this analy-sis. The impact parameter tag makes use of the relatively long lifetime of hadronscontaining a b quark to distinguish between heavy quark events and light quarkones. The event shape tag makes use of two global properties of the event to makethe same classi�cation.4.4.1 Impact parameter tagThe long lifetime and large mass of b hadrons give their decay products largeimpact parameters, allowing a separation of these hadrons from hadrons comingfrom fragmentation or decay of a light quark. This tagging algorithm computes theprobability that a track comes from the primary vertex using the measurement ofits impact parameter. The probabilities of coming from the primary vertex of allthe tracks from a given jet, hemisphere or event can be combined to �nally havethe probability that the given object (jet, hemisphere or event) comes from a bquark.The main tool in the analysis is, then, the impact parameter of a track. Themeasurement of this quantity needs, however, a precise estimation of the e+e�interaction vertex for each event which needs also the estimation of the overlapregion of the electron and positron beams (beam spot) where it lies on. Thedescription of each of these measurements follows.Beam spot measurement. The position of the beam spot is determined bystudying the distance of closest approach of tracks to the coordinate origin in ther� plane, d0. This quantity is signed according to the sign of the angular momentumcomponent of the track along the beam axis, and in the absence of track distortions,should have a distribution centered on zero. If the beam spot is not centered onthe coordinate origin, the mean value of d0 has a sinusoidal dependence on the
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Figure 4.3: Impact parameter with respect to the coordinate origin and with respect to thebeam spot centroid. The track is approximated to a straight line in this region.azimuthal angle �. This dependence can be seen looking at the relationdb = d0 � xb sin�+ yb cos�� do�; (4.2)which can be deduced from �gure 4.3, where, since the distances db, d0, xb and ybare small, the track has been approximated to a straight line. db is the distanceof closest approach of tracks to the beam spot, xb and yb are the coordinates ofthe beam position and do� is an additional o�set that takes into account residualtracking e�ects (alignment errors, �eld parametrization, etc.).The mean of db for each � is zero. Thus, the �t to the dependence of < d0 >as function of the angle � gives the coordinates of the luminous region as well asthe value of do�.Since there are variations in the crossing beam coordinates even inside thesame �ll, this measurement is done every � 100 events. For the optics of theLEP machine, the beam spot is expected to be elliptical in shape in the planeperpendicular to the beam direction, with the horizontal width much greater thanthe vertical one due to synchrotron radiation e�ects. The predicted dimensions are�H = 200�m and �V = 12�m, respectively (table 3.1).



54 Event reconstruction and simulationEvent crossing point measurement. For each event, the measurement of thethree coordinates of the collision point is needed. To perform this, the event isclustered in jets using the E clustering scheme with the energy ow objects. Inthis scheme, the variable yij = (pi + pj)2E2vis (4.3)is computed for each pair of objects. The four-momenta of the pairs of objectswith lower yij are added and the computation of the yij is performed again overthe new set of objects. This procedure is repeated until all the yij are higher thana given value, ycut. The remaining objects are the clustered jets. Here, the ycut waschosen to be 0.02.After the clustering is performed, all tracks satisfying minimal quality cuts areassigned to the nearest jet and then projected onto the plane perpendicular to theaxis of its corresponding jet. The primary vertex in the plane perpendicular toeach jet is then found. Knowing the direction of each jet, the projected primaryvertices are expanded back in three dimensions. A �2 �t is performed to combineall the vertices and the beam spot information in the x � y plane in order to getthe event crossing point. This procedure ensures that hadron lifetimes do not biasthe position of the primary vertex.Track impact parameter measurement. The impact parameter of a track isde�ned as the closest approach of the track to the production point of the motherparticle of the track. The method to measure this parameter is described in �gu-re 4.4. The point ~V is the primary vertex. ~J is the direction of the mother particlemomentum, as approximated by the jet direction. The circular arc represents atrack, assumed here to be a decay product. Point ~St is the point on the track whereit comes closest to the line going through ~V with direction ~J . The point ~St is usedas an approximation to the decay point of the track. The track is linearized at ~St,and the signed impact parameter is de�ned as~D � D � sign �( ~Sj � ~V ) � ~J� ; (4.4)being a positive number with value D if the vector ~Sj� ~V lies in the same directionas the jet direction ~J , negative otherwise.The experimental resolution generates a random sign for tracks which originate
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Figure 4.4: De�nition of the signed impact parameter. See text for details.from the primary vertex. The tracks with negative ~D form a control sample thatcan be used to measure the resolution.In the tagging algorithm, the statistical signi�cance of the impact parameter ofthe tracks, de�ned as ~D=�D, is used. The uncertainty in D, �D, is computed fromthe error matrices of the track and primary vertex, plus their correlations. Sincethe error of the track is highly dependent on its angle, the number of VDET hitsand the planes of the VDET that it traverses, using the normalized ~D=�D allows totreat all the tracks nearly uniformly for all the angles and number of VDET hits.The probability that a track comes from the primary vertex is then de�ned asPT ( ~D=�D) = Z �j ~D=�Dj�1 dx<(x); (4.5)being <( ~D=�D) the resolution function, the parametrization of the distribution ofthe impact parameter signi�cance for tracks with negative value of ~D.The same argument can be extended to a group of tracks forming a jet, ahemisphere or an event. The variable to compute, PN , is the probability that anyset of N tracks without lifetime produce the same set of observed probabilitiesor any other set of values equally or more unlikely. Being PTi the individual track



56 Event reconstruction and simulationprobabilities, the di�erential probability for the observed set of variables to happenis given by P � NYi=1PTi: (4.6)Considering that all the individual track probabilities belong to a N -dimensionalspace, PN can be computed asPN = Z QNi=1 xi=P(0;0;:::;0) dx1dx2 : : : dxN= 1 � Z (1;1;:::;1)QNi=1 xi=P dx1dx2 : : : dxN= 1 � Z 1P Z 1P=xN Z 1P=(xN �xN�1) � � � Z 1P=(QNi=2 xi) dx1dx2 : : : dxN ; (4.7)where the xi represent the probability of each track. Finally, PN is given by [45]PN = P � N�1Xj=0 (� lnP)jj (4.8)and represents the likelihood for the group of tracks of coming from the primaryvertex.4.4.2 Event shape tagEvents produced by the fragmentation of a b quark are expected to have di�erentshape that the ones coming from light quarks or c quarks. In general, jets producedby a b fragmentation and decay are expected to have a larger opening angle dueto the higher mass of the b hadron and the fact that they can decay to a charmedhadron that would decay afterwards to lighter hadrons, thereby randomizing thedirections of the �nal particles. This can be used to classify di�erent quark avours.Considering all the energy ow objects computed according to the algorithmexplained in section 4.3, the thrust axis of the whole event, de�ned as the vector~T which maximizes the thrust valueT = nXi=1 j~T � ~pijnXi=1 j~pij ; (4.9)



4.5 The event simulation 57where ~pi is the momentum of the ith particle, is computed. The event is dividedin two hemispheres according to the plane perpendicular to thrust axis and an-other thrust axis is computed for each hemisphere. In order to avoid correlationsamong hemispheres, only particles forming an angle below 45� with the thrust axiscorresponding to the hemisphere they belong to are considered. The selected par-ticles are boosted into the rest frame of each hemisphere before computing the twovariables used: the moment of inertia and the lateral mass [46].The moment of inertia is de�ned as the minimum eigenvalue normalized to thesum of the three eigenvalues of the inertial matrix which is computed according to�ij = nXm=1 �pimpjmjpmj ; i 6= j (4.10)and �kk = nXm=1 (pim)2 + (pjm)2jpmj ; k 6= i; j (4.11)where pim is the ith component of the boosted momentumvector of themth particle.The total momentum in the centre-of-mass frame of the b jets tends to be moreuniformly distributed than the ones for lighter quark jets. Thus, b jets look morespherical and the three eigenvalues of the inertial matrix tend to be equal. In thiscase the moment of inertia tends to its maximum value of 1/3.The lateral mass is intended to distinguish between products of gluon brem-strahlung and decay products in the �nal state based on the direction relative tothe boost of the jet. It is de�ned as the sum of the boosted momenta of thoseparticles in the hemisphere that make an angle with the hemisphere axis largerthan cos�1(0:75). The distribution of lateral mass for hemispheres produced froma b quark is peaked at higher values than for the other avours.Figure 4.5 shows the distribution for the moment of inertia and the lateral massfor di�erent quark avours. Using Monte Carlo, the likelihood that an hemispherewith a given moment of inertia and lateral mass comes from a Z! b�b event, lh, iscomputed and this is the estimator used in the tag.4.5 The event simulationThe di�erent physics analyses use Monte Carlo simulated events to evaluate back-ground contaminations, compute acceptances and e�ciencies and, in general, com-
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105 50Figure 4.5: Distributions of quantities used in the event shape tag. (a) moment of inertia, (b)lateral mass, for di�erent Monte Carlo events. the solid lines correspond to b events, the dottedlines to c, and the dashed ones to uds. (All curves are normalized to have the same area).pare theoretical models to the experimental results. The chain to produce simulatedevents is as follows:{ Generation of the event kinematics. The particle four-momenta are generatedaccording to the di�erent physics processes (in parentheses the names of thecomputer programs used):{ e+e� ! �+�� (KORALZ [47]).{ e+e� ! �+�� (KORALZ).{ e+e� ! e+e� (BABAMC [48]).{ e+e� ! q q (JETSET [49] + DYMU [50]).{ e+e� ! `+`�(`+`�) (PHOPHO [51], [52]).In ALEPH, all these programs have been uni�ed through the common inter-face KINGAL [53].{ Simulation of the detector. This is done using a GEANT [54] based program(GALEPH [55]) where all the information about the geometry and materials



4.5 The event simulation 59involved in the experimental setup are described. For the tracking simu-lation, the primary long-lived particles are followed through the detector.Secondary particles are also produced by interaction with the detector ma-terial. Bremsstrahlung, Compton scattering and ionization are some of theprocesses simulated. GEANT and GHEISHA [56] are used to simulate theelectromagnetic and nuclear interactions respectively. The energy depositionsare converted to measurable electrical signals. The complexity of the TPCrequired the development of a special package (TPCSIM) for its tracking anddigitization.{ Reconstruction. The same reconstruction program (JULIA [32]) used forthe real data is used in the simulated events. Thus, the output of all thesimulation processes has the same format as the real data.4.5.1 Hadronic Monte Carlo modelsThe measurement of the di�erent scaled energy distributions that will be presentedin chapter 5 needs the use of all the event generators presented above. The onesthat produce the dilepton events are only used for background studies and havea small impact in the measurement. The main detector e�ciency correction andthe correction for initial state radiation is made using the simulation of hadronicevents.The hadronic Monte Carlo simulation is done in four steps (�gure 4.6). In the�rst one, the initial particles (electron and positron) produce an intermediate boson( or Z) that will decay into a qq pair. Initial and �nal state radiation is inclu-ded in some models at this stage. Once the quark-antiquark pair is produced, theprobabilities of quark and gluon emission obey perturbative QCD. The descriptionof this stage constitutes the second step. This procedure continues until the mo-mentum transfer to the following emission becomes small enough, typically 1GeV,to be confronted with the limitations of perturbative QCD. Then the third step,hadronization, takes place: partons fragment and hadrons are formed. Being thisprocess a non-perturbative phenomenon, some models have to be assumed. Final-ly, the produced hadrons are forced to decay according to the measured branchingratios to form the detected particles.
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electro-weakFigure 4.6: Schematic representation of a parton shower and hadronization. The four stepsthat lead to the formation of the �nal detected particles from the production of a quark-antiquarkpair are presented.Parton shower The perturbative phase can be computed with di�erent ap-proaches. In some models, as in the JETSET ME [57], calculations are madeusing the exact �xed second order QCD matrix element. However, these modelscan only generate 2, 3 or 4 partons in the �nal step. The non-perturbative phasehas to �ll the gap between this number of �nal partons and a higher multiplicity ofhadrons, typically around 40 charged and neutral particles at LEP energies. Thus,these are not well suited for the description of the data at LEP energies. Instead,the parton shower picture is used.The parton shower picture is based on an iterative use of the basic branchings,ie. q ! qg, g ! gg, g ! qq. The momentum sharing between the daughterpartons is determined by the Altarelli-Parisi splitting kernels (eqs. (B.19) to (B.22)in appendix B). These splitting kernels obey Altarelli-Parisi type equations. Thusthe probability for a branching to take place at a given value of the evolutionparameter, t = ln(Q2evol=�2), is computed.
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Figure 4.7: Representation of the string and cluster fragmentation.The transverse momentum of the partons can be introduced assigning it inde-pendently in each subsequent branching, according to a gaussian distribution. Thisis called the incoherent parton shower approach. However, most of the models in-corporate interference e�ects between subsequent splitting processes in the partoncascade. The usual way of doing this is by decreasing the emission angles of thesubsequent partons in the shower. This is called the angular ordering e�ect andmodels that incorporate this feature are called coherent.String fragmentation Di�erent phenomenological models are used to describethe non-perturbative conversion of partons into hadrons. This process is calledhadronization or fragmentation. The string model of fragmentation (�gure 4.7)works in the following way. A string is stretched between a quark and an antiquarkand a gluon is modeled as a kink on the string. As the quark and antiquark moveapart, the potential energy stored in the string increases, and the string may breakup by producing a new q0q0 pair, so that the system splits into two colour singletsystems qq0 and q0q. If the invariant mass of either of these string pieces is large



62 Event reconstruction and simulationenough, they may further break.In the Lund string model [58], the string breakup process is assumed to proceeduntil only on-mass-shell hadrons remain, each hadron corresponding to a smallpiece of string. The fraction of energy of the string taken by the hadron is mo-deled according to parametrized fragmentation functions. Usually, the symmetricfragmentation function f(z) = (1� z)az exp(�bm2?=z) (4.12)where m2? is the transverse mass of the hadron and with two free parameters, a andb, is used for the fragmentation of light quarks, while the Peterson fragmentationfunction [59] f(z) = 1z �1� 1z � �1� z ��2 (4.13)with a free parameter, �, is used for the fragmentation of heavy quarks.Cluster fragmentation Another hadronization model takes the �nal partonsto form clusters. Before forming them, the gluons are forced to split into quark-antiquark pairs. Then, colour-neutral pairs of quarks that are close in phase spaceform massive clusters that decay isotropically into the observable hadrons (�g-ure 4.7). The cluster fragmentation scheme is attractive as no explicit assump-tions about fragmentation functions and the generation of transverse momenta areneeded.Monte Carlo models used in the analysis The ideas described so far forthe perturbative phase of the parton shower formation and the fragmentation arecombined in di�erent ways in the models used in the analysis. A brief descriptionof each follows:JETSET PS [60] It is based in the parton shower picture and the string hadro-nization model. It includes angular ordering and matching of the �rst gluonsemission to the exact O(�s) matrix element. This ensures that a hard radia-tion process in the initial phase of the parton shower is properly described.NLLJET [61] In this model, the leading order splitting kernels are replaced by thenext-to-leading ones. Thus, it contains O(�2s) corrections to the 2! 2 split-



4.5 The event simulation 63ting functions and includes also 2! 3 splitting processes. The hadronizationis controlled by the string fragmentation scheme.HERWIG [62] The parton shower includes interjet interference and gluon pola-rization e�ects. The hadronization phase is done following the cluster model.ARIADNE [63] This model implements an alternative way to formulate the par-ton showering process as colour-dipole radiation which includes matching tothe O(�s) matrix element, angular ordering and some azimuthal correlationsbetween jets automatically. The initial quark-antiquark is considered as acolour-dipole that radiates a gluon according to the leading-order QCD ma-trix element. This gluon splits the initial dipole into two secondary ones.Iterating this process gives rise to the parton shower. The partons are thenfragmented into hadrons according to the string fragmentation model.HVFL This is no more than the JETSET PS model interfaced with DYMU toproduce the initial quark-antiquark pair. This includes a better description ofinitial and �nal state radiation and, partially, the interference terms betweenthem. Being the standard ALEPH Monte Carlo model, it also contains a�ne tuning of the heavy avour decay branching ratios to better describe thedata.



64
Chapter 5Data analysisThis chapter describes the data used in the analysis. It is important to have as muchinformation as possible for di�erent quark-avour samples. Thus, light uds-, c-and b-avour enriched scaled energy distributions are measured besides the scaledenergy distribution for all avours that gives the information for the evolution of thefragmentation functions. The procedures for the selection of events, correction fordetector e�ects and estimation of the systematic errors are explained in sections 5.1,5.2 and 5.3. The estimation of the correlation errors among all the distributions isexplained in section 5.6. Useful information on the gluon fragmentation function isobtained in the analysis of three jet events and the measurement of the longitudinaland transverse scaled energy distributions. These measurements are described insections 5.4 and 5.5, respectively. Finally, the scaled energy distributions measuredat lower energies by other experiments than ALEPH, and the assumptions madein their normalization errors are described in section 5.7.5.1 Selection of hadronic eventsBefore any avour identi�cation is attempted, a good selection of hadronic eventshas to be made. Since the interest is in the scaled energy distribution and theavailable statistics of around 20 tracks per event is rather high, the interest ofthe global selection is in avoid possible biases that would result in high correctionfactors rather than in optimizing the selection e�ciency.For each event, only charged tracks with more than 4 TPC hits, originated in acylinder of radius d0 = 2 cm and length of z0 = 10 cm around the interaction point,



5.2 Scaled energy inclusive distribution 65forming an angle with the z axis, �, between 20� and 160�, and with a transversemomentum, pt, with respect to the z axis exceeding 0:2GeV=c are considered in theanalysis. Tracks passing these requirements are called good tracks. An hadronicevent should have more than four of these good tracks and the sum of their energy,assuming they have the pion mass, must be above 15GeV.The sphericity axis, de�ned as the eigenvector corresponding to the minimumeigenvalue of the tensor Sab = Xi pai pbiXi p2i (5.1)is computed in the events passing the above selection cuts. Only those events inwhich the polar angle of the sphericity axis, �sph lies between 35� and 145� areaccepted. Since the opening angle of a jet is roughly 15�, this cut avoids largercorrection factors removing those events that would not be fully contained in thedetector acceptance.A total of 911539 events from 1992 and 1993 LEP run periods with a centre-of-mass energy around 91:2GeV ful�l the requirements to be considered hadronicevents, the selection e�ciency being 77%. The background was estimated fromMonte Carlo, being the main contribution the one coming from tau pairs (0.3%),the ones from Bhabha and dimuon events being negligible. No Monte Carlo twophoton event passed the selection cuts.5.2 Scaled energy inclusive distributionFor each event, the variable xE = Etr=Ebeam (called x in the following), is computedfor each charged good track, with Etr being the energy of the track assuming thepion mass.The raw data distribution is normalized to the total number of events such that,for each bin �i;raw = 1Nevents N tri�xi (5.2)where N tri is the number of tracks such that its variable x lies within the bininterval, and �xi is the width for bin i.



66 Data analysisAt each value of x, the bin width was chosen to be four times the momentumresolution of the tracks in order to avoid a large migration of tracks to the neigh-bouring bins. Since the momentum resolution increases with energy, the bin widthis di�erent for di�erent values of the variable x. In the low momentum region,the general rule of four times the momentum resolution for the bin width wouldresult in too main bins. For this reason, below x � 0:4 wider bins were used in thehistograms.The raw distribution is corrected, using Monte Carlo methods, for e�ects ofgeometrical acceptance, detector e�ciency and resolution, decays of long-livedparticles (with � > 1 ns), secondary interactions and initial state photon radia-tion. Thus, the scaled energy distribution is de�ned as the distribution for chargedtracks obtained if all particles with a mean lifetime � � 1 ns decay while the othersare stable.To perform the correction, hadronic events were generated using the generatorHVFL (section 4.5.1). Initial state radiation is included in the simulation. Thegenerated events were passed through the detector simulation and reconstructionprogram as explained in section 4.5. The same procedure was performed for � ,Bhabhas, dimuon and two photon events using KORALZ, BHABHAand PHOPHOas generators. The same selection and analysis procedure was performed for thesimulated data, and distributions �i;sim containing the hadronic events and all thebackground sources, were constructed.Hadronic events were also generated using the HVFL generator with neitherinitial state radiation nor detector simulation and with the requirement that allparticles with mean lifetimes > 10�9 s are stable. All charged particles were usedto construct the �i;gen distribution were, in the computation of x, the true mass ofthe particle is used.Corrected data distributions were obtained using the bin-by-bin ratio of thegenerated and simulated distributions according to�i;corr = Ci � �i;raw = �i;gen�i;sim �i;raw : (5.3)The distributions were corrected separately for the 1992 and 1993 data ta-king periods to take into account the proper detector con�guration for each year.Afterwards, both corrected distributions were combined.
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Figure 5.1: All-avour uncorrected distribution and comparison with reconstructed MonteCarlo. The background from � 's, dimuon and Bhabha events is included in the Monte Carlo.Only statistical errors are considered which turn out to be too small to be seen in the plot.Although this correction procedure can induce a small bias towards the model,the fact that the simulated and raw data agree, as seen in �gure 5.1, and that thecorrection factors are relatively small indicate that this bias is not large. Figu-re 5.2(a) shows the correction factors, Ci, applied to the distribution of all avours.They are around 1.07 or below in almost the whole interval, except the bins atlarger momentum. This is due to the TPC momentum smearing. The resolutionin the TPC is nearly gaussian in the inverse of the momentum. The resolutionfunction can be written asR(pmeas; ptrue) = 1p2meas exp24� 1=pmeas � 1=ptruep2�1=ptrue !235 ; (5.4)where pmeas is the measured momentum and ptrue is the true momentum of thecharged track. The resolution distribution has a long tail at large momentum.Thus, large momentumbins tend to be more populated from low momentumtracks.



68 Data analysisStandard cut Variation 1 Variation 2NTPC � 4 NTPC � 3 NTPC � 5d0 � 2:0 cm d0 � 1:5 cm d0 � 3:0 cmz0 � 5:0 cm z0 � 3:0 cm z0 � 10:0 cm20� � �track � 160� 30� � �track � 150� 15� � �track � 165�pt � 200MeV pt � 150MeV pt � 400MeVNgood � 5 Ngood � 4 Ngood � 7ECh � 15GeV ECh � 10GeV ECh � 25GeV35� � �spher � 145� 45� � �spher � 135� 65� � �spher � 155�Table 5.1: De�nition of the cuts for the standard analysis and the variation made for thesystematic errors estimation. Each cut was varied at once taking, alternatively, the values inthe two columns labelled as Variation 1 and Variation 2, and the analysis was repeated for eachcombination. The rest of the cuts remain at their standard values.This e�ect is ampli�ed by the fact that the scaled energy distribution falls o� rathersteeply with x, and therefore, for a given x, contamination from lower energy binsis much more likely than from higher energy bins. This e�ect makes the correctionfactor in the last bins to be even below 0.8.Two types of systematic uncertainties were taken into account. The �rst oneis due to possible discrepancies between the real and the simulated detector per-formance. The second one comes from the fact that the QCD generator chosen tocalculate the correction factors might not fully reproduce the data, and then thecorrected data could result biased to the model used in the QCD generator.To estimate the uncertainties of the �rst kind, all the selection cuts were var-ied, once at a time, taking alternatively the values listed in table 5.1, and the samecorrection and combination procedure was used to produce analogous correcteddistributions for each set of cuts. In each bin, the maximum change with respectto the corrected distribution with the standard set of cuts was taken as the sys-tematic error. Figure 5.3 shows these di�erences in number of statistical standarddeviations of the reference distribution. The maximum variation comes from thechange in the cuts in the angle of the sphericity axis and from accepting events withfour good tracks. The large di�erence at large x seen when accepting events withfour good tracks could be due to the background of two-photon events that wasnot subtracted in this procedure, since it was found to be negligible when requiring�ve good tracks in the nominal analysis. Most of the di�erences are below one
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Figure 5.4: Simpli�ed correction factors for the all-avour energy distributions constructedwith three di�erent Monte Carlo models: JETSET PS, ARIADNE and NLLJET.simpli�ed correction factors for the three Monte Carlo models used to compute thissystematic error source. The fact that no TPC smearing resolution and e�ciencyis taken into account in this simulation makes these simpli�ed correction factorsto be closer to one than the ones coming from the full simulated distributions.Nevertheless, it is expected that if all the detector e�ects would be included, thedi�erences between the models would remain the same and that the maximumrelative di�erence between the simpli�ed correction factors is a good estimation ofthe systematic error coming from this QCD generator dependence.The statistical error and the systematics coming from the limited statisticsof the Monte Carlo used to perform the correction procedure, the selection cutvariation and the QCD model dependence were added in quadrature to computethe total bin-by-bin error of the distribution. A common normalization error of1%, which is correlated, not only in all the bins, but also in all the distributionsis also added in quadrature to the total error. The estimation of this source of



72 Data analysiserror is explained in section 5.6.1. Table C.1 in appendix C lists the cross-sectionand all the error contributions for all the bins. The systematic error dominateseverywhere. The normalization error dominates over the bin-to-bin error belowx = 0:5. From the three contributions to the bin-to-bin systematic error, the onecoming from the di�erences in the Monte Carlo models dominates below x = 0:1but above this point, this source of systematic error tends to be equal or smallerthan the one coming from the selection cut variation. The systematic error comingfrom the �nite Monte Carlo statistic is comparable to the cut variation systematicin the whole particle energy interval.Figure 5.2(b) shows the corrected scaled energy distribution for the normalavour composition. The continuous lines show the prediction of several MonteCarlo models. The di�erences between the corrected data and the di�erent modelscan be seen in more detail in �gure 5.2(c) where the quantity(Model�Data)=Errordata, being Errordata the total statistical and systematic errorof the distribution (included the normalization error), is plotted for the di�erentmodels. While the HVFL Monte Carlo, which is the one used in the correction pro-cedure, di�ers by less than three standard deviations in the whole energy range,the rest of models disagree up to eight standard deviations, especially in the highx region. The reason for this should be assigned to better parameter tuning ofthe HVFL Monte Carlo, especially in the heavy avour hadron decay branchingfractions.5.3 Flavour enriched distributionsSince the distributions for the light quarks (u,d,s) are expected to be almost indis-tinguishable, three di�erent enriched avour distributions were prepared: for light,c and b quarks. This section describes the measurement of these enriched avourdistributions using the two tagging algorithms described in section 4.4.To prepare the enriched avour distributions, the same selection cuts as des-cribed in section 5.1 were �rst applied. The selected events were then divided intwo hemispheres separated by the plane perpendicular to the thrust axis. The twoavour tags described in sections 4.4.1 and 4.4.2 were applied to the two hemi-spheres of the event giving the estimators PH and lH, respectively, for each hemi-sphere.



5.3 Flavour enriched distributions 73The impact parameter tag algorithm is more e�cient for events with largecharged multiplicity. Thus, in order to reduce the bias introduced by this taggingalgorithm, the algorithm is applied only to the tracks of one hemisphere. If thathemisphere passes the selection cut, the other one is used to measure the chargedparticle spectrum, weighting each track with a factor of two. The cross sectionsare normalized to the number of accepted hemispheres. Finally, since the twohemispheres are almost independent, the procedure is repeated with the tag appliedto the second hemisphere. The same procedure is used when applying the eventshape tag.The procedure described above makes the assumption that the correlation of thetag between hemispheres is small. It can be shown that, for the lifetime tag [45], thiscorrelation is smaller than one per cent for the cut in PH used in this analysis. In thecase of the event shape tags, these correlations are already small by construction,since only particles forming and angle below 45� with the jet axis are used in thevariables. Residual correlations between the hemispheres are taken into account inthe correction procedure.A sample enriched with bottom-quark events is obtained requiring PH < 0:001,which results in a b-identi�cation e�ciency of about 32.5%. The avour compo-sition of the tagged sample is 90.5% of bottom quarks, 7.3% of charm quarks and2.2% of light quarks, according to the Monte Carlo. It has been checked [64] thatthe Monte Carlo e�ciencies and purities agree well with those in the data.Using the same technique, a light-quark enriched sample has been prepared. Inthis case, the hemisphere probability to come from the interaction point is requiredto be PH > 0:1. The light-quark e�ciency is about 74%, and the tagged sampleconsists of 78.9% light-quark events, 14.5% charm events and 6.6% bottom events.A sample enriched in c-quark events is obtained requiring 0:001 < PH < 0:07.In order to increase the purity, the global hemisphere-shape variables described insection 4.4.2 were also used. The value of the likelihood, lH, was required to bebelow 0.2. The �nal sample consists of 35.1% charm events, 26.7% bottom eventsand 38.2% light-quark events. The e�ciency for c-quark tagging is about 9%.The correction procedure described in section 5.2 was applied. The systematicerrors were estimated with the method described there. Systematic e�ects comingfrom the possible defects in the simulation of the avour tag will be taken into



74 Data analysisaccount in the �s measurement (section 6.7.1).The corrections were made using distributions generated with the same avourcomposition as the ones resulting applying the di�erent tag algorithms to the MonteCarlo sample after detector simulation. Figures 5.5, 5.6, 5.7(a) show the correc-tion factors applied in the enriched avour distributions for b, c and light quarks,respectively. While below x � 0:6, they are comparable to the ones shown in �gu-re 5.2(a) corresponding to the all-avours distribution, di�erences arise above thislimit, especially for the b-enriched distribution (�gure 5.5(a)), where the correctionfactors for some bins have values around 0.5. This e�ect can be explained again bythe TPC momentum smearing described in section 5.2. The more steeply fallingdistribution for the b-enriched sample accentuates the e�ect, while the harder mo-mentum distribution of the light quarks gives correction factors very similar to theones for the all avour distribution.Figures 5.5, 5.6, 5.7(b) and (c) show the corrected distributions and their com-parison with the di�erent Monte Carlo models. The larger discrepancies that arisein the b-enriched avour distribution should be attributed to a lack of branchingratio tuning in the ARIADNE, JETSET and NLLJET Monte Carlos, as it waspointed out in section 5.2. The good agreement seen for the c-enriched avourdistribution (�g. 5.6(c)) should be attributed to its larger errors rather than to abetter agreement with the Monte Carlo models.Figure 5.8 plots the measured ALEPH distributions. One clearly sees the dif-ference between light and heavy avour enriched samples. The errors includeall bin-to-bin errors (statistical and systematic) added in quadrature as well asan overall 1% normalization error. Systematic errors dominate everywhere. Theagreement with the HVFLMonte Carlo prediction is reasonable for all distributionsand x regions.Tables C.2,C.3,C.4, in appendix C list the cross section and all the error contri-butions for all the bins for the avour enriched distributions. For the uds-enricheddistribution, the dominant bin-to-bin error is of systematic origin. This is not thecase for the c- and b-enriched distributions where statistical and systematic bin-to-bin errors become comparable. As in the case of the non avour scaled energydistribution, the normalization error dominates over the bin-to-bin systematic er-ror for the low x region (x � 0:3) for all the avour tagged distributions. Among
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Figure 5.8: Measured scaled energy distributions corrected for detector e�ects (symbols) andcomparison with the predictions fromHVFL. The distributions are normalized to the total numberof events. Error bars include statistical and systematics uncertainties. The same binning is usedfor all distributions.the sources of bin-to-bin systematic errors, the dominant one is the cut variation,although for the c- and b-enriched distributions, the one coming from the limitedstatistics of the Monte Carlo used to perform the correction is of similar magnitude.5.4 Gluon distribution from three-jet eventsThe analysis of scaling violations needs not only information of the fragmentationfunction for di�erent avours but also the shape of the gluon fragmentation functionthat enters in the evolution equations described in section 2.3.



5.4 Gluon distribution from three-jet events 79The gluon fragmentation function can be extracted directly from the data usingthree jet symmetric events [65]. These events are characterized by two of the jetshaving essentially the same energy and the angular separation between any of thetwo lower energetic jet and the highest energetic jet being in the range 1500� 7:50.The most energetic jet has a high probability of originating from a quark or anantiquark. To identify the gluon jet from the two lower energy jets a b anti-taggingmethod is used. If one of the two jets contains long-lived particles, it is associatedwith a heavy quark jet. The remaining jet is then tagged as the gluon jet.Two samples of jets are prepared. In the symmetric (S) sample no gluon jettagging is applied and contains the two lower energetic jets from all the events. Thisuntagged mixture contains P Sg = 48:5% of gluons and 51.5% of quarks as computedby Monte Carlo. In the tagged (T ) sample, only those jets not tagged as comingfrom a b quark are considered. The gluon purity in this sample is P Tg = 90:0%.Any observable, A, can be measured in both samples. The measurement forgluons and quarks, Ag and Aq, can be extracted from the following relations forthe S and T samples AS = P Sg �Ag + (1 � P Sg ) �Aq (5.5)AT = P Tg �Ag � �Ag + (1� P Tg ) �Aq � �Aq (5.6)where �Ag(q) is a measurement of the bias coming from the fact that the taggedsample is largely enriched in jets coming from b quarks. This bias has to beestimated from Monte Carlo and is given by�Ag(q) = AMC;Tg(q)AMC;Sg(q) ; (5.7)where AMC;Tg(q) and AMC;Sg(q) are the Monte Carlo measurements for correctly identi�edgluons (quarks) jets in the tagged and symmetric con�gurations. Further details ofthe procedure to estimate the purities and the corrections can be found in ref. [65].The inclusive charged particle momentum distribution of the gluon jet, scaledto its energy, is extracted using the technique described above. It is presented in�gure 5.9 and in table C.5 in appendix C. The mean energy of the gluon jets is24GeV.
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Figure 5.9: Gluon scaled energy distribution measured in three jet symmetric events [65]. Theaverage energy of the gluon jet is 24GeV.5.5 Transverse and longitudinal distributionsThe longitudinal and transverse cross sections de�ned in eq. (2.27) are known tobe useful for the extraction of the gluon fragmentation function through eq. (2.69).They can be extracted from the data, either by �tting the angular dependencefor each x interval [66], or by weighting the double-di�erential cross section withrespect to x and cos � with the appropriate weight to project onto the (1 + cos2 �)component (transverse) or the sin2 � component (longitudinal):d�L;Tdx = Z +v�v dcos �WL;T (cos �; v) d2�dx dcos � (5.8)with [20] WL(cos �; v) = hv2 �5 + 3v2�� 5 cos2 � �3 + v2�i =4v5 (5.9)and WT (cos �; v) = h5 cos2 � �3� v2�� v2 �5 � 3v2�i =2v5 (5.10)being the longitudinal and transverse projectors, respectively, and v de�ning thedetector acceptance, which is considered to be constant in the range j cos �j < v =0:94.



5.5 Transverse and longitudinal distributions 81The event and track selection are the same as described in section 5.1 exceptthat the requirement on the sphericity axis is removed for the measurement of thelongitudinal and transverse distributions, because it would introduce an e�ectivestrong cos � dependence in the track selection e�ciency. Due to larger statisticalerrors in the measurement of the longitudinal distribution, the binning was changedwith respect to the other measured distributions.The selected tracks are then used to construct the inclusive transverse andlongitudinal distributions according to1�tot d�L;Tdx =  1Nevents XtracksWL;T (cos �; v)! � 1�tot Z v�v dcos � d2�dx dcos � (5.11)where the integral represents the cross section in a certain x bin integrated overthe angular acceptance. The weights from eqs. (5.9) and (5.10) give the fractionof this total integral that is in the longitudinal and transverse part, respectively.Equation (5.11) can be simpli�ed taking into account eq. (2.27), which allows towrite the integral as1�tot Z v�v dcos � d2�dx dcos � = 1�tot d�dx 34 "v + v33 + d�L=dxd�=dx (v � v3)# ; (5.12)which only depends on the acceptance cut and the ratio of the longitudinal andtotal scaled energy distributions for the corresponding bin.Equation (5.12) depends on the histogram bin since the ratio of the longitudinaland total cross section depends on it. However the ratio of the distributions changesby only 1.5% across the range in x measured. Therefore, it was assumed that thisdependence would be taken into account in the correction factors and eq. (5.11)was approximated by1�tot d�L;Tdx =  1Nevents XtracksWL;T (cos �; v)! � 1�tot d�dx � N (v) (5.13)with N (v) � 34 "v + v33 + *d�L=dxd�=dx +(v � v3)# : (5.14)which, for v = 0:94 isN (v) � 0:915 with small variations with the value of Dd�L=dxd�=dx E.This value is not known before the measurement is made. So, it is taken as anapproximation from the Monte Carlo and, after a �rst measurement is performed,it is recomputed and the measurement is made again with the new value.
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84 Data analysisThe correction procedure is performed bin by bin in the way described in sec-tion 5.2. Figures 5.10 and 5.11 show the correction factors and the comparison withdi�erent Monte Carlo models for the transverse and longitudinal scaled energy dis-tribution, respectively. The only signi�cant discrepancy is between ARIADNEand the corrected longitudinal distribution. While the correction factors for thetransverse scaled energy distribution (�g. 5.10(a)) are rather similar to the corres-ponding ones for the total distributions (�g. 5.2(a)), the ones for the longitudinaldistribution (�g. 5.11(a)) deserve more explanation.Figure 5.12(a) shows the track selection e�ciency for tracks inside the accep-tance of v = 0:94. The hypothesis that this e�ciency is constant over all theangles is not true and this causes these correction factors, especially for the lon-gitudinal distribution, to be large. To con�rm this hypothesis, studies with a toyMonte Carlo, parametrizing the angular track selection e�ciency to the sum ofa cubic polynomial and a hyperbolic tangent as a function of � were done. Thisparametrization is displayed by a continuous line in �gure 5.12(a). The correctionfactors obtained with this toy Monte Carlo follow the qualitative behaviour of theones shown in �gure 5.11(a). Thus, correcting the angular distribution before pro-jecting the double di�erential cross section of x and cos � into the longitudinal and
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5.6 Correlations between distributions 85transverse distributions would avoid the large correction factors of the longitudinalcross section. However, the result would be the same that including this e�ect inthe bin to bin corrections.Figure 5.12(b) shows the ratio of the angular distributions from real and simu-lated data. The di�erences are below 1% in almost the whole angular range, exceptfor jcos � j> 0:9. Since HVFL is expected to simulate the underlying angular distri-bution correctly, the di�erences are assigned to de�ciencies of the simulation of thetrack e�ciency at low angles. To take this into account, the analysis was repeatedwith v = 0:9 as acceptance cut. The di�erences between the longitudinal and trans-verse distributions obtained and the nominal distributions were taken into accountin the systematic error which, otherwise, was computed following the same proce-dure explained in section 5.2. The extra systematic error is found to be essentiallyequivalent to assuming a 10% relative uncertainty in the track ine�ciency at lowangles.The cross sections and the detailed error contributions for the transverse andlongitudinal scaled energy distributions are given in tables C.6 and C.7 in appendixC. The bin-to-bin systematic errors dominate over the statistical error, especiallyin the longitudinal distribution, where the main contribution comes from the dif-ferences in the Monte Carlo models due to the disagreement between ARIADNEand the real data. The 1% normalization error is the dominant uncertainty for thetransverse distribution.5.6 Correlations between distributionsApart from the statistical and systematic errors coming from the selection cuts orfrom the Monte Carlo model used in the detector correction, there exist correlatederrors between the bins of all the measured distributions. One a�ects all the binsof all the measured distributions and it comes from systematic uncertainties in thenormalization of the distributions. The other comes from the fact that some tracksenter in more than one distribution.



86 Data analysis5.6.1 Normalization errorsThe scaled energy distributions are normalized such that the integral of them is themean number of charged tracks per event. Thus, any uncertainty in the chargedmultiplicity would a�ect all the bins of all the distributions. A study of the chargedmultiplicity of hadronic events has already been performed by ALEPH in ref. [67].The error in the total charged multiplicity is about 1% and is mainly comingfrom the uncertainty in the multiplicity of tracks with transverse momentum be-low 0:2GeV=c and from the uncertainty in the number of tracks from photonconversions accepted.The uncertainty of the second kind is taken as correlated for all the bins of allthe distributions. Conservatively, when the �t is performed, a 1% error has beenadded in quadrature to all the elements of the covariance matrix formed from allthe distributions.5.6.2 Correlations due to common tracksSince all the tracks that enter in one bin of one of the tagged distributions enteralso in the analogous bin of the distribution corresponding to all avours, there isa statistical correlation between these bins. The cuts used for the avour enricheddistributions have been chosen to be exclusive and the binning is the same in all thedistributions. This makes these correlations not to be present between analogousbins of di�erent tagged distributions.Supposing the number of tracks entering bin i in the inclusive distribution isntoti and that the number of tracks in a given avour tagged distribution for thesame bin is ntagi , being ntagi < ntoti , the correlation between the two bins of thedistributions is given by �tot;tagi = ntagiqntagi qntoti = vuutntagintoti : (5.15)Therefore, �tot;tagi = vuutntagintoti �tot;stati �tag;stati (5.16)



5.7 Low energy data 87Experiment Normalization errorTasso (22 GeV) 2.3%TPC/2 (29 GeV) 3.2%Mark II (29 GeV) 1.5%Tasso (35 GeV) 1.0%Cello (35 GeV) 2.9%Tasso (44 GeV) 1.5%Amy (55 GeV) 0.4%Delphi (91.2 GeV) 3.0%Aleph (91.2 GeV) 1.0%Table 5.2: Normalization errors used in the inclusive distributions for all the experiments usedin the analysis. The errors on TPC/2, DELPHI and ALEPH are from the published papers.The rest are estimated as explained in the text.was added in quadrature to the corresponding element of the covariance matrixformed with all the distributions when the data is used in the scaling violation �tthat will be described in section 6.6.5.7 Low energy dataThe analysis of scaling violations needs the inclusive distributions for more thanone energy to perform the evolution and have sensitivity to the strong couplingconstant. Thus, in addition to the ALEPH data, inclusive charged particle spectrafrom TASSO [68] at ps = 22, 35 and 45 GeV, MARK II [69] and TPC/2 [70]at ps = 29 GeV, CELLO [71] at ps = 35 GeV, AMY [72] at ps = 55 GeVand DELPHI [73] at ps = 91.2 GeV have been used. Lower-energy data havebeen discarded because of the larger size of power-law corrections. In all thosemeasurements, x was de�ned as x = 2p=ps. The di�erence with the ALEPHde�nition, x = 2E=ps, leads to negligible power-law corrections in the range 0:1 <x < 0:8, used for the �t in section 6.6.Special treatment of the errors was done in the cases where normalization er-rors were not speci�ed. In some cases, statistical and systematic errors were notseparated. The principle to estimate the normalization error was to take the mi-nimum percentual systematic error as normalization error. To perform this, �rst



88 Data analysisthe statistical errors were computed from the published number of events used inthe measurement. This error was subtracted in quadrature from all the bins tocompute the systematic error. The minimum percentage of computed systematicerror was taken as percentual normalization error for all the bins. Table 5.2 showsthe normalization errors for all the experiments used in the analysis.



89
Chapter 6Scaling violations analysis andresults
In section 2.5 a description on how to extract the information on �s from the studyof scaling violations in e+e� was presented.However, some practical problems still arise before the measurement can beperformed. Perturbative QCD does not predict the form of the fragmentationfunctions or the functional form of the power-law corrections. The assumptionsmade in these two aspects of the analysis are described in sections 6.3 and 6.4,respectively. The arguments to choose the parametrization scale are presentedin 6.5.But, before a �t to the data can give a reliable result for the strong couplingconstant, still some more practical problems have to be solved. The coupled systemof integro-di�erential evolution equations and the relations between the fragmen-tation functions and the cross sections are not at all trivially solvable equations.The methods to handle these numerical problems are described in sections 6.1 and6.2.Finally, the measurement, the systematic uncertainties and the checks done ofthe result are presented in sections 6.6, 6.7 and 6.8.



90 Scaling violations analysis and results6.1 Evaluation of the convolution integralsThe equations relating the fragmentation functions to the measured cross-sections(section 2.2.1) and the evolution equations themselves (section 2.3) contain multipleconvolution integrals of the typeZ 1x dz P (z)Q(x=z): (6.1)As the functions P and Q are rather complicated expressions of their argument,a fast algorithm to perform those integrals, which avoids a lot of slow numericalintegrations, has to operate on tabulated function values. Thus, a uniform coveragein x and z, based on n subdivisions of the interval [0,1] would require to tabulateP (z) on n, and Q(x=z) on n2 grid points, which already for a moderately smallcoordinate spacing results in huge memory requirements.This can be avoided going to another set of variables [74]. Since the evolutionof the fragmentation functions at a fractional momentum x0 only depends on thevalues of the fragmentation and splitting functions at x > x0, the analysis can berestricted also to a �nite region in lnx. It is therefore possible to substitute x andz by t = ln(z) and u = ln(x). In these variables eq. (6.1) becomesZ 1x dz P (z)Q(x=z) = Z 0u dt eP (t) eQ(u� t) (6.2)with eP (t) = etP �et� and eQ(u� t) = Q �eu�t� : (6.3)Choosing an equidistant grid in the new variables allows to evaluate the convolutionintegrals based on the same number of tabulated points for both eP and eQ. Indexingthe grid points from 1 to n, the convolution integral (6.2) can be approximated bythe sum Z 1x dz P (z)Q(x=z) � � � nXi=k ePi � eQn�i (6.4)where k is the index of the �rst ePi such that t > u and � is the grid spacing inthe transformed variables. The original convolution integral has been turned intoa scalar product between two partial arrays of tabulated function values.An algorithmically simple way to do the convolution integrals is only one as-pect. In addition high numerical accuracy is required. The simple unweighted



6.1 Evaluation of the convolution integrals 91sum (6.4) evaluates the convolution integral with a residual error O(�). This canbe improved to O(�4) with only minimal additional computing costs by using thealternative extended Simpson's rule [75], where it is improved by adding a cor-rection term which only depends on the function values at the �rst and last fourevaluation points. The alternative extended Simpson's rule requires at least N = 8knots where the integrand is evaluated. The cases N < 8 have to be dealt withindividually.A collection of integration rules for arbitrary N > 1 is given below. Informationabout how they are derived can be found in [75]. LetZ ba dx f(x) = I (6.5)be the integral to be evaluated. Estimates for I shall be based on N evaluationsyk = f(xk), k = 1; : : : ; N , of the integrand on an equidistant grid with grid spacing�. If both endpoints are included, x1 = a, � = (b � a)=(N � 1) and xN = b. Acomplete set of closed quadrature formulas IN is given by:I2 = �2 (y1 + y2) (6.6)I3 = �3 (y1 + 4y2 + y3) (6.7)I4 = 38�(y1 + 3y2 + 3y3 + y4) (6.8)I5 = �3 (y1 + 4y2 + 2y3 + 4y5 + y5) (6.9)I6 = �48(17y1 + 59y2 + 44y3 + 44y4 + 59y5 + 17y6) (6.10)I7 = �3 (y1 + 4y2 + 2y3 + 4y4 + 2y5 + 4y6 + y7) (6.11)IN = � NXk=1 yk � �48(31y1 � 11y2 + 5y3� y4 � yN�3 + 5yN�2 � 11yN�1 + 31yN ) N � 8: (6.12)For functions which are di�cult to evaluate at x = b, a modi�ed set of openquadrature formulas I+N can be derived. Here the information from the given gridpoints is extrapolated into the region between xN and b. With x1 = a, � =(b � a)=N and xN = b � �, the following expressions, which are of the sameaccuracy as the closed formulas given above are obtained:I+1 = I1 +� y1 (6.13)



92 Scaling violations analysis and resultsI+2 = I2 + �2 (3y2 � y1) (6.14)I+3 = I3 + �12(23y3 � 16y2 + 5y1) (6.15)I+N = IN + �24(55yN � 59yN�1 + 37yN�2 � 9yN�3) N � 4 (6.16)where � = (b� a)=N is to be used everywhere.6.2 Methods to solve the evolution equationsLooking at the non trivial structure of the evolution eqs. (2.46), it can be deducedthat is almost unavoidable to use some numerical method to solve them. The stan-dard method used in the analysis is the Runge-Kutta method. However, in somecases, a di�erent approach can be useful. The moment analysis, apart from beingan elegant method, allows to solve the equations analytically, at least, restrictedto �rst order in �s. This is no longer true when O(�2s) corrections are introduced.Therefore, this method is only used in the study of Monte Carlo models to try tohave an insight in the parametrization of the non-perturbative terms.6.2.1 Runge-Kutta methodThe general problem of solving a system of ordinary di�erential equations of anyorder can be reduced to solve a coupled system of N �rst-order ordinary di�erentialequations likedyi(x)dx = fi(x; y1; : : : ; yN); i = 1; : : : ; N �! d~y(x)dx = ~f (x; ~y): (6.17)Knowing the solution at a point xn, a solution can be found at the point xn+1 �xn + h with ~yn+1 = ~yn + h � ~f (xn; ~y(xn)) +O(h2) (6.18)However, the method above is unstable and not accurate enough. Instead, thefourth-order Runge-Kutta method [75], which is more robust and precise, can beused. For each step in the solution, the following sequence of evaluations must bemade for each of the fi:k1 = h f(xn; yn)



6.2 Methods to solve the evolution equations 93k2 = h f(xn + h2 ; yn + k12 )k3 = h f(xn + h2 ; yn + k22 )k4 = h f(xn + h; yn + k3)yn+1 = yn + k16 + k23 + k33 + k46 +O(h5) (6.19)where f stands for any of the fi. It is easy to transport the method described ineqs. (6.19) to the evolution eqs. (2.46), where the right-hand fi of (6.19) are theconvolution integrals, h is the evolution variable, ln s, and the yi are each of thevalues of the pretabulated fragmentation functions. The value of h was chosen to bethe di�erence between logarithms of the centre-of-mass energy of two consecutivedistributions.6.2.2 Moments methodAn alternative method to solve the evolution equations is to convert them insimple di�erential equations. The evolution equations for the singlet (2.50) andnon-singlet (2.49) parts, contain convolution integrals that, forgetting the energydependence, are of the form Z 1x dz P (z)A�xz� : (6.20)Taking into account that x and z take values between 0 and 1, this can be writtenin the form Z 10 dy Z 10 dz �(y � xz )P (z)A(y) (6.21)where the lower limit in the integral over the z variable can be moved from x to 0because the � function ensures that the integrand is zero over the added intervalbetween 0 and x. Multiplying eq. (6.21) by a power of x and integrating over thewhole interval, givesZ 10 dxxn Z 10 dy Z 10 dz z �(x�yz)P (z)A(y) = Z 10 dy ynA(y)�Z 10 dz zn+1P (z): (6.22)This property can be used to simplify the integro-di�erential evolution equa-tions in such a way that they become simple di�erential equations when they areexpressed in form of the moments of the fragmentation functions. The formalism



94 Scaling violations analysis and resultsis described in detail in [76]. Here it is described at leading order, since this for-malism is only used in the leading order study of the scaling violations with thedi�erent Monte Carlos with the purpose to have an insight of the parametrizationof the non-perturbative power-law corrections (section 6.4).The moments of the cross-sections are de�ned in the following way:Mn = Z 10 dxxn+1 d�dx: (6.23)Then, taking into account that the singlet and non-singlet parts of the fragmen-tation functions have been de�ned weighted with x according to eq. (2.48), then-order moment for the singlet, non-singlet and energy-weighted gluon fragmenta-tion function has to be de�ned asAn = Z 10 dxxnA(x; s) A = N;S;G: (6.24)Up to leading order, the running coupling constant is given by�s(s) = 1b0 t (6.25)where b0 is given in (2.26) and t is de�ned ast = ln� s�2� (6.26)being � the leading order e�ective QCD scale. Equation (6.25) is just the approxi-mation up to �rst order of the running coupling constant described in section 2.1.3.With these de�nitions, and the property of eq. (6.22), it is easy to show that theevolution equations simplify tot ddt  SnGn ! =  anQQanGQanQGanGG ! SnGn !t ddtNn = anQQNn: (6.27)with the coe�cients anxx given byb0anQQ = �12 + 1(n+ 2)(n+ 3) � 2 n+2Xj=2 1j (6.28)b0anGG = 2X "� 112 + 1(n + 1)(n+ 2)



6.3 Parametrization of the fragmentation functions 95+ 1(n+ 3)(n+ 4) � n+2Xj=2 1j 35� 23Z (6.29)b0anGQ = n2 + 5n + 8(n+ 1)(n+ 2)(n + 3) (6.30)b0anQG = 2Z n2 + 5n+ 8(n+ 2)(n + 3)(n+ 4) ; (6.31)where X, Z, and b0 are de�ned in eqs. (2.12) and (2.26). The solution of thenon-singlet part is rather trivial and givesNn(s) = Nn(s0)  ln(s=�2)ln(s0=�2)!anQQ : (6.32)The solution for the coupled system needs a little bit more algebra and can beexpressed as  S(t)G(t) ! = �1~e1� tt0��1 + �2~e2� tt0��2 (6.33)where �1;2 are the eigenvalues of the coe�cient matrix in eq. (6.27) and ~e1;2 thecorresponding eigenvectors. The parameters �1;2 are determined through the initialconditions for t = t0 at the initial centre-of-mass energy ps0.6.3 Parametrization of the fragmentation func-tionsThe scheme presented in �gure 2.2 assumes that the fragmentation functions arespeci�ed at one particular energy scale. With enough amount of data, it would bepossible to perform a moment analysis, in a similar way as the one described insection 6.2.2, where this parametrization would not be necessary. But, the coarsebinning of the data due to statistical limitations does not allow to �x the initialconditions truly unambiguously. Some assumptions about the shape of the frag-mentation functions must be done, the least restrictive ones being the requirementsof positiveness and smoothness. The most convenient approach is to use a phe-nomenological parametrization, where the shape is described by a small number offree parameters.Perturbative QCD, in the framework of the Modi�ed Leading-Log Approxima-tion (MLLA) [77], supplemented by the Local Parton-Hadron Duality (LPHD) hy-pothesis [78], predicts that the momentum spectrum of �nal state particles should



96 Scaling violations analysis and resultsexhibit an approximately gaussian peak in lnx [79]. From this, it can be inferreda functional form for the scaled energy distributions liked�d ln x � exp ��c(d� lnx)2� , d�dx � 1x exp��c ln2x�x2cd: (6.34)Combined with the expectation that the momentum spectrum falls o� with somepower of 1 � x for x! 1 [11, 17], �nally yields the ansatzD(x) = N(1 � x)axb�1 exp��c ln2 x� ; (6.35)where N , a normalization constant, and a, b and c are free parameters which haveto be determined from the data. With the possible exception of c, the parametersare expected to be di�erent for light quarks, c quarks, b quarks and gluons. Theparameter c is in principle predicted by the MLLA and, in leading order, shouldalso be avour independent. In total, thirteen parameters are used to describe thefragmentation functions at one energy: the c parameter, which is taken equal forall avours and the gluon, and the Ni, ai and bi for the light, c, and b quarks andthe gluon.In order to avoid correlations between the normalization and the rest of para-meters, the �nal parametrization function chosen for the analysis is given byxDi(x; s0) = Ni (1 � x)aixbi exp ��c ln2 x�Z 0:80:1 dx (1 � x)aixbi exp ��c ln2 x� ; (6.36)where i stands for uds, c, b, and g (gluons), and the dependence on s0 comes fromthe implicit dependence of the parameters (Ni, ai, bi and c) on this variable.6.4 Parametrization of the non-perturbative termsAnother still unde�ned part of the analysis is the introduction of the non-perturba-tive contributions to the evolution. In sections 2.4 some sources of power-lawcorrections were presented. There are corrections that go as 1=ps and othersthat go as 1=s. Although it is expected that the dominant one is coming fromhadronization corrections (section 2.4.4), which go as 1=ps, the actual form of thenon-perturbative contributions to the evolution is not known.



6.4 Parametrization of the non-perturbative terms 97Given su�cient data, it would also be possible to determine them from the datawithout strong external assumptions. Such an approach was followed in the analy-sis of the SLAC/BCDMS deep-inelastic scattering data [80]. There, the power-lawcorrections were known to behave like 1=Q2, with the available data covering therange 0:5GeV2 < Q2 < 260GeV2. In the study of scaling violations in fragmenta-tion functions, the power-law corrections are expected to behave like 1=ps, whilea typical analysis covers data in the range from 22GeV < ps < 91GeV. Thusthe dynamical range to separate power-law corrections from the logarithmic scalingviolations due to perturbative QCD is 125 times larger in deep-inelastic scatteringexperiments than it is in e+e�-annihilation. This severely restricts the number ofparameters describing non-perturbative e�ects that can be determined from thedata to essentially only a single number.A simple e�ective way of parametrizing the non-perturbative e�ects is by doinga change of variables and relate the perturbative variable x to the measured quan-tity xe through x = g(xe). Imposing the condition of energy conservation beforeand after the transformation �xes the relation between the perturbative prediction�(x) and the observable cross section �NP (xe):Z dxxd�dx = Z dg(xe)g(xe)d�dx = Z dxeg(xe)g0(xe)d�dx = Z dxexed�NPdxe (6.37)From this, it can be deduced thatd�NPdxe = g(xe)g0(xe)xe d�dx: (6.38)The simplest ansatz for g is given by a rescaling of the type x = xe(1 +h1=ps) [20]. However, it was found that some other parametrizations could workbetter. A general ansatz for the non-perturbative e�ects is given byx = g(xe) = xe + (h0 + h1 xe + h2 x2e + : : :) ��ps��k � (ps0)�k� : (6.39)Using only the parameter h0 means that the perturbative prediction and the obser-vable cross-sections are related by a shift of the spectra, using only h1 correspondsto a rescaling of x. The energy-dependence of this transformation is given by theterm in square brackets. This term is built such that the non-perturbative correc-tions are zero at the scaleps0 where the fragmentation functions are parametrized,which takes into account the fact that the fragmentation functions themselves al-ready parametrize all non-perturbative e�ects at a given scale. Perturbative QCD



98 Scaling violations analysis and resultsthen predicts logarithmic scaling violations in the evolution of those fragmentationfunctions, and the above ansatz takes care of the power law corrections that comeon top.There are sources of power-law corrections in which k = 1 and another ones inwhich k = 2. Since the number of parameters allowed by the currently availableexperimental data is only one, some guidance about the appropriate choice has to betaken from Monte Carlo simulations of e+e� annihilation processes into hadrons.In addition to a discrimination between using h0 and h1 (shift versus rescaling)those models also allow to infer the power k to be used in eq. (6.39).For this purpose a leading-order moment analysis as described in section 6.2.2was performed on data generated with the JETSET, ARIADNE and HERWIGMonte Carlo models. Here even the higher moments of the fragmentation functionscan be reliably determined, something which unfortunately is in practice impos-sible for the comparatively coarse-binned published experimental x-distributions.Moments can be viewed as a convenient means to describe the shape of the frag-mentation functions without having to resort to an explicit parametrization. Loworder moments probe mainly the low x part of the distribution, higher order mo-ments progressively test large x region. The next sections describe this analysisand the parametrization of the non-perturbative terms used in the analysis of thereal data.6.4.1 Non-perturbative terms in the moments analysisThe missing ingredient to perform the moments analysis is the inclusion of thenon-perturbative e�ects. This is easy for the two simple parametrizations discussedabove. De�ning f(x) = d�dx(x) (6.40)a1 = 1 + h1 ��ps��k � (ps0)�k� (6.41)a0 = h0 ��ps��k � (ps0)�k� ; (6.42)the introduction of the rescaling in the moments becomesMn(NP) = Z 10 dxe xn+1e fNP(xe) = Z 10 dxe a21 xn+1e f(a1xe)



6.4 Parametrization of the non-perturbative terms 99= Z a10 dy a�n1 yn+1f(y) = a�n1 Mn (6.43)where the last step is done because the integral in the interval (0; a1) in y is thewhole phase space as (0; 1) is for the variable xe.In the case of the shift,Mn(NP) = Z 10 dxe xn+1e fNP(xe) = Z 10 dxe xe + a0xe xn+1e f(xe + a0)= Z a0+1a0 dy y (y � a0)nf(y) = nXk=0 nk ! (�a0)n�kMk (6.44)where the last step is done again because the integral in the interval (a0; a0+1) iny is the whole phase space as (0; 1) is for the variable xe.Here Mn are the moments without power-law corrections and Mn(NP) the mo-ments including the non-perturbative e�ects.6.4.2 Monte Carlo studyThe energy evolution of the moments seen in the Monte Carlo and its compari-son to the leading-order QCD prediction allow to infer the behaviour of the non-perturbative corrections [74]. A leading-order analysis is justi�ed since the MonteCarlo models are based on a leading-log cascade and only partially incorporatenext-to-leading logarithmic e�ects.Monte Carlo data containing 1 million events were generated with the naturalavour mix for centre-of-mass energies of 22, 35, 44, 55 and 91GeV for the JETSETPS, ARIADNE and HERWIG models. At 91GeV, additional samples of 1 millionevents with primary c and b quarks were generated. From this, the moments forlight, c and b quark fragmentation functions at an initial scale of 91GeV weredetermined. The gluon fragmentation function, which in leading order does notcontribute to the observable cross section but is needed in the evolution equations,was assumed to be equal to the c quark fragmentation function. The associateduncertainty was estimated by alternatively setting it equal to the b quark frag-mentation function and taking the corresponding change in the evolution of themoments as a theoretical error.For the determination of the parameters governing the power-law corrections,the QCD scale parameter � describing the logarithmic part of the scaling violations



100 Scaling violations analysis and resultsJETSET 7.3 �QCD = 0:319GeVAnsatz �2=ndf Parameter Value h (GeV)h0 1=ps 154 �0:78 � 0.15 � 0.15h1 1=ps 183 �2:3 � 1.40 � 0.41h0 1=s 356 �15: � 1.7 � 2.8h1 1=s 411 �45: � 28. � 7.8ARIADNE 4.02 �QCD = 0:225GeVAnsatz �2=ndf Parameter Value h (GeV)h0 1=ps 46 �0:59 � 0.13 � 0.13h1 1=ps 56 �1:8 � 0.95 � 0.38h0 1=s 132 �11: � 1.7 � 2.5h1 1=s 152 �35: � 20. � 7.4HERWIG 5.6 �QCD = 0:152GeVAnsatz �2=ndf Parameter Value h (GeV)h0 1=ps 13 �0:41 � 0.12 � 0.11h1 1=ps 15 �1:3 � 0.59 � 0.36h0 1=s 43 �8:5 � 2.3 � 2.3h1 1=s 48 �25: � 13. � 7.1Table 6.1: Monte Carlo studies of non-perturbative corrections. See text for de�nition of errors.was �xed to the input value used for the respective model. Di�erent functionalforms for the non-perturbative corrections were tried separately for the leading tenmoments in single-parameter �ts of h0 and h1 assuming the energy dependence tobe 1=ps or 1=s. The power law corrections were included in such a way that theyvanish at ps = 22GeV.The results are summarized in table 6.1 and one example is displayed in �gu-re 6.1. For each ansatz of the non-perturbative terms, the average chisquare perdegree of freedom �2=ndf is given together with the value obtained for the non-perturbative parameter hi. The quoted number is the central value obtained overthe �rst 10 moments, the �rst error is half-range of the values obtained, and thesecond one the half range found when varying the QCD scale, �, from one half totwice its nominal value. The statistical errors are completely negligible.Although �2=ndf is rather large, one has to keep in mind that the Monte Carlo
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102 Scaling violations analysis and resultsbe seen that h0 is much more stable than h1. This can be traced to the fact that the�tted value for h1 becomes more and more negative for lower order moments, i.e.when putting more emphasis on the low-x region, suggesting a behaviour h1 � 1=xwhich is equivalent to parametrizing the non-perturbative terms by a shift h0.In conclusion, the Monte Carlo studies suggest a simple e�ective parametriza-tion of the non-perturbative terms of the functional formx = xe + h0  1ps � 1ps0! (6.45)with a negative parameter h0, and this is what is going to be used in the �t to thereal data.6.5 Choice of parametrization scaleWith the values of h0 obtained from the Monte Carlo study (table 6.1), typical shiftsin x are of the order �x = O(0:01). At high values of x, where the cross sectiongoes to zero, such a shift is much smaller than the experimental resolution and thushas only very little impact. At small x it amounts to a non-negligible change of thecross-section for two reasons: the momentum measurement is much more preciseand the cross section rises rapidly. The fact that a negative h0 seems to be preferredand the functional form (6.45) suggests to use a parametrization scale ps0 smalleror equal to the smallest scale used in a scaling violations analysis, such that thevalue x at which the perturbative cross section is evaluated in order to obtain thecross-section at the experimental value xe is always larger than xe. This assures thatx never is needed at unphysical negative values. Unphysical values x > 1 may occurbut, as explained above, this is much less severe and can easily be tolerated, thuspermitting to have a really simple way of parametrizing non-perturbative e�ects.For the �t to be explained in the following section, ps0 = 22GeV is chosen.6.6 Results of the �tAn overall �t of the QCD predictions to all ALEPH and low energy data be-tween 22GeV and 91:2GeV presented in chapter 5 is done. Following the argu-ments given in section 6.5, the fragmentation functions for the di�erent avours



6.6 Results of the �t 103are parametrized at 22GeV according to eq. (6.36). The non-perturbative e�ectsare parametrized by (6.45). In total, thirteen parameters are used to describe thefragmentation functions at one energy, the c parameter introduced in section 6.3,and the normalizations (Ni) and values of ai and bi for the light, c and b quarksand also for the gluon fragmentation function. The evolution to another energy re-quires two more parameters: �s, which determines the perturbative evolution, andh0, which parametrizes the non-perturbative e�ects in the evolution. Finally, the�rst order strong coupling constant, �s, introduced in eq. (2.69) is also required.Altogether there are sixteen parameters, which are all �t simultaneously to theavailable data.The avour-tagged distributions serve mainly the purpose of �xing the parame-ters of the corresponding fragmentation functions. The gluon-tagged sample andthe longitudinal and transverse distributions determine the leading-order couplingconstant, �s, and the parameters of the gluon distribution function. Then, fromthe low energy data and the inclusive data at 91GeV the values of �s and h0 areobtained.The �t range is chosen as 0:1 < x < 0:8 for all data at all energies. Outsidethis range, systematic e�ects, especially at low ps, start to become important.However, for the longitudinal cross section (measured only at 91GeV), the �trange is taken as 0:04 < x < 0:8 to increase the statistical sensitivity.The procedure follows the scheme of �gure 2.2. First, the parametrization ofthe fragmentation functions for the three quark species and the gluon is used totabulate the values of the function xDi(x; s0) in a grid of equally spaced points inlnx. The number of points was chosen to be 100 in the interval [ln 0:04; ln 1]. Testswere done to probe the sensitivity of the �t result to larger number of grid points,resulting in no change. The coe�cient functions and the kernels are also tabulatedin lnx using the same grid de�nitions that for the fragmentation functions.Then, the coe�cient functions are used at the parametrization energy to com-pute the measurable cross sections (horizontal arrows in �gure 2.2). The convolu-tion integrals involved in this procedure are computed as explained in section 6.1.A covariance matrix is constructed with the errors of the data and the correlationbetween the di�erent bins, and the �2 is computed from the comparison of thedata and the cross-sections computed from the convolution of the fragmentation



104 Scaling violations analysis and results�s(MZ) = 0:1258 � 0:0053h0 = �0:14� 0:10 GeVlight (uds) quarks c quarks b quarks gluonsN 0:372 � 0:005 0:359 � 0:006 0:295 � 0:008 0:395 � 0:020a 1:69� 0:04 3:09� 0:16 3:29� 0:09 2:6� 0:8b �1:40 � 0:06 �1:10 � 0:09 �1:69 � 0:07 �1:59 � 0:29c 0:252 � 0:014�s 0:199 � 0:008Table 6.2: Results of the �t to all data. The errors include statistical and experimental system-atic uncertainties, except for those related to avour tagging. See text for de�nition of parameters.functions and the coe�cient functions.The tabulated kernels and the fragmentation functions are used to computethe fragmentation functions at other energies (vertical arrows in �gure 2.2). Thesolution of the evolution equations (2.46) is obtained using the Runge-Kutta tech-nique described in section 6.2.1. Again convolution integrals are involved in thisprocedure that are solved in the way described in section 6.1. The fragmentationfunctions at the new energy are used, together with the coe�cient functions, tocompute the cross-sections at the new energy. The inclusion of the parametrizednon-perturbative e�ects is done following the parametrization (6.45). The compa-rison with the measured data follows the same procedure that the one done for theinitial parametrization scale.The evolution of the fragmentation functions, the subsequent calculation of thepredicted cross-section and the comparison of the prediction to the data is done forall the available distributions at di�erent centre-of-mass energies. A total �2 resultsfrom all the procedure which is then minimized changing the sixteen parametersof the �t.The results of the �t are shown in table 6.2. There are sizable correlationsamongst most of the parameters, which may be as large as 90% between the parame-ters of the fragmentation functions. The parameter most strongly correlated with�s(MZ) is the one describing the energy evolution of the non-perturbative terms, h0.Here the correlation is 36%. The value found for h0 is compatible with zero, which
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6.6 Results of the �t 109Distribution �2=ndfTasso (22 GeV) 7.3/13TPC/2 (29 GeV) 9.5/12Mark II (29 GeV) 36.8/14Tasso (35 GeV) 44.6/13Cello (35 GeV) 10.6/22Tasso (44 GeV) 13.6/13Amy (55 GeV) 7.8/7Delphi (91.2 GeV) 32.1/22Aleph all avours (91.2 GeV) 28.9/23Aleph uds-enriched (91.2 GeV) 29.7/23Aleph c-enriched (91.2 GeV) 26.9/23Aleph b-enriched (91.2 GeV) 66.5/23Aleph gluons (48 GeV) 2.8/5Aleph longitudinal (91.2 GeV) 7.8/16Table 6.3: Detail of the �2=ndf per experiment in the standard analysis.region, the contribution to the total �2 is only of roughly four units. A change inthe normalization of � 2% would make the distribution agree almost perfectly.The �2 per degree of freedom of the �t is 307.3/213. The contributions fromeach distribution are detailed in table 6.3. The contributions from the ALEPHdistributions have to be considered only as approximate since the correlation amongthem were not considered when extracting their individual value.As it can be seen in table 6.3, three distributions contribute substantially tothe overall �2: MARKII (37/14), TASSO at 35GeV (45/13) and the ALEPH b-enriched sample (66/23). The large �2 for the b quark enriched sample is due toinadequacies of the simple parametrization of the fragmentation function. Whilethe simple ansatz is good enough to describe the fragmentation of the gluon andthe light quarks including the c quark, it fails to reproduce the detailed structureof b quark fragmentation and decay over the full x range. Removing the high-xpoints above x = 0:6 changes the �2=ndf to 31/19 while the result of the �t remainsunchanged. The relatively high values of the �2 for MARKII and TASSO (35 GeV)point to an inconsistency in the experimental data, since there are data from otherexperiments at the same energies which are perfectly consistent with the QCD �ts.In order to understand the importance of those problems for the �t, the errors



110 Scaling violations analysis and resultsof these two distributions are scaled up by the corresponding values of q�2=ndf ,e�ectively deweighting the results from those experiments. The result of the �twith the enlarged errors and the ALEPH b-enriched sample restricted to the range0:1 < x < 0:6 is �s(MZ) = 0:127 � 0:006, fully consistent with the previous one,with an overall �2=ndf = 219=209.6.7 Systematic errorsThe error in �s(MZ) presented in the previous section contains the statistical errorsand most of the systematic errors from the measurement of the scaled energydistributions. Also the error from the correlations in all the parameters is includedin the �t. The only missing uncertainties come from the assumption made inthe normalization errors for those experiments in which this is not speci�ed, thedependence of �s(MZ) on the assumed avour composition for the avour-taggeddistributions, and the theoretical errors, which will be estimated by looking at thefactorization and renormalization scale dependence of the result.6.7.1 Experimental systematic errorsNormalization errors. In the low energy experiments where only the combinedstatistical and systematic errors have been published, the nominal result was ob-tained with the assumption explained in section 5.7 for the normalization errors.Alternatively, all unspeci�ed errors were taken as bin-to-bin errors giving the result�s(MZ) = 0:1278 � 0:0058. The corresponding shift of ��s = 0:002(norm) wastaken as an additional systematic error.Flavour composition. By varying the con�dence-level cuts in the lifetime tags,the avour compositions were changed such that the avour enrichment for udsand b quarks changed by �4% and for c quarks by �4% and +2% (it was foundto be very di�cult to get higher purities). The avour composition of the di�erentdistributions obtained with these changes are speci�ed in table 6.4 where also thepurities and avour composition of the distributions used to make the nominal ana-lysis are shown for comparison. The cuts applied in the two algorithms to constructeach distribution are also shown in the table together with the e�ciencies. These



6.7 Systematic errors 111Dist. Name % uds % c % b E�ciency Cut de�nitionuds-enr. (stand) 78.9 14.5 6.6 �uds = 74:0 Ph � 0:3uds-enr. (�) 75.0 16.1 8.9 �uds = 91:0 Ph � 0:1uds-enr. (+) 82.8 12.5 4.7 �uds = 37:8 Ph � 0:7c-enr. (stand) 38.2 35.1 26.7 �c = 9:0 0:001 � Ph � 0:07; lh � 0:2c-enr. (�) 41.1 31.5 27.4 �c = 15:9 0:0005 � Ph � 0:12; lh � 0:25c-enr. (+) 35.6 36.9 27.5 �c = 6:2 0:001 � Ph � 0:05; lh � 0:18b-enr. (stand) 2.2 7.3 90.5 �b = 32:5 Ph � 0:001b-enr. (�) 3.5 9.7 86.8 �b = 39:7 Ph � 0:003b-enr. (+) 0.9 3.9 95.2 �b = 21:3 Ph � 0:0001Table 6.4: Flavour composition of the di�erent distributions considered in the analysis. Foreach distribution, the avour composition and the e�ciency for the avour to be enriched areshown. Also the cuts applied to the hemispheres for the lifetime tag (Ph) and the event shapetag (lh) are shown.Changed distribution �2=ndf �s(MZ)uds-enr. (�) 303.8/213 0:1253 � 0:0056uds-enr. (+) 309.1/213 0:1263 � 0:0054c-enr. (�) 307.1/213 0:1218 � 0:0055c-enr. (+) 308.9/213 0:1246 � 0:0055b-enr. (�) 289.2/213 0:1259 � 0:0054b-enr. (+) 294.8/213 0:1252 � 0:0053Table 6.5: Results of �s(MZ) for di�erent avour tagged distributions. For each �t, the taggingcuts of a given distribution are changed, giving the avour compositions speci�ed in table 6.4. A�t is performed with this new distribution but leaving the rest untouched.e�ciencies do not include the global � 77% of the hadronic selection (section 5.1).Those labeled with `stand' are the ones that are used in the nominal analysis andthe ones with `+' and `�' are more enriched and less enriched distributions usedin the study of the systematic errors.The results of the �t changing one of the corresponding enriched avour distri-butions at a time are given in table 6.5.The maximum change was ��s = 0:004, which was taken as an additionalsystematic error due to avour composition of the tagged data samples. This resultcan be con�rmed from the extrapolation of the results presented in table 6.6 where



112 Scaling violations analysis and resultsChanged purity �2=ndf �s(MZ)uds-enriched � 308.9/213 0:1262 � 0:0054uds-enriched + 308.3/213 0:1251 � 0:0055c-enriched � 308.2/213 0:1250 � 0:0055c-enriched + 306.6/213 0:1266 � 0:0052b-enriched � 308.5/213 0:1247 � 0:0054b-enriched + 306.4/213 0:1269 � 0:0053Table 6.6: Results of �s(MZ) for di�erent purities in the tagged distributions. For each �t, thenominal purity taken from the Monte Carlo was changed by �1%. The �ts were done with thesame nominal distributions but with this `arti�cially' changed purity.the nominal values of the purities were varied arti�cially by �1% without changingthe distributions themselves. The shifts in �s(MZ) were � 0:001. Assuming alinear variation of the �tted value of �s(MZ) with the variation of the Monte Carloestimates for the purities, the estimated systematic error would be equivalent toan uncertainty of �4% in the purity estimates from the Monte Carlo which seemsconservative [45, 82].Considering also the �t error, the total experimental error of �s(MZ) is��s(exp) = �0:005(fit)� 0:002(norm) � 0:004(purity) = �0:007(exp).6.7.2 Theoretical errorsA priori, the scales �i, �f and �R in �gure 2.2 are unconstrained. When cal-culating to all orders in perturbative QCD, any dependence on the choice ofthe scales vanishes. In �nite order perturbation theory, a residual scale depen-dence is related to the sensitivity to uncalculated higher order terms. In order toavoid large logarithms in the theoretical predictions, the natural choice of scalesis �2i =si = �2f=sf = �2R=�2 = 1 and these are the values used for the standardanalysis. Varying the scales allows to estimate the theoretical uncertainties of theprediction.The renormalization and factorization scales were parametrized according to�R = fR� and �i;f = fFpsi;f , being the nominal value determined by ln fR;F = 0.The scale values were varied, one at a time, in the range �1 � ln fR;F � 1, givingthe values of �s(MZ) presented in table 6.7.



6.8 Checks 113Value of the scale �2=ndf �s(MZ)lnfR = �1 307.3/213 0:1242 � 0:0052lnfR = +1 307.3/213 0:1281 � 0:0056lnfF = �1 310.8/213 0:1196 � 0:0049lnfF = +1 304.7/213 0:1310 � 0:0061Table 6.7: Results of �s(MZ) for di�erent factorization and renormalization scale assumptions.The theoretical errors are taken from the maximum variation in �s when changing the scale.The quality of the �t is insensitive to the renormalization scale and does notchange substantially with the changes made in the factorization scale. Takingthe two scale variations as independent sources of theoretical uncertainties, thetheoretical systematic error on �s(MZ) will be given by��s(theory) = �0:002(�R)� 0:006(�F ); (6.46)which, combined in quadrature with the experimental error, gives the �nal result�s(MZ) = 0:126 � 0:007(exp)� 0:006(theory) = 0:126 � 0:009: (6.47)6.8 ChecksSeveral additional checks were carried out in the analysis varying some of theassumed parameters.6.8.1 Parametrization scale variationAlthough there are reasons to choose the parametrization scale at 22GeV, as ex-plained in section 6.5, repeating the �t with di�erent parametrization points willprove, not only that the value of �s does not strongly depend on this assumption,but also that the result is not widely sensitive to the choice of the parametrizationof the fragmentation functions. This last point comes from the fact that, given thefragmentation functions in the exact form (6.36) at an initial scale �i = ps0, theevolution to a �nal scale �f will transform them to a similar shape which, however,will be outside the original parameter space. Thus varying the parametrizationscale is a way to probe slightly di�erent families of functions D(x).



114 Scaling violations analysis and resultsTwo di�erent values were tried for the parametrization scale giving the results:�s(MZ) = 0:1246 � 0:0059 for s0 = 45:0GeV; (6.48)�s(MZ) = 0:1240 � 0:0063 for s0 = 91:2GeV; (6.49)which deviate less than 0.002 from the nominal result. The chisquared values di�erin less than one unit from the one of the standard �t.6.8.2 Parametrization of the non-perturbative e�ectsAlthough the parametrization of the non-perturbative terms is justi�ed in theMonte Carlo (section 6.4), it is worth to probe the dependence of the result onit. The energy dependence of the non-perturbative evolution terms was changedfrom 1=ps to 1=s, as it is known to be in deep-inelastic scattering. The result was�s(MZ) = 0:1265�0:0052 in perfect agreement with the nominal result. The valueof the �2 increased by less than one unit and the value of the non-perturbativeparameter changed to h0 = �2:7� 2:0. Thus, the data themselves cannot con�rmthat the energy dependence of the non-perturbative evolution terms is of the form1=ps, but the change in �s(MZ) is negligible with the 1=s assumption. Anyway,the 1=ps assumption is well supported by Monte Carlo studies (section 6.4) andphenomenological theoretical assumptions (section 2.4).The rescaling ansatz used in reference [20]x = x0 "1 + h1 �  1ps � 1ps0!# (6.50)was also tried. The �t to all the parameters gave a �2 = 314:1=213, and a resultof �s(MZ) = 0:108 � 0:010 with a correlation of 87% between �s and h1. A valueof h1 = �1:03 � 0:44 was obtained. This correlation precludes a simultaneousmeasurement of both parameters. In reference [20], the value of h1 was estimatedfrom the HERWIGMonte Carlo, giving a value of h1 = �0:5. Fixing this parameterto this value, gave �s(MZ) = 0:1184�0:0050, which is compatible with the nominalresult although it depends on the assumptions and approximations made in theHERWIG Monte Carlo.



6.8 Checks 115Interval �2=ndf �s(MZ) h00.1-0.5 162.4/148 0:1215 � 0:0071 �0:077 � 0:1080.05-0.8 702.2/259 0:1331 � 0:0036 �0:253 � 0:0840.15-0.8 244.7/180 0:1326 � 0:0100 �0:094 � 0:169Table 6.8: Results of the �t to �s(MZ) for di�erent intervals in x. All the parameters are �tted.Interval �2=ndf �s(MZ)0.1-0.2 51.9/73 0:1313 � 0:00400.2-0.3 47.8/57 0:1234 � 0:00730.3-0.4 33.9/54 0:1200 � 0:00780.4-0.5 50.1/43 0:1249 � 0:00750.5-0.6 41.1/39 0:1255 � 0:00750.6-0.7 43.5/37 0:1261 � 0:00750.7-0.8 52.8/37 0:1247 � 0:0088Table 6.9: Results of the �t to �s(MZ) in di�erent intervals in x. All the parameters except�s(MZ) are �xed.6.8.3 Dependence on the �t rangeThe dependence on the choice of the �t interval was studied by varying the lowerand upper bounds of the �t range around the nominal values of xmin = 0:1 andxmax = 0:8. The results on �s (shown in table 6.8) are compatible with the nominalresult. The �2 of the �t degrades considerably when going to smaller xmin, indica-ting that the parametrizations of the fragmentation functions and non-perturbativeterms are not suitable for very small x. Going to larger values of xmin amountsto giving up much of the available data, and the �t of all 16 parameters becomesunstable, with correlations of more than 90% between many of the variables.Finally, the whole parametrization except �s(MZ) was �xed to the nominalresult, and the strong coupling constant was �tted, using the same formalism asbefore in independent x intervals of size �x = 0:1 between x = 0:1 and x = 0:8.The di�erent �tted values are shown in table 6.9. All results were found to bestatistically compatible with the nominal one, verifying that scaling violations overthe full x range are described by one single coupling constant.
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Chapter 7Summary and conclusionsThe inclusive distribution (1=�tot)(d�=dx) for charged particles has been measuredby the ALEPH experiment for hadronic events of all avours and enriched samplesin light avours, c quarks and b quarks. In addition, the transverse and longitudinaldistributions were measured and, together with information from identi�ed gluonjets, used to constrain the gluon fragmentation function.A global analysis of these measurements and results from other experimentsat lower centre-of-mass energies has been carried out in the framework of next-to-leading order QCD. Scaling violations in the time-like domain between ps =22GeV and ps = 91:2GeV are observed in agreement with QCD predictions. Thedata are found to be consistent with one universal coupling constant describingthe evolution of the fragmentation functions between ps = 22GeV and ps =91:2GeV. At the same time, the shape of the fragmentation function for gluons,light avours, c and b quarks were determined from the data alone.Although the parameters describing the fragmentation functions obtained arestrongly correlated, the functional forms of the di�erent fragmentation functionscan be used as input to some phenomenological studies.The size of the power-law corrections, mainly coming from the hadronizatione�ects, have been also extracted from the data and been found to be rather small.Thus, the perturbative evolution of the fragmentation function is the main sourceof the observed scaling violations.The strong coupling constant measured here from scaling violations is consistentwith other determinations by ALEPH [81] at one �xed energy based on global



Summary and conclusions 117event shape variables. Expressed at the scale MZ, the measured value is �s(MZ) =0:126 � 0:009.The result is � 1:3 standard deviations higher than the value quoted in [80] fromthe �t to EMC/BCDMS data in the range 0:5 � 260GeV2 using the same formalismto extract the value of the strong coupling constant from scaling violations in thespace-like domain.The main single contribution to the error on �s comes from the dependenceon the factorization scale chosen. Next-to-next-to-leading order calculations of thecoe�cient functions and splitting kernels would decrease this source of error. Theoverall error is bigger than for some other determinations of the strong couplingconstant [73, 81] mainly because all non-perturbative e�ects (in the value of thefragmentation functions at one energy and in their evolution) have been takendirectly from data, without relying on the quantitative predictions of the MonteCarlo models.In the future, with the data of new e+e� machines at higher energies thanLEPI, it will be possible to extend this analysis and have a better constrain of thestrong coupling constant. In particular, preliminaryMonte Carlo studies show thataround 6000 hadronic events can be used to construct the scaled-energy inclusivedistribution at LEPII with 500 pb�1. However, the improvement in the �t errorcould be only of the order of 2%. A substantial improvement in the �s measurementwould need even higher energy machines, as the next linear colliders.
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Appendix AElectroweak cross sectionsThe computation of the scaled energy inclusive distributions from the fragmen-tation functions needs the knowledge of the electro-weak relative cross sectionsin order to weight the contribution of di�erent avour species at each particularenergy. This appendix describes the factors that are introduced in formula (2.43).The avour weights are de�ned throughwi(s) = �i(s)2�u(s) + 3�d(s) (A.1)where it has been taken into account that there are �ve active favours in the wholeenergy range used in the analysis.The relative cross sections ri(s) are given by the electroweak theory and can bewritten as �i(s) = �(v)i (s) + �(a)i (s) = 4��2s �r(v)i (s) + r(a)i (s)� (A.2)ve = �12 + 2s2w ae = �12vu = 12 � 43s2w au = 12vd = �12 + 23s2w ad = �12Table A.1: Vector and axial couplings for electrons, u- and d-type quarks used in the compu-tation of the relative electroweak cross sections in eq. (A.2).



Electroweak cross sections 119with r(v)i (s) = q2i + s(M2Z � s)2 +M2Z�2Z �"2qiveviM2Z � s4s2wc2w + (v2e + a2e)v2i s16s4wc4w # (A.3)r(a)i (s) = s(M2Z � s)2 +M2Z�2Z (v2e + a2e)(a2i ) s16s4wc4w (A.4)where sw and cw denote the sine and cosine of the weak mixing angle, qi the chargeof the respective quarks, and the vector and axial couplings for electrons, u quarksand d quarks are given in table A.1.Figure A.1 plots the relative electroweak cross sections as a function of thecentre-of-mass energy. The large variation in the di�erent proportions between lowenergies and LEP energies can be seen.
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Appendix BCoe�cient functions and splittingkernelsThis appendix lists a collection of the next-to-leading order formulae necessaryfor the evaluation of the cross sections from the fragmentation functions, and thecalculation of their energy evolution.B.1 Coe�cient functionsThis section contains the expressions for the coe�cient functions that relate thee�ective fragmentation functions with the measurable scaled energy cross sectionsthrough eq. (2.43). According to reference [76] they are given byCLg (z; �s(�F ); �2F=s) = a(�2F )21� zz (B.1)CLq (z; �s(�F ); �2F=s) = a(�2F ) (B.2)CTg (z; �s(�F ); �2F=s) = a(�2F )( 1 + (1 � z)2z �� "ln(1 � z) + 2 ln z � ln �2Fs #� 21� zz ) (B.3)CTq (z; �s(�F ); �2F=s) = �(1� z) "1 + a(�2F ) 2�23 � 92!#�a(�2F ) ln �2Fs  1 + z21� z !(+)



B.2 Splitting kernels 121+a(�2F ) "32(1 � z)� 32 � 11� z�(+)+ 21 + z21� z ln z + (1 + z2) ln(1 � z)1� z !(+)35 (B.4)where a(�2F ) is the couplant constant de�ned in eq. (2.12).The subscript (+) in eq. (B.4) speci�es a regularization procedure for the inte-gral over the splitting functions, which are singular at z = 1, de�ned asZ 10 dz [f(z)](+)g(z) = Z 10 dz f(z) (g(z)� g(1)) (B.5)which, in the usual case that the lower limit of the integral is not 0 but somevariable x, translates intoZ 1x dz [f(z)](+)g(z) = Z 1x dz [f(z)(g(z) � g(1))] � g(1) Z x0 dz f(z) (B.6)The convolution integrals that are to be performed with the coe�cient functionsare straightforward, with the exception of the integral over CTq (z). After expandingthe (+) regularizations one obtainsZ 1x dzCTq (z; �s(�F ); �2F =s)DQ(xz ; �2F ) = DQ(x; �2F )(1 + a(�F )F�)+a(�F ) Z 1x dz �DQ(xz ; �2F )FR �DQ(x; �2F )FS� (B.7)with F� = 2�23 � 92 � 32 ln(1�x) + ln2(1�x)� ln �2Fs �2 ln(1� x) + 32� (B.8)FR = 32(1� z) + 2(1 + z2)1 � z ln z + 1 + z21� z "ln(1� z) + ln �2Fs # � 32 11� z(B.9)FS = 21 � z "ln(1� z) + ln �2Fs # � 32 11� z (B.10)B.2 Splitting kernelsThis sections gives the expressions of the splitting kernels used in the evolutionequations (2.46). They are given separately for the non-singlet and singlet parts ofthe fragmentation functions.



122 Coe�cient functions and splitting kernelsB.2.1 Evolution of avour non-singlet fragmentation func-tionsThe formulae for the evolution of the non-singlet parts of the fragmentation func-tions can be found in reference [83]. From there, the NLO splitting function gover-ning the evolution of non-singlet fragmentation functions is obtained asPN (z; �s(�R); �2R=s) = hPN i(+) + a2(�R)2�(1� z) Z 10 dzPNqq(z); (B.11)being the expression for PNPN = a(�R)Pqq + a2(�2R) PNqq + PNqq + Pqqb0 ln �2Rs ! (B.12)where PNqq = PF +XPG + ZPn (B.13)PNqq = (2�X)PA; (B.14)and PF = 2Pqq lnz ln(1�z) + ( 31 � z � 3z � 5) lnz+(1 + z2 � 2Pqq) ln2z � 5(1 � z) (B.15)PG = Pqq(12 ln2z + 116 lnz � �26 + 6718) + (1 + z) lnz + 203 (1 � z) (B.16)Pn = �Pqq(23 lnz + 109 )� 43(1� z) (B.17)PA = S2Mqq + (1 + z) lnz + 2(1� z) (B.18)In the above expressions, the values of b0, X and Z are the ones given inequations (2.26) and (2.12), and a shorthand notation for the �rst order Altarelli-Parisi splitting kernelsPqq � Pqq(z) = 1 + z21 � z (B.19)Pqg � Pqg(z) = 1 + (1 � z)2z (B.20)Pgq � Pgq(z) = z2 + (1� z)2 (B.21)Pgg � Pgg(z) = �z2 + z � 2 + 1z(1 � z) (B.22)



B.2 Splitting kernels 123was introduced together with the de�nitionMij �Mij(z) = Pij(�z): (B.23)Also, S2 was de�ned asS2 = �Li2( 11 + z ) + 12 ln2 z � ln2(1 + z) + �26 ; (B.24)where Li2(x) is the dilogarithm function:Li2(x) = � Z x0 ln(1� t)t dt = � Z 10 ln(1 � xt)t dt (B.25)B.2.2 Evolution of the avour singlet fragmentation func-tionsThe singlet splitting kernels can be found in reference [84]. The ones coming fromthe diagonal parts are singular at z = 1. Thus they are regularized according toPGG(z) = 1z hzP̂GG(z)i(+) � �(1� z) Z 10 dy yPGQ(y) (B.26)PQQ(z) = 1z hzP̂QQ(z)i(+) � �(1� z) Z 10 dy yPQG(y) (B.27)which with the de�nition of the (+) regularization, eq. (B.6), allow to write theevolution equations for the singlet fragmentation functions (eq. (2.50)) ass ddsG(x; s) = Z 1x dz �P̂GG(z) �G(xz ; s)� zG(x; s)�+PGQ(z) �S(xz ; s)� zG(x; s)���G(x; s) Z x0 dz z hP̂GG(z) + PGQ(z)i (B.28)s ddsS(x; s) = Z 1x dz �PQG(z) �G(xz ; s)� zS(x; s)�+P̂QQ(z) �S(xz ; s)� zS(x; s)���S(x; s) Z x0 dz z hPQG(z) + P̂QQ(z)i (B.29)where only convolution integrals remain. The terms in these evolution equationsare given byP̂QQ = a(�R) Pqq + a2(�R)  Rqq +XSqq + ZTqq + Pqqb0 ln �2Rs ! (B.30)



124 Coe�cient functions and splitting kernelsPQG = a(�R) Pqg + a2(�R)  Rqg +XSqg + Pqgb0 ln �2Rs ! (B.31)PGQ = a(�R) 2ZPgq+a2(�R)  ZRgq + ZXSgq + ZZTgq + 2ZPgqb0 ln �2Rs ! (B.32)P̂GG = a(�R) 2XPgg+a2(�R)  ZRgg +XXSgg + ZXTgg + 2XPggb0 ln �2Rs ! (B.33)with the following de�nitions in the fermion-fermion splittingRqq = z � 1� (32 � 12z) lnz + 1 + z2 ln2z+Pqq �32 lnz � 2 ln2z + 2 lnz ln(1�z)�+ 2S2Mqq (B.34)Sqq = 143 � 143 z + Pqq "116 lnz + 12 ln2z � �26 + 6718# � S2Mqq (B.35)Tqq = �523 + 283 z + 1129 z2 � 409z + (2 + 2z) ln2z�(10 + 18z + 163 z2) lnz � Pqq �23 lnz + 109 � : (B.36)For the fermion-gluon splitting they areRqg = �1� z2 + 4z � 16 � x2 lnz + 2z ln(1�z) + 2� z2 ln2z+Pqg " ln2(1�z) + 4 lnz ln(1�z)� 8S1 � 4�23 # (B.37)Sqg = S2Mqg + 629 � 3518z + 449 z2 + (2 + 12z + 83z2) lnz � 2z ln(1�z)�(4 + x) ln2z + Pqg �1718 � 2 lnz ln(1�z)� 3 lnz � 32 ln2z� ln2(1�z) + 8S1 + 7�26 # : (B.38)The gluon-fermion splitting is described byRgq = �2 + 3z � (7� 8z) lnz � 4 ln(1�z) + (1 � 2z) ln2z�2Pgq h2 lnz ln(1�z) + ln2z+ln2(1�z) + ln(1�z)� lnz � 8S1 � �2 + 5i (B.39)Sgq = 2S2Mgq � 1529 + 1669 z � 409z � (43 + 763 z) lnz + 4 ln(1�z) + (2 + 8z) ln2z



B.2 Splitting kernels 125+Pgq �1789 + 8 lnz ln(1�z)� ln2z � 43 lnz+103 ln(1�z) + 2 ln2(1�z)� 16S1 � 7�23 # (B.40)Tgq = �83 � Pgq �169 + 83 lnz + 83 ln(1�z)� ; (B.41)and the gluon-gluon splitting byRgg = �4 + 12z � 1649 z2 + 929z+ �10 + 14z + 163 (z2 + 1z )� lnz + 2(1 + z) ln2z (B.42)Sgg = 272 (1� z) + 13418 (z2 � 1z ) + (113 � 253 z + 443z ) lnz � 4(1 + z) ln2z+Pgg "4 lnz ln(1�z)� 3 ln2z + 223 lnz � �23 + 679 #+ 2S2Mgg (B.43)Tgg = 2(1 � z) + 269 (z2 � 1z )� 43(1 + z) lnz � Pgg �209 + 83 lnz� : (B.44)In the expressions above S1 is de�ned asS1 = �Li2(1 � z) = Z 1�z0 dxx ln(1� x) (B.45)and S2 is given in equation (B.24).
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Appendix CTables of cross sectionsThis appendix gives the list of cross sections measured with ALEPH. The scaledenergy distribution for all avours is listed in table C.1. Tables C.2, C.3 andC.4 list the corresponding distributions for light(uds)-, c-, and b-enriched avours.Table C.5 lists the gluon distribution measured in three jet symmetric events andtables C.6 and C.7 the transverse and longitudinal cross sections.For all but for the gluon distribution, the bin-to-bin errors are speci�ed. Theyare separated in statistical and systematic errors. For the systematic errors, thethree contributions considered (the limited statistics of the Monte Carlo used forthe correction, the selection cut variation and the Monte Carlo model dependence)are listed explicitly. For the gluon distribution only the overall error is given. A1% normalization error has to be added in quadrature to all distributions exceptthe gluon one.



Tables of cross sections 127Interval 1Nev dntrdx Estat Ebinsys(= EMCstat �Ecut � EMCmodel)0.008{0.012 501.3 0.4 7.8 ( = 0.25 �7.6 �1.8 )0.012{0.020 392.69 0.24 0.97 ( = 0.15 �0.48 �0.83 )0.020{0.030 274.81 0.18 0.99 ( = 0.11 �0.39 �0.91 )0.030{0.040 191.05 0.15 0.48 ( = 0.09 �0.25 �0.40 )0.040{0.050 139.94 0.13 0.44 ( = 0.08 �0.19 �0.39 )0.050{0.060 107.33 0.11 0.30 ( = 0.07 �0.12 �0.27 )0.060{0.070 85.09 0.10 0.17 ( = 0.06 �0.07 �0.14 )0.070{0.080 68.96 0.09 0.19 ( = 0.07 �0.06 �0.17 )0.080{0.090 56.81 0.08 0.13 ( = 0.05 �0.06 �0.11 )0.090{0.100 47.875 0.075 0.095 ( = 0.047 �0.049 �0.066 )0.100{0.120 37.655 0.047 0.074 ( = 0.030 �0.036 �0.057 )0.120{0.140 28.061 0.041 0.046 ( = 0.026 �0.037 �0.013 )0.140{0.160 21.379 0.035 0.054 ( = 0.022 �0.039 �0.031 )0.160{0.180 16.661 0.031 0.042 ( = 0.020 �0.030 �0.022 )0.180{0.200 13.233 0.028 0.027 ( = 0.018 �0.020 �0.004 )0.200{0.225 10.376 0.022 0.023 ( = 0.014 �0.017 �0.009 )0.225{0.250 7.928 0.019 0.020 ( = 0.012 �0.007 �0.014 )0.250{0.275 6.197 0.017 0.016 ( = 0.011 �0.006 �0.011 )0.275{0.300 4.874 0.015 0.012 ( = 0.010 �0.006 �0.004 )0.300{0.325 3.862 0.014 0.013 ( = 0.009 �0.003 �0.009 )0.325{0.350 3.054 0.012 0.018 ( = 0.008 �0.016 �0.003 )0.350{0.375 2.461 0.011 0.009 ( = 0.007 �0.002 �0.006 )0.375{0.400 1.995 0.010 0.011 ( = 0.006 �0.007 �0.007 )0.400{0.430 1.5555 0.0079 0.0059 ( = 0.0049�0.0025�0.0021)0.430{0.460 1.2122 0.0070 0.0081 ( = 0.0043�0.0038�0.0057)0.460{0.490 0.9400 0.0061 0.0051 ( = 0.0038�0.0031�0.0014)0.490{0.520 0.7346 0.0054 0.0091 ( = 0.0034�0.0071�0.0046)0.520{0.550 0.5631 0.0047 0.0048 ( = 0.0029�0.0038�0.0005)0.550{0.600 0.4098 0.0031 0.0025 ( = 0.0019�0.0015�0.0008)0.600{0.650 0.2572 0.0025 0.0033 ( = 0.0015�0.0024�0.0018)0.650{0.700 0.1719 0.0020 0.0027 ( = 0.0012�0.0023�0.0007)0.700{0.750 0.1041 0.0015 0.0026 ( = 0.0009�0.0023�0.0007)0.750{0.800 0.0606 0.0011 0.0027 ( = 0.0007�0.0026�0.0004)0.800{0.900 0.0262 0.0005 0.0032 ( = 0.0003�0.0032�0.0002)0.900{1.000 0.0048 0.0002 0.0020 ( = 0.0001�0.0020�0.0001)Table C.1: All-avour inclusive cross section for charged particles measured at ps = 91:2GeV.The errors listed are the statistical and systematic bin-to-bin errors. The three sources of sys-tematic uncertainties are speci�ed. A normalization error of 1% has to be added in quadratureeverywhere.



128 Tables of cross sectionsInterval 1Nev dntrdx Estat Ebinsys(= EMCstat � Ecut � EMCmodel)0.008{0.012 492.6 0.4 7.3 ( = 0.2 �7.1 �1.9 )0.012{0.020 383.1 0.2 1.2 ( = 0.1 �0.8 �0.9 )0.020{0.030 266.5 0.2 1.2 ( = 0.1 �0.6 �1.0 )0.030{0.040 184.38 0.15 0.72 ( = 0.09 �0.54 �0.48 )0.040{0.050 134.60 0.12 0.64 ( = 0.08 �0.42 �0.47 )0.050{0.060 103.06 0.11 0.46 ( = 0.07 �0.32 �0.32 )0.060{0.070 81.42 0.10 0.39 ( = 0.06 �0.34 �0.17 )0.070{0.080 66.11 0.09 0.34 ( = 0.05 �0.27 �0.20 )0.080{0.090 54.76 0.08 0.20 ( = 0.05 �0.17 �0.10 )0.090{0.100 46.05 0.07 0.17 ( = 0.05 �0.14 �0.09 )0.100{0.120 36.50 0.05 0.13 ( = 0.03 �0.11 �0.07 )0.120{0.140 27.468 0.039 0.074 ( = 0.025 �0.069 �0.009 )0.140{0.160 21.199 0.035 0.061 ( = 0.022 �0.053 �0.022 )0.160{0.180 16.730 0.031 0.044 ( = 0.019 �0.031 �0.024 )0.180{0.200 13.359 0.028 0.035 ( = 0.017 �0.029 �0.007 )0.200{0.225 10.644 0.022 0.053 ( = 0.014 �0.050 �0.010 )0.225{0.250 8.249 0.020 0.042 ( = 0.012 �0.037 �0.016 )0.250{0.275 6.532 0.017 0.037 ( = 0.011 �0.033 �0.013 )0.275{0.300 5.196 0.016 0.031 ( = 0.010 �0.028 �0.007 )0.300{0.325 4.136 0.014 0.026 ( = 0.009 �0.023 �0.009 )0.325{0.350 3.323 0.012 0.030 ( = 0.008 �0.029 �0.005 )0.350{0.375 2.678 0.011 0.022 ( = 0.007 �0.019 �0.010 )0.375{0.400 2.190 0.010 0.024 ( = 0.006 �0.022 �0.009 )0.400{0.430 1.717 0.008 0.018 ( = 0.005 �0.017 �0.003 )0.430{0.460 1.353 0.007 0.017 ( = 0.004 �0.014 �0.007 )0.460{0.490 1.0564 0.0064 0.0084 ( = 0.0039�0.0072�0.0019)0.490{0.520 0.8313 0.0057 0.0159 ( = 0.0035�0.0143�0.0059)0.520{0.550 0.6513 0.0050 0.0079 ( = 0.0031�0.0072�0.0012)0.550{0.600 0.4835 0.0033 0.0099 ( = 0.0021�0.0096�0.0005)0.600{0.650 0.3093 0.0026 0.0040 ( = 0.0016�0.0027�0.0025)0.650{0.700 0.2079 0.0021 0.0032 ( = 0.0013�0.0027�0.0010)0.700{0.750 0.1283 0.0017 0.0037 ( = 0.0010�0.0034�0.0011)0.750{0.800 0.0768 0.0012 0.0022 ( = 0.0008�0.0020�0.0005)0.800{0.900 0.0323 0.0006 0.0022 ( = 0.0003�0.0022�0.0002)0.900{1.000 0.0059 0.0002 0.0015 ( = 0.0001�0.0015�0.0002)Table C.2: uds-enriched inclusive cross section for charged particles measured atps = 91:2GeV.The avour composition is of 78.9%, 14.5% and 6.6% of uds-, c-, and b-quarks, respectively. Theerrors listed are the statistical and systematic bin-to-bin errors. The three sources of systematicuncertainties are speci�ed. A normalization error of 1% has to be added in quadrature everywhere.



Tables of cross sections 129Interval 1Nev dntrdx Estat Ebinsys(= EMCstat � Ecut �EMCmodel)0.008{0.012 509.1 1.3 7.5 ( = 0.8 �7.2 �1.8 )0.012{0.020 397.3 0.8 1.3 ( = 0.5 �1.0 �0.8 )0.020{0.030 279.0 0.6 1.2 ( = 0.3 �0.7 �0.9 )0.030{0.040 196.08 0.50 0.67 ( = 0.29 �0.45 �0.40 )0.040{0.050 143.38 0.42 0.74 ( = 0.24 �0.60 �0.36 )0.050{0.060 109.81 0.37 0.44 ( = 0.21 �0.26 �0.28 )0.060{0.070 86.86 0.33 0.30 ( = 0.19 �0.20 �0.13 )0.070{0.080 70.05 0.29 0.28 ( = 0.17 �0.17 �0.14 )0.080{0.090 57.84 0.27 0.31 ( = 0.15 �0.24 �0.13 )0.090{0.100 48.26 0.24 0.20 ( = 0.14 �0.13 �0.06 )0.100{0.120 37.93 0.15 0.13 ( = 0.09 �0.08 �0.06 )0.120{0.140 28.63 0.13 0.10 ( = 0.08 �0.07 �0.02 )0.140{0.160 21.87 0.12 0.10 ( = 0.07 �0.06 �0.04 )0.160{0.180 16.77 0.10 0.08 ( = 0.06 �0.06 �0.02 )0.180{0.200 13.322 0.090 0.081 ( = 0.053 �0.058 �0.019 )0.200{0.225 10.471 0.072 0.051 ( = 0.043 �0.028 �0.007 )0.225{0.250 7.809 0.062 0.050 ( = 0.036 �0.031 �0.017 )0.250{0.275 6.059 0.054 0.044 ( = 0.032 �0.027 �0.013 )0.275{0.300 4.794 0.049 0.053 ( = 0.029 �0.044 �0.008 )0.300{0.325 3.846 0.043 0.047 ( = 0.026 �0.036 �0.013 )0.325{0.350 3.089 0.039 0.047 ( = 0.024 �0.040 �0.007 )0.350{0.375 2.375 0.034 0.030 ( = 0.020 �0.022 �0.004 )0.375{0.400 1.876 0.031 0.028 ( = 0.018 �0.020 �0.008 )0.400{0.430 1.436 0.024 0.020 ( = 0.014 �0.014 �0.001 )0.430{0.460 1.088 0.021 0.017 ( = 0.012 �0.010 �0.008 )0.460{0.490 0.871 0.019 0.016 ( = 0.011 �0.011 �0.003 )0.490{0.520 0.656 0.016 0.016 ( = 0.010 �0.012 �0.004 )0.520{0.550 0.484 0.014 0.010 ( = 0.008 �0.006 �0.001 )0.550{0.600 0.3479 0.0089 0.0099 ( = 0.0053 �0.0084 �0.0008 )0.600{0.650 0.2157 0.0070 0.0060 ( = 0.0041 �0.0041 �0.0017 )0.650{0.700 0.1321 0.0055 0.0050 ( = 0.0032 �0.0037 �0.0008 )0.700{0.750 0.0900 0.0045 0.0060 ( = 0.0028 �0.0053 �0.0006 )0.750{0.800 0.0387 0.0028 0.0034 ( = 0.0015 �0.0030 �0.0003 )0.800{0.900 0.0173 0.0013 0.0013 ( = 0.0007 �0.0010 �0.0001 )0.900{1.000 0.00324 0.00041 0.00049 ( = 0.00022�0.00042�0.00009)Table C.3: c-enriched inclusive cross section for charged particles measured at ps = 91:2GeV.The avour composition is of 38.2%, 35.1% and 26.7% of uds-, c-, and b-quarks, respectively. Theerrors listed are the statistical and systematic bin-to-bin errors. The three sources of systematicuncertainties are speci�ed. A normalization error of 1% has to be added in quadrature everywhere.



130 Tables of cross sectionsInterval 1Nev dntrdx Estat Ebinsys(= EMCstat � Ecut � EMCmodel)0.008{0.012 541.3 1.0 9.2 ( = 0.6 �9.0 �1.6 )0.012{0.020 435.8 0.6 1.1 ( = 0.4 �0.5 �0.9 )0.020{0.030 312.3 0.5 1.3 ( = 0.3 �0.8 �0.9 )0.030{0.040 219.34 0.41 0.54 ( = 0.24 �0.41 �0.25 )0.040{0.050 161.88 0.35 0.49 ( = 0.20 �0.40 �0.19 )0.050{0.060 125.34 0.31 0.27 ( = 0.18 �0.12 �0.15 )0.060{0.070 100.30 0.27 0.34 ( = 0.16 �0.28 �0.12 )0.070{0.080 80.37 0.24 0.25 ( = 0.14 �0.15 �0.15 )0.080{0.090 66.11 0.22 0.24 ( = 0.13 �0.08 �0.19 )0.090{0.100 56.16 0.20 0.15 ( = 0.12 �0.09 �0.02 )0.100{0.120 42.49 0.12 0.16 ( = 0.07 �0.13 �0.06 )0.120{0.140 30.29 0.11 0.09 ( = 0.06 �0.05 �0.04 )0.140{0.160 22.22 0.09 0.11 ( = 0.05 �0.08 �0.06 )0.160{0.180 16.341 0.078 0.077 ( = 0.046 �0.059 �0.021 )0.180{0.200 12.173 0.067 0.046 ( = 0.039 �0.017 �0.016 )0.200{0.225 9.166 0.052 0.037 ( = 0.031 �0.019 �0.009 )0.225{0.250 6.489 0.044 0.036 ( = 0.025 �0.020 �0.016 )0.250{0.275 4.869 0.038 0.025 ( = 0.022 �0.010 �0.007 )0.275{0.300 3.589 0.033 0.034 ( = 0.019 �0.018 �0.022 )0.300{0.325 2.689 0.028 0.024 ( = 0.016 �0.005 �0.017 )0.325{0.350 2.069 0.025 0.015 ( = 0.014 �0.005 �0.002 )0.350{0.375 1.589 0.022 0.021 ( = 0.013 �0.011 �0.012 )0.375{0.400 1.201 0.019 0.012 ( = 0.011 �0.003 �0.003 )0.400{0.430 0.880 0.015 0.010 ( = 0.008 �0.004 �0.003 )0.430{0.460 0.705 0.013 0.013 ( = 0.008 �0.006 �0.009 )0.460{0.490 0.487 0.011 0.007 ( = 0.006 �0.002 �0.002 )0.490{0.520 0.3566 0.0093 0.0068 ( = 0.0055 �0.0011 �0.0038 )0.520{0.550 0.2548 0.0079 0.0081 ( = 0.0046 �0.0067 �0.0004 )0.550{0.600 0.1543 0.0047 0.0047 ( = 0.0027 �0.0037 �0.0010 )0.600{0.650 0.0768 0.0033 0.0022 ( = 0.0019 �0.0012 �0.0003 )0.650{0.700 0.0348 0.0021 0.0022 ( = 0.0012 �0.0018 �0.0004 )0.700{0.750 0.0164 0.0014 0.0017 ( = 0.0008 �0.0015 �0.0001 )0.750{0.800 0.0074 0.0009 0.0013 ( = 0.0005 �0.0012 �0.0002 )0.800{0.900 0.00160 0.00025 0.00023 ( = 0.00013�0.00018�0.00006)0.900{1.000 0.00030 0.00005 0.00009 ( = 0.00004�0.00006�0.00003)Table C.4: b-enriched inclusive cross section for charged particles measured at ps = 91:2GeV.The avour composition is of 2.2%, 7.3% and 90.5% of uds-, c-, and b-quarks, respectively. Theerrors listed are the statistical and systematic bin-to-bin errors. The three sources of system-atic uncertainties are speci�ed. A normalization error of 1 % has to be added in quadratureeverywhere.



Tables of cross sections 131Interval 1Nev dntrdx Error0.05{0.10 40.22 1.460.10{0.15 16.87 0.910.15{0.25 6.87 0.470.25{0.35 1.86 0.190.35{0.55 0.40 0.090.55{0.80 0.04 0.03Table C.5: Gluon scaled energy distribution measured in three jet symmetric events [65].Interval 1Nev dntrdx Estat Ebinsys(= EMCstat � Ecut � EMCmodel)0.008{0.012 377.2 0.9 52.5 ( = 0.5 �34.0 �40.0 )0.012{0.020 314.9 0.5 4.4 ( = 0.3 � 4.4 � 0.7 )0.020{0.030 234.5 0.4 2.4 ( = 0.2 � 2.0 � 1.2 )0.030{0.040 170.1 0.3 1.0 ( = 0.2 � 0.8 � 0.6 )0.040{0.050 127.50 0.25 0.72 ( = 0.15 � 0.57 � 0.42 )0.050{0.060 99.29 0.22 0.61 ( = 0.13 � 0.44 � 0.40 )0.060{0.070 79.61 0.19 0.60 ( = 0.12 � 0.43 � 0.40 )0.070{0.080 65.23 0.17 0.42 ( = 0.11 � 0.34 � 0.22 )0.080{0.090 54.09 0.16 0.39 ( = 0.10 � 0.17 � 0.33 )0.090{0.100 45.72 0.14 0.23 ( = 0.09 � 0.16 � 0.15 )0.100{0.120 36.22 0.09 0.16 ( = 0.06 � 0.11 � 0.09 )0.120{0.140 27.12 0.08 0.31 ( = 0.05 � 0.29 � 0.09 )0.140{0.160 20.77 0.07 0.11 ( = 0.04 � 0.09 � 0.02 )0.160{0.180 16.32 0.06 0.16 ( = 0.04 � 0.15 � 0.04 )0.180{0.225 11.323 0.033 0.089 ( = 0.021 � 0.083 � 0.026 )0.225{0.275 6.943 0.025 0.055 ( = 0.015 � 0.052 � 0.011 )0.275{0.325 4.319 0.020 0.027 ( = 0.012 � 0.023 � 0.008 )0.325{0.400 2.474 0.012 0.018 ( = 0.008 � 0.015 � 0.008 )0.400{0.600 0.8439 0.0043 0.0068 ( = 0.0027� 0.0056� 0.0027)0.600{0.800 0.1516 0.0018 0.0067 ( = 0.0011� 0.0065� 0.0014)0.800{1.000 0.0175 0.0005 0.0057 ( = 0.0003� 0.0057� 0.0004)Table C.6: Transverse inclusive cross section for charged particles measured at ps = 91:2GeV.The errors listed are the statistical and systematic bin-to-bin errors. The three sources of sys-tematic uncertainties are speci�ed. A normalization error of 1% has to be added in quadratureeverywhere.
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Interval 1Nev dntrdx Estat Ebinsys(= EMCstat � Ecut � EMCmodel)0.008{0.012 123.6 0.5 16.4 ( = 0.4 �3.1 �16.1 )0.012{0.020 77.2 0.3 2.8 ( = 0.2 �2.3 � 1.5 )0.020{0.030 40.6 0.2 1.6 ( = 0.1 �0.8 � 1.4 )0.030{0.040 21.1 0.1 1.2 ( = 0.1 �0.2 � 1.1 )0.040{0.050 12.42 0.12 0.81 ( = 0.09 �0.13 � 0.80 )0.050{0.060 8.00 0.10 0.58 ( = 0.08 �0.15 � 0.55 )0.060{0.070 5.40 0.09 0.40 ( = 0.07 �0.08 � 0.39 )0.070{0.080 3.81 0.08 0.31 ( = 0.06 �0.09 � 0.29 )0.080{0.090 2.74 0.07 0.20 ( = 0.05 �0.05 � 0.18 )0.090{0.100 2.14 0.06 0.20 ( = 0.05 �0.08 � 0.17 )0.100{0.120 1.43 0.04 0.14 ( = 0.03 �0.04 � 0.13 )0.120{0.140 0.90 0.03 0.10 ( = 0.03 �0.07 � 0.07 )0.140{0.160 0.569 0.026 0.060 ( = 0.022 �0.021 � 0.052 )0.160{0.180 0.393 0.024 0.082 ( = 0.018 �0.068 � 0.042 )0.180{0.225 0.259 0.012 0.037 ( = 0.012 �0.025 � 0.025 )0.225{0.275 0.115 0.008 0.024 ( = 0.008 �0.015 � 0.018 )0.275{0.325 0.055 0.005 0.013 ( = 0.005 �0.011 � 0.006 )0.325{0.400 0.0293 0.0032 0.0076 ( = 0.0034 �0.0058 � 0.0040 )0.400{0.600 0.0067 0.0007 0.0023 ( = 0.0012 �0.0008 � 0.0017 )0.600{0.800 0.00041 0.00020 0.00094 ( = 0.00033�0.00087� 0.00008)0.800{1.000 �0.0002 0.0002 0.0011 ( = 0.0002 �0.0011 � 0.00003)Table C.7: Longitudinal inclusive cross section for charged particles measured at ps =91:2GeV. The errors listed are the statistical and systematic bin-to-bin errors. The three sourcesof systematic uncertainties are speci�ed. A normalization error of 1% has to be added in quadra-ture everywhere.
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