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Chapter 1

Introduction

The theory of Quantum Chromodynamics (QCD) is a field theory describing the
interactions of quarks and gluons. It constitutes the part of the Standard Model
of the strong and electroweak interactions, based on a SU(3) @ SU(2) @ U(1) local

gauge symmetry, that describes the strong interactions.

Apart from the tests to confirm SU(3) as the gauge symmetry group of the
theory, tests of the theory can be performed comparing different measurements of
the only free parameter of the theory: the strong coupling constant, a,. Its value
appears in the description of a very large number of observables like the total etet
annihilation cross section, the hadronic width of the Z boson, the 7 lepton lifetime,

the jet structure at LEP, etc.

The four LEP experiments have extensively studied the hadronic decays of the
7 boson up to now. The strong coupling constant, a,, has been measured with a
lot of different methods giving a precision that is now below 4%. The errors are
larger than the typical quoted uncertainties in other Standard Model parameters
The reason is the difficulty of performing QCD calculations, both at higher order
in perturbation theory and in the non-perturbative regime, where effects due to

hadronization are important.

This thesis presents a new test of QCD based on a new measurement of
from the study of scaling violations in fragmentation functions. The study of
scaling violations in structure functions in deep-inelastic lepton-nucleon scattering

played a fundamental role in establishing QCD as the theory of strong interactions.



2 Introduction

QCD predicts similar scaling violations in the fragmentation functions of quarks
and gluons. In an electron-positron collider this translates into the fact that the
distributions of the scaled-energy x = 2F/\/s of final state particles in hadronic
events depend on the centre-of-mass energy, 1/s. These scaling violations come
about because with increasing /s more phase space for gluon radiation and thus
final state particle production becomes available, leading to a softer scaled energy
distribution. As the probability for gluon radiation is proportional to the strong
coupling constant, a measurement of the scaled-energy distributions at different
centre-of-mass energies compared to the QCD prediction allows to determine the

only free parameter of QCD, ay.

In principle, variations with energy of the z distributions would establish the
existence of scaling violations and allow the determination of ;. However, the fact
that the final state flavour composition depends strongly on the centre-of-mass
energy (abundance of u-type quarks at PEP and PETRA energies and majority
of d-type quarks at LEP energies), and that the fragmentation functions depend
on the quark mass, means that the effect would be biased by differences between
fragmentation functions for the different quark flavours. Therefore, in order to
disentangle scaling violations arising from gluon radiation from effects due to the
changing flavour composition independently of Monte Carlo modeling, final state

flavour identification is needed.

Problems come also from the difficulty of measuring the fragmentation functions
directly. These fragmentation functions would contain only the particles produced
after the fragmentation of the original quarks produced in the etel annihilation.
Instead, the scaled-energy distributions contain particles produced on the decay
of the hadrons coming from the fragmentation process. The effect on the scaling
violations of considering the particles after fragmentation and decay has to be

controlled in order to have a reliable measurement of the strong coupling constant.

Other effects that must be controlled are the corrections that the fragmentation
of the quarks (a non-perturbative phenomenon) can induce in the perturbative

equations describing the scaling violations.

The work presented here uses inclusive scaled-energy distributions of stable
charged particles measured at PEP, PETRA, TRISTAN and LEP together with
ALEPH measurements of the distributions in bottom-, charm- and light-quark
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enriched samples, an inclusive sample, and a gluon jet sample. These data, obtained
in 1992 and 1993, correspond to approximately 40 pb*! taken at a centre-of-mass

energy around 91.2 GeV. They amount to close to 1.2 million hadronic decays of

the 7.

Chapter 2 describes the theoretical framework of the analysis, which is based
on the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
with splitting kernels and coefficient functions computed to next-to-leading or-
der. Chapter 3 gives a description of the ALEPH detector, emphasizing the parts
of the apparatus used for the analysis. The tracking reconstruction and special
flavour tagging algorithms needed for the analysis are described in chapter 4. The
measurement of the ALEPH data used in the analysis is described in chapter 5.
The Chapter 6 provides a description of the the scaling violations analysis and
the results. The final summary and conclusions are given in chapter 7. A list of

appendices give some more detailed information on the formulae and data used.



Chapter 2

Theoretical Framework

This chapter describes the necessary ingredients for the analysis of scaling violations
of fragmentation functions and the measurement of the strong coupling constant
from them. After a brief introduction on the theory of Quantum Chromodynamics
with special emphasis in the running coupling constant in section 2.1, section 2.2
describes how the fragmentation functions are related to the measurable scaled
energy distributions. This relation is obtained using the mass-factorization pro-
cedure, which is also described there. This leads to /s dependent fragmentation
functions. The change of these fragmentation with the energy is described by per-
turbative QCD, and is discussed in section 2.3. This can allow to extract a; from
the measurement of the scaled energy distribution at different energies. Section 2.4
describes some effects that could change the perturbative energy evolution of the
fragmentation functions and that have to be taken into account in order to get a
reliable measurement of the strong coupling constant. Finally, section 2.5 gives a

scheme of the analysis performed to measure the strong coupling constant.

2.1 QCD

The theory of Quantum Chromodynamics was formulated about twenty years
ago [1]. It constitutes the part of the Standard Model [2] that describes the strong

interactions of coloured spin 1/2 quarks with massless coloured spin 1 gluons.

The fermions of the theory were formally introduced as constituents of mesons

and baryons in the Gell-Mann-Zweig model [3]. It was realized that quarks are
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naturally associated with the pointlike constituents, called partons [4], discovered

in deep inelastic lepton-nucleon scattering [5].

The concept of colour [6] was introduced in order to avoid spin statistics pro-
blems appearing in baryons made out of three quarks with the same flavour, as
the ATT resonance. Assigning to the quarks a new quantum number, colour, cor-
responding to a new symmetry, solved this problem. The number of colours was
measured from the partial decay width of neutral pions into photons, which is pro-
portional to N2 [7], and from the total hadronic cross section in etet annihilations,

proportional to N, [8].

The gauge bosons of QCD are called gluons. They were introduced to explain
hadrons as dynamically bound quark states. An important fact of QCD is that
gluons carry colour charge. Thus, they couple to other gluons, as well as to the
quarks. As a consequence, vacuum polarization effects produce an anti-screening
of the bare QCD charges, which results in a strong interaction at large distances
and weaker at short distances. This explains the fact that quarks are not ob-
served as free particles and leads to the concepts of confinement [9] and asymptotic

freedom [10].

2.1.1 QCD lagrangian

The QCD Lagrangian density is the Yang-Mills Lagrangian for an unbroken SU(3)

local gauge invariant symmetry. It can be written as

1 y o) os
L= GG + T P —m)g” + L 4 L5 (2.1)
with
Ge, = 0,AL—0,AL+ g f A A (2.2)
D, = 0,—igALTE (2.3)

Go = {ua,ds, S0, Cay ba, to } represents the quark fields with colour «, a having N.
(three) degrees of freedom. m = {mg} represents the quarks masses. Aj is the
gluon field, a being the gluon colour index that has N? — 1 (eight) degrees of
freedom. f% are the group structure constants and T#, the N.-dimension group
generators in the fundamental representation. g is a gauge coupling constant related

with the strong coupling constant, aj, through a, = ¢*/4r.
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L and £t are, respectively, the gauge fixing and ghost terms. The gauge
fixing term is included to allow the inversion of the gluon propagator, as in any
gauge theory with massless gauge bosons. The ghost term has to be included in
non-abelian theories, where the gauge bosons interact among themselves, to cancel
non-physical contributions in those diagrams where these interactions appear. They

are given by

1
£ = _E(a“GZ)(a”GZ) (2.4)
LM = 9T Vi (2.5)
Viy = 000" — g fare Al (2.6)

being ¢ a gauge fixing constant, which is, for example £ = 1 in the t’Hooft-Feynman
gauge and ¢ = 0 in the Landau gauge, and ¢” massless, hermitian, scalar fields

with Fermi-Dirac statistics called ghosts fields.

The Feynman rules deduced from this Lagrangian can be found in any text-
book [11]. From them, it can be deduced that the amplitude for a quark changing
its colour from o to 3 by emitting a gluon of type ¢ is proportional to ¢(T%)ags,
and that the one for a gluon of type a changing to b by emitting a gluon of type

¢ From these dependences, it can be seen that the group

¢ is proportional to gf
structure constants and generators play an important role in strong interactions

and deserve a more careful study.

2.1.2 Group structure and colour factors

The predictions that can be made with the Lagrangian of eq. (2.1) are dependent
of the gauge group used to construct it. It is well established that the gauge group
of QCD is SU(3). However, it is instructive to formulate the dependence on the

group in a more general way.

The structure constants of any group are related to the generators of the group,
T, through the relation
10, 10 =i (2.7)
Two important representations of the group are the fundamental (Np x Np) =
(N. x N.) representation, which, in the case of SU(3) is

(), = 22 (2.9
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begin A* the Gell-Mann matrices, and the adjoint (N4 x N4) = (N2 —1 x N2 —1)
representation,

(Tj)bc = —1 abe- (29)

The following relations between the generators of the group can be deduced
Te (Tp15) = Tpo™ Mo (T574) = Cad™ ,  (T§T8),5 = Cpd™  (2.10)

being C the Casimir factor of the fundamental (fermion) representation, C'4 the

Casimir factor of the adjoint (gluon) representation and, T the factor that connects

both representations through Tr = NpCp/N4. They are called ‘colour factors’ and

depend only on the gauge group of the theory. In QCD (SU(3)) they are given by
N1 4 1

Op = — - Ca=N.=3 , Tr=-. 2.11
F 2Nc 3 ) A F 2 ( )

Since a factor C'p frequently appears accompanying the coupling constant «y, it is

common practice to define

7 =n;—L (2.12)

which are the so-called couplant and the factors that parametrize the gauge struc-
ture of the underlying theory. n is the number of active flavours, ie., the number of
different quarks that can be produced at the energy in which the QCD calculations
are being done. Physically, they correspond to the ratio of the gluon-self coupling
to the quark-gluon coupling (X) and the ratio of the gluon to qq splitting to the
quark-gluon coupling (7). The two constants have been measured by the four LEP

collaborations [12] and found in agreement with the SU(3) structure.

2.1.3 The running coupling constant and RGE

The Lagrangian (2.1) contains only a free parameter: the gauge coupling constant,
g, or equivalently, az. Supposing this is a small number, perturbation theory can
be applied in order to get physical predictions. When this is done, there appear cal-
culations of Feynman diagrams that contain loops which are ultraviolet divergent.
These divergences are first regularized [13] and then removed by absorbing them
into the redefinition of the physical bare parameters through some renormalization

procedure [14].
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The renormalization scheme most widely used for QCD calculations is the Mo-
dified Minimal Subtraction scheme (MS). In this scheme, the integrals are regu-
larized following the dimensional regularization procedure computing the integrals
in a D dimension space-time with D = 4 — ¢. In this scheme, when computing the

ultraviolet divergences in the space of dimension D, there appear terms of the form
1
—+Indr — g (2.13)
3

which are divergent when € tends to zero. The M .S renormalization scheme consists
on absorbing the terms in eq. (2.13) into the redefinition of the physical bare
parameters. In this procedure, an arbitrary scale, u, appears in order to conserve

the correct dimensions of the Lagrangian of eq. (2.1).

The regularization procedure allows, then, to define renormalized quantities, P,

as functions of the unrenormalized ones, Py, in the form

P(OéSvmv/“L) = ZP(ngvaﬂve) 'PU(ngmB) (214)
which are finite when the regularization parameter € tends to zero.

In the renormalization procedure, the dependence on the arbitrary parameter
@ is introduced. Since any physical quantity must not depend on the value of p,
provided bare parameters gg, mp, are kept fixed, the total derivative with respect

to u of eq. (2.14) must be zero:

2 d_
I dﬂzP(as,m,u)

9B,INp

5 d
Mzaiﬂz + ﬁ(as(ﬂ))aias + ;QWiﬂymi(as(M))ﬁ] Plag,m, p)

7

=0. (2.15)

9p.mp
This is the renormalization group equation (RGE). 7iz; = m7;(u) are the running
masses and o, () is the running coupling constant. +,,, (as(p)) is the mass anoma-
lous dimension that will determine the functional form of the running masses with
the scale p. It is given by the expression [15]

dm;
/~L2 y (QM)
i

= mi(/“‘)%ni(o%(/“‘))' (2'16)

gp,Mmp

The (-function controls the renormalization scale dependence of o, through

L das () = Blos) == 6 (%)Hz- (2.17)

2
dM gB,mp 120
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The expansion of (2.17) is known up to three loops [16]. In the analysis, the two

first coeflicients are needed

Bo = Ol—%m)/4 (2.18)
3, (102-— %§nf)//16, (2.19)

which turn out to be independent of the regularization scheme used. These expres-

sions and eq. (2.17) allow to write an explicit solution for the running of «:

u(ve) = 2 (1 e (2.20)

w By 4m  w

with

(2.21)

Y

2
w=1-— 60065(/1) n -
4 S

which is exact to leading and next-to-leading logarithm accuracy, i.e. it contains

all terms of the full solution of the type o®(u)In™(u?/s) with m =n —1,n — 2.

The scale A at which the strong coupling constant becomes infinite is implicitly

defined as
4T Giln L
R =— |1l - —— 2.22
o= 77 (1- 25 (222
with )
L=l (2.23)
A2

Equation (2.22) is renormalization scheme independent. However, the expressions
for the physical cross-sections are scheme dependent, and therefore, the fitted value

of A depends on the renormalization scheme.

In this analysis of scaling violations, a representation is chosen that expresses

the running couplant, a(s), as a function of the strong couplant at a reference scale,

My, through

a(M3) 5 b1 Inw
=—=|1—-a(M;)— 2.24
o) = WD (1 221
with
2 M;
w=1—=a(M;)bgIn(—) (2.25)
s
where

bo= =8y and b—(EQQQ (2.26)
O_CFO an 1= Cr 1- .
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2.2 Scaled energy distributions

The single inclusive particle spectrum produced in the process etet — hadrons can
be written as a sum of a ‘transverse’ (T'), a ‘longitudinal’ (L) and an ‘asymmetric’

(A) cross section:

d*o(s) 3 doT(s) 3 dot(s) 3 do?(s)
—— =1 20)———~ + —sin*———= + —cos l——~
dz dcos 6 8( + cos” ) dx + 4™ dx + 4 e

Here 6 is the polar angle of the produced particle with respect to the beam direction.
The Lorentz-invariant variable x is defined through = = 2(k - Q)/(Q - Q) where k

is the 4-momentum of the produced hadron and () the 4-momentum of the virtual

(2.27)

photon or Z. In the centre-of-mass frame of the collision (which is the laboratory

frame of an etet collider if initial state radiation can be neglected) it reduces to

xr = E/Ebeam-

The first term, proportional to (1 + cos?#), has its origin in fragmentation of
the original quarks while the second one would not be present in a theory without
gluon radiation. A physical insight on their origin can be given considering the
initial and final spin states. In high energy etel annihilation, the electron and
positron spins are oriented along the beam line in such a way that the system is
in a state of angular momentum of the form |J,J, >= |1, £1 > corresponding to
the transverse polarizations of the virtual boson formed in the collision. Then, two
particles are emitted forming an angle # with the beam line in a state of angular
momentum characterized by |J,J,, >= |1,4+1 >, where 2’ is the axis defined by
the direction of the outgoing particles. The transition amplitude for this event to

happen is then proportional to
: 1
<1, &1e 1, £l >=d}, 4, = 5 (1 cos0) (2.28)

which, averaging its square over the initial states, gives the expected angular be-
haviour. If now, a gluon (of spin 1) is radiated from one of the outgoing quarks,
the final state could be characterized by |J,J., >= [1,0 >, thus giving terms
proportional to
sin 6

doy1 = £—= 2.29
0,£1 \/5 ” ( )

which are the ones appearing in the longitudinal term in eq. (2.27).
The third term, proportional to cos#, has its origin in parity-violating terms

that will not be used in this analysis.
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Integration over cos § of eq. (2.27) yields the scaled energy spectrum.

L dofs) _ 1 do"(s) 1 dol(s) (2.30)

Ttot de’ Ttot de’ Ttot de’

which carries most of the weight in this analysis of scaling violations.

2.2.1 Fragmentation functions

In perturbative QCD, an expression can be computed for the transverse and lon-
gitudinal cross-sections. In the naive parton model, the transverse differential
cross-sections is given by
do™(s
) gy - Y ) Do) (231)

i=u,d,s,c,b

and the longitudinal cross-section is zero. In eq. (2.31), oo(s) is the Born cross
section at a centre-of-mass energy /s = @, w;(s) are the relative electro-weak
cross sections for the production of primary quarks of type ¢, given in appendix A,
and Dy ;(x) are the bare fragmentation functions that give the probability of having
a hadron of fractional beam energy = coming from the fragmentation of a quark or
an antiquark q; and defined as the mean of the fragmentation function of a quark

and an antiquark of the same flavour, as

1

Do) = 5 (a(x) + T(x) (232)

The fact that the total energy carried out by all fragments is equal to that of the

original parton implies the following sum rule for the bare fragmentation functions
1

/ de xDy,(x) = 1. (2.33)
0

Proceeding beyond the zeroth order in «y, before the quark fragments into the
hadron, it can radiate a gluon. Therefore, the differential probability that a parton
with scaled energy between z and z + dz is produced, and then fragments to a

hadron with scaled energy between y and y + dy can be written as

T,L

(om0t Dgt s + (o))t (2

z




12 Theoretical Framework

b)

Figure 2.1: Feynman graphs for the parton subprocess Z — qgg. The two real gluon emission
diagrams (a), and the virtual corrections (b) have to be added.

where (daz(’j)/dz(s))dz is the probability of finding a quark (gluon) with energy

1
Eqa) = 52V (2.35)

in an angular momentum final state |1, £1 > (transverse) or |1,0 > (longitudinal),
and Dy q(5)(y) dy is the probability that this quark (gluon) fragments into a hadron
carrying fractional energy

y = En/Eqy). (2.36)

The integration of eq. (2.34) over the internal variables results in the scaled energy
distributions of eq. (2.30):

doTt 1 1 dag’L dagT’L
= [t [ anite = e [P + D) (230

The experimental variable, x, is related to the two inside parton variables through

y=ux/z. (2.38)

The cross sections for the production of real quarks or gluons are given by
the Feynman diagrams of figure 2.1(a). Their calculation contains infrared or
soft divergences, and collinear or mass singularities. The first ones occur when
the energy of the emitted gluon goes to zero. The second ones occur when the

gluon is emitted parallel to the quark, ie., the mass of the quark tends to zero. The
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virtual diagrams of figure 2.1(b) contain, on top, ultraviolet divergences that cancel
after renormalization. However, some infrared divergences and mass singularities
remain. All the divergences will cancel when the total cross-section is computed
(the integral over x of the scaled energy distribution), but the differential cross-

section of eq. (2.37) leads to a functional form

> wi(s)Do, (g) :

i=u,d,s,c,b

(1 —2)+ ;—; RqT’L(Z) In (%) + a, quL(Z)] + Gluon terms (2.39)

d T,L 1 d
Z—(s) = 2o0(s) | =

dx ¢ Z

where the contribution coming from the gluon fragmentation functions is not spe-
cified for simplicity. m is a scale that appears in the regularization of the mass

singularities.

The coefficient accompanying the logarithmic part does not depend on the
regularization scheme used but the f, functions do. Moreover, the formula is not
only regularization scheme dependent but is also divergent as m — 0. Since the
cross-section is a measurable quantity, the bare fragmentation functions, which
cannot be measured, should have some mass dependence that cancels the mass

singularities.

The way to solve the problem consists in factorizing all the mass singularities

in a redefinition of the fragmentation functions, which then become

1d z
Di(z,uy) = /Z?ypo,z’ (;)

sa-n+ gt (M) fato)] e

m

and are scale dependent. D;(z, u%) are called the effective fragmentation functions.

Introducing the expression (2.40) into eq. (2.39) gives

dO‘T’L(S) Ldz
o e

> wils) Dl /= i) -

i=u,d,s,c,b

[5(1 —z)+ ozsclT(’lL(z, Q,, /,L%/S)} + Gluon terms (2.41)

T, -
where ¢;” is defined as

LRI (’“‘—F) (2.42)

1" (2 s, i [5) = J7H(2) = 9q7M(2) = - Ry
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and contains all the non-divergent terms that have not been absorbed in the de-
finition of the effective fragmentation functions. This procedure is called mass
factorization and its validity is ensured by the general factorization theorem [17].
The separation of the singular part in eq. (2.39) from the remaining finite part takes
place at a factorization scale, g, which relates the short distance (‘partonic’) to
the long distance (‘hadronic’) effects. The functional form of the clT(’lL(z, Qsy (13:/9)
depends on the factorization scheme adopted and the regularization procedure used

to control the infrared divergences.

After the inclusion of the gluon terms in eq. (2.39) and absorbing the §(1 — z)
of eq. (2.41) into the redefinition of the so-called coefficient functions, CqT’L, the

transverse and longitudinal cross-section have the general form

dUT(S) - 200(8)/: d_chvL(Z,as(MF),M%/S) ST wils) Di(x /2, pk)

< i=u,d,s,c,b

+o200(s) [ COIH G nlur). 13/ Dylafep) . (243)

r £

Formula (2.43) reduces to the parton model formula, (2.31), at first order. The
coefficient functions have been computed up to next-to-leading order and their
expressions are given in section B.1 in appendix B for the factorization scheme

used in this analysis. In first order, the only one not equal to zero is CqT =4d(1—=2).

Since what is usually measured is the scaled energy distribution, 1/odo/dz,
expression (2.43) will contain the ratio of the total cross section, oo, to the Born
cross section, og. This can be computed with the explicit expressions for the
coefficient functions and integrating the differential cross-sections (2.43). Up to

first order in ay, the integrals give

s
or=o09 , O =—0g. (2.44)
T

Thus, the ratio of the two cross sections is given by

Tiot 3 3
1 2% e 2, 9.4
o t oo lr=1+5¢ (2.45)

Equations (2.44) and (2.45) show that, up to first order in aj, the total cor-
rection to oy comes only from the longitudinal cross section. Higher orders have
been computed for the «; corrections to the total cross section [18], but not the

contributions of the transverse and longitudinal cross sections separately.
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2.3 Evolution of the fragmentation functions

Although the effective fragmentation functions cannot be computed perturbatively,
their change with energy is predicted in perturbative QCD. Equation (2.40) already
suggests a logarithmic dependence with some energy scale. The change of the
effective fragmentation functions with energy is governed by the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equations [19] that can be written as

% = X /1 d—ZPu (2, as(per), pi/s) Dilz /2, ), (2.46)

i=u,d,s,c,b,g

where the splitting kernels FP;; are known to next-to-leading order accuracy

2

Pyt /o) = S 0y 4 (L) e By

T 2m S

The renormalization scale, ug, relates the splitting functions at a given scale /s
to the strong coupling constant at the renormalization point ur. The indices ¢,
run over all active quark flavours and the gluon. Equation (2.46) shows that the
logarithmic energy change in the effective fragmentation functions is due to pro-
cesses in which a quark or a gluon (partons) with a given scaled energy higher than
x (the scaled energy of the observed hadron) radiate becoming another parton of
fractional energy z (the probability of this being proportional to the corresponding
splitting kernel) that afterwards fragments into the hadron. The probability of the
last fragmentation is given by the probability of having a hadron of scaled energy

x in a jet of energy z - Epeam- The integral takes into account all the cases with

Z > .

Up to first order in «g, the dependence on Ins of the quark fragmentation
functions is due to two processes: the quarks can radiate a gluon and then fragment;
or they can radiate a gluon which then fragments to the hadron. Analogously, the
change in the gluon fragmentation function can be due to the gluon that produces
two quarks that then fragment, or it can produce two gluons which then fragment
to the observed hadrons. Since in the expression (2.43) for the measurable cross
sections, the gluon fragmentation function enters to order «g, the change of the

gluon fragmentation function is already next-to-leading order.

In higher order, other possibilities arise. A quark can split into a quark of
a different flavour, or to an antiquark of the same or different flavour before the

fragmentation takes place.
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The evolution equations resum all the leading logarithmic terms of the solution
of the fragmentation functions. Thus, they contain all the diagrams with any
number of single gluon emission and before the fragmentation takes place. These

diagrams are called ladder diagrams.

[t is most convenient to write the coupled system of evolution equations in (2.46)
in terms of singlet and non-singlet parts defined as
S(z,s)=—- > aDi(x,s) and Niz,s)=aDi(x,s)—S(x,s) (2.48)

ny i=u,d,s,c,b

where the singlet and non-singlet components have been defined with the z-weigh-

ted particle spectra. This definition, which slightly deviates from common practice,

results in a less singular behaviour for @ — 0. The evolution equations then become
d 1 x

s Nila, ) :/x d=Py(z.au(ptn). ih5) Ni( =, 9) (2.49)

for the non-singlet components, while the energy evolution of the singlet compo-

nents is described by the coupled system
d

1
Sd—G(:L',S) = / dz [ng(Z,S,/,LR)G(f,S)—I-PgQ(Z,S,/,LR)S(z,S)]

s @ z z

d 1 x x
S@S(Q},S) = /w dz [PQG(szvﬂR)G(;VS)+PQQ(2757MR)S(;75):| (250)

where G(x,s) = @ Dg(x,s) is used. The terms containing Py and Pgq are called
the diagonal parts, and Pgg and Pgyg, the off-diagonal parts. The expressions of

the splitting kernels used in the analysis are given in section B.2 in appendix B.

2.4 Power-law corrections

The theory described in section 2.3 concerning the energy evolution of the frag-
mentation functions is not complete. All the equations were developed with the
assumption of zero quark mass. Also, the coefficient functions of eq. (2.43) given
in the appendix B are deduced with this hypothesis. This may not be a good ap-
proximation, at least for charm and bottom quarks, and the effects of their masses
in the change of the functional form of the effective fragmentation with the energy
could induce some corrections that should be controlled. The fact that the theory
describes energy evolution of scaled-energy distributions and that what is usually

measured is the scaled-momentum distributions can also produce some corrections.
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The fragmentation functions have been defined after the fragmentation stage.
It is known that heavy flavour quarks fragment in a heavy hadron that carries
most of the initial quark momentum and some light hadrons that share the rest
of the initial momentum. This would produce a hard fragmentation function that,
after decay, would finally give the softer observed fragmentation function for these
flavours. The decay step is not governed by QCD and it should not be considered in
the scaling violations analysis. Since the fragmentation functions before the decay
are not easy to measure, it is necessary to work with some redefined fragmentation
functions that include the decay of the heavy hadrons. The fact that the energy
evolution is made in the final fragmentation function is only a practical matter

and, again, the effects should be studied and controlled.

Finally the fragmentation itself is a non-perturbative phenomena. Therefore,
there can be non-perturbative corrections to the energy evolution of the fragmen-

tation functions. This is a less known effect that has to be parametrized somehow.

2.4.1 Kinematic corrections

The simplest power-law correction appears when the momentum fraction, z, =
2p/\/s, of the charged particle is used instead of the energy fraction, vy = 2E/+/s.

The relation between the two approaches is given by

2m?

+ O(1/s%). (2.51)

TEp =T, + s
The largest corrections come from considering the minimum values of « and energies
in the analysis. However, even for values of x, ~ 0.1, which are the lowest values
used, and for /s = 22 GeV and taking m as the mass of the proton, the correction
is not larger than the bin width of the distributions measured by the experiments.
For any other values of m and z, used in the analysis, the correction would be
substantially smaller than the bin width. Thus, this correction is believed to be

small for the range of values of x, and centre-of-mass energies used in the analysis.

2.4.2 Heavy quark masses

The coefficient functions and splitting kernels presented in section 2.2 assumed no

mass for the quark production and fragmentation. This is a good approximation for
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the light quarks, but for heavy quarks, and especially for the b quark fragmentation,

this could not be the case.

In case the masses of the quarks are considered, the coefficient functions have
to be recomputed. In [20] a full list of all the coefficient functions up to order a;
is given.

As an example, the coefficient function CL is modified to

(MF ‘ ,o—l-z —|—22—4ln1—|—ﬁz
20-0 1_62

Cl(z 05(pr); piy/s)

+26( 1 ]
+o0(s) [—;1 L4 1‘21} (2.52)

1—=p.
where 3, = /1 — p/(1 — z) and p = 4m?*/s being m the mass of the heavy quark,

and U(”)’(“)(S) the vector and axial contributions to the electroweak Born cross
section (appendix A). When the mass is set to zero, p — 0 and 3. — 1, and

expression (2.52) reduces to the one given in eq. (B.1).

From eq. (2.52) it can be seen that all the corrections coming from using the
zero-mass coefficient functions instead of eq. (2.52) are of order p, that is, at least
O(m?*/s). Thus, these corrections are expected to be small. Since they can be
reabsorbed into the definition of the fragmentation functions at one energy, they

only affect the evolution process.

The expressions for the other coefficient functions can be found in [20]. The
conclusion that the corrections goes as m?/s also holds for the rest of coefficient
functions. Thus, in the analysis of scaling violation, the coefficient functions given
in appendix B, which assume zero quark mass, are going to be used for all the quark
flavours and the remaining differences will be included in a global parametrization

of the power-law corrections.

2.4.3 Heavy quark decays

The evolution equations will be applied to the total fragmentation functions, after
decay of the heavy hadrons. The corrections resulting from the use of these frag-
mentation functions instead of the ones that would result from the quark fragmen-

tation alone, before decay, are described in this section.
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The probability of finding a particle with scaled energy = after fragmentation
and decay of a quark is defined by

Ti(x,s) = /01 D (y, s)dy /01 wi(z,8)dz - 6(x — yz), (2.53)

where ¢;(z, s) is the energy distribution of the decay products scaled to the energy
of the parent hadron. = = 2FE;/./s is the fractional energy of the final decay
product, y = 2E,/+/s is the fractional energy taken by the hadron right after
fragmentation, and z = FK;/E, = x/y. The index ¢ refers to the different quark

species. The total fragmentation function is then given by

Ti(:z;,s):/: W Dy, s) e (gs) (2.54)

Yy

The evolution equations hold for the fragmentation functions D;(y,s). But the
measured cross sections are related with T;(x, s). The derivative of the latter with

respect to In s can be decomposed in two terms

ITi(x,s)
———=A+8B 2.
dlns + 5, (2:5)
with the following definitions
L dy x dD;(y, s)
A= / — — 2.56
7 ( ) dlns (2:56)
! dy 0%(1’/%8)
p= [ b 2002 .
dln s (2:57)

The evolution equations can be applied to A, which can be written as

A= /1 d_y% (:1; ) Z/l d—ZP” (z,a5(pr), ux/s) D (%,5) : (2.58)

Delta and step functions can be introduced in (2.58) and the order of integration

can be exchanged in such a way that A can be written as

A = Z/ld—szzozs (1R): g/ s) /xl an(n’ )i (x/z)

/=M n

= Z/: Ci—ZPij(Zvas(MR)au?z/S)Tj (38) : (2.59)

The left side of (2.55) together with the result in (2.59) have the same structure
as the DGLAP evolution equations applied to the total fragmentation functions,
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T;. Thus, the term in B would constitute a non-QCD correction to the evolution
equations coming from the decay effects included in 7;. The B term contains a
derivative of the decay function, ;, which can be written as

/dfé (g . 5) il 5) (2.60)

Yy dlns

The decay spectrum, ¢;(€,s), can be computed as the Lorentz boost of the rest
frame spectrum, ®;(E*). If E* is the energy of the decay product in the heavy
hadron rest frame and ©* the angle of the decay particle with respect to the line
of flight of the heavy hadron in the centre-of-mass frame, the observed energy of

the decay product can be written as
1
E= 55\/_:7E*(1 + [ cos ©), (2.61)

where v = Ej/m and 8 = /1 — 1/42, being Fj;, and m the energy and mass of the

heavy hadron, respectively. This allows to write ; as

pilts) = [deos® 01~ cos07)O(cos O+ 1)

E‘k
/dE* ®(E7) 6 lg—z’yﬁ (1+ feos 0], (2.62)
which can be integrated over cos ©* to finally have the following expression:
dei(x/y, s) 0 Ba d|* Vs 1
= O, (L) Y—— 2.
dlns dln s /E/a E~ (£7) 2 5 (2.63)

where « is defined as

1+

The amount of correction can be explicitly obtained if a decay to two particles is

considered. In this case, eq. (2.63) can be simplified so that B from eq. (2.57) can

Ldy a |2 Am?\
B:/ — Di(y,s)s— |- [1 — —
e Y (y 8)883 [y( yzs)

whose first term is of order m?/s.

be written as:

(2.65)

In [20], a different approach based in the moments of the total fragmentation
functions arrives to the same conclusion, ie., that the power-law correction coming
from the decay of heavy hadrons is of order m?/s. At LEP energies, for example,

this correction is of the order of 0.2% multiplied by the fraction of bb.
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2.4.4 Hadronization effects

The hadronization effects are the least well known effects in the evolution. They
have not been computed explicitly for the fragmentation functions neither for their
evolution. In deep-inelastic scattering, they are known to go as 1/Q? [21]. However,
no clear statement on their dependence with ) has been given for the case of eTet

collisions.

Nevertheless, the fact that corrections to the thrust and sphericity variables
have been shown to go as 1/Q) = 1/y/s [22, 23], suggests that the corrections to

the evolution of the fragmentation functions could also follow the same behaviour.

A simple hadronization model can help to have an insight in this hypothesis.
The model [20] is given by a colour-connected pair of partons that produces light
hadrons which occupy a tube in (y, p;)-space, being y and p; the rapidity and the
transverse momentum of the produced hadrons with respect to the line in which
the partons move away. Defining p(p;) as the density of hadrons in the (y, p:)-space,

the energy and momentum of a tube of length Y is given by

Y
E = / dy d*p; p(p;) ps coshy = Asinh Y (2.66)
0
Y
P = / dy d®p; p(p;) prsinhy = A(coshY — 1) ~ E — A (2.67)
0
where
A= /dzptp(pt)pt- (2.68)

sets the hadronization scale.

The momentum of the system receives a correction of order A\/E = 2\/\/s.

Thus, it is expected that the hadronization process introduces corrections of the

order 1/4/s.

The hadronization corrections have not been explicitly computed for the evolu-
tion of the fragmentation functions. Their dependence with the energy is supported
by some arguments as the one explained above. Thus, they have to be parametrized

in the analysis. This parametrization will be explained in section 6.4.
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2.5 Measurement of the strong coupling constant

In section 2.3, it has been shown that the effective fragmentation functions evolve
with the energy in a way that is predictable by perturbative QCD. This evolution
depends on «a;. Therefore, data at different centre-of-mass energies can be used to
extract a value of the strong coupling constant in an analogous way as it is done
in deep-inelastic scattering with the structure functions, which evolve following
+el

analogous evolution equations as the fragmentation functions in e annihilation.

Schematically, a QCD test based on measurements of inclusive cross sections at
different centre-of-mass energies, can be visualized as shown in figure 2.2. Assuming
a given set of fragmentation functions is specified at an initial factorization scale
i, perturbative QCD relates those fragmentation functions to an observable cross
section through eq. (2.43) which, after inclusion of the non-perturbative power-law
corrections, can be compared with experimental data (horizontal arrows). The
natural choice is p; = \/s; and uy = |/sy. Since the fragmentation functions are
not calculable in perturbative QCD they can be adjusted such that the theoretical
prediction agrees with the data at a given energy. However, having once fixed the
initial conditions, a QCD test can be performed by comparing the QCD prediction
for various centre-of-mass energies to actual measurements. The energy evolution
(vertical arrows) of the fragmentation functions is described by perturbative QCD
through eq. (2.46). Here the renormalization scale up appears, i.e. the energy
variation of the fragmentation functions at the scale u is expressed as function of

i and the renormalization point pr. The natural choice is ugp = p.

An important fact in the scheme presented is that there are evolution equations

Input Measurement at F., = \/s;
D(x, i) = QCD(uif.si) — dad(;i) — NP —terms — dfl;(;i)

{
QCD(p?, k)
l Measurement at £, =

Dlegd) = Q0D - R o NP tems o 4]

E

Figure 2.2: Scheme of the scaling violations analysis
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for fragmentation functions corresponding to each flavour and the gluon, and none
of them have been isolated so far at any energy. In fact, they cannot be measured
directly, but their value should be inferred from their relation to the measurable
cross-sections as described above. The measurement of the fragmentation function
for each flavour would have little importance if flavour composition would be the
same at all the energies. But this is not the case as it is shown in figure A.1. Since
the b quark fragmentation function is softer than the ones from the other flavours
and the fraction of b quarks is larger at LEP, a softer scaled energy distribution
would be measured at LEP even in the absence of QCD effects. This means that
flavour-tagged distributions are needed, at least at one centre-of-mass energy, to
fix the fragmentation function for different quark species and disentangle this effect

from the QCD scaling violations.

Also, the measurement of the gluon fragmentation function is needed since it
enters in the evolution equations at next-to-leading order level. A direct measure-
ment of the gluon fragmentation function can be obtained from three-jet events,
where jets from well separated gluons are tagged by default when the other two
jets contain long-lived particles. Additional information on the gluon fragmenta-
tion function can be extracted from the longitudinal and transverse cross sections

which are related to the gluon fragmentation function according to [20]

1 dot  a, /:d—z l 1 do” _|_4<f_ 1) Dg(z)] +O(a?), (2.69)

Otor dx 2m z | O dz T

with has yet uncalculated terms O(a?). Truncating the above expression at O(ay),
the parameter oy becomes an effective leading-order coupling constant which must
not be confused with the next-to-leading order running coupling constant appearing
in eqs. (2.43), (2.46). Because of this, it will be referred to as (5 in the following.

The measurement of all distributions needed for the analysis of scaling violations
will be described in chapter 5. The following two chapters present the detector, and
the main tools and algorithms needed to perform the measurement of the scaled

energy distributions for different flavour enriched samples.
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Chapter 3

The ALEPH detector

The ALEPH detector [24, 25] (ALEPH:*Apparatus for LEP PHysics’) is one of
the four large detectors installed in the LEP accelerator. The other three are
DELPHI [26], L3 [27], and OPAL [28]. It was designed to study in detail the
parameters of the Standard Electroweak model, to test QCD at large )? and to
search for new physics (such as the top quark, the Higgs boson or supersymmetric
particles) in the eTel interactions that take place in the LEP accelerator. The
detector was conceived to be as hermetic as possible covering the maximum allowed
solid angle and to collect as much information as possible from each event. This
chapter describes the ALEPH detector with special emphasis in those parts used

in the analysis.

3.1 LEP

The Large Electron Positron storage ring (LEP) [29], is a nearly circular accelerator
sited at the European Centre of Nuclear Research (CERN) in Geneva. It is located
inside a nearly horizontal tunnel of 26.7 km of circumference, at a depth between
80 and 137m spanning the French and Swiss territories (figure 3.1). It consists
of eight arcs and eight straight sections. The beams are formed by bunches of
electrons and positrons that circulate inside the beam pipe. They are accelerated
in opposite directions and cross in eight or sixteen points in case the number of
bunches per beam is four or eight, respectively, although they are steered to collide
only in the four points where the detectors are installed. The collisions in the other

points are avoided by a system of electrostatic separators.
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Geneve Lac

Geneve

Femey- (DELPHI)

Voltaire

Point2 ®
Prevessin (L3)

Point 4
R (ALEPH)

Figure 3.1: The LEP ring.

The accelerator program comprises two phases. In the first (current) phase,
LEP accelerates, stores and collides electrons and positrons at a centre-of-mass
energy around 90 GeV and produces 7 bosons with a luminosity (the number of
events per time per unit of cross-section) that has been growing every year and
mi2gll

that is now above 10% ¢ . In the second phase, to start in 1996, an increase

of the centre-of-mass energy up to 180 GeV will allow the production of W pairs

at a foreseen luminosity close to 1032 cm*2st!,

The LEP injection chain can be seen in figure 3.2. It starts with the LINear
ACcelerator (LINAC) which accelerates electrons and positrons in two stages. The
electrons are first accelerated up to 200 MeV. Part of the electrons are used to
produce positrons and the rest, together with the positrons are accelerated up to
600 MeV. After the LINAC, the particles are inserted into a small circular etet
accelerator (EPA). From there, they are inserted to the PS accelerator, where the
energy is taken up to 3.5 GeV. The particles are injected to the SPS accelerator,
rising to an energy of 20 GeV. Finally, they are injected to the LEP main ring and

accelerated to an energy of ~ 45 GeV with a current up to 6.0 mA per beam.

The running and optics configuration of LEP has changed with time trying
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Figure 3.2: Scheme of the LEP injectors and accelerators.

to reach higher luminosities. While in the first years of operation (from 1989
to Oct. 1992), four bunches of electrons were circulating inside the accelerator
and were colliding in the interaction points every 22 psec, in the 1993 and 1994
running periods collisions of 8 bunches spaced 11 psec gave a considerable increase
in luminosity. For the 1995 running period, a scheme of four bunch trains of
electrons and positrons consisting of two, three or four equally spaced wagons is
expected to produce 50K 7 per day in each collision point. Table 3.1 gives the

main parameters of LEP.

3.2 The ALEPH detector: general description

The ALEPH detector is located at experimental point number 4 in a cavern 143 m
under the surface. It is a 12m diameter by 12m length cylinder positioned around
the beam pipe (tube of 10 cm of radius that forms part of the accelerator). In the

ALEPH reference system, the z direction is along the beam line, positive in the
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Parameter Value
Circumference 26667.00m
Average radius 4242.893 m
Bending radius in the dipoles 3096.175 m
Depth 80-137 m
Number of interaction points 4
Number of bunches per beam 4-8
RMS bunch length 11.67 mm
Horizontal bunch sigma 200 pm
Vertical bunch sigma 12 pm
Injection energy 20 GeV
Maximum beam energy (phase I) 55 GeV
RF frequency 353 MHz
Maximum total current per beam 0.006 A
Luminosity 103t emt2stt
Vertical 3y 5 cm
Horizontal 37, 25X 3y em

Table 3.1: Main LEP parameters.

direction followed by the e*, thereby slightly different from the local horizontal
direction due to the fact that the accelerator is slightly tilted. The positive x
direction points to the centre of LEP, and is horizontal by definition. The positive
y direction is orthogonal to z and @ and deviates 3.5875 mrad from the local vertical

direction.

The detector consist of subdetectors, each of one specialized in a different task.
The tracking devices allow to reconstruct the trajectories of charged particles and
to classify them using the ionization left in the detectors. The electromagnetic
and hadronic calorimeters give a measurement of the energy of the particles, being
also the only detectors capable to give position information for the neutral par-
ticles. Muons are identified using the muon chambers and/or the final planes of
the hadronic calorimeter. Specialized detectors situated at low angle give a precise
measurement of the luminosity. Some other subdetectors monitor the luminosity
and the background. Finally, the trigger and data acquisition system is used to
manage everything and record the useful information. A brief description of these

devices follows.
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Figure 3.3: Schematic view of the ALEPH detector. (1) Luminosity Monitor. (2) Inner Tracking
Chamber. (3) Time Projection Chamber. (4) Electromagnetic Calorimeter. (5) Superconducting
Coil. (6) Hadronic Calorimeter. (7) Muon Chambers. (8) Beam Pipe.

Main detectors

A particle leaving the interaction point would encounter the following subdetectors

(figure 3.3):

— The Mini Vertex DETector (VDET), fully operational since end 1991, is a
double sided silicon strip device with two layers of strips parallel (z) and

perpendicular (r¢) to the beam, situated around the beam pipe, providing
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a very accurate vertex tagging of tracks coming from the interaction point.

The coordinate spatial resolution is 10 gm in r¢ and 13 ym in z.

— The Inner Tracking Chamber (ITC) is a cylindrical multiwire drift chamber.
It contributes to the global ALEPH tracking and is also used for the triggering
of charged particles coming from the interaction region. It can provide up
to eight precise r¢ coordinates per track, with an accuracy of 100 um per

coordinate.

— The Time Projection Chamber (TPC), the central track detector of ALEPH,
is a very large three-dimensional imaging drift chamber. It provides up to
27 three dimensional coordinate points of each track. The single-coordinate
resolution is 173 um in the azimuthal direction and 740 gm in the longitu-
dinal direction. From the curvature of the tracks in the magnetic field, the
TPC gives a measurement of transverse particle momenta, pr, with an accu-
racy of Apr/p2 = 0.6-10+° (GeV /c)*! at 45 GeV, if it is used together with
the I'TC and the VDET. The chamber also contributes to particle identifica-
tion through measurements of energy loss (dF/dx) derived from about 340

samples of the ionization for a track traversing the full radial range.

— The Electromagnetic CALorimeter (ECAL) is a sampling calorimeter con-
sisting of alternating lead sheets and proportional wire chambers read out in
projective towers. A granularity about 1° x 1° is obtained. The ECAL mea-
sures the energy and position of electromagnetic showers. The high position
and energy resolutions achieved lead to good electron identification and allow

to measure photon energy even in the vicinity of hadrons.

— The superconducting coil is a liquid-Helium cooled superconducting solenoid
creating, together with the iron yoke, a 1.5T axial magnetic field in the

central detector.

— The Hadronic CALorimeter (HCAL) is a sampling calorimeter made of layers
of iron and streamer tubes. It measures energy and position for hadronic
showers and, complemented with the muon chambers, acts as a muon detec-
tor. The readout is performed twice: using cathode pads forming projective
towers and using digital readout of the streamer tubes for muon tracking and

also for triggering. It also provides the main support of ALEPH, the large
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iron structure serving both as hadron absorber and as return yoke of the

magnet.

— The MUON chambers (MUON), outside HCAL, are two double layers of
limited streamer tubes which measure position coordinates of the muons,

only detectable particles reaching this subdetector.

Luminosity and beam monitoring

An accurate luminosity measurement is required for the precise measurement of
cross-sections. This is provided by four detectors for small angle Bhabha scattering

installed around the beam pipe:

— The Luminosity CALorimeter (LCAL), is a lead/wire calorimeter similar to
ECAL in its operation. It consists of two pairs of semi-circular modules

placed around the beam pipe at each end of the detector.

— The Sllicon luminosity CALorimeter (SICAL) was installed in September
1992 on each side of the interaction region. It uses 12 silicon/tungsten layers
to sample the showers produced by small angle Bhabhas. It improves the
statistical precision of the luminosity measurement by sampling at smaller
angles than LCAL. The systematic error of the luminosity is also reduced

thanks mainly to the greater precision in the positioning of its components.

— The very small Bhabha CALorimeter (BCAL) located behind the final focus
quadrupoles, is used to give a measurement of the instantaneous luminosity
and also as a background monitor. It is a sampling calorimeter made of tung-
sten converter sheets sandwiched with sampling layers of plastic scintillator.

A single plane of vertical silicon strips is used to locate the shower position.

The optimization of LEP performance needs also some monitoring of the beam

conditions which is accomplished by:

— The Small Angle Monitor of BAckground (SAMBA) is positioned in front
of the LCAL at either end of the detector. It consists of two multi-wire
proportional chambers at each end, read out in two rings of 8 pads per ring.

It is used as a background monitor.
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— The Beam Orbit Monitors (BOMs), located around the circumference of LEP,
measure the mean position and angle of the beam orbits which are used by
LEP to optimize the beam conditions, and by ALEPH to determine the (z, y)
position of the beam spot as a starting point for offline reconstruction of the

primary vertex.

Trigger system

Not all the collisions that take place at LEP are useful for the physics that ALEPH
is willing to study. The large amount of non-useful events have to be filtered out
in order to avoid inefficiencies in the detector and a large amount of unused data.
For example, if an event is decided to be recorded, it takes up to 45 usec for the
ionization electrons to reach the end-plates of the TPC and the electromagnetic
calorimeter takes up to 61 usec to be cleared and ready for the next event. Since
three bunch crossings occur in this time, this operation must be performed only
when the event will be useful, otherwise large inefficiencies would be introduced.
The purpose of the trigger system is to produce a signal that starts the readout of
the events. It is desirable to keep all the electron-positron collisions and to reduce
as much as possible the rate of background events. The trigger system has been

organized in a three-level scheme:

— Level one decides whether or not to read out all the detector elements.
Its purpose is to operate the TPC at a suitable rate. The decision is taken
approximately 5 us after the beam crossing from pad and wire information
from ECAL and HCAL and hit patterns from the ITC. The level one rate
must not exceed a few hundred Hz. If the decision is not to take the event,

the TPC is reset and kept ready for the next event.

— Level two refines the level one charged track triggers using the TPC trac-
king information. If the level one decision cannot be confirmed, the readout
process is stopped and cleared. The decision is taken approximately 50 s
after the beam crossing (the time at which the TPC tracking information is

available). The maximum trigger rate allowed for level two is about 10 Hz.

— Level three is performed by software. It has access to the information from

all detector components and is used to reject background, mainly from beam-
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gas interactions and off-momentum beam particles. It ensures a reduction of

the trigger rate to 3—4 Hz, which is acceptable for data storage.

This trigger scheme has to be rather flexible since it has to be able to reject
the background and keep signals from possible new physics events. Therefore the
available electronic signals from different ALEPH detector components allow for a

variety of triggers which, together, cover all possible types of events.

Data Acquisition System and Event Reconstruction

The data acquisition system allows each subdetector to take data independently,
process all the information taken by the detector, activates the trigger system at
every beam crossing, writes the data in a storage system and monitorizes and

regulates continuously all the detector and electronic system.

The DAQ [30] architecture is highly hierarchical. Following the data and/or
control flow from the bunch crossing of the accelerator down to storage device, the

components found and their tasks are briefly described below:

— Timing, Trigger and Main Trigger Supervisor: synchronize the readout elec-
tronics to the accelerator and inform the ReadOut Controllers (ROCs) about
the availability of the data.

— ROCs: initialize the front-end modules, read them out and format the data.

— Event Builders (EBs): build a subevent at the level of each subdetector and

provide a ‘spy event’ to a subdetector computer.

— Main Event Builder (MEB): collects the pieces of an event from the various

EBs and ensures resynchronization and completeness.
— Level three trigger: as seen, performs a refined data reduction.

— Main host and subdetector computers: The main machine (an AXP Clus-
ter) initializes the complete system, collects all data for storage and provides

the common services. The subdetector computers get the ‘spy events’ and

perform the monitoring of the large subdetectors (TPC, ECAL, HCAL).
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Figure 3.4: Schematic representation of the ONLINE and FALCON cluster.

The data taken by the online computers is called raw data and is reconstructed
quasi online. In less than two hours after the data is taken, the event reconstruction
and a check of the quality of the data is done, thus allowing ALEPH to have a
fast cross-check of the data and correct possible detector problems. This task is
performed by the Facility for ALeph COmputing and Networking (FALCON) [31].

The year by year continuous increase of CPU power of the machines has made
the hardware and software of FALCON develop in order to accommodate to the

available performance and requirements.

In its current configuration, FALCON consists of three processors (three DEC-
AXP machines with a total power of ~ 60 CERN units '), connected as sketched
in figure 3.4. Each of the processors runs the full ALEPH reconstruction program
JULIA (Job to Understand Lep Interactions in ALEPH) [32] which, for each event
of the raw data file, processes all the information from the different subdectectors.
Other programs also run to compute the drift velocity in the TPC (PASS0), or to
analyze the quality of the data taken (RunQuality).

After their reconstruction, the events are written in POT (Production Output

Tape) data files and transmitted to the CERN computer center where they are

LA CERN unit is equivalent to an IBM 168 CPU unit, approximately 1/6 of an IBM 3090
processor or about 1.2 Mflops.
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converted into different data types more suitable for physics analysis. The events

are ready to be analyzed only a few hours after the raw data have been taken.

3.3 Subdetectors relevant to the analysis

The measurement of the scaled energy distributions and the selection of hadronic
events need only the use of tracking devices, especially the TPC and the ITC
that determine the polar angle and the momentum of the particles. However, the
selection of flavour-tagged samples of events needs the VDET detector and also the

use of the calorimeters.

The tracking detectors are described in detail in the following sections. Also
a description of the electromagnetic and hadronic calorimeters is given, although

less detailed due to their more limited importance for the analysis.

3.3.1 The Mini Vertex Detector

The VDET is formed by 96 silicon wafers each of dimension (5.12 x 5.12 x 0.03) cm
arranged in two coaxial cylinders around the beam pipe. The inner layer has nine
wafers in azimuth, with average radius of 6.5cm, and the outer has 15 wafers
with average radius of 11.3cm, both layers being four wafers long. Each wafer
has 100 um strip readout both parallel (r¢) and perpendicular (rz) to the beam
direction. Particles passing through a wafer deposit ionization energy, which is

collected on each side of the wafer.

The advantage of the VDET is that it pinpoints a track’s location in space quite
near to the beam pipe. VDET hits are used by extrapolating a track found by the
ITC and/or the TPC to the VDET and then refitting the track more precisely using
VDET hits which are consistent with it. The addition of VDET to the tracking
improved the momentum resolution at 45 GeV to Apyr/p% = 0.6 - 103 (GeV /c)*!
from Apr/p3 = 0.8 -10+% (GeV /c)*! when only TPC and ITC were used [34].

Using VDET, together with the other tracking detectors, the spatial coordinates
of the origin of a 45 GeV charged track’s helix (impact parameter) can be found to
within about 23 pm in the r¢ view and 28 ym in the rz view measured from dimuon

events. For lower momentum tracks, this parameter is measured from hadronic 7
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Figure 3.5: Cut-away view of the VDET.

decays. The resolution on the impact parameter can be parametrized as [35]
95
o(8) = 25 pm + L (GeV /o)t (3.1)
p
This allows tracks produced by decays of short-lived particles to be separated from

those at the primary interaction point with good efficiency.

3.3.2 The Inner Tracking Chamber

The Inner Tracking Chamber (ITC) [36] using axial wires made of gold and tungsten
provides up to eight r¢ points for tracking in the radial region between 16 and 26 cm.
It also provides the only tracking information for the level one trigger system. It
is able to identify roughly the number and geometry of tracks, due to its fast
response time (the trigger is available within 2-3 us of a beam crossing) and allows

non-interesting events to be quickly rejected.

The ITC is operated with a gas mixture of argon (50%) and ethane (50%) at

atmospheric pressure.

The ITC is composed of 8 layers of sensing wires (operated at a positive po-

tential in the range 1.8 — 2.5kV) running parallel to the beam direction, located
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Figure 3.6: The ITC drift cells.

forming hexagonal cells with the central sense wire surrounded by six field wires
held at ground potential (figure 3.6). The sense wires detect the ionization of par-
ticles passing close by. The measurement of the drift time gives the measurement
of the r¢ coordinate within about 150 ym. The z coordinate is found by measuring
the difference in arrival times of pulses at the two ends of each sense wire, but with
an accuracy of only about 3 cm. The particles with polar angles between 14 and

166 degrees pass through the 8 layers.

3.3.3 The Time Projection Chamber

The Time Projection Chamber (TPC) [37] was designed to obtain high precision
measurements of the track coordinates, to get good momentum resolution and to

measure the dF//dz depositions of charged particles.

The time projection chambers use the techniques of the ionization chambers
to measure the transverse (z-y) coordinates, while measuring the time to detect
each ionized bunch of electrons gives the position in the z coordinate. In the case
of ALEPH, the charged particles create ionization in the gas that fills the TPC.
The electrons produced in this ionization are driven by an electric field to the
end-plates where wire chambers are located. There, a secondary ionization takes
places and the position where this happens gives the r¢ coordinate. The time

needed for the electrons to reach the end-plate gives the z coordinate. Due to
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the 1.5 T magnetic field produced by a superconducting solenoid surrounding the
TPC whose axis is parallel to the TPC symmetry axis, the trajectory of a charged
particle inside the TPC is a helix, and its projection onto the end-plate is an arc of
a circle. By measuring the sagitta of this arc, one obtains the curvature radius that
is proportional to the modulus of the component of the momentum perpendicular

to the magnetic field.

The TPC is a cylindrical structure of 4.4 m long with 35 cm and 180 cm of inner
and outer radius, respectively (figure 3.7). Its volume is delimited by two coaxial
cylinders which hold the end-plates. The dimensions were designed to reach 10%
resolution in transverse momentum for the highest possible momenta (muon pairs
produced at the LEP energy of 90 GeV per beam). The resolution Apy in transverse

momentum py (GeV/c) is proportional to the resolution in the measurement of the

WIRE CHAMBERS

N
\/

Figure 3.7: Scheme of the TPC.



38 The ALEPH detector
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where B(T) is the modulus of the magnetic field and [(m) is the length of the
projected trajectory. This was optimized by choosing the largest practical lever

arm [ = R00 — B = 1.4m.

The device is divided into two half-detectors by a membrane which is situated
in the plane perpendicular to the axis and midway between the end planes. This
central membrane is held at a negative high voltage (=26 kV) and the end-plates
are at a potential near ground. The curved cylindrical surfaces are covered with
electrodes held at potentials such that the electric field in the chamber volume is

uniform and parallel to the cylinder axis.

The TPC volume is filled with a nonflammable gas. Traversing particles will
ionize it producing electrons that will be drifted towards one end-plate by the elec-
tric field of 110 V/cm. The argon(91%) + methane(9%) gas mixture was chosen
because with this mixture is possible to reach high wr values (w = cyclotron fre-
quency; 7 = mean collision time of the drifting electrons). This causes the electrons
to drift mainly along the magnetic field lines and thereby reduces the systematic

displacements due to the electric field inhomogeneities.

The electrons produced by the ionization are amplified in the proportional wire
chambers positioned in the end-plates. There are 18 wire chambers (‘sectors’)
on each end-plate. In each end-plate, there are six sectors of type K (Kind),
surrounded by a ring of alternating sectors of type M(Mann) and W(Weib). In
order to get a minimum loss of tracks at boundaries, the sectors are arranged in
the ‘zig-zag’ geometry that can be seen in figure 3.8 in order to get a minimum
loss of tracks at boundaries. The gaps between the sectors must be as small as
possible. High precision in the alignment of each chamber with the others is also

required because each radial track is measured by two different wire chambers.

The wire chambers consist on three layers of wires (figure 3.9):

— The gating grid [38] prevents positive ions produced in the avalanches near the
sense wires from entering the main volume of the TPC, distorting the electric
field. Potentials of V, + AV, (V, ~ —67V) are placed on alternative wires of
the grid. A AV, of 150V was chosen to block both the passage of positive
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Figure 3.8: View of a TPC end-plate.
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Figure 3.9: View of a TPC wire chamber.
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ions to the drifting volume of the chambers and the incoming electrons in the
wire region. The gate is opened 3 us before every beam crossing. If a positive
trigger signal arrives, the gate is kept open, otherwise the gate is closed after

~ 5 pus.

— The cathode wires keep the end-plates at null potential and together with

the central membrane create the electric drift field.

— The sense wires are read out to give the energy deposition (dE/dx) [39] for
particle identification and the z measurement of the tracks. For the esti-
mation of the dF/dxz, a truncated mean algorithm is used, taking the mean
of the 60% smaller pulses associated with a track. The achieved resolution
is 4.6% for electrons in hadronic events (slightly better for low multiplicity
events). The field wires are kept at null potential to create equipotential

surfaces around the sense wires.

The ionization avalanches created around the sense wires are read out by the
signal induced on cathode pads at a distance of 4 mm from the sense wires. The
pads are connected to preamplifiers via wires passing through the structure which

supports the wire grids.

3.3.4 The Electromagnetic and Hadronic Calorimeters

The electromagnetic [40] and hadronic calorimeters consist both of a barrel and
two end-caps located around the TPC. While the electromagnetic calorimeter is
placed inside the coil, the hadronic calorimeter is placed outside, which makes it

be also the return of the magnetic flux of the magnet (figure 3.10).

Both are sampling calorimeters where the main active material is gas. Their
barrels are divided into modules of 30° and 15° in azimuthal angle, ¢, for the ECAL
and HCAL, respectively. The end-caps of the ECAL and HCAL are also divided

in modules of 30° and 60° in ¢, respectively.

The barrel modules of the two calorimeters have a small rotation angle between
them to avoid cracks in all the calorimeter system. The modules of the end-caps

are also rotated with respect to the ones in the barrels.
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Figure 3.10: Overall view of the Electromagnetic and Hadronic calorimeters.

The barrels are 4.8m and 6.3m long for the ECAL and HCAL respectively.
The ECAL extends from an inner radius of 1.85m to an outer radius of 2.25 m and

the HCAL from 3m to 4.68 m.

The modules of the electromagnetic calorimeter, with a total thickness of 22
radiation lengths, consist on 45 layers of lead and wire chambers full with 80%
xenon and 20% COz gas. The structure of a single layer consists (figure 3.11) on
a lead sheet, a wire chamber plane (anode plane) made of open-sided aluminium

extrusions and a pad plane (cathode plane) covered by a graphited mylar sheet.

The cathode pads are connected internally forming towers which point to the
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Figure 3.11: View of an ECAL stack layer.

interaction point. Each tower is read out in three sections in depth (‘storeys’). The
size of the pads is approximately 30 x 30 mm? leading to a high granularity (73728
towers). In addition to the signal of the pads, an analog signal is also available
from each anode wire plane. These signals are used for testing and calibrating the

modules and also for triggering.
The achieved energy resolution for electrons and photons is [35]

0.178
78~ 1% &0.019, (3.3)

L JE/GeV

and the angular resolution for charged tracks with | cosfiack |< 0.98 is [35]

2.5

7=\ JE/Gev

The hadronic modules have 22 iron sheets, each one with a width of 5cm and

+ 0.25 | mrad. (3.4)

an external plane of 10 cm, with a total amount of iron of 1.20m (7.16 interaction

lengths), which is enough to contain the hadronic showers at LEP energies. Between
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the iron sheets, there are modules of streamer tubes filled with a mixture of argon

(21%), CO4 (42%) and isobutane (37%).

Three different kinds of signals are read out in the hadronic calorimeter: signals
from the pads situated outside the modules containing the streamer tubes, which
are used to measure the energy of the showers; signals from the strips situated
along the streamer tubes modules, which give the pattern of the streamer tubes in
the event and are used as a ‘tracking’ of the showers; and the signal from the wires,

which measures the energy released in the planes and is used mainly for triggering.

The energy resolution is given by [35]

9E _ 0.85 (3.5)

E - /B/GeV
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Chapter 4

Event reconstruction and
simulation

This chapter gives a description of the reconstruction processes and tagging algo-
rithms needed in the measurement of the scaled energy distributions for charged
tracks that will be described in chapter 5. The track reconstruction is described
in section 4.1. A brief explanation of the energy and position reconstruction with
the calorimeters is presented in section 4.2. The calorimeter and track information
is used in the energy flow algorithm described in section 4.3, which is used by
one of the event shape flavour tagging algorithms. This algorithm and the impact
parameter tag algorithm are described in section 4.4. Finally, section 4.5 explains
the Monte Carlo simulation chain in ALEPH and gives a brief description of the

hadronic Monte Carlos used in the analysis.

4.1 Tracking in ALEPH

Before any measurement of the momentum and track parameters is performed, the
raw data coming from the tracking detectors have to be processed and track coor-
dinates have to be measured in order to join them together to finally form a track
helix. The next sections describe the coordinate finding of the three subdetectors

and the track reconstruction from them.
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4.1.1 Coordinate finding

TPC The TPC measures the ionization induced by a charged particle traversing
the gas volume of the chamber. The cloud of charge is projected onto the TPC
end-plates (by the electric field) and is measured by the sense wires and the pads.
The information coming from both is grouped in hits, which contain the pad or
wire number, the pulse length and the arrival time of each pulse, and digitizations,

that contain pulse-height samples, ie. the details of the pulse shapes [41].

The pad-hit data are grouped into two-dimensional clusters; starting with one
pulse, another pulse on an adjacent pad is included if it overlaps the first by at
least one sample. In order to separate, or at least recognize, within each cluster
the contributions coming from different particles, all clusters are analyzed again,
this time with the digitization information considered. Peaks that are sufficiently
isolated from others form subpulses. For each subpulse, both a charge estimate
and a time estimate are made from digitizations. These estimates are used by the
coordinate algorithms. For each good subcluster a three dimensional coordinate is
calculated and errors are determined from the widths, in space and time, of the
subcluster. The r¢ coordinates are calculated by using a Gaussian model of the
pad response if only a few pads are involved, or simply by taking a charge-weighted
average of the positions if many pads are involved. The z-coordinate is always
determined from a charged weighted average of time estimates of the individual

subpulses. All coordinates are corrected for misalignment and distortions of the

drift field.

The cluster sizes in the end-plates are ~ 1.5¢cm in r¢ and ~ 2cm in z. Thus,
there are cases in which the clusters belong to more than one track. However, the

probability that two tracks overlap all their clusters is small.

The r¢ spatial resolution depends on the diffusion (which, in turn, depends on
the drift distance), the alignment of the electric and magnetic fields, the localization
of the avalanche in the sense wire, the angle to the track with respect to the pad and
on electronic noise and errors in the calibration. An overall resolution o,4 = 173 pm

is measured. The resolution in the z coordinate is o, = 740 um.

ITC The ITC also produces three dimensional coordinates from the raw data

consisting on the wire (channel) number, and the time values in r¢ and z.



46 Event reconstruction and simulation

The z coordinate is reconstructed from the difference in the arrival times of the

signals to the two ends of the wire.

To obtain the nominal r¢ coordinate the wire number is used. The r¢ TDC
value is used to calculate the drift-time. The relationship between the drift-time
and the distance is not linear. The drift-time value is used to generate two coordi-
nates one on each side, azimuthally, of the anode wire. The proper location of the
coordinate can only be obtained at the tracking stage when the angle of the track

through the drift cell is known.

The r¢ resolution depends on the drift time, the error being worse close to
both anode and field wires than in between. The resolution is parametrized as a
parabola in azimuthal drift-distance with the minimum of approximately 100 gm

occurring mid-way between the anode and field wires.

VDET The raw data of the Vertex Detector contain the list of channels (and its
pulse-height) in the event with a signal above a defined threshold and the seven
channels at each side of it. Hits are reconstructed by averaging the charge-weighted
position of adjacent strips that have at least three times the mean noise charge. The
correlation between the charge measured in the two views is used to identify double-
track clusters. Monte Carlo studies show that the vertex detector hit association
is correct for 98% (90%) of the hadronic Z decay tracks with hits in both (one)

layers.

4.1.2 Track reconstruction

Once all the coordinates have been found, the tracking [42, 43], is done starting
in the TPC by first merging coordinates consistent with an arc of helix less than
7 radians to form a chain. The chains that are determined to belong to the same

helix are linked together into a single track candidate.

Finally, the five helix parameters, as defined in figure 4.1, are determined by a fit
of a helix to the pad coordinates within the first half turn of each track candidate.
To account for multiple scattering within the fit, the coordinate error estimates are
increased in accordance with the material traversed by the track from its origin.

The fit is allowed to remove outlying coordinates and to break a track between two
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tanA =Az/As

Figure 4.1: Helix parameters used in the TPC tracking programs: w, inverse radius of curvature;
dy, distance of closest approach to the z axis; zp, z coordinate where dy 1s measured; ¢g, ¢ at
closest approach to the z axis, and tan A, tangent of the dip angle.

coordinates if there is evidence from the fit of a particle decay. What results, in

the end, is a set of TPC-fitted tracks.

These track candidates are extrapolated to the inner detectors (ITC and VDET)
where consistent hits are assigned. First, the TPC track trajectories are projected
back into the I'TC and a search is made for I'TC coordinates around each trajectory.
If more than three hits are found, a fit is performed and the I'TC track is accepted if
the fit satisfies a y? cut. Afterwards, the same procedure is performed with VDET
hits to associate them to the extrapolated ITC-TPC tracks using a y? discriminator

to decide which hit has to be associated to a given track.

Coordinate errors are determined using the preliminary track parameters. The
final track fit, based on Kalman filter [44] techniques, uses these errors and takes

into account multiple scattering between each measurement.

The track finding efficiency in the TPC has been studied using Monte Carlo
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simulation. In hadronic Z events, 98.6% of tracks that cross at least four pad rows
in the TPC are reconstructed successfully. The small inefficiency is due to track
overlaps and cracks. The Monte Carlo simulation has been found to reproduce
the track efficiency to better than 1043 by studying dilepton events from the data
themselves. The efficiency of associating a vertex detector hit to an isolated track

is about 94 % per layer, within the geometrical acceptance.

Systematic effects in the tracking parameters come from electric and magnetic
field inhomogeneities, uncertainties in the small angle between the axes of the
electric and magnetic fields, and from the systematic errors in the drift velocity.
The distortions induced by these effects can be corrected and affect mainly the

track parameters related with the position of the tracks.

A transverse momentum resolution of
o(1/pr) = 0.6 x 105° (GeV/c)*! (4.1)

is measured (for 45 GeV muons). At low momentum, multiple scattering dominates

and adds a constant term of 0.005 to o(pr)/pr.

4.2 Energy and position reconstruction with the
calorimeters

To reconstruct the calorimetric energy, the hit storeys are combined to find topo-
logic clusters (a cluster being a group of spatially connected storeys, having at least
one corner in common). In the ECAL, the triggered storeys are scanned and the
first cluster is created if the energy of the storey is larger than a certain amount
(thigh = 90MeV). Then the neighbouring storeys are scanned and they are added
if their energy is larger than ¢;,,, = 30 MeV. In a similar fashion, in the HCAL, the

tower information is also reconstructed in the form of clusters.

To associate clusters with charged tracks, the track is extrapolated step-by-step
to the ECAL region. At each step, the ECAL geometry package is used to determine
which storeys are intercepted by the track. Then the clustering algorithm is used to
determine if the storey, or its neighbours, are hit and to which cluster they belong.
A track and a cluster are associated if one point of this track is in one storey of the

cluster or in a storey which has at least one corner in common with the cluster.
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The position of the showers is calculated by an energy-weighted mean of the
position of the individual storeys or towers in the cluster. This is corrected for the
usual ‘S-shape’ distortions present in all the granular detectors that tend to bias
the reconstructed position towards the center of the cell that has the maximum

signal.

The information from the calorimeters is used in the particle identification al-
gorithms giving good electron and muon identification efficiencies and photon and

7m0 reconstructions.

4.3 Energy flow determination

The energy flow algorithm [35] is used in the event-shape algorithm for flavour

tagging in hadronic events. A description of the algorithm is given in this section.

The simplest way to determine the energy flow of an event recorded in the
ALEPH detector is to make the sum of the raw energy found in all calorimetric
cells without performing any particle identification. This method yields a resolution
of op/FE =1.2/1/E/GeV for hadronic decays of the Z. The energy flow algorithm
developed in ALEPH improves this resolution by making use of track momenta

and taking advantage of the photon, electron and muon identification capabilities.

A first cleaning procedure is done to eliminate poorly reconstructed tracks, V%’s
not compatible to originate from the nominal collision point, and noisy channels

and fake energy deposits in the calorimeter towers.

After the cleaning, the charged particle tracks are extrapolated to the calorime-
ters, and groups of topologically connected tracks and clusters (called ‘calorimeter
objects’) are formed. Each calorimeter object is then processed using the following

steps.

1. All the charged particle tracks coming from the nominal interaction point
or belonging to a reconstructed V9 are counted as charged energy assuming

they are pions.

2. The charged particle tracks identified as electrons, are removed from the
calorimeter object, together with the energy contained in the associated elec-

tromagnetic calorimeter towers. If the difference between this calorimeter
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energy and the track momentum is larger than three times the expected re-
solution, this difference is assumed to come from a bremsstrahlung photon,

and is counted as neutral electromagnetic energy.

3. The charged particle tracks identified as muons, are removed from the calori-
meter object, together with a maximum of 1 GeV from the closest associated
electromagnetic calorimeter cluster (if any) and a maximum of 400 MeV per
plane fired around the extrapolation of the muon track from the correspon-

ding hadron calorimeter cluster.

4. The photons and 7%’s are counted as neutral electromagnetic energy and are

removed from the calorimeter object.

5. At this stage, the only particles left in the calorimeter object should be
charged and neutral hadrons. The charged hadron energy has already been
determined in the first step, but the neutral hadron energy has not been
accounted for. Although possible in principle via a specific pattern recog-
nition, a direct identification of neutral hadrons is difficult and has not yet
been attempted for the energy-flow reconstruction. Here, a neutral hadron is
identified as a significant excess of calorimetric energy: in a given calorime-
ter object, the remaining energy left in the calorimeters is summed, after
first scaling that from the electromagnetic calorimeter by the ratio of the
calorimeter’s response to electrons and pions. If this sum exceeds the energy
of any remaining charged particle tracks, and the excess is both larger than
the expected resolution on that energy when measured in the calorimeters,
and greater than 500 MeV, then it is counted as neutral hadronic energy. The
ratio of the electromagnetic calorimeter’s response to electrons and pions has
been determined to be ~ 1.3 with test-beam data. However, in order to
account for the fact that low energy photons often escape identification in
the preceding step of this analysis, the ratio is modulated according to the
penetration of the particle and is taken as 1.0, 1.3 and 1.6 in the first, second

and third segments in depth of the calorimeter, respectively.

This is repeated for all the calorimeter objects of the event and results in a set of
‘energy-flow objects’ (electrons, muons, photons, charged or neutral hadrons), also

called particles, characterized by their energies and momenta. To this list are added
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Figure 4.2: Distribution of the total energy for well-contained hadronic events for the 1992 data
(points) and Monte Carlo (shaded histogram)

all the clusters found in the luminosity monitors, where no particle identification
is available. This list is expected to be a close representation of the reality, i.e. of
the stable particles actually produced by the collision. Since the neutrinos escape
undetected, they cannot be in the list but they should be detected indirectly by

the presence of missing energy in the event.

The energy-flow resolution can be determined from the data using a sample
of selected hadronic events. Figure 4.2 shows the distribution of the total energy
for well-contained hadronic events A Gaussian fit to the total energy distribution
gives a peak value of 90.5 GeV (62 % from charged particles, 25 % from photons
and 13 % from neutral hadrons), with a resolution of 6.2 GeV. It is well reproduced
by a sample of 700,000 fully simulated hadronic events in which a peak value of
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90.7 GeV and a resolution of 6.5 GeV are obtained. The jet angular resolution is
18 mrad for the polar angle and 19 mrad for the azimuthal angle.

4.4 Flavour tagging algorithms

Two flavour tagging algorithms developed in ALEPH have been used in this analy-
sis. The impact parameter tag makes use of the relatively long lifetime of hadrons
containing a b quark to distinguish between heavy quark events and light quark
ones. The event shape tag makes use of two global properties of the event to make

the same classification.

4.4.1 Impact parameter tag

The long lifetime and large mass of b hadrons give their decay products large
impact parameters, allowing a separation of these hadrons from hadrons coming
from fragmentation or decay of a light quark. This tagging algorithm computes the
probability that a track comes from the primary vertex using the measurement of
its impact parameter. The probabilities of coming from the primary vertex of all
the tracks from a given jet, hemisphere or event can be combined to finally have
the probability that the given object (jet, hemisphere or event) comes from a b
quark.

The main tool in the analysis is, then, the impact parameter of a track. The
measurement of this quantity needs, however, a precise estimation of the etet
interaction vertex for each event which needs also the estimation of the overlap
region of the electron and positron beams (beam spot) where it lies on. The

description of each of these measurements follows.

Beam spot measurement. The position of the beam spot is determined by
studying the distance of closest approach of tracks to the coordinate origin in the
r¢ plane, dy. This quantity is signed according to the sign of the angular momentum
component of the track along the beam axis, and in the absence of track distortions,
should have a distribution centered on zero. If the beam spot is not centered on

the coordinate origin, the mean value of dy has a sinusoidal dependence on the
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Figure 4.3: Impact parameter with respect to the coordinate origin and with respect to the
beam spot centroid. The track is approximated to a straight line in this region.

azimuthal angle ¢. This dependence can be seen looking at the relation
dy = dy — xpsin @ + yp cos ¢ — dog, (4.2)

which can be deduced from figure 4.3, where, since the distances dy, dy, z; and y,
are small, the track has been approximated to a straight line. dj is the distance
of closest approach of tracks to the beam spot, x, and y;, are the coordinates of
the beam position and d.g is an additional offset that takes into account residual

tracking effects (alignment errors, field parametrization, etc.).

The mean of d, for each ¢ is zero. Thus, the fit to the dependence of < dy >
as function of the angle ¢ gives the coordinates of the luminous region as well as

the value of d.g.

Since there are variations in the crossing beam coordinates even inside the
same fill, this measurement is done every ~ 100 events. For the optics of the
LEP machine, the beam spot is expected to be elliptical in shape in the plane
perpendicular to the beam direction, with the horizontal width much greater than
the vertical one due to synchrotron radiation effects. The predicted dimensions are

o =200 pm and oy = 12 um, respectively (table 3.1).
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Event crossing point measurement. For each event, the measurement of the
three coordinates of the collision point is needed. To perform this, the event is
clustered in jets using the E clustering scheme with the energy flow objects. In

this scheme, the variable )

vij = 7(}%;35]) (4.3)
is computed for each pair of objects. The four-momenta of the pairs of objects
with lower y;; are added and the computation of the y;; is performed again over
the new set of objects. This procedure is repeated until all the y;; are higher than
a given value, y.,;. The remaining objects are the clustered jets. Here, the y.,; was

chosen to be 0.02.

After the clustering is performed, all tracks satisfying minimal quality cuts are
assigned to the nearest jet and then projected onto the plane perpendicular to the
axis of its corresponding jet. The primary vertex in the plane perpendicular to
each jet is then found. Knowing the direction of each jet, the projected primary
vertices are expanded back in three dimensions. A y? fit is performed to combine
all the vertices and the beam spot information in the + — y plane in order to get
the event crossing point. This procedure ensures that hadron lifetimes do not bias

the position of the primary vertex.

Track impact parameter measurement. The impact parameter of a track is
defined as the closest approach of the track to the production point of the mother
particle of the track. The method to measure this parameter is described in figu-
re 4.4. The point V is the primary vertex. J is the direction of the mother particle
momentum, as approximated by the jet direction. The circular arc represents a
track, assumed here to be a decay product. Point S, is the point on the track where
it comes closest to the line going through V with direction .J. The point S, is used
as an approximation to the decay point of the track. The track is linearized at gt,

and the signed impact parameter is defined as

D =D sign ((S;=V)-J). (4.4)

being a positive number with value D if the vector S_Y; — V lies in the same direction

as the jet direction j, negative otherwise.

The experimental resolution generates a random sign for tracks which originate
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Figure 4.4: Definition of the signed impact parameter. See text for details.

from the primary vertex. The tracks with negative D form a control sample that

can be used to measure the resolution.

In the tagging algorithm, the statistical significance of the impact parameter of
the tracks, defined as D/UD, is used. The uncertainty in D, op, is computed from
the error matrices of the track and primary vertex, plus their correlations. Since
the error of the track is highly dependent on its angle, the number of VDET hits
and the planes of the VDET that it traverses, using the normalized D/O‘D allows to
treat all the tracks nearly uniformly for all the angles and number of VDET hits.

The probability that a track comes from the primary vertex is then defined as

J_|D/CTD|

Pr(D/op) :/ dr R(z), (4.5)

loo

being R(D/op) the resolution function, the parametrization of the distribution of

the impact parameter significance for tracks with negative value of D.

The same argument can be extended to a group of tracks forming a jet, a
hemisphere or an event. The variable to compute, Py, is the probability that any
set of N tracks without lifetime produce the same set of observed probabilities

or any other set of values equally or more unlikely. Being Pr, the individual track
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probabilities, the differential probability for the observed set of variables to happen
is given by
N
P=1]] Pr. (4.6)
=1
Considering that all the individual track probabilities belong to a N-dimensional
space, Py can be computed as
N
i1 ;=P
Py = /Hl_ dridzy...dzy
(

0,0,...,0)

(1,1,...,1)
= 11— /vazlxizp dridzy...dzy
1

1 1 1
_ / / / deydes . . dey, (47
P JPlon IP/enwn_1) P/, ) ree N (47)

where the z; represent the probability of each track. Finally, Py is given by [45]

N11 -1 J
py—p.y E0P) (4.8)
=0 J

and represents the likelihood for the group of tracks of coming from the primary

vertex.

4.4.2 Event shape tag

Events produced by the fragmentation of a b quark are expected to have different
shape that the ones coming from light quarks or ¢ quarks. In general, jets produced
by a b fragmentation and decay are expected to have a larger opening angle due
to the higher mass of the b hadron and the fact that they can decay to a charmed
hadron that would decay afterwards to lighter hadrons, thereby randomizing the

directions of the final particles. This can be used to classify different quark flavours.

Considering all the energy flow objects computed according to the algorithm
explained in section 4.3, the thrust axis of the whole event, defined as the vector

—

T which maximizes the thrust value

P (1.9)
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where p; is the momentum of the ith particle, is computed. The event is divided
in two hemispheres according to the plane perpendicular to thrust axis and an-
other thrust axis is computed for each hemisphere. In order to avoid correlations
among hemispheres, only particles forming an angle below 45° with the thrust axis
corresponding to the hemisphere they belong to are considered. The selected par-
ticles are boosted into the rest frame of each hemisphere before computing the two

variables used: the moment of inertia and the lateral mass [46].

The moment of inertia is defined as the minimum eigenvalue normalized to the

sum of the three eigenvalues of the inertial matrix which is computed according to

no_ .1 ]
Ni= Y fmpm, i#] (4.10)
m=1 pm|
and . L
" () + (P -
m=1 m

where p¢ is the 1th component of the boosted momentum vector of the mth particle.
The total momentum in the centre-of-mass frame of the b jets tends to be more
uniformly distributed than the ones for lighter quark jets. Thus, b jets look more
spherical and the three eigenvalues of the inertial matrix tend to be equal. In this

case the moment of inertia tends to its maximum value of 1/3.

The lateral mass is intended to distinguish between products of gluon brem-
strahlung and decay products in the final state based on the direction relative to
the boost of the jet. It is defined as the sum of the boosted momenta of those
particles in the hemisphere that make an angle with the hemisphere axis larger
than cos™'(0.75). The distribution of lateral mass for hemispheres produced from

a b quark is peaked at higher values than for the other flavours.

Figure 4.5 shows the distribution for the moment of inertia and the lateral mass
for different quark flavours. Using Monte Carlo, the likelihood that an hemisphere
with a given moment of inertia and lateral mass comes from a Z — bb event, [, is

computed and this is the estimator used in the tag.

4.5 The event simulation

The different physics analyses use Monte Carlo simulated events to evaluate back-

ground contaminations, compute acceptances and efficiencies and, in general, com-
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Figure 4.5: Distributions of quantities used in the event shape tag. (a) moment of inertia, (b)
lateral mass, for different Monte Carlo events. the solid lines correspond to b events, the dotted
lines to ¢, and the dashed ones to uds. (All curves are normalized to have the same area).

pare theoretical models to the experimental results. The chain to produce simulated

events is as follows:

— Generation of the event kinematics. The particle four-momenta are generated
according to the different physics processes (in parentheses the names of the

computer programs used):

L

KORALZ [47)).

— etel = 7t (KORALZ).

— etel 5 etel (BABAMC [48]).

— etet 5 ¢g  (JETSET [49] + DYMU [50]).
etel — (H(H(0+ () (PHOPHO [51], [52]).

— etelt = utp
L

(
(

In ALEPH, all these programs have been unified through the common inter-
face KINGAL [53].

— Simulation of the detector. This is done using a GEANT [54] based program
(GALEPH [55]) where all the information about the geometry and materials
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involved in the experimental setup are described. For the tracking simu-
lation, the primary long-lived particles are followed through the detector.
Secondary particles are also produced by interaction with the detector ma-
terial. Bremsstrahlung, Compton scattering and ionization are some of the
processes simulated. GEANT and GHEISHA [56] are used to simulate the
electromagnetic and nuclear interactions respectively. The energy depositions
are converted to measurable electrical signals. The complexity of the TPC
required the development of a special package (TPCSIM) for its tracking and

digitization.

— Reconstruction. The same reconstruction program (JULIA [32]) used for
the real data is used in the simulated events. Thus, the output of all the

simulation processes has the same format as the real data.

4.5.1 Hadronic Monte Carlo models

The measurement of the different scaled energy distributions that will be presented
in chapter 5 needs the use of all the event generators presented above. The ones
that produce the dilepton events are only used for background studies and have
a small impact in the measurement. The main detector efficiency correction and
the correction for initial state radiation is made using the simulation of hadronic

events.

The hadronic Monte Carlo simulation is done in four steps (figure 4.6). In the
first one, the initial particles (electron and positron) produce an intermediate boson
(v or Z) that will decay into a qq pair. Initial and final state radiation is inclu-
ded in some models at this stage. Once the quark-antiquark pair is produced, the
probabilities of quark and gluon emission obey perturbative QCD. The description
of this stage constitutes the second step. This procedure continues until the mo-
mentum transfer to the following emission becomes small enough, typically 1 GeV,
to be confronted with the limitations of perturbative QCD. Then the third step,
hadronization, takes place: partons fragment and hadrons are formed. Being this
process a non-perturbative phenomenon, some models have to be assumed. Final-
ly, the produced hadrons are forced to decay according to the measured branching

ratios to form the detected particles.
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Figure 4.6: Schematic representation of a parton shower and hadronization. The four steps
that lead to the formation of the final detected particles from the production of a quark-antiquark
pair are presented.

Parton shower The perturbative phase can be computed with different ap-
proaches. In some models, as in the JETSET ME [57], calculations are made
using the exact fixed second order QCD matrix element. However, these models
can only generate 2, 3 or 4 partons in the final step. The non-perturbative phase
has to fill the gap between this number of final partons and a higher multiplicity of
hadrons, typically around 40 charged and neutral particles at LEP energies. Thus,
these are not well suited for the description of the data at LEP energies. Instead,

the parton shower picture is used.

The parton shower picture is based on an iterative use of the basic branchings,
ie. q = qg9, g — g9, ¢ — qq. The momentum sharing between the daughter
partons is determined by the Altarelli-Parisi splitting kernels (eqs. (B.19) to (B.22)
in appendix B). These splitting kernels obey Altarelli-Parisi type equations. Thus
the probability for a branching to take place at a given value of the evolution

parameter, ¢ = In(Q?,,,/A?), is computed.
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Figure 4.7: Representation of the string and cluster fragmentation.

The transverse momentum of the partons can be introduced assigning it inde-
pendently in each subsequent branching, according to a gaussian distribution. This
is called the incoherent parton shower approach. However, most of the models in-
corporate interference effects between subsequent splitting processes in the parton
cascade. The usual way of doing this is by decreasing the emission angles of the
subsequent partons in the shower. This is called the angular ordering effect and

models that incorporate this feature are called coherent.

String fragmentation Different phenomenological models are used to describe
the non-perturbative conversion of partons into hadrons. This process is called
hadronization or fragmentation. The string model of fragmentation (figure 4.7)
works in the following way. A string is stretched between a quark and an antiquark
and a gluon is modeled as a kink on the string. As the quark and antiquark move
apart, the potential energy stored in the string increases, and the string may break
up by producing a new ¢'q’ pair, so that the system splits into two colour singlet

systems qq’ and ¢'q. If the invariant mass of either of these string pieces is large
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enough, they may further break.

In the Lund string model [58], the string breakup process is assumed to proceed
until only on-mass-shell hadrons remain, each hadron corresponding to a small
piece of string. The fraction of energy of the string taken by the hadron is mo-
deled according to parametrized fragmentation functions. Usually, the symmetric

fragmentation function
1 _ a
72y = L2 ep(bmt ) (4.12)
where m? is the transverse mass of the hadron and with two free parameters, a and

b, is used for the fragmentation of light quarks, while the Peterson fragmentation

function [59]
1 1 c 12

fe) =2l <-

z z 1—=z

(4.13)

with a free parameter, ¢, i1s used for the fragmentation of heavy quarks.

Cluster fragmentation Another hadronization model takes the final partons
to form clusters. Before forming them, the gluons are forced to split into quark-
antiquark pairs. Then, colour-neutral pairs of quarks that are close in phase space
form massive clusters that decay isotropically into the observable hadrons (fig-
ure 4.7). The cluster fragmentation scheme is attractive as no explicit assump-
tions about fragmentation functions and the generation of transverse momenta are

needed.

Monte Carlo models used in the analysis The ideas described so far for
the perturbative phase of the parton shower formation and the fragmentation are
combined in different ways in the models used in the analysis. A brief description

of each follows:

JETSET PS [60] It is based in the parton shower picture and the string hadro-
nization model. It includes angular ordering and matching of the first gluons
emission to the exact O(a;) matrix element. This ensures that a hard radia-

tion process in the initial phase of the parton shower is properly described.

NLLJET [61] In this model, the leading order splitting kernels are replaced by the

2
5

next-to-leading ones. Thus, it contains O(«?) corrections to the 2 — 2 split-
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ting functions and includes also 2 — 3 splitting processes. The hadronization

is controlled by the string fragmentation scheme.

HERWIG [62] The parton shower includes interjet interference and gluon pola-

rization effects. The hadronization phase is done following the cluster model.

ARIADNE [63] This model implements an alternative way to formulate the par-
ton showering process as colour-dipole radiation which includes matching to
the O(a;) matrix element, angular ordering and some azimuthal correlations
between jets automatically. The initial quark-antiquark is considered as a
colour-dipole that radiates a gluon according to the leading-order QCD ma-
trix element. This gluon splits the initial dipole into two secondary ones.
[terating this process gives rise to the parton shower. The partons are then

fragmented into hadrons according to the string fragmentation model.

HVFL This is no more than the JETSET PS model interfaced with DYMU to
produce the initial quark-antiquark pair. This includes a better description of
initial and final state radiation and, partially, the interference terms between
them. Being the standard ALEPH Monte Carlo model, it also contains a
fine tuning of the heavy flavour decay branching ratios to better describe the
data.
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Chapter 5

Data analysis

This chapter describes the data used in the analysis. It is important to have as much
information as possible for different quark-flavour samples. Thus, light uds-, c-
and b-flavour enriched scaled energy distributions are measured besides the scaled
energy distribution for all flavours that gives the information for the evolution of the
fragmentation functions. The procedures for the selection of events, correction for
detector effects and estimation of the systematic errors are explained in sections 5.1,
5.2 and 5.3. The estimation of the correlation errors among all the distributions is
explained in section 5.6. Useful information on the gluon fragmentation function is
obtained in the analysis of three jet events and the measurement of the longitudinal
and transverse scaled energy distributions. These measurements are described in
sections 5.4 and 5.5, respectively. Finally, the scaled energy distributions measured
at lower energies by other experiments than ALEPH, and the assumptions made

in their normalization errors are described in section 5.7.

5.1 Selection of hadronic events

Before any flavour identification is attempted, a good selection of hadronic events
has to be made. Since the interest is in the scaled energy distribution and the
available statistics of around 20 tracks per event is rather high, the interest of
the global selection is in avoid possible biases that would result in high correction

factors rather than in optimizing the selection efficiency.

For each event, only charged tracks with more than 4 TPC hits, originated in a

cylinder of radius dy = 2 cm and length of zy = 10 cm around the interaction point,
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forming an angle with the z axis, 8, between 20° and 160°, and with a transverse
momentum, p;, with respect to the z axis exceeding 0.2 GeV /¢ are considered in the
analysis. Tracks passing these requirements are called good tracks. An hadronic
event should have more than four of these good tracks and the sum of their energy,

assuming they have the pion mass, must be above 15 GeV.

The sphericity axis, defined as the eigenvector corresponding to the minimum

eigenvalue of the tensor

> pip:
>0

is computed in the events passing the above selection cuts. Only those events in

Sab

(5.1)

which the polar angle of the sphericity axis, 0, lies between 35° and 145° are
accepted. Since the opening angle of a jet is roughly 15°, this cut avoids larger
correction factors removing those events that would not be fully contained in the

detector acceptance.

A total of 911539 events from 1992 and 1993 LEP run periods with a centre-
of-mass energy around 91.2 GeV fulfil the requirements to be considered hadronic
events, the selection efficiency being 77%. The background was estimated from
Monte Carlo, being the main contribution the one coming from tau pairs (0.3%),
the ones from Bhabha and dimuon events being negligible. No Monte Carlo two

photon event passed the selection cuts.

5.2 Scaled energy inclusive distribution

For each event, the variable x5 = Fy [ Fyeqm (called 2 in the following), is computed
for each charged good track, with E;. being the energy of the track assuming the

pion mass.

The raw data distribution is normalized to the total number of events such that,

for each bin

1 NP

O raw =
7 Nevents sz

(5.2)

where N!” is the number of tracks such that its variable z lies within the bin

interval, and Ax; is the width for bin .
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At each value of x, the bin width was chosen to be four times the momentum
resolution of the tracks in order to avoid a large migration of tracks to the neigh-
bouring bins. Since the momentum resolution increases with energy, the bin width
is different for different values of the variable x. In the low momentum region,
the general rule of four times the momentum resolution for the bin width would
result in too main bins. For this reason, below x ~ 0.4 wider bins were used in the

histograms.

The raw distribution is corrected, using Monte Carlo methods, for effects of
geometrical acceptance, detector efficiency and resolution, decays of long-lived
particles (with 7 > 1ns), secondary interactions and initial state photon radia-
tion. Thus, the scaled energy distribution is defined as the distribution for charged
tracks obtained if all particles with a mean lifetime 7 < 1 ns decay while the others

are stable.

To perform the correction, hadronic events were generated using the generator
HVFL (section 4.5.1). Initial state radiation is included in the simulation. The
generated events were passed through the detector simulation and reconstruction
program as explained in section 4.5. The same procedure was performed for 7,
Bhabhas, dimuon and two photon events using KORALZ, BHABHA and PHOPHO
as generators. The same selection and analysis procedure was performed for the
simulated data, and distributions o; 4, containing the hadronic events and all the

background sources, were constructed.

Hadronic events were also generated using the HVFL generator with neither
initial state radiation nor detector simulation and with the requirement that all
particles with mean lifetimes > 101%s are stable. All charged particles were used
to construct the o; 4, distribution were, in the computation of x, the true mass of

the particle is used.

Corrected data distributions were obtained using the bin-by-bin ratio of the

generated and simulated distributions according to

O%.gen
0% corr = Cz * Ofraw = : 0% raw - (53)
O3,sim

The distributions were corrected separately for the 1992 and 1993 data ta-
king periods to take into account the proper detector configuration for each year.

Afterwards, both corrected distributions were combined.
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Figure 5.1: All-flavour uncorrected distribution and comparison with reconstructed Monte
Carlo. The background from 7’s, dimuon and Bhabha events is included in the Monte Carlo.
Only statistical errors are considered which turn out to be too small to be seen in the plot.

Although this correction procedure can induce a small bias towards the model,
the fact that the simulated and raw data agree, as seen in figure 5.1, and that the
correction factors are relatively small indicate that this bias is not large. Figu-
re 5.2(a) shows the correction factors, C;, applied to the distribution of all flavours.
They are around 1.07 or below in almost the whole interval, except the bins at
larger momentum. This is due to the TPC momentum smearing. The resolution
in the TPC is nearly gaussian in the inverse of the momentum. The resolution

function can be written as

1 1/pmeas_1/p rue :
R(pmeasaptrue) - 2 P [_ ( \/50— / t ’ (54)
meas 1/ptrue

where preas 18 the measured momentum and pye 18 the true momentum of the

charged track. The resolution distribution has a long tail at large momentum.

Thus, large momentum bins tend to be more populated from low momentum tracks.
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‘ Standard cut ‘ Variation 1 ‘ Variation 2 ‘
Nrtpc > 4 Nrtpc 23 Ntpc 25
do < 2.0cm do < 1.5cm do < 3.0cm
zo0 < 5.0cm z0 < 3.0cm zo < 10.0cm
20° < Oprack < 160° | 30° < Opacrc < 150° | 15° < e < 165°
pe 2> 200 MeV pr 2> 150 MeV pr 2> 400 MeV
Neood = 5 Neood = 4 Neood 2> 7
EOh Z 15 GeV EOh Z 10 GeV ECh Z 25 GeV
35° < Ogpher < 145° | 45° < Ogpher < 135° | 65° < Ogpher < 155°

Table 5.1: Definition of the cuts for the standard analysis and the variation made for the
systematic errors estimation. Each cut was varied at once taking, alternatively, the values in
the two columns labelled as Variation 1 and Variation 2, and the analysis was repeated for each
combination. The rest of the cuts remain at their standard values.

This effect is amplified by the fact that the scaled energy distribution falls off rather
steeply with x, and therefore, for a given z, contamination from lower energy bins
is much more likely than from higher energy bins. This effect makes the correction

factor in the last bins to be even below (.8.

Two types of systematic uncertainties were taken into account. The first one
is due to possible discrepancies between the real and the simulated detector per-
formance. The second one comes from the fact that the QCD generator chosen to
calculate the correction factors might not fully reproduce the data, and then the

corrected data could result biased to the model used in the QCD generator.

To estimate the uncertainties of the first kind, all the selection cuts were var-
ied, once at a time, taking alternatively the values listed in table 5.1, and the same
correction and combination procedure was used to produce analogous corrected
distributions for each set of cuts. In each bin, the maximum change with respect
to the corrected distribution with the standard set of cuts was taken as the sys-
tematic error. Figure 5.3 shows these differences in number of statistical standard
deviations of the reference distribution. The maximum variation comes from the
change in the cuts in the angle of the sphericity axis and from accepting events with
four good tracks. The large difference at large = seen when accepting events with
four good tracks could be due to the background of two-photon events that was
not subtracted in this procedure, since it was found to be negligible when requiring

five good tracks in the nominal analysis. Most of the differences are below one



5.2 Scaled energy inclusive distribution 69

12

@

{
|
|
.
;

Cor.Fact.

0.8

0.6
103

1/0t0t do/dx

10

10

10

-3
10

Mod - Data (in N sig)
5

T \\HHW

Aleph data
HVFL
JETSET PS
ARIADNE
NLLJET

~—~
KX
| L1l

CT

,,,,,,

T T 1T ‘ T \«\:4/\_"‘5:#‘\-\“4\.

o

01 0.2

0.3

04

05

0.6

0.7

0.8

0.9

=

X

Figure 5.2: Correction factors applied to the all-flavour inclusive energy distribution(a), cor-
rected distribution compared with predictions from Monte Carlo models (b), and deviation of
the models from the corrected data measured in number of standard deviations, where the error
includes statistical and systematical sources (c).
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Figure 5.3: Differences between the distribution constructed with the standard selection cuts
and the ones varying one of the cuts at a time. This difference 1s shown in number of statistical
standard deviations of the reference distribution.

statistical standard deviation showing the robustness of the selection criteria. The
analysis of these variations shows no significant correlation among different bins in

the x distribution.

To estimate the systematic uncertainties coming from the QCD generator cho-
sen, a simplified method which does not use the full detector simulation was applied.
Five million events were generated using the ARTADNE, NLLJET and JETSET
PS generators (section 4.5.1). HERWIG was not used in this procedure because the
available version, 5.6, simulates a much softer scaled energy distribution than the
data. Thus, including it would give rise to an artificial increase in the systematic

uncertainties.

Simplified correction factors were computed for each model using the ratio of
the generated distribution and the distribution containing tracks and events that

fulfil the same selection criteria that for the standard data. Figure 5.4 shows these
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Figure 5.4: Simplified correction factors for the all-flavour energy distributions constructed
with three different Monte Carlo models: JETSET PS, ARIADNE and NLLJET.

simplified correction factors for the three Monte Carlo models used to compute this
systematic error source. The fact that no TPC smearing resolution and efficiency
is taken into account in this simulation makes these simplified correction factors
to be closer to one than the ones coming from the full simulated distributions.
Nevertheless, it is expected that if all the detector effects would be included, the
differences between the models would remain the same and that the maximum
relative difference between the simplified correction factors is a good estimation of

the systematic error coming from this QCD generator dependence.

The statistical error and the systematics coming from the limited statistics
of the Monte Carlo used to perform the correction procedure, the selection cut
variation and the QCD model dependence were added in quadrature to compute
the total bin-by-bin error of the distribution. A common normalization error of
1%, which is correlated, not only in all the bins, but also in all the distributions

is also added in quadrature to the total error. The estimation of this source of
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error is explained in section 5.6.1. Table C.1 in appendix C lists the cross-section
and all the error contributions for all the bins. The systematic error dominates
everywhere. The normalization error dominates over the bin-to-bin error below
x = 0.5. From the three contributions to the bin-to-bin systematic error, the one
coming from the differences in the Monte Carlo models dominates below x = 0.1
but above this point, this source of systematic error tends to be equal or smaller
than the one coming from the selection cut variation. The systematic error coming
from the finite Monte Carlo statistic is comparable to the cut variation systematic

in the whole particle energy interval.

Figure 5.2(b) shows the corrected scaled energy distribution for the normal
flavour composition. The continuous lines show the prediction of several Monte
Carlo models. The differences between the corrected data and the different models
can be seen in more detail in figure 5.2(c) where the quantity
(Model — Data)/Errorgata, being Errorqat, the total statistical and systematic error
of the distribution (included the normalization error), is plotted for the different
models. While the HVFL Monte Carlo, which is the one used in the correction pro-
cedure, differs by less than three standard deviations in the whole energy range,
the rest of models disagree up to eight standard deviations, especially in the high
x region. The reason for this should be assigned to better parameter tuning of
the HVFL Monte Carlo, especially in the heavy flavour hadron decay branching

fractions.

5.3 Flavour enriched distributions

Since the distributions for the light quarks (u,d,s) are expected to be almost indis-
tinguishable, three different enriched flavour distributions were prepared: for light,
c and b quarks. This section describes the measurement of these enriched flavour

distributions using the two tagging algorithms described in section 4.4.

To prepare the enriched flavour distributions, the same selection cuts as des-
cribed in section 5.1 were first applied. The selected events were then divided in
two hemispheres separated by the plane perpendicular to the thrust axis. The two
flavour tags described in sections 4.4.1 and 4.4.2 were applied to the two hemi-
spheres of the event giving the estimators Py and [, respectively, for each hemi-

sphere.
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The impact parameter tag algorithm is more efficient for events with large
charged multiplicity. Thus, in order to reduce the bias introduced by this tagging
algorithm, the algorithm is applied only to the tracks of one hemisphere. If that
hemisphere passes the selection cut, the other one is used to measure the charged
particle spectrum, weighting each track with a factor of two. The cross sections
are normalized to the number of accepted hemispheres. Finally, since the two
hemispheres are almost independent, the procedure is repeated with the tag applied
to the second hemisphere. The same procedure is used when applying the event

shape tag.

The procedure described above makes the assumption that the correlation of the
tag between hemispheres is small. It can be shown that, for the lifetime tag [45], this
correlation is smaller than one per cent for the cut in Py used in this analysis. In the
case of the event shape tags, these correlations are already small by construction,
since only particles forming and angle below 45° with the jet axis are used in the
variables. Residual correlations between the hemispheres are taken into account in

the correction procedure.

A sample enriched with bottom-quark events is obtained requiring Py < 0.001,
which results in a b-identification efficiency of about 32.5%. The flavour compo-
sition of the tagged sample is 90.5% of bottom quarks, 7.3% of charm quarks and
2.2% of light quarks, according to the Monte Carlo. It has been checked [64] that

the Monte Carlo efficiencies and purities agree well with those in the data.

Using the same technique, a light-quark enriched sample has been prepared. In
this case, the hemisphere probability to come from the interaction point is required
to be Pg > 0.1. The light-quark efficiency is about 74%, and the tagged sample
consists of 78.9% light-quark events, 14.5% charm events and 6.6% bottom events.

A sample enriched in c-quark events is obtained requiring 0.001 < Py < 0.07.
In order to increase the purity, the global hemisphere-shape variables described in
section 4.4.2 were also used. The value of the likelihood, [y, was required to be
below 0.2. The final sample consists of 35.1% charm events, 26.7% bottom events
and 38.2% light-quark events. The efficiency for c-quark tagging is about 9%.

The correction procedure described in section 5.2 was applied. The systematic
errors were estimated with the method described there. Systematic effects coming

from the possible defects in the simulation of the flavour tag will be taken into
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account in the a; measurement (section 6.7.1).

The corrections were made using distributions generated with the same flavour
composition as the ones resulting applying the different tag algorithms to the Monte
Carlo sample after detector simulation. Figures 5.5, 5.6, 5.7(a) show the correc-
tion factors applied in the enriched flavour distributions for b, ¢ and light quarks,
respectively. While below x ~ 0.6, they are comparable to the ones shown in figu-
re 5.2(a) corresponding to the all-flavours distribution, differences arise above this
limit, especially for the b-enriched distribution (figure 5.5(a)), where the correction
factors for some bins have values around 0.5. This effect can be explained again by
the TPC momentum smearing described in section 5.2. The more steeply falling
distribution for the b-enriched sample accentuates the effect, while the harder mo-
mentum distribution of the light quarks gives correction factors very similar to the

ones for the all flavour distribution.

Figures 5.5, 5.6, 5.7(b) and (c) show the corrected distributions and their com-
parison with the different Monte Carlo models. The larger discrepancies that arise
in the b-enriched flavour distribution should be attributed to a lack of branching
ratio tuning in the ARTADNE, JETSET and NLLJET Monte Carlos, as it was
pointed out in section 5.2. The good agreement seen for the c-enriched flavour
distribution (fig. 5.6(c)) should be attributed to its larger errors rather than to a

better agreement with the Monte Carlo models.

Figure 5.8 plots the measured ALEPH distributions. One clearly sees the dif-
ference between light and heavy flavour enriched samples. The errors include
all bin-to-bin errors (statistical and systematic) added in quadrature as well as
an overall 1% normalization error. Systematic errors dominate everywhere. The
agreement with the HVFL Monte Carlo prediction is reasonable for all distributions

and x regions.

Tables C.2,C.3,C.4, in appendix C list the cross section and all the error contri-
butions for all the bins for the flavour enriched distributions. For the uds-enriched
distribution, the dominant bin-to-bin error is of systematic origin. This is not the
case for the c¢- and b-enriched distributions where statistical and systematic bin-
to-bin errors become comparable. As in the case of the non flavour scaled energy
distribution, the normalization error dominates over the bin-to-bin systematic er-

ror for the low x region (¢ < 0.3) for all the flavour tagged distributions. Among
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Figure 5.5: Correction factors applied to the b-enriched scaled energy distribution(a), corrected
distribution compared with predictions from Monte Carlo models (b), and deviation of the models
from the corrected data measured in number of standard deviations (including statistical and
systematic error) (c).
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Figure 5.8: Measured scaled energy distributions corrected for detector effects (symbols) and
comparison with the predictions from HVFL. The distributions are normalized to the total number
of events. Error bars include statistical and systematics uncertainties. The same binning is used
for all distributions.

the sources of bin-to-bin systematic errors, the dominant one is the cut variation,
although for the c- and b-enriched distributions, the one coming from the limited

statistics of the Monte Carlo used to perform the correction is of similar magnitude.

5.4 Gluon distribution from three-jet events

The analysis of scaling violations needs not only information of the fragmentation
function for different flavours but also the shape of the gluon fragmentation function

that enters in the evolution equations described in section 2.3.
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The gluon fragmentation function can be extracted directly from the data using
three jet symmetric events [65]. These events are characterized by two of the jets
having essentially the same energy and the angular separation between any of the

two lower energetic jet and the highest energetic jet being in the range 150° 4= 7.5°.

The most energetic jet has a high probability of originating from a quark or an
antiquark. To identify the gluon jet from the two lower energy jets a b anti-tagging
method is used. If one of the two jets contains long-lived particles, it is associated

with a heavy quark jet. The remaining jet is then tagged as the gluon jet.

Two samples of jets are prepared. In the symmetric (5) sample no gluon jet
tagging is applied and contains the two lower energetic jets from all the events. This
untagged mixture contains Pgs = 48.5% of gluons and 51.5% of quarks as computed
by Monte Carlo. In the tagged (T') sample, only those jets not tagged as coming
from a b quark are considered. The gluon purity in this sample is PQT = 90.0%.

Any observable, A, can be measured in both samples. The measurement for
gluons and quarks, A, and A, can be extracted from the following relations for

the 5 and T samples
AS=PP A+ (1= P0)- Aq (5.5)

AT =Pl A 54,4 (1= P)) - Aq- 64, (5.6)

where 0 A, is a measurement of the bias coming from the fact that the tagged
sample is largely enriched in jets coming from b quarks. This bias has to be

estimated from Monte Carlo and is given by

MO T
A ’

6 Ay(q) = Ai(fg,sa (5.7)
g

(@)

where A;\{qC)’T and Aé\{qc)’s are the Monte Carlo measurements for correctly identified
gluons (quarks) jets in the tagged and symmetric configurations. Further details of

the procedure to estimate the purities and the corrections can be found in ref. [65].

The inclusive charged particle momentum distribution of the gluon jet, scaled
to its energy, is extracted using the technique described above. It is presented in
figure 5.9 and in table C.5 in appendix C. The mean energy of the gluon jets is
24 GeV.
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Figure 5.9: Gluon scaled energy distribution measured in three jet symmetric events [65]. The
average energy of the gluon jet is 24 GeV.

5.5 Transverse and longitudinal distributions

The longitudinal and transverse cross sections defined in eq. (2.27) are known to
be useful for the extraction of the gluon fragmentation function through eq. (2.69).
They can be extracted from the data, either by fitting the angular dependence
for each x interval [66], or by weighting the double-differential cross section with
respect to @ and cos @ with the appropriate weight to project onto the (1 + cos® 6)

component (transverse) or the sin?# component (longitudinal):

dotT +v d*o

= dcos O Wi, r(cosf,v) p— (5.8)
with [20]
Wi (cos,v) = {vz (5 + 3v2) — 5cos?h (3 + UQ)} /4v5 (5.9)
and
Wr(cosb,v) = [5 cos” (3 — v2) —v? (5 — 31}2)} /20" (5.10)

being the longitudinal and transverse projectors, respectively, and v defining the
detector acceptance, which is considered to be constant in the range |cosf| < v =

0.94.
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The event and track selection are the same as described in section 5.1 except
that the requirement on the sphericity axis is removed for the measurement of the
longitudinal and transverse distributions, because it would introduce an effective
strong cos# dependence in the track selection efficiency. Due to larger statistical
errors in the measurement of the longitudinal distribution, the binning was changed

with respect to the other measured distributions.

The selected tracks are then used to construct the inclusive transverse and

longitudinal distributions according to

1 do™T 1
c (N > Wir(cos 0,@)) :

Otot dl’ vents yracks

v 2
dcos O &o

Otot  Lu dx dcos 8

(5.11)

where the integral represents the cross section in a certain x bin integrated over

the angular acceptance. The weights from eqs. (5.9) and (5.10) give the fraction

of this total integral that is in the longitudinal and transverse part, respectively.

Equation (5.11) can be simplified taking into account eq. (2.27), which allows to
write the integral as

1w d*c 1 do3 v dol/dx

dcos 6 = —— v+ —
Ctot /L dx dcos ) oo dx 4 3 do/dx

(v — v, (5.12)

which only depends on the acceptance cut and the ratio of the longitudinal and

total scaled energy distributions for the corresponding bin.

Equation (5.12) depends on the histogram bin since the ratio of the longitudinal
and total cross section depends on it. However the ratio of the distributions changes
by only 1.5% across the range in @ measured. Therefore, it was assumed that this
dependence would be taken into account in the correction factors and eq. (5.11)

was approximated by

1 do™T 1 1 do
- 0,v))  —— 1
Otot dx (Nevents tlgc%s WL’T(COS 7v)) Otot dx N(U) (5 3)
with , "y
- 3 v a T 3
N(U):4[U+3+<da/dx>(v_v)]' (5.14)

which, for v = 0.94 is N'(v) ~ 0.915 with small variations with the value of <d§UL/dix>.
This value is not known before the measurement is made. So, it is taken as an
approximation from the Monte Carlo and, after a first measurement is performed,

it is recomputed and the measurement is made again with the new value.



82 Data analysis

-'_: 1.2 7.\‘1.\ T ‘ T 1 1 ‘ 1 11 1T 17T 1 T 1 T 1 1 T T T 1 T 1 11 T T T 1 ‘ T 1 1 \7
8 L .‘ﬂc.,ﬂ++ﬂ’—‘**07 (a) |
LL - —_——-——— .
= 1 =
O | _
O i i
08 |- ]
06 [ -
37\ L1 ‘ 11 ‘ 11 ‘ | ‘ 11 ‘ L ‘ L1 1 ‘ 11 ‘ L1 1 ‘ [ \7

x 10 E T ‘ T ‘ T ‘ T ‘ T T ‘ LI ‘ I ‘ T ‘ I ‘ T E
: o
U ]

]

o 102} —
- & E
1F E

_17 ]
10} e Aleph data -
HVFL

of JETSET PS -

10 E

F ARIADNE g

[ e NLLJET \

_3 L1 ‘ I ‘ I ‘ I ‘ I ‘ L1 ‘ I ‘ I ‘ I ‘ I

a lo [ T T T ‘ T ‘ T ‘ T T ‘ T T ‘ T ‘ T ‘ T T ‘ T ‘ T T
B B © -
Z O 3 LEITImeal .
Na’’ e fe ST i _ ]
R A — ]
T B R ]
O -5 -
8 _10 :\ Ll ‘ | ‘ | ‘ L1 ‘ | ‘ | ‘ |- ‘ || ‘ |- ‘ L1 \:
= 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
X

Figure 5.10: Correction factors applied to the transverse scaled energy distribution(a), corrected
distribution and comparison with different Monte Carlo models (b), and deviation of the models
from the corrected data measured in number of standard deviations, where the error includes
statistical and systematical sources (c).
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The correction procedure is performed bin by bin in the way described in sec-
tion 5.2. Figures 5.10 and 5.11 show the correction factors and the comparison with
different Monte Carlo models for the transverse and longitudinal scaled energy dis-
tribution, respectively. The only significant discrepancy is between ARIADNE
and the corrected longitudinal distribution. While the correction factors for the
transverse scaled energy distribution (fig. 5.10(a)) are rather similar to the corres-
ponding ones for the total distributions (fig. 5.2(a)), the ones for the longitudinal

distribution (fig. 5.11(a)) deserve more explanation.

Figure 5.12(a) shows the track selection efficiency for tracks inside the accep-
tance of v = 0.94. The hypothesis that this efficiency is constant over all the
angles is not true and this causes these correction factors, especially for the lon-
gitudinal distribution, to be large. To confirm this hypothesis, studies with a toy
Monte Carlo, parametrizing the angular track selection efficiency to the sum of
a cubic polynomial and a hyperbolic tangent as a function of # were done. This
parametrization is displayed by a continuous line in figure 5.12(a). The correction
factors obtained with this toy Monte Carlo follow the qualitative behaviour of the
ones shown in figure 5.11(a). Thus, correcting the angular distribution before pro-

jecting the double differential cross section of x and cos# into the longitudinal and
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Figure 5.12: Reconstruction efficiency of charged tracks as a function of cos @ according to the
Monte Carlo simulation (a), and ratio of the angular distributions between Monte Carlo simulated
data and real data (b).
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transverse distributions would avoid the large correction factors of the longitudinal
cross section. However, the result would be the same that including this effect in

the bin to bin corrections.

Figure 5.12(b) shows the ratio of the angular distributions from real and simu-
lated data. The differences are below 1% in almost the whole angular range, except
for [cos @[> 0.9. Since HVFL is expected to simulate the underlying angular distri-
bution correctly, the differences are assigned to deficiencies of the simulation of the
track efficiency at low angles. To take this into account, the analysis was repeated
with v = 0.9 as acceptance cut. The differences between the longitudinal and trans-
verse distributions obtained and the nominal distributions were taken into account
in the systematic error which, otherwise, was computed following the same proce-
dure explained in section 5.2. The extra systematic error is found to be essentially
equivalent to assuming a 10% relative uncertainty in the track inefficiency at low

angles.

The cross sections and the detailed error contributions for the transverse and
longitudinal scaled energy distributions are given in tables C.6 and C.7 in appendix
C. The bin-to-bin systematic errors dominate over the statistical error, especially
in the longitudinal distribution, where the main contribution comes from the dif-
ferences in the Monte Carlo models due to the disagreement between ARIADNE
and the real data. The 1% normalization error is the dominant uncertainty for the

transverse distribution.

5.6 Correlations between distributions

Apart from the statistical and systematic errors coming from the selection cuts or
from the Monte Carlo model used in the detector correction, there exist correlated
errors between the bins of all the measured distributions. One affects all the bins
of all the measured distributions and it comes from systematic uncertainties in the
normalization of the distributions. The other comes from the fact that some tracks

enter in more than one distribution.
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5.6.1 Normalization errors

The scaled energy distributions are normalized such that the integral of them is the
mean number of charged tracks per event. Thus, any uncertainty in the charged
multiplicity would affect all the bins of all the distributions. A study of the charged
multiplicity of hadronic events has already been performed by ALEPH in ref. [67].
The error in the total charged multiplicity is about 1% and is mainly coming
from the uncertainty in the multiplicity of tracks with transverse momentum be-
low 0.2GeV/c and from the uncertainty in the number of tracks from photon

conversions accepted.

The uncertainty of the second kind is taken as correlated for all the bins of all
the distributions. Conservatively, when the fit is performed, a 1% error has been
added in quadrature to all the elements of the covariance matrix formed from all
the distributions.

5.6.2 Correlations due to common tracks

Since all the tracks that enter in one bin of one of the tagged distributions enter
also in the analogous bin of the distribution corresponding to all flavours, there is
a statistical correlation between these bins. The cuts used for the flavour enriched
distributions have been chosen to be exclusive and the binning is the same in all the
distributions. This makes these correlations not to be present between analogous

bins of different tagged distributions.

Supposing the number of tracks entering bin ¢ in the inclusive distribution is

tot

°t and that the number of tracks in a given flavour tagged distribution for the

n
.. & . & . .
same bin is n;*®, being n;*® < n!* the correlation between the two bins of the

distributions is given by

ta ta
g n g

n,; ;
tot,tag % — ki
poios T | (5.15)
ni z ngot nl’
Therefore,
tag
O_thtvtag _ n; Upot,stato_pag,stat (516)

3 3 3
ngot
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‘ Experiment ‘ Normalization error
Tasso (22 GeV) 2.3%
TPC/2y (29 GeV) 3.2%

Mark IT (29 GeV) 1.5%
Tasso (35 GeV) 1.0%
Cello (35 GeV) 2.9%
Tasso (44 GeV) 1.5%
Amy (55 GeV) 0.4%
Delphi (91.2 GeV) 3.0%
Aleph (91.2 GeV) 1.0%

Table 5.2: Normalization errors used in the inclusive distributions for all the experiments used
in the analysis. The errors on TPC/2y, DELPHI and ALEPH are from the published papers.
The rest are estimated as explained in the text.

was added in quadrature to the corresponding element of the covariance matrix
formed with all the distributions when the data is used in the scaling violation fit

that will be described in section 6.6.

5.7 Low energy data

The analysis of scaling violations needs the inclusive distributions for more than
one energy to perform the evolution and have sensitivity to the strong coupling
constant. Thus, in addition to the ALEPH data, inclusive charged particle spectra
from TASSO [68] at /s = 22, 35 and 45 GeV, MARK II [69] and TPC/2y [70]
at /s = 29 GeV, CELLO [71] at /s = 35 GeV, AMY [72] at /s = 55 GeV
and DELPHI [73] at /s = 91.2 GeV have been used. Lower-energy data have
been discarded because of the larger size of power-law corrections. In all those
measurements, r was defined as * = 2p//s. The difference with the ALEPH
definition, x = 2F/./s, leads to negligible power-law corrections in the range 0.1 <
x < 0.8, used for the fit in section 6.6.

Special treatment of the errors was done in the cases where normalization er-
rors were not specified. In some cases, statistical and systematic errors were not
separated. The principle to estimate the normalization error was to take the mi-

nimum percentual systematic error as normalization error. To perform this, first
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the statistical errors were computed from the published number of events used in
the measurement. This error was subtracted in quadrature from all the bins to
compute the systematic error. The minimum percentage of computed systematic
error was taken as percentual normalization error for all the bins. Table 5.2 shows

the normalization errors for all the experiments used in the analysis.
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Chapter 6

Scaling violations analysis and
results

In section 2.5 a description on how to extract the information on «; from the study

of scaling violations in eTel was presented.

However, some practical problems still arise before the measurement can be
performed. Perturbative QCD does not predict the form of the fragmentation
functions or the functional form of the power-law corrections. The assumptions
made in these two aspects of the analysis are described in sections 6.3 and 6.4,
respectively. The arguments to choose the parametrization scale are presented

in 6.5.

But, before a fit to the data can give a reliable result for the strong coupling
constant, still some more practical problems have to be solved. The coupled system
of integro-differential evolution equations and the relations between the fragmen-
tation functions and the cross sections are not at all trivially solvable equations.
The methods to handle these numerical problems are described in sections 6.1 and

6.2.

Finally, the measurement, the systematic uncertainties and the checks done of

the result are presented in sections 6.6, 6.7 and 6.8.
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6.1 Evaluation of the convolution integrals

The equations relating the fragmentation functions to the measured cross-sections
(section 2.2.1) and the evolution equations themselves (section 2.3) contain multiple

convolution integrals of the type
1
/ d= P(2)Q(x/2). (6.1)

As the functions P and () are rather complicated expressions of their argument,
a fast algorithm to perform those integrals, which avoids a lot of slow numerical
integrations, has to operate on tabulated function values. Thus, a uniform coverage
in « and z, based on n subdivisions of the interval [0,1] would require to tabulate
P(2) on n, and Q(x/z) on n* grid points, which already for a moderately small

coordinate spacing results in huge memory requirements.

This can be avoided going to another set of variables [74]. Since the evolution
of the fragmentation functions at a fractional momentum =y only depends on the
values of the fragmentation and splitting functions at x > x¢, the analysis can be
restricted also to a finite region in In z. It is therefore possible to substitute  and

z by t =In(z) and v = In(z). In these variables eq. (6.1) becomes

/; dz P(2)Q(x/2) = /uo dt P(1)Q(u — 1) (6.2)

with

IS(t) =e'P (et) and @(u —1)=0Q (e“ﬂ) : (6.3)
Choosing an equidistant grid in the new variables allows to evaluate the convolution
integrals based on the same number of tabulated points for both P and (. Indexing

the grid points from 1 to n, the convolution integral (6.2) can be approximated by

the sum

/: dz P(2)Q(2)2) ~ A - iké Qs (6.4)

where k is the index of the first P; such that ¢ > u and A is the grid spacing in
the transformed variables. The original convolution integral has been turned into

a scalar product between two partial arrays of tabulated function values.

An algorithmically simple way to do the convolution integrals is only one as-

pect. In addition high numerical accuracy is required. The simple unweighted
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sum (6.4) evaluates the convolution integral with a residual error O(A). This can
be improved to O(A*) with only minimal additional computing costs by using the
alternative extended Simpson’s rule [75], where it is improved by adding a cor-
rection term which only depends on the function values at the first and last four
evaluation points. The alternative extended Simpson’s rule requires at least N = 8
knots where the integrand is evaluated. The cases N < 8 have to be dealt with
individually.

A collection of integration rules for arbitrary N > 1 is given below. Information

about how they are derived can be found in [75]. Let

/ab de f(z) =1 (6.5)

be the integral to be evaluated. Estimates for [ shall be based on N evaluations
yr = f(xx), K =1,..., N, of the integrand on an equidistant grid with grid spacing
A. If both endpoints are included, #y = a, A = (b—a)/(N — 1) and ay =b. A

complete set of closed quadrature formulas Iy is given by:

A

I, = 5(91 + 2) (6.6)
A

I5 = g(% + 4ya + y3) (6.7)
3

Iy = gA(% + 3y2 + 3ys + ya) (6.8)
A

Iy = g(% + 4ys + 2ys + 4ys + ys) (6.9)
A
A

I; = g(% + 4ys + 2y3 + 4ys + 2ys + 4ys + y7) (6.11)

i A
Iy = AZyk — 4—(31y1 — 11lys + dys
k=1 8
— Ys — Ynis +Oynvio — Uynvi +3lyn) N =8, (6.12)

For functions which are difficult to evaluate at + = b, a modified set of open
quadrature formulas /3 can be derived. Here the information from the given grid
points is extrapolated into the region between zy and b. With z; = a, A =
(b —a)/N and xy = b — A, the following expressions, which are of the same

accuracy as the closed formulas given above are obtained:
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A
A

[;_ = I35+ E(23y3 — 16y, + 5y1) (615)
A

[]-{_r = In+ ﬂ(55yN —59yn11 4+ 3Tynie — Yynis) N >4 (6.16)

where A = (b—a)/N is to be used everywhere.

6.2 Methods to solve the evolution equations

Looking at the non trivial structure of the evolution eqgs. (2.46), it can be deduced
that is almost unavoidable to use some numerical method to solve them. The stan-
dard method used in the analysis is the Runge-Kutta method. However, in some
cases, a different approach can be useful. The moment analysis, apart from being
an elegant method, allows to solve the equations analytically, at least, restricted
to first order in ;. This is no longer true when O(a?) corrections are introduced.
Therefore, this method is only used in the study of Monte Carlo models to try to

have an insight in the parametrization of the non-perturbative terms.

6.2.1 Runge-Kutta method

The general problem of solving a system of ordinary differential equations of any
order can be reduced to solve a coupled system of N first-order ordinary differential
equations like

dyi(z) _ . dij(x
dzx _fz(x7y1""’yN)7 Z_17"'7N — dzx

~—

—

— flmip. (647)

Knowing the solution at a point x,, a solution can be found at the point z,4; =
z, + h with

Gowr = o+ b+ e flen)) + O(R?) (6.13)
However, the method above is unstable and not accurate enough. Instead, the
fourth-order Runge-Kutta method [75], which is more robust and precise, can be

used. For each step in the solution, the following sequence of evaluations must be
made for each of the f;:

kl = hf(xnvyn)
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b = Bt gt D)
b = hf(eat gt )
ks = hf(x,+ by, + ks)
Ynt1 = yn—l'ﬁ—l'@—l'k_—l_k_—l_o(}ﬁ) (619)

6 3 3 6

where f stands for any of the f;. It is easy to transport the method described in
eqs. (6.19) to the evolution eqs. (2.46), where the right-hand f; of (6.19) are the
convolution integrals, h is the evolution variable, In s, and the y; are each of the
values of the pretabulated fragmentation functions. The value of /1 was chosen to be
the difference between logarithms of the centre-of-mass energy of two consecutive

distributions.

6.2.2 Moments method

An alternative method to solve the evolution equations is to convert them in
simple differential equations. The evolution equations for the singlet (2.50) and

non-singlet (2.49) parts, contain convolution integrals that, forgetting the energy

/: dz P(2) A (g) . (6.20)

Taking into account that = and z take values between 0 and 1, this can be written

dependence, are of the form

in the form X X
| dy [ dzo - 2) P2y Aly) (6.21)

where the lower limit in the integral over the z variable can be moved from x to 0
because the § function ensures that the integrand is zero over the added interval
between 0 and x. Multiplying eq. (6.21) by a power of & and integrating over the

whole interval, gives
1 1

/ dr z" / dy/ dzzd(x—yz) / dy y" (y)/ dz 2"t P(2). (6.22)
0 0

This property can be used to simplify the integro-differential evolution equa-
tions in such a way that they become simple differential equations when they are

expressed in form of the moments of the fragmentation functions. The formalism
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is described in detail in [76]. Here it is described at leading order, since this for-
malism is only used in the leading order study of the scaling violations with the
different Monte Carlos with the purpose to have an insight of the parametrization

of the non-perturbative power-law corrections (section 6.4).
The moments of the cross-sections are defined in the following way:

1 do
My = [ dee S 6.23
o T Uz ( )
Then, taking into account that the singlet and non-singlet parts of the fragmen-
tation functions have been defined weighted with = according to eq. (2.48), the
n-order moment for the singlet, non-singlet and energy-weighted gluon fragmenta-

tion function has to be defined as
A, = /01 dra"A(z,s) A=N,S, G (6.24)
Up to leading order, the running coupling constant is given by
as(s) = — (6.25)

where by is given in (2.26) and ¢ is defined as

s
being A the leading order effective QCD scale. Equation (6.25) is just the approxi-
mation up to first order of the running coupling constant described in section 2.1.3.
With these definitions, and the property of eq. (6.22), it is easy to show that the

evolution equations simplify to

ti Sy, _ ajQadq Sy
dt \ G, adGaGa G,
d

with the coefficients a?, given by

bohy, = —t 4 ! )5 ! (6.28)
ol = T (n+2)(n+3) et '
1 1

2 a0t
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P S 2y (6.29)
(n+3)(n+4) ZJj| 3 '
n?+5n +8
boal., = 6.30
04GQ (n+ )(n+2)(n+3) (6.30)
2 4 5n 4+ 8
bty = 27— TN (6.31)

(n+2)(n+3)(n+4)
where X, Z, and by are defined in eqs. (2.12) and (2.26). The solution of the

non-singlet part is rather trivial and gives

In(s/A?) )“5@ | (6.32)

)= o) (7

The solution for the coupled system needs a little bit more algebra and can be

(3)-on ()" som()” o

where Ao are the eigenvalues of the coefficient matrix in eq. (6.27) and €5 the

expressed as

corresponding eigenvectors. The parameters ; 3 are determined through the initial

conditions for ¢t = ¢y at the initial centre-of-mass energy ,/sq.

6.3 Parametrization of the fragmentation func-
tions

The scheme presented in figure 2.2 assumes that the fragmentation functions are
specified at one particular energy scale. With enough amount of data, it would be
possible to perform a moment analysis, in a similar way as the one described in
section 6.2.2, where this parametrization would not be necessary. But, the coarse
binning of the data due to statistical limitations does not allow to fix the initial
conditions truly unambiguously. Some assumptions about the shape of the frag-
mentation functions must be done, the least restrictive ones being the requirements
of positiveness and smoothness. The most convenient approach is to use a phe-
nomenological parametrization, where the shape is described by a small number of

free parameters.

Perturbative QCD, in the framework of the Modified Leading-Log Approxima-
tion (MLLA) [77], supplemented by the Local Parton-Hadron Duality (LPHD) hy-

pothesis [78], predicts that the momentum spectrum of final state particles should
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exhibit an approximately gaussian peak in Ina [79]. From this, it can be inferred

a functional form for the scaled energy distributions like

do
dln z

~ exp (—c(d —In :1;)2) & do L exp (—cln2 :1;) i (6.34)

dx x

Combined with the expectation that the momentum spectrum falls off with some

power of 1 — & for @ — 1 [11, 17], finally yields the ansatz
D(z) = N(1 — z)*2"* exp (—cln2 :1;) , (6.35)

where NV, a normalization constant, and «a, b and ¢ are free parameters which have
to be determined from the data. With the possible exception of ¢, the parameters
are expected to be different for light quarks, ¢ quarks, b quarks and gluons. The
parameter ¢ is in principle predicted by the MLLA and, in leading order, should
also be flavour independent. In total, thirteen parameters are used to describe the
fragmentation functions at one energy: the ¢ parameter, which is taken equal for
all flavours and the gluon, and the N, a; and b; for the light, ¢, and b quarks and
the gluon.

In order to avoid correlations between the normalization and the rest of para-

meters, the final parametrization function chosen for the analysis is given by
(1 —z)%xb exp (—cln2 :1;)

0.8
/ dr (1 —2)% 2% exp (—cln2 :1;)
0

.1

xD;(x,80) = N;

: (6.36)

where i stands for uds, ¢, b, and ¢ (gluons), and the dependence on sy comes from

the implicit dependence of the parameters (N;, a;, b; and ¢) on this variable.

6.4 Parametrization of the non-perturbative terms

Another still undefined part of the analysis is the introduction of the non-perturba-
tive contributions to the evolution. In sections 2.4 some sources of power-law
corrections were presented. There are corrections that go as 1/4/s and others
that go as 1/s. Although it is expected that the dominant one is coming from
hadronization corrections (section 2.4.4), which go as 1/4/s, the actual form of the

non-perturbative contributions to the evolution is not known.
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Given sufficient data, it would also be possible to determine them from the data
without strong external assumptions. Such an approach was followed in the analy-
sis of the SLAC/BCDMS deep-inelastic scattering data [80]. There, the power-law
corrections were known to behave like 1/Q?, with the available data covering the
range 0.5 GeV? < Q? < 260 GeV2. In the study of scaling violations in fragmenta-
tion functions, the power-law corrections are expected to behave like 1/4/s, while
a typical analysis covers data in the range from 22GeV < /s < 91 GeV. Thus
the dynamical range to separate power-law corrections from the logarithmic scaling
violations due to perturbative QCD is 125 times larger in deep-inelastic scattering
experiments than it is in etel-annihilation. This severely restricts the number of
parameters describing non-perturbative effects that can be determined from the

data to essentially only a single number.

A simple effective way of parametrizing the non-perturbative effects is by doing
a change of variables and relate the perturbative variable x to the measured quan-
tity @ through = = ¢g(x.). Imposing the condition of energy conservation before
and after the transformation fixes the relation between the perturbative prediction

o(x) and the observable cross section oyp(z.):

do B do B , do B donp
[ dza’ = [dg(ra(e) T = [ degleg (20T = [ eS0T (637)

From this, it can be deduced that

donp g(z)g'(z.) do

dz. Te dz’

(6.38)

The simplest ansatz for ¢ is given by a rescaling of the type x = x.(1 +
hi/+/s) [20]. However, it was found that some other parametrizations could work

better. A general ansatz for the non-perturbative effects is given by

r=g(2e) = e+ (ho + hy e + hoa? +...) [(ﬁ)““ - (@)“ﬂ] . (6.39)

Using only the parameter hy means that the perturbative prediction and the obser-
vable cross-sections are related by a shift of the spectra, using only & corresponds
to a rescaling of . The energy-dependence of this transformation is given by the
term in square brackets. This term is built such that the non-perturbative correc-
tions are zero at the scale /sy where the fragmentation functions are parametrized,
which takes into account the fact that the fragmentation functions themselves al-

ready parametrize all non-perturbative effects at a given scale. Perturbative QCD
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then predicts logarithmic scaling violations in the evolution of those fragmentation
functions, and the above ansatz takes care of the power law corrections that come

on top.

There are sources of power-law corrections in which £ = 1 and another ones in
which & = 2. Since the number of parameters allowed by the currently available
experimental data is only one, some guidance about the appropriate choice has to be
taken from Monte Carlo simulations of etel annihilation processes into hadrons.
In addition to a discrimination between using ho and hy (shift versus rescaling)

those models also allow to infer the power k to be used in eq. (6.39).

For this purpose a leading-order moment analysis as described in section 6.2.2
was performed on data generated with the JETSET, ARIADNE and HERWIG
Monte Carlo models. Here even the higher moments of the fragmentation functions
can be reliably determined, something which unfortunately is in practice impos-
sible for the comparatively coarse-binned published experimental x-distributions.
Moments can be viewed as a convenient means to describe the shape of the frag-
mentation functions without having to resort to an explicit parametrization. Low
order moments probe mainly the low x part of the distribution, higher order mo-
ments progressively test large = region. The next sections describe this analysis
and the parametrization of the non-perturbative terms used in the analysis of the

real data.

6.4.1 Non-perturbative terms in the moments analysis

The missing ingredient to perform the moments analysis is the inclusion of the
non-perturbative effects. This is easy for the two simple parametrizations discussed

above. Defining

f@) = P (6.40)

w o= Lt [(v5) - ()] (6.41)
w = ho|(v5)" - ()], (6.42)

the introduction of the rescaling in the moments becomes

1 1
M,(NP) = /0 dz. 2™ fyp(z.) :/0 dz.atz" fa )
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/ dy ai"y" " f(y) = a7 M, (6.43)
where the last step is done because the integral in the interval (0,a;) in y is the
whole phase space as (0, 1) is for the variable z..

In the case of the shift,

Ze + ao ot

M,(NP) = /d:z; "t fap(z /d flze + ao)

€
n

= /aao+1 dyy(y—ao)"fly) = Z ( Z ) (—ao)m'k My, (6.44)

0 k=0
where the last step is done again because the integral in the interval (ag, ao+ 1) in

y is the whole phase space as (0, 1) is for the variable z..

Here M,, are the moments without power-law corrections and M, (NP) the mo-

ments including the non-perturbative effects.

6.4.2 Monte Carlo study

The energy evolution of the moments seen in the Monte Carlo and its compari-
son to the leading-order QCD prediction allow to infer the behaviour of the non-
perturbative corrections [74]. A leading-order analysis is justified since the Monte
Carlo models are based on a leading-log cascade and only partially incorporate

next-to-leading logarithmic effects.

Monte Carlo data containing 1 million events were generated with the natural
flavour mix for centre-of-mass energies of 22, 35, 44, 55 and 91 GeV for the JETSET
PS, ARTADNE and HERWIG models. At 91 GeV, additional samples of 1 million
events with primary ¢ and b quarks were generated. From this, the moments for
light, ¢ and b quark fragmentation functions at an initial scale of 91 GeV were
determined. The gluon fragmentation function, which in leading order does not
contribute to the observable cross section but is needed in the evolution equations,
was assumed to be equal to the ¢ quark fragmentation function. The associated
uncertainty was estimated by alternatively setting it equal to the b quark frag-
mentation function and taking the corresponding change in the evolution of the

moments as a theoretical error.

For the determination of the parameters governing the power-law corrections,

the QCD scale parameter A describing the logarithmic part of the scaling violations
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JETSET 7.3 Agep = 0.319 GeV
Ansatz | y?/ng | Parameter Value h (GeV)
ho 1/ | 154 | —078 + 015 + 0.15
hy 1/y/s| 183 -23 +£ 140 +£ 041
ho 1/s 356 —-15. £ 1.7 £ 28
hi  1/s 411 —45. £ 28. £ 7.8

ARIADNE 4.02  Agep = 0.225 GeV
Ansatz | y?/ng | Parameter Value h (GeV)
ho 1/y/s 46 -0.59 £+ 0.13 £+ 0.13

hy 1/y/s| 56 | —18 + 095 + 0.38
ho 1/s | 132 | —11. £ 17 £ 25
hy 1/s | 152 | —=35. £ 20. + 74

HERWIG 5.6  Agep = 0.152 GeV
Ansatz | y?/ng | Parameter Value h (GeV)
ho 1/y/s 13 -041 £+ 0.12 £+ 0.11

hy 1//5| 15 | =13 £ 059 + 0.36
ho 1/s | 43 | =85 + 23 + 23
hy 1/s | 48 | =25, £ 13. + 7.1

Table 6.1: Monte Carlo studies of non-perturbative corrections. See text for definition of errors.

was fixed to the input value used for the respective model. Different functional
forms for the non-perturbative corrections were tried separately for the leading ten
moments in single-parameter fits of hy and h; assuming the energy dependence to
be 1/4/s or 1/s. The power law corrections were included in such a way that they
vanish at /s = 22 GeV.

The results are summarized in table 6.1 and one example is displayed in figu-
re 6.1. For each ansatz of the non-perturbative terms, the average chisquare per
degree of freedom y2/ng is given together with the value obtained for the non-
perturbative parameter h;. The quoted number is the central value obtained over
the first 10 moments, the first error is half-range of the values obtained, and the
second one the half range found when varying the QCD scale, A, from one half to

twice its nominal value. The statistical errors are completely negligible.

Although x2?/ng is rather large, one has to keep in mind that the Monte Carlo
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Figure 6.1: Energy evolution for the leading moments of the inclusive  distributions as predict-
ed by the HERWIG model. The points are the actual moments, the curves are the results of the
leading order QCD analysis. The dotted lines show the result of a purely perturbative evolution
from 91 GeV to 22 GeV. The full lines are evolutions over the same range. The parameter hg
is optimized separately for each moment. The shaded bands are obtained by varying a global
parameter hg between the extreme values found in the individual fits.

statistics used in this study is roughly a hundred times of what is available in
the data. Consequently even values y?/ng ~ O(100) correspond to a satisfactory
description of the data. As it can be seen from figure 6.1, even despite the bad
x? the qualitative behaviour is well reproduced by the fits. Studying the y? values
given in table 6.1 shows that a power-law behaviour with 1/4/s is clearly preferred
over a 1/s dependence. Concerning the choice of kg versus hy, the x? values are less

conclusive. However, from the spread of the results (first error in the table) it can
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be seen that g is much more stable than ;. This can be traced to the fact that the
fitted value for h; becomes more and more negative for lower order moments, i.e.
when putting more emphasis on the low-x region, suggesting a behaviour hy ~ 1/x

which is equivalent to parametrizing the non-perturbative terms by a shift hq.

In conclusion, the Monte Carlo studies suggest a simple effective parametriza-

tion of the non-perturbative terms of the functional form

T = .+ ho (% — %) (6.45)

with a negative parameter hg, and this is what is going to be used in the fit to the

real data.

6.5 Choice of parametrization scale

With the values of hg obtained from the Monte Carlo study (table 6.1), typical shifts
in x are of the order Az = O(0.01). At high values of &, where the cross section
goes to zero, such a shift is much smaller than the experimental resolution and thus
has only very little impact. At small x it amounts to a non-negligible change of the
cross-section for two reasons: the momentum measurement is much more precise
and the cross section rises rapidly. The fact that a negative iy seems to be preferred
and the functional form (6.45) suggests to use a parametrization scale /sq smaller
or equal to the smallest scale used in a scaling violations analysis, such that the
value x at which the perturbative cross section is evaluated in order to obtain the
cross-section at the experimental value z. is always larger than z.. This assures that
x never is needed at unphysical negative values. Unphysical values = > 1 may occur
but, as explained above, this is much less severe and can easily be tolerated, thus
permitting to have a really simple way of parametrizing non-perturbative effects.
For the fit to be explained in the following section, /so = 22 GeV is chosen.

6.6 Results of the fit

An overall fit of the QCD predictions to all ALEPH and low energy data be-
tween 22 GeV and 91.2 GeV presented in chapter 5 is done. Following the argu-

ments given in section 6.5, the fragmentation functions for the different flavours
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are parametrized at 22 GeV according to eq. (6.36). The non-perturbative effects
are parametrized by (6.45). In total, thirteen parameters are used to describe the
fragmentation functions at one energy, the ¢ parameter introduced in section 6.3,
and the normalizations (N;) and values of a; and b; for the light, ¢ and b quarks
and also for the gluon fragmentation function. The evolution to another energy re-
quires two more parameters: «g, which determines the perturbative evolution, and
ho, which parametrizes the non-perturbative effects in the evolution. Finally, the
first order strong coupling constant, (s, introduced in eq. (2.69) is also required.
Altogether there are sixteen parameters, which are all fit simultaneously to the

available data.

The flavour-tagged distributions serve mainly the purpose of fixing the parame-
ters of the corresponding fragmentation functions. The gluon-tagged sample and
the longitudinal and transverse distributions determine the leading-order coupling
constant, (s, and the parameters of the gluon distribution function. Then, from
the low energy data and the inclusive data at 91 GeV the values of a; and hg are

obtained.

The fit range is chosen as 0.1 < = < 0.8 for all data at all energies. Outside
this range, systematic effects, especially at low /s, start to become important.
However, for the longitudinal cross section (measured only at 91 GeV), the fit

range is taken as 0.04 < x < 0.8 to increase the statistical sensitivity.

The procedure follows the scheme of figure 2.2. First, the parametrization of
the fragmentation functions for the three quark species and the gluon is used to
tabulate the values of the function x#D;(x, s¢) in a grid of equally spaced points in
In 2. The number of points was chosen to be 100 in the interval [In0.04,In 1]. Tests
were done to probe the sensitivity of the fit result to larger number of grid points,
resulting in no change. The coefficient functions and the kernels are also tabulated

in In 2 using the same grid definitions that for the fragmentation functions.

Then, the coefficient functions are used at the parametrization energy to com-
pute the measurable cross sections (horizontal arrows in figure 2.2). The convolu-
tion integrals involved in this procedure are computed as explained in section 6.1.
A covariance matrix is constructed with the errors of the data and the correlation
between the different bins, and the y? is computed from the comparison of the

data and the cross-sections computed from the convolution of the fragmentation
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ary (M) = 0.1258 + 0.0053
ho = —0.14 £ 0.10 GeV
light (uds) quarks ¢ quarks b quarks gluons

N 0.372 £ 0.005 0.359 + 0.006 | 0.295 4+ 0.008 | 0.395 £ 0.020
a 1.69 £ 0.04 3.09+0.16 3.29 +£0.09 2.6 £0.8

b —1.40 £ 0.06 —1.10£0.09 | —1.69 £ 0.07 | —1.59 £0.29
c 0.252 £ 0.014

oA 0.199 4+ 0.008

Table 6.2: Results of the fit to all data. The errors include statistical and experimental system-
atic uncertainties, except for those related to flavour tagging. See text for definition of parameters.

functions and the coefficient functions.

The tabulated kernels and the fragmentation functions are used to compute
the fragmentation functions at other energies (vertical arrows in figure 2.2). The
solution of the evolution equations (2.46) is obtained using the Runge-Kutta tech-
nique described in section 6.2.1. Again convolution integrals are involved in this
procedure that are solved in the way described in section 6.1. The fragmentation
functions at the new energy are used, together with the coefficient functions, to
compute the cross-sections at the new energy. The inclusion of the parametrized
non-perturbative effects is done following the parametrization (6.45). The compa-
rison with the measured data follows the same procedure that the one done for the

initial parametrization scale.

The evolution of the fragmentation functions, the subsequent calculation of the
predicted cross-section and the comparison of the prediction to the data is done for
all the available distributions at different centre-of-mass energies. A total y? results

from all the procedure which is then minimized changing the sixteen parameters

of the fit.

The results of the fit are shown in table 6.2. There are sizable correlations
amongst most of the parameters, which may be as large as 90% between the parame-
ters of the fragmentation functions. The parameter most strongly correlated with
as(Myz) is the one describing the energy evolution of the non-perturbative terms, hg.

Here the correlation is 36%. The value found for hg is compatible with zero, which
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Figure 6.2: Ratio of inclusive cross sections at /s = 91.2 GeV and /s = 22 GeV compared to
the QCD prediction. The full dots contributed in the global fit.

indicates that non-perturbative effects are small, within the parametrization given
by eq. (6.45). The influence of k¢ in the uncertainty of a;; can be seen by fixing it at
its central value. The error on a; decreases to +£0.0049. Thus, its contribution to
the total error can be estimated to be +0.0020. Fixing all the parameters describing
the shape of the fragmentation function and the non-perturbative corrections, the

purely experimental error of as(Mz) would be Aay = 0.0017.

The value found for oy agrees with previous ALEPH determinations [81] and
¢ with the MLLA expectation [79]. Also (3, is consistent with typical values for a
leading-order s measurement. Since 3 is allowed to vary, the information about
the gluon fragmentation function obtained from the longitudinal cross section im-

proves only marginally the direct measurement.

The size of the scaling violations can be seen in Figure 6.2, where the ratio of
the inclusive cross sections measured by ALEPH at /s = 91.2 GeV and TASSO at

Vs = 22GeV is plotted as a function of x. For comparison, also the expectation
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Figure 6.3: Fragmentation functions at (a) 22 GeV and (b) 91.2 GeV obtained from the fit.
It can be observed the generally harder spectra of the functions at lower energy. The gluon
fragmentation function becomes closer to the b fragmentation function as the energy increases.

for the case all the distributions would have the same flavour composition as at
91.2 GeV is given. The size of the scaling violations can also be seen by comparing

directly the fragmentation functions obtained at the two energies (figure 6.3).

Figure 6.4 shows that the overall agreement between data and prediction is
good and that the QCD evolution reproduces the observed scaling violations. All
error bars include both statistical and experimental systematic uncertainties. This
can be seen in better detail in figure 6.5 where the differences between the fitted
and the measured values are plotted in number of standard deviations (statistical
and systematic error of the measured distribution are included). Most of the dis-
tributions start to disagree with the fitted curves below x = 0.1, where the fit is
not performed. This is due to inadequacies in the parametrization of the fragmen-
tation function in this zone. The ALEPH data gives the impression of having a
large contribution to the total y? mainly coming from the low momentum region
(below @ = 0.4). This is not the case because all the data is correlated through
the normalization error (section 5.6.1). When the correlated error is the dominant
one (as it is the case in this momentum region for the ALEPH data), the overall
contribution to the y? is the same as the one coming from only one bin. Thus,

although the differences are almost two standard deviations for all the bins in this
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| Distribution | X /ng |

Tasso (22 GeV) 7.3/13
TPC/27 (29 GeV) 0.5/12
Mark 11 (29 GeV) 36.8/14
Tasso (35 GeV) 44.6/13
Cello (35 GeV) 10.6/22
Tasso (44 GeV) 13.6/13
Amy (55 GeV) 7.8/7

Delphi (91.2 GeV) 32.1/22

Aleph all flavours (91.2 GeV) | 28.9/23
Aleph uds-enriched (91.2 GeV) | 29.7/23
Aleph c-enriched (91.2 GeV) 26.9/23
Aleph b-enriched (91.2 GeV) 66.5/23
Aleph gluons (48 GeV) 2.8/5

Aleph longitudinal (91.2 GeV) | 7.8/16

Table 6.3: Detail of the x?/ngs per experiment in the standard analysis.

region, the contribution to the total y? is only of roughly four units. A change in

the normalization of ~ 2% would make the distribution agree almost perfectly.

The x?* per degree of freedom of the fit is 307.3/213. The contributions from
each distribution are detailed in table 6.3. The contributions from the ALEPH
distributions have to be considered only as approximate since the correlation among

them were not considered when extracting their individual value.

As it can be seen in table 6.3, three distributions contribute substantially to
the overall x*: MARKII (37/14), TASSO at 35GeV (45/13) and the ALEPH b-
enriched sample (66/23). The large \? for the b quark enriched sample is due to
inadequacies of the simple parametrization of the fragmentation function. While
the simple ansatz is good enough to describe the fragmentation of the gluon and
the light quarks including the ¢ quark, it fails to reproduce the detailed structure
of b quark fragmentation and decay over the full # range. Removing the high-z
points above x = 0.6 changes the x?/ng4 to 31/19 while the result of the fit remains
unchanged. The relatively high values of the y* for MARKIT and TASSO (35 GeV)
point to an inconsistency in the experimental data, since there are data from other
experiments at the same energies which are perfectly consistent with the QCD fits.

In order to understand the importance of those problems for the fit, the errors
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of these two distributions are scaled up by the corresponding values of |/x?/ng,
effectively deweighting the results from those experiments. The result of the fit
with the enlarged errors and the ALEPH b-enriched sample restricted to the range
0.1 <2< 0.6is as(Mz) = 0.127 4+ 0.006, fully consistent with the previous one,
with an overall \?/ng = 219/209.

6.7 Systematic errors

The error in as(My) presented in the previous section contains the statistical errors
and most of the systematic errors from the measurement of the scaled energy
distributions. Also the error from the correlations in all the parameters is included
in the fit. The only missing uncertainties come from the assumption made in
the normalization errors for those experiments in which this is not specified, the
dependence of a,(My) on the assumed flavour composition for the flavour-tagged
distributions, and the theoretical errors, which will be estimated by looking at the

factorization and renormalization scale dependence of the result.

6.7.1 Experimental systematic errors

Normalization errors. In the low energy experiments where only the combined
statistical and systematic errors have been published, the nominal result was ob-
tained with the assumption explained in section 5.7 for the normalization errors.
Alternatively, all unspecified errors were taken as bin-to-bin errors giving the result

as(Mz) = 0.1278 £ 0.0058. The corresponding shift of Aay; = 0.002(norm) was

taken as an additional systematic error.

Flavour composition. By varying the confidence-level cuts in the lifetime tags,
the flavour compositions were changed such that the flavour enrichment for uds
and b quarks changed by +4% and for ¢ quarks by —4% and +2% (it was found
to be very difficult to get higher purities). The flavour composition of the different
distributions obtained with these changes are specified in table 6.4 where also the
purities and flavour composition of the distributions used to make the nominal ana-
lysis are shown for comparison. The cuts applied in the two algorithms to construct

each distribution are also shown in the table together with the efficiencies. These
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‘ Dist. Name ‘ % uds ‘ % ¢ ‘ % b ‘ Efficiency ‘ Cut definition
uds-enr. (stand) 78.9 | 14.5 | 6.6 | €ygs = 74.0 P, >0.3
uds-enr. (—) 75.0 | 16.1 | 8.9 | €u4s = 91.0 P, >0.1
uds-enr. (+) 2.8 | 12.5 | 4.7 | €yqs = 37.8 P> 0.7
c-enr. (stand) 38.2 135.11]26.7|¢.=9.0 0.001 < P, <0.07,1, <0.2
c-enr. (—) 41.1 | 31.5 | 274 | ¢, = 15.9 0.0005 < P, <0.12,1;, <0.25
c-ent. (—I—) 35.6 | 36.9 | 275 | €. =6.2 0.001 < P, <0.05,1;, <0.18
b-enr. (stand) 221 731905 | ¢ =325 P, <0.001
Doenr. (=) 35 | 9.7 | 868 | cs = 39.7 P, < 0.003
benr. (1) 0.9 39952 | ¢ =213 P, < 0.0001

Table 6.4: Flavour composition of the different distributions considered in the analysis. For
each distribution, the flavour composition and the efficiency for the flavour to be enriched are
shown. Also the cuts applied to the hemispheres for the lifetime tag (P,) and the event shape
tag ({) are shown.

‘ Changed distribution ‘ X2/ nay ‘ as(Mz) ‘
uds-enr. (—) 303.8/213 | 0.1253 4 0.0056
uds-enr. (+) 309.1/213 | 0.1263 + 0.0054

) 307.1/213 | 0.1218 £ 0.0055
) 308.9/213 | 0.1246 + 0.0055
) 289.2/213 | 0.1259 + 0.0054
) 294.8/213 | 0.1252 4+ 0.0053

c-enr

c-enr

_|_

b-enr

b-enr

-

-
-
-

_|_

Table 6.5: Results of o (My) for different flavour tagged distributions. For each fit, the tagging
cuts of a given distribution are changed, giving the flavour compositions specified in table 6.4. A
fit is performed with this new distribution but leaving the rest untouched.

efficiencies do not include the global ~ 77% of the hadronic selection (section 5.1).
Those labeled with ‘stand’ are the ones that are used in the nominal analysis and
the ones with ‘4’ and ‘=’ are more enriched and less enriched distributions used

in the study of the systematic errors.

The results of the fit changing one of the corresponding enriched flavour distri-

butions at a time are given in table 6.5.

The maximum change was Aa, = 0.004, which was taken as an additional
systematic error due to flavour composition of the tagged data samples. This result

can be confirmed from the extrapolation of the results presented in table 6.6 where
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‘ Changed purity ‘ X2 /g ‘ as(Mz) ‘
uds-enriched — | 308.9/213 | 0.1262 + 0.0054
uds-enriched + | 308.3/213 | 0.1251 + 0.0055
c-enriched — | 308.2/213 | 0.1250 £ 0.0055
c-enriched + | 306.6/213 | 0.1266 + 0.0052
b-enriched — | 308.5/213 | 0.1247 4 0.0054
b-enriched + | 306.4/213 | 0.1269 + 0.0053

Table 6.6: Results of a,(My) for different purities in the tagged distributions. For each fit, the
nominal purity taken from the Monte Carlo was changed by 41%. The fits were done with the
same nominal distributions but with this ‘artificially’ changed purity.

the nominal values of the purities were varied artificially by 1% without changing
the distributions themselves. The shifts in az(Myz) were ~ 0.001. Assuming a
linear variation of the fitted value of as(My) with the variation of the Monte Carlo
estimates for the purities, the estimated systematic error would be equivalent to
an uncertainty of £4% in the purity estimates from the Monte Carlo which seems

conservative [45, 82].

Considering also the fit error, the total experimental error of as(Mz) is

Aas(exp) = +0.005( fit) £ 0.002(norm) + 0.004(purity) = +0.007(exp).

6.7.2 Theoretical errors

A priori, the scales p;, py and pp in figure 2.2 are unconstrained. When cal-
culating to all orders in perturbative QCD, any dependence on the choice of
the scales vanishes. In finite order perturbation theory, a residual scale depen-
dence is related to the sensitivity to uncalculated higher order terms. In order to
avoid large logarithms in the theoretical predictions, the natural choice of scales
is pf/si = pi/sy = ph/p® = 1 and these are the values used for the standard
analysis. Varying the scales allows to estimate the theoretical uncertainties of the

prediction.

The renormalization and factorization scales were parametrized according to
ptr = frpe and p; y = fry/si s, being the nominal value determined by In fr = 0.
The scale values were varied, one at a time, in the range —1 <In fr r <1, giving

the values of a,(Myz) presented in table 6.7.
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‘ Value of the scale ‘ X2 /g ‘ as(My) ‘
In fr =—1 307.3/213 | 0.1242 £ 0.0052
In frp = +1 307.3/213 | 0.1281 £ 0.0056
In fr =-—1 310.8/213 | 0.1196 £ 0.0049
In fr =41 304.7/213 | 0.1310 4 0.0061

Table 6.7: Results of as(My) for different factorization and renormalization scale assumptions.
The theoretical errors are taken from the maximum variation in «s when changing the scale.

The quality of the fit is insensitive to the renormalization scale and does not
change substantially with the changes made in the factorization scale. Taking
the two scale variations as independent sources of theoretical uncertainties, the

theoretical systematic error on o;(Myz) will be given by
Aas(theory) = £0.002(pg) £+ 0.006(ur ), (6.46)
which, combined in quadrature with the experimental error, gives the final result

a,(Mz) = 0.126 £ 0.007(cxp) % 0.006(theory) = 0.126 + 0.009. (6.47)

6.8 Checks

Several additional checks were carried out in the analysis varying some of the

assumed parameters.

6.8.1 Parametrization scale variation

Although there are reasons to choose the parametrization scale at 22 GeV, as ex-
plained in section 6.5, repeating the fit with different parametrization points will
prove, not only that the value of s does not strongly depend on this assumption,
but also that the result is not widely sensitive to the choice of the parametrization
of the fragmentation functions. This last point comes from the fact that, given the
fragmentation functions in the exact form (6.36) at an initial scale y; = /5o, the
evolution to a final scale p1; will transform them to a similar shape which, however,
will be outside the original parameter space. Thus varying the parametrization

scale is a way to probe slightly different families of functions D(x).
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Two different values were tried for the parametrization scale giving the results:

a,(My) = 0.1246 +0.0059  for s = 45.0GeV, (6.48)
a,(My) = 0.1240 + 0.0063  for 5o =91.2GeV, (6.49)

which deviate less than 0.002 from the nominal result. The chisquared values differ

in less than one unit from the one of the standard fit.

6.8.2 Parametrization of the non-perturbative effects

Although the parametrization of the non-perturbative terms is justified in the
Monte Carlo (section 6.4), it is worth to probe the dependence of the result on
it.

The energy dependence of the non-perturbative evolution terms was changed
from 1/4/s to 1/s, as it is known to be in deep-inelastic scattering. The result was
as(Mz) = 0.126540.0052 in perfect agreement with the nominal result. The value
of the y? increased by less than one unit and the value of the non-perturbative
parameter changed to hg = —2.7 & 2.0. Thus, the data themselves cannot confirm
that the energy dependence of the non-perturbative evolution terms is of the form
1/y/s, but the change in as(Mz) is negligible with the 1/s assumption. Anyway,
the 1/4/s assumption is well supported by Monte Carlo studies (section 6.4) and

phenomenological theoretical assumptions (section 2.4).

The rescaling ansatz used in reference [20]

R [1 - (% - %)] (6.50)

was also tried. The fit to all the parameters gave a y? = 314.1/213, and a result
of as(Mz) = 0.108 4+ 0.010 with a correlation of 87% between a; and h;. A value
of hy = —1.03 4+ 0.44 was obtained. This correlation precludes a simultaneous
measurement of both parameters. In reference [20], the value of h; was estimated
from the HERWIG Monte Carlo, giving a value of hy = —0.5. Fixing this parameter
to this value, gave as(My) = 0.118440.0050, which is compatible with the nominal
result although it depends on the assumptions and approximations made in the

HERWIG Monte Carlo.
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‘ Interval ‘ X2 /g ‘ as(My) ‘ ho
0.1-0.5 | 162.4/148 | 0.1215 4+ 0.0071 | —0.077 + 0.108

0.05-0.8 | 702.2/259 | 0.1331 +0.0036 | —0.253 + 0.084

0.15-0.8 | 244.7/180 | 0.1326 + 0.0100 | —0.094 £ 0.169

Table 6.8: Results of the fit to as(My) for different intervals in #. All the parameters are fitted.

‘ Interval ‘ X2 /g ‘ as(Mz) ‘
0.1-0.2 | 51.9/73 | 0.1313 £ 0.0040
0.2-0.3 | 47.8/57 | 0.1234 £ 0.0073
0.3-0.4 | 33.9/54 | 0.1200 £ 0.0078
0.4-0.5 | 50.1/43 | 0.1249 £ 0.0075
0.5-0.6 | 41.1/39 | 0.1255 £ 0.0075
0.6-0.7 | 43.5/37 | 0.1261 £ 0.0075
0.7-0.8 | 52.8/37 | 0.1247 £ 0.0088

Table 6.9: Results of the fit to as(Mz) in different intervals in z. All the parameters except
o (Mgz) are fixed.

6.8.3 Dependence on the fit range

The dependence on the choice of the fit interval was studied by varying the lower
and upper bounds of the fit range around the nominal values of z,;, = 0.1 and
Tmax = 0.8. The results on a5 (shown in table 6.8) are compatible with the nominal
result. The y? of the fit degrades considerably when going to smaller zy;,, indica-
ting that the parametrizations of the fragmentation functions and non-perturbative
terms are not suitable for very small x. Going to larger values of z;, amounts
to giving up much of the available data, and the fit of all 16 parameters becomes

unstable, with correlations of more than 90% between many of the variables.

Finally, the whole parametrization except os(Mz) was fixed to the nominal
result, and the strong coupling constant was fitted, using the same formalism as
before in independent x intervals of size Az = 0.1 between = = 0.1 and = = 0.8.
The different fitted values are shown in table 6.9. All results were found to be
statistically compatible with the nominal one, verifying that scaling violations over

the full x range are described by one single coupling constant.
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Chapter 7

Summary and conclusions

The inclusive distribution (1/0et)(do/dx) for charged particles has been measured
by the ALEPH experiment for hadronic events of all flavours and enriched samples
in light flavours, ¢ quarks and b quarks. In addition, the transverse and longitudinal
distributions were measured and, together with information from identified gluon

jets, used to constrain the gluon fragmentation function.

A global analysis of these measurements and results from other experiments
at lower centre-of-mass energies has been carried out in the framework of next-
to-leading order QCD. Scaling violations in the time-like domain between /s =
22 GeV and /s = 91.2 GeV are observed in agreement with QCD predictions. The
data are found to be consistent with one universal coupling constant describing
the evolution of the fragmentation functions between /s = 22GeV and /s =
91.2GeV. At the same time, the shape of the fragmentation function for gluons,

light flavours, ¢ and b quarks were determined from the data alone.

Although the parameters describing the fragmentation functions obtained are
strongly correlated, the functional forms of the different fragmentation functions

can be used as input to some phenomenological studies.

The size of the power-law corrections, mainly coming from the hadronization
effects, have been also extracted from the data and been found to be rather small.
Thus, the perturbative evolution of the fragmentation function is the main source

of the observed scaling violations.

The strong coupling constant measured here from scaling violations is consistent

with other determinations by ALEPH [81] at one fixed energy based on global
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event shape variables. Expressed at the scale My, the measured value is a,(Myz) =

0.126 £ 0.009.

The result is ~ 1.3 standard deviations higher than the value quoted in [80] from
the fit to EMC/BCDMS data in the range 0.5 — 260 GeV? using the same formalism
to extract the value of the strong coupling constant from scaling violations in the

space-like domain.

The main single contribution to the error on a; comes from the dependence
on the factorization scale chosen. Next-to-next-to-leading order calculations of the
coefficient functions and splitting kernels would decrease this source of error. The
overall error is bigger than for some other determinations of the strong coupling
constant [73, 81] mainly because all non-perturbative effects (in the value of the
fragmentation functions at one energy and in their evolution) have been taken
directly from data, without relying on the quantitative predictions of the Monte
Carlo models.

In the future, with the data of new etel machines at higher energies than
LEPI, it will be possible to extend this analysis and have a better constrain of the
strong coupling constant. In particular, preliminary Monte Carlo studies show that
around 6000 hadronic events can be used to construct the scaled-energy inclusive
distribution at LEPII with 500 pbt!. However, the improvement in the fit error

could be only of the order of 2%. A substantial improvement in the oy measurement

would need even higher energy machines, as the next linear colliders.
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Appendix A

Electroweak cross sections

The computation of the scaled energy inclusive distributions from the fragmen-
tation functions needs the knowledge of the electro-weak relative cross sections
in order to weight the contribution of different flavour species at each particular

energy. This appendix describes the factors that are introduced in formula (2.43).

The flavour weights are defined through

oi(s)
(s) = Al
v (S) 20u(5) + 3ad(5) ( )
where it has been taken into account that there are five active favours in the whole

energy range used in the analysis.

The relative cross sections r;(s) are given by the electroweak theory and can be

written as )
4o

oi(s) = 0" (s) + 017(s) = —— (r!(s) +r{"(5)) (A2)
vez—%—l—Zsi aez—%
= Lodo = 4
vd——%—l—%si ad:—%

Table A.1: Vector and axial couplings for electrons, u- and d-type quarks used in the compu-
tation of the relative electroweak cross sections in eq. (A.2).
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with

S
(MZ — )2 + M2T%

2

r(s) = qi+

2 S

z 9 2 2
Qinevim + (Ue + GS)UZ' 163;{)0;{) (Ag)
() = : 4 ) (et A
r; (S) (M% _ 3)2 + M%FQZ (Ue + ae)(a2)165i)0i) ( . )

where s,, and ¢, denote the sine and cosine of the weak mixing angle, ¢; the charge
of the respective quarks, and the vector and axial couplings for electrons, u quarks

and d quarks are given in table A.1.

Figure A.1 plots the relative electroweak cross sections as a function of the
centre-of-mass energy. The large variation in the different proportions between low

energies and LEP energies can be seen.
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Figure A.1: Relative electroweak cross section as a function of the centre-of-mass energy. The
contributions for a u-type quark (continuous line) and a d-type quark (dashed line) are plotted.
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Appendix B

Coefficient functions and splitting

kernels

This appendix lists a collection of the next-to-leading order formulae necessary

for the evaluation of the cross sections from the fragmentation functions, and the

calculation of their energy evolution.

B.1

Coefflicient functions

This section contains the expressions for the coefficient functions that relate the

effective fragmentation functions with the measurable scaled energy cross sections

through eq. (2.43). According to reference [76] they are given by

Cl(z 05(pr), p/s)
Cl(z 05(pr), p7/s)

CH(z, au(pr), pi/s)

CH(z, au(pr), pi/s)

= (B.1)
alyid) (B.2)
Cl(/lfv){ #

1—=z

2
. [ln(l —Z)—I—Zlnz—lnM—F] -2

S

51— [1+ait) (% - 3)

2 2
7 1+z
—a(M%)lﬂ—F(l_Z)
(+)

S
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where a(u%) is the couplant constant defined in eq. (2.12).

The subscript (+) in eq. (B.4) specifies a regularization procedure for the inte-

gral over the splitting functions, which are singular at z = 1, defined as

[zl Nnst=) = [ d= 1) (o)~ o) (B.5)

which, in the usual case that the lower limit of the integral is not 0 but some

variable z, translates into

[ a1 Ningte) = [ d= =) — o) = o) [ daf) (B6)

The convolution integrals that are to be performed with the coefficient functions
are straightforward, with the exception of the integral over CqT(Z) After expanding

the (4) regularizations one obtains

[ d=CE ) ) DS id) = Dol )1+ alpur) )

1 x
+G(MF)/ dz [DQ(;/«L%)FR - DQ(%/«L?)FS] (B.7)
with

2729 3 5 W 3

Fo= 2= 2= Ch(l—a)+ Wi(l—e) — n 2L [21n(1 - 5] (B.8)
2 2 2

I'rn = §(1 —z)+ Mlnz—l— i In(1 — 2) —I—IHM—F — §L(B.9)

2 —z 1—= s 21—z

2

Py = 2 lln(l _ )+ ’“‘—F] _3 (B.10)

1 —=z s 21—z

B.2 Splitting kernels

This sections gives the expressions of the splitting kernels used in the evolution
equations (2.46). They are given separately for the non-singlet and singlet parts of

the fragmentation functions.
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B.2.1 Evolution of flavour non-singlet fragmentation func-
tions

The formulae for the evolution of the non-singlet parts of the fragmentation func-
tions can be found in reference [83]. From there, the NLO splitting function gover-

ning the evolution of non-singlet fragmentation functions is obtained as
1
Pulza(un)idfs) = [PY] |+ aur)280 = 2) [ dzPd(z). (B1L)

being the expression for PV

2
’PN::aQuﬁP@Y+a%M%)(Rﬁ{—R%{—Rm&Jn%f) (B.12)
where
PN = Pp+XPs+ZP, (B.13)
P(ig = (2= X)Py, (B.14)
and
3
Pr = 2qulnzln(1—z)—|—(1 —3z—=5)Inz
—z
1
2 _op )Pz — 5(1 — 2) (B.15)
1 11 2 2
Po = qu(§1n22 + Flnz — % + %) +(14+2z)nz+ ?0(1 —z) (B.16)
2 10 4
Py = SsMyq+ (1 +2)Inz+2(1 — 2) (B.18)

In the above expressions, the values of by, X and Z are the ones given in
equations (2.26) and (2.12), and a shorthand notation for the first order Altarelli-
Parisi splitting kernels

1+ 22

Pyq = Pyq(2) = 1_ - (B.19)
1+(1—2)°

Pyy = Poy(2) = - . (B.20)

Py = Py(z) = 224 (1- 2)2 (B.21)

P, =Py,lz) = 2t 24 (B.22)

z(1—2)
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was introduced together with the definition

Mij = MZ](Z) = PZ](—Z) (B23)
Also, S5 was defined as
Sy = —Lis(— )+ b2 (1 )+ (B.24)
2 = 19 1+Z 5 n z n z 6, .

where Liy(x) is the dilogarithm function:

Lis(x) = —/;Mdt _ —/Olln(lti_xt)dt (B.25)

B.2.2 Evolution of the flavour singlet fragmentation func-
tions

The singlet splitting kernels can be found in reference [84]. The ones coming from

the diagonal parts are singular at z = 1. Thus they are regularized according to

Paolz) = = [sPaa(=)],, =801~ 2) [ dyyPaqly) (B.26)
Paolz) = = [sPaa(a)] , ~ 001 -2) [ dyyPocty)  (B27)

which with the definition of the (4) regularization, eq. (B.6), allow to write the

evolution equations for the singlet fragmentation functions (eq. (2.50)) as

S%G(Q?,S) = /: dz {]5@(;(2) [G(g,s) — ZG(:L',S)]

+Pag(=) [S(Z,5) = 2w, s)] |

(x5 /0 '
so-8(es) = /: d- {PQG(Z) [G(g,s) - ZS(:L',S)]

+Paq() [S(Z,5) = 282, 5)| |

—S(x, ) /0 "dz 2 [Poo(z) + Pao(2)] (B.29)

where only convolution integrals remain. The terms in these evolution equations

dz = [Pag(2) + Pag(2)] (B.28)

are given by

2

pQQ = G(MR) Poq + QQ(MR) (qu + XSqq + ZT4q + Pyqbo In M?R) (B.30)
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Poc = a(ur) Py + a*(ur) (ng + XSy + PygboIn ﬁ;—%) (B.31)
Faq = alpr) 22 Py

—|—a2(/,LR) (Zqu + ZXS,q+ ZZT,q+ 27 Pygbo In %) (B.32)
Poo = alur) 2X Py,

2
Yo (pup) | ZR, + X XS, + ZXT,, +2X P, boln "2 ) (B.33
99 99 99 99 S

with the following definitions in the fermion-fermion splitting

3 1 142z

Ry = 2—1—(§—§Z)lnz—|— In?
3
+Pyq [5 Inz —2In%z + 21nzln(1—z)] + 25, My (B.34)
14 14 11 1 2 67
Sqq = ? — 32 —|— qu [F IHZ —|— §1H22 — F —|— E‘| — SQqu (B35)
52 28 112 40
qu = —§+§Z+TZQ—9—Z+(2+QZ)1HQZ
16 2 10
—(10 + 18z + 322) Inz — Py [§ Inz + 5] ) (B.36)
For the fermion-gluon splitting they are
1 — 16 — 2 —
Ry = — 22—|—4z— xlnz—l—Zzln(l—z)—l— ZlHQZ
9 47?
+Pyy | In"(1—2)+4InzIn(l—2) — 85 — 5 (B.37)
2 44
Sqg = S2My, + % — %Z + 522 + (241224 222) Inz —2zIn(l—=2)

17

3
s —2lnzIn(l—2)—3Inz — §1n22

—(4—|—:1;)1n22—|—qu [
7 2
CIn?(1—z) + 85, + %l . (B.38)

The gluon-fermion splitting is described by

Ry = —2432—(7T—=8z)lnz—4In(l—2) + (1 — 22) In?
—2P,, [2 Inzln(l—z)+ In? 2+
1n2(1—2) + In(l—2) — Inz — 85; — a2+ 5} (B.39)
152 166 40 4 76
Sgq = 25:Myq — o + TZ 9, (§ + 32) Inz+4In(l—z2) + (24 8z) In?
z
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178 4
+Pyq [T +8InzIn(l—=2) — In?z — glnz
10 Tm?
o In(l=2) + 20 (1-2) - 168, - %l (B.40)
8 16 8 8
qu = —g—qu |:§—|— §1H2—|— glﬂ(l—Z)] 5 (B41)
and the gluon-gluon splitting by
164 92
Rgg = —4 —|— 122 — 722 —|— 9_2
1 1
+ [10 + 142 + 36(22 + —)] Inz +2(1 + 2)In’2 (B.42)
z
27 134 1 11 25 44
Sgg = ?(1 —z)+ F(Zz - ;) + (3 3% + 3—Z)lnz —4(1 4+ 2)In*z
22 267
+P,, l4lnzln(1—z) —3In?%z + 3 Inz — % + 51 +25;M,, (B.43)
26 1 4 20 8
T, = 201-2)+ (=) - 51+ 2z — P, [5 +olnz]. (BaY)
In the expressions above S is defined as
11z
Sy = —Liy(1 - 2) = / (1 —a) (B.45)
0 T

and Sy is given in equation (B.24).
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Appendix C

Tables of cross sections

This appendix gives the list of cross sections measured with ALEPH. The scaled
energy distribution for all flavours is listed in table C.1. Tables C.2, C.3 and
C.4 list the corresponding distributions for light(uds)-, ¢-, and b-enriched flavours.
Table C.5 lists the gluon distribution measured in three jet symmetric events and

tables C.6 and C.7 the transverse and longitudinal cross sections.

For all but for the gluon distribution, the bin-to-bin errors are specified. They
are separated in statistical and systematic errors. For the systematic errors, the
three contributions considered (the limited statistics of the Monte Carlo used for
the correction, the selection cut variation and the Monte Carlo model dependence)
are listed explicitly. For the gluon distribution only the overall error is given. A
1% normalization error has to be added in quadrature to all distributions except

the gluon one.
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1 dn”

Interval N de Egtat Erinsys(= Encstat T Eewt + Exiomodet)
0.008-0.012 501.3 0.4 7.8 ( =025 476 +1.8 )
0.012-0.020 392.69 0.24 0.97 ( =015 4048 4083 )
0.020-0.030 274.81 0.18 0.99 ( =011 4039 4091 )
0.030-0.040 191.05 0.15 0.48 ( =009 4025 4040 )
0.040-0.050 139.94 0.13 0.44 ( =008 40.19 +0.39 )
0.050-0.060 107.33 0.11 0.30 ( =007 40.12 40.27 )
0.060-0.070 85.09 0.10 0.17 ( =006 4007 40.14 )
0.070-0.080 68.96 0.09 0.19 ( =007 4006 =40.17 )
0.080-0.090 56.81 0.08 0.13 ( =005 40.06 =40.11 )
0.090-0.100 47.875 0.075 0.095 (= 0.047 £0.049 +0.066 )
0.100-0.120 37.655 0.047 0.074 (= 0.030 £0.036 +£0.057 )
0.120-0.140 28.061 0.041 0.046 (= 0.026 £0.037 £0.013 )
0.140-0.160 21.379 0.035 0.054 (= 0.022 £0.039 +0.031 )
0.160-0.180 16.661 0.031 0.042 (= 0.020 £0.030 £0.022 )
0.180-0.200 13.233 0.028 0.027 (= 0.018 £0.020 £0.004 )
0.200-0.225 10.376 0.022 0.023 ( = 0.014 £0.017 £0.009 )
0.225-0.250 7.928 0.019 0.020 (= 0.012 £0.007 £0.014 )
0.250-0.275 6.197 0.017 0.016 ( = 0.011 £0.006 +0.011 )
0.275-0.300 4.874 0.015 0.012 (= 0.010 £0.006 +0.004 )
0.300-0.325 3.862 0.014 0.013 (= 0.009 £0.003 +0.009 )
0.325-0.350 3.054 0.012 0.018 ( = 0.008 £0.016 +0.003 )
0.350-0.375 2.461 0.011 0.009 (= 0.007 £0.002 +0.006 )
0.375-0.400 1.995 0.010 0.011 (= 0.006 £0.007 £0.007 )
0.400-0.430 1.5555 0.0079 0.0059 (= 0.0049+0.0025+0.0021)
0.430-0.460 1.2122 0.0070 0.0081 (= 0.0043+0.0038+0.0057)
0.460-0.490 0.9400 0.0061 0.0051 (= 0.0038+0.0031+0.0014)
0.490-0.520 0.7346 0.0054 0.0091 (= 0.0034+0.0071+0.0046)
0.520-0.550 0.5631 0.0047 0.0048 (= 0.0029+0.0038+0.0005)
0.550-0.600 0.4098 0.0031 0.0025 (= 0.0019+0.0015+0.0008)
0.600-0.650 0.2572 0.0025 0.0033 (= 0.0015+0.0024+0.0018)
0.650-0.700 0.1719 0.0020 0.0027 (= 0.0012+0.0023+0.0007)
0.700-0.750 0.1041 0.0015 0.0026 (= 0.0009+0.0023+0.0007)
0.750-0.800 0.0606 0.0011 0.0027 (= 0.0007+0.0026+0.0004)
0.800-0.900 0.0262 0.0005 0.0032 (= 0.0003+0.0032+0.0002)
0.900-1.000 0.0048 0.0002 0.0020 (= 0.0001+0.0020+0.0001)

Table C.1: All-flavour inclusive cross section for charged particles measured at /s = 91.2 GeV.
The errors listed are the statistical and systematic bin-to-bin errors. The three sources of sys-
tematic uncertainties are specified. A normalization error of 1% has to be added in quadrature

everywhere.
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ir
Interval ]\/161/ d(?g; Estat Ebinsys(: EMCstat + Ecut + EMCmodel)

0.008-0.012 | 492.6 0.4 7.3 ( =02 471 419 )
0.012-0.020 | 383.1 0.2 1.2 ( =01 408 409 )
0.020-0.030 | 266.5 0.2 1.2 ( =01 406 +1.0 )
0.030-0.040 | 184.38 0.15 0.72 ( =0.09 4054 4048 )
0.040-0.050 | 134.60 0.12 0.64 ( =0.08 4042 4047 )
0.050-0.060 | 103.06 0.11 0.46 ( =007 +032 4032 )
0.060-0.070 81.42 0.10 0.39 ( =0.06 =034 40.17 )
0.070-0.080 66.11 0.09 0.34 ( =0.05 +0.27 4020 )
0.080-0.090 54.76 0.08 0.20 ( =0.05 4017 40.10 )
0.090-0.100 46.05 0.07 0.17 ( =0.05 +0.14 40.09 )
0.100-0.120 36.50 0.05 0.13 ( =0.03 +£0.11 40.07 )
0.120-0.140 27.468 0.039 0.074 (= 0.025 £0.069 +0.009 )
0.140-0.160 21.199 0.035 0.061 (= 0.022 £0.053 +0.022 )
0.160-0.180 16.730 0.031 0.044 ( =0.019 £0.031 +0.024 )
0.180-0.200 13.359 0.028 0.035 ( =0.017 £0.029 +0.007 )
0.200-0.225 10.644 0.022 0.053 (= 0.014 £0.050 +0.010 )
0.225-0.250 8.249 0.020 0.042 ( =0.012 £0.037 +0.016 )
0.250-0.275 6.532 0.017 0.037 ( =0.011 £0.033 £0.013 )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0.275-0.300 5.196 0.016 0.031 = 0.010 £0.028 £0.007
0.300-0.325 4.136 0.014 0.026 = 0.009 £0.023 £0.009
0.325-0.350 3.323 0.012 0.030 = 0.008 £0.029 £0.005
0.350-0.375 2.678 0.011 0.022 = 0.007 £0.019 £0.010
0.375-0.400 2.190 0.010 0.024 = 0.006 £0.022 £0.009
0.400-0.430 1.717 0.008 0.018 = 0.005 £0.017 £0.003
0.430-0.460 1.353 0.007 0.017 = 0.004 £0.014 £0.007
0.460-0.490 1.0564 | 0.0064 | 0.0084 = 0.0039£0.0072+£0.0019
0.490-0.520 0.8313 | 0.0057 | 0.0159 = 0.0035£0.01434+0.0059
0.520-0.550 0.6513 | 0.0050 | 0.0079 = 0.0031£0.0072+£0.0012
0.550-0.600 0.4835 | 0.0033 | 0.0099 = 0.0021+£0.009610.0005
0.600-0.650 0.3093 | 0.0026 | 0.0040 = 0.0016£0.0027£0.0025
0.650-0.700 0.2079 | 0.0021 | 0.0032 = 0.0013£0.0027+£0.0010
0.700-0.750 0.1283 | 0.0017 | 0.0037 = 0.0010+£0.0034£0.0011
0.750-0.800 0.0768 | 0.0012 | 0.0022 = 0.0008=£0.002040.0005
0.800-0.900 0.0323 | 0.0006 | 0.0022 = 0.0003+£0.002240.0002
0.900-1.000 0.0059 | 0.0002 | 0.0015 = 0.0001+£0.001540.0002

Table C.2: uds-enriched inclusive cross section for charged particles measured at /s = 91.2 GeV.
The flavour composition is of 78.9%, 14.5% and 6.6% of uds-, c-, and b-quarks, respectively. The
errors listed are the statistical and systematic bin-to-bin errors. The three sources of systematic
uncertainties are specified. A normalization error of 1% has to be added in quadrature everywhere.
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1 dn”

Interval N de Egtat Erinsys(= Eniostat £ Eewt + Exicmoder)
0.008-0.012 | 509.1 1.3 7.5 ( =038 +7.2 +1.8 )
0.012-0.020 | 397.3 0.8 1.3 ( =05 +1.0 +0.8 )
0.020-0.030 | 279.0 0.6 1.2 ( =03 +0.7 +0.9 )
0.030-0.040 | 196.08 0.50 0.67 ( =029 4045 4040 )
0.040-0.050 | 143.38% 0.42 0.74 ( =024 4060 4036 )
0.050-0.060 | 109.81 0.37 0.44 ( =021 +0.26  +0.28 )
0.060-0.070 86.86 0.33 0.30 ( =019 4020 +0.13 )
0.070-0.080 70.05 0.29 0.28 ( =017 +0.17 +0.14 )
0.080-0.090 57.84 0.27 0.31 ( =015 4024 +0.13 )
0.090-0.100 48.26 0.24 0.20 ( =014 +0.13 +0.06 )
0.100-0.120 37.93 0.15 0.13 ( =009 4008 +0.06 )
0.120-0.140 28.63 0.13 0.10 ( =008 4007 +0.02 )
0.140-0.160 21.87 0.12 0.10 ( =007 4006 +0.04 )
0.160-0.180 16.77 0.10 0.08 ( =006 4006 +0.02 )
0.180-0.200 13.322 0.090 0.081 ( =0.053 +0.058 =+0.019 )
0.200-0.225 10.471 0.072 0.051 ( =0.043 +0.028 +0.007 )
0.225-0.250 7.809 0.062 0.050 ( =0.036 40.031 40.017 )
0.250-0.275 6.059 0.054 0.044 ( =0.032 40.027 +0.013 )
0.275-0.300 4.794 0.049 0.053 ( =0.029 +0.044 +0.008 )
0.300-0.325 3.846 0.043 0.047 ( =0.026 40.036 =+0.013 )
0.325-0.350 3.089 0.039 0.047 ( =0.024 40.040 40.007 )
0.350-0.375 2.375 0.034 0.030 ( =0.020 +0.022 +40.004 )
0.375-0.400 1.876 0.031 0.028 ( =0.018 +0.020 40.008 )
0.400-0.430 1.436 0.024 0.020 ( =0.014 +0.014 40.001 )
0.430-0.460 1.088 0.021 0.017 ( =0.012 40.010 40.008 )
0.460-0.490 0.871 0.019 0.016 ( =0.011 40.011 40.003 )
0.490-0.520 0.656 0.016 0.016 ( =0.010 +0.012 40.004 )
0.520-0.550 0.484 0.014 0.010 ( =0.008 =+0.006 +0.001 )
0.550-0.600 0.3479 0.0089 0.0099 (= 0.0053 +0.0084 +0.0008 )
0.600-0.650 0.2157 0.0070 0.0060 (= 0.0041 +0.0041 +0.0017 )
0.650-0.700 0.1321 0.0055 0.0050 (= 0.0032 +0.0037 +0.0008 )
0.700-0.750 0.0900 0.0045 0.0060 (= 0.0028 +0.0053 +0.0006 )
0.750-0.800 0.0387 0.0028 0.0034 (= 0.0015 £0.0030 +0.0003 )
0.800-0.900 0.0173 0.0013 0.0013 (= 0.0007 £0.0010 +0.0001 )
0.900-1.000 0.00324 | 0.00041 | 0.00049 ( = 0.0002240.0004240.00009)

Table C.3: c-enriched inclusive cross section for charged particles measured at /s = 91.2 GeV.
The flavour composition is of 38.2%, 35.1% and 26.7% of uds-, c-, and b-quarks, respectively. The
errors listed are the statistical and systematic bin-to-bin errors. The three sources of systematic
uncertainties are specified. A normalization error of 1% has to be added in quadrature everywhere.
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1 dn”

Interval N dz Egtat Erinsys(= Enicstat £ Eewt  Exicmoder)
0.008-0.012 | 541.3 1.0 9.2 = 0.6 +9.0 +1.6
0.012-0.020 | 435.8 0.6 1.1 =04 +0.5 +0.9
0.020-0.030 | 312.3 0.5 1.3 = 0.3 +0.8 +0.9
0.030-0.040 | 219.34 0.41 0.54 = 0.24 +0.41 +0.25
0.040-0.050 | 161.88 0.35 0.49 =0.20 £0.40 +£0.19
0.050-0.060 | 125.34 0.31 0.27 =0.18 £0.12 +£0.15
0.060-0.070 | 100.30 0.27 0.34 =0.16 £0.28 +£0.12
0.070-0.080 80.37 0.24 0.25 =014 £0.15> +£0.15
0.080-0.090 66.11 0.22 0.24 =0.13 £0.08 +£0.19
0.090-0.100 56.16 0.20 0.15 =0.12 £0.09 +£0.02

0.100-0.120 | 42.49 0.12 0.16 =0.07 +0.13 +£0.06

0.120-0.140 | 30.29 0.11 0.09 =0.06 +0.05 +£0.04

0.140-0.160 | 22.22 0.09 0.11 =0.05 +£0.08 +£0.06

0.160-0.180 | 16.341 0.078 0.077 = 0.046 +0.059 +£0.021

0.180-0.200 | 12.173 0.067 0.046 = 0.039 +0.017 =£0.016

0.200-0.225 9.166 0.052 0.037 = 0.031 +0.019 +£0.009

0.225-0.250 6.489 0.044 0.036 = 0.025 £0.020 +£0.016

0.275-0.300 3.589 0.033 0.034 = 0.019 +£0.018 +£0.022

0.300-0.325 2.689 0.028 0.024 = 0.016 =+0.005 =£0.017

0.325-0.350 2.069 0.025 0.015 = 0.014 £0.005 =+£0.002

0.350-0.375 1.589 0.022 0.021 = 0.013 +0.011 =+0.012

0.375-0.400 1.201 0.019 0.012 = 0.011 +0.003 +£0.003

0.400-0.430 0.880 0.015 0.010 = 0.008 £0.004 +£0.003

0.430-0.460 0.705 0.013 0.013 = 0.008 £0.006 +£0.009

0.460-0.490 0.487 0.011 0.007 = 0.006 +0.002 +£0.002

0.490-0.520 0.3566 | 0.0093 | 0.0068 = 0.0055 £0.0011 +£0.0038

0.520-0.550 0.2548 | 0.0079 | 0.0081 = 0.0046 +0.0067 £0.0004

0.550-0.600 0.1543 | 0.0047 | 0.0047 = 0.0027 +0.0037 £0.0010

0.600-0.650 0.0768 | 0.0033 | 0.0022 = 0.0019 £0.0012 +£0.0003

0.650-0.700 0.0348 | 0.0021 0.0022 = 0.0012 £0.0018 +£0.0004

0.700-0.750 0.0164 | 0.0014 | 0.0017 = 0.0008 +0.0015 +£0.0001

0.750-0.800 0.0074 | 0.0009 | 0.0013 = 0.0005 £0.0012 +£0.0002

0.800-0.900 0.00160 | 0.00025 | 0.00023 = 0.00013£0.0001840.00006

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
E 3
0.250-0.275 | 4.869 [ 0.038 [0.025 ( =0.022 +0.010 +0.007 )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0.900-1.000 0.00030 | 0.00005 | 0.00009 = 0.00004£0.00006£0.00003

Table C.4: b-enriched inclusive cross section for charged particles measured at /s = 91.2 GeV.
The flavour composition is of 2.2%, 7.3% and 90.5% of uds-, c-, and b-quarks, respectively. The
errors listed are the statistical and systematic bin-to-bin errors. The three sources of system-
atic uncertainties are specified. A normalization error of 1 % has to be added in quadrature
everywhere.
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Interval Z\/lev dg:;r Error
0.05-0.10 | 40.22 1.46
0.10-0.15 16.87 0.91
0.15-0.25 6.87 0.47
0.25-0.35 1.86 0.19
0.35-0.55 0.40 0.09
0.55-0.80 0.04 0.03

Table C.5: Gluon scaled energy distribution measured in three jet symmetric events [65].

Interval ]\}ev dg;r Egtat Erinsys(= Encstat T Eewr + Excmodet)
0.008-0.012 377.2 0.9 52.5 ( =05 4340 +40.0 )
0.012-0.020 314.9 0.5 4.4 ( =0.3 + 4.4 + 0.7 )
0.020 0.030 | 234.5 0.4 54 ( =02 +20 +12 )
0.030-0.040 170.1 0.3 1.0 ( =02 4+£08 +06 )
0.040-0.050 127.50 0.25 0.72 ( =015 4+ 057 + 042 )
0.050-0.060 99.29 0.22 0.61 ( =013 4+ 044 =+ 040 )
0.060-0.070 79.61 0.19 0.60 ( =012 4+ 043 =+ 040 )
0.070-0.080 65.23 0.17 0.42 ( =011 4+ 034 + 022 )
0.080-0.090 54.09 0.16 0.39 ( =010 4+ 0.17 4+ 0.33 )
0.090-0.100 45.72 0.14 0.23 ( =009 4+ 016 =+ 0.15 )
0.100-0.120 36.22 0.09 0.16 ( =006 4+ 011 =+ 0.09 )
0.120-0.140 27.12 0.08 0.31 ( =005 4+ 029 + 0.09 )
0.140-0.160 20.77 0.07 0.11 ( =004 4+ 009 + 0.02 )
0.160-0.180 16.32 0.06 0.16 ( =004 £+ 015 + 0.04 )
0.180-0.225 11.323 0.033 0.089 ( =0.021 £+ 0.083 + 0.026 )
0.225-0.275 6.943 0.025 0.055 ( =0.015 £ 0.052 + 0.011 )
0.275-0.325 4.319 0.020 0.027 ( =0.012 £+ 0.023 £+ 0.008 )
0.325-0.400 2.474 0.012 0.018 ( = 0.008 £ 0.015 + 0.008 )
0.400-0.600 0.8439 0.0043 0.0068 (= 0.00274+ 0.0056+ 0.0027)
0.600-0.800 0.1516 0.0018 0.0067 (= 0.00114+ 0.0065+ 0.0014)
0.800-1.000 0.0175 0.0005 0.0057 (= 0.0003+ 0.0057+ 0.0004)

Table C.6: Transverse inclusive cross section for charged particles measured at /s = 91.2 GeV.

The errors listed are the statistical and systematic bin-to-bin errors.

The three sources of sys-

tematic uncertainties are specified. A normalization error of 1% has to be added in quadrature

everywhere.
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Interval L dn” | g Epinsys(= Enrcstar = Eout £ E )
Nev dr stat binsys MC'stat cut MCmodel
0.008-0.012 | 123.6 0.5 16.4 ( =04 +3.1 +16.1 )
0.012-0.020 77.2 0.3 2.8 ( = 0.2 +2.3 + 1.5 )
0.020-0.030 40.6 0.2 1.6 ( =01 +0.8 + 14 )
0.030-0.040 21.1 0.1 1.2 ( = 0.1 +0.2 + 1.1 )
0.040-0.050 12.42 0.12 0.81 ( =009 4013 4+ 080 )
0.050-0.060 8.00 0.10 0.58 ( =008 4015 4+ 055 )
0.060-0.070 5.40 0.09 0.40 ( =007 4008 4+ 039 )
0.070-0.080 3.81 0.08 0.31 ( =006 4009 4+ 029 )
0.080-0.090 2.74 0.07 0.20 ( =005 4005 4+ 0.18 )
0.090-0.100 2.14 0.06 0.20 ( =005 4008 4+ 0.17 )
0.100-0.120 1.43 0.04 0.14 ( =003 4004 4+ 0.13 )
0.120-0.140 0.90 0.03 0.10 ( =0.03 4007 4+ 007 )
0.140-0.160 0.569 0.026 0.060 ( =0.022 40.021 =+ 0.052 )
0.160-0.180 0.393 0.024 0.082 ( =0.018 40.068 =+ 0.042 )
0.180-0.225 0.259 0.012 0.037 ( =0.012 40.025 =+ 0.025 )
0.225-0.275 0.115 0.008 0.024 ( =0.008 40.015 =+ 0.018 )
0.275-0.325 0.055 0.005 0.013 ( =0.006 40.011 =+ 0.006 )
0.325-0.400 0.0293 0.0032 0.0076 (= 0.0034 +0.0058 + 0.0040 )
0.400-0.600 0.0067 0.0007 0.0023 (= 0.0012 £0.0008 £+ 0.0017 )
0.600-0.800 0.00041 | 0.00020 0.00094 ( = 0.00033+0.00087+ 0.00008)
0.800-1.000 | —0.0002 0.0002 0.0011 (= 0.0002 +0.0011 + 0.00003)
Table C.7: Longitudinal inclusive cross section for charged particles measured at /s =

91.2 GeV. The errors listed are the statistical and systematic bin-to-bin errors. The three sources
of systematic uncertainties are specified. A normalization error of 1% has to be added in quadra-

ture everywhere.
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