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Abstract

We consider the effective quasilocal quark model with two composite Higgs
doublets in strong coupling (polycritical) regime below the chiral symmetry
breaking energy scale Acsg. The two-point correlators of scalar and pseu-
doscalar Higgs fields are calculated. The adjustment of their asymptotics at
high energies allows to implement the chiral symmetry restoration in correspon-
dence to the operator product expansion in QCD-like (technicolor, topcolor)
models. The requirement of chiral symmetry restoration (CSR) at high ener-
gies above the Acsp yields some bounds on parameters of (composite) Higgs
particles and underlying effective quasilocal quark models.
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1 Introduction

If Higgs bosons are composite[l] and their masses are created by a mechanism
of spontaneous chiral symmetry breaking[2, 3] one can require the chiral symmetry
restoration (CSR) at high energies[4] which leads to the CSR constraints on phe-
nomenological parameters of the Higgs model. On this way the minimal extension
of the Standard Model [5] may include two (or more) doublets of Higgs particles
[6, 7, 8, 9]. Recently we have developed the effective quark models including higher-
dimensional vertices of fermion fields with derivatives which can serve[9] for the pa-
rameterization of unknown heavy particle dynamics beyond the Standard Model in
the spirit of Wilsonian effective action approach [10]. In this paper we continue the
exploration of particular Effective Quasilocal Quark Models (EQQM) which inherit
main properties of a underlying vector gauge theory of QCD type (such as techni-
color [11] or topcolor [12] models). The most important property turns out to be
the Chiral Symmetry Breaking (CSB) at low energies and, on the other hand, the
Chiral Symmetry Restoration (CSR) at high energies. The latter one is controlled by
the Operator Product Expansion of quark current correlators which include a differ-
ent number of parity-odd and parity-even currents. More specifically, here we deal
with the two-point correlators of scalar and pseudoscalar quark densities [4, 13] which
are saturated at low energies by Higgs-particle resonances of a definite parity. The
difference between these correlators is decreasing rapidly in accordance to OPE of
a vector-like gauge theory [14]. In the framework of either EQQM or a low-energy
Higgs-field model it leads to the CSR constraints on some parameters of composite
Higgs particles.

Let us remind the effective quark lagrangian of a EQQM which incorporates all
higher-dimensional vertices necessary for the description of Two-Higgs Doublet Stan-
dard Model in the low-energy limit. The two-flavor, 3d generation quark models with
quasilocal interaction are considered in which the ¢- and b-quarks are involved in the
DCSB.

We restrict ourselves by examination of the Models of type I [15] with the following
lagrangean(9]:

Lr = GPq + taPtr + brPbr

1 & —_— ~
> ar (gendis + gondii) 172 (Goidoy — geadiy) - (1)
NA? 2

+

Here we have introduced the denotations for doublets of fermion currents:

- 0? . ok tr,
Jix = trfik (“K;> qr, Jok = brfok <_F) qr; » qr, = (bL) , o (2)
and the tilde in jt,k and fb,k marks charge conjugated quark currents, rotated with
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7o Pauli matrix
Jix = iTthfk, Jok = 112}y (3)

The subscripts ¢,b indicate right components of ¢ and b quarks in the currents, the
index k£ enumerates the formfactors:

fia=2-31; fi2= —-\/g‘r; T=E ——
fon =237, fra=—V3r; (4)

which are orthonormal on the interval 0 < 7 < 1. In these notations coupling
constants of the four-fermion interaction are represented by 2 x 2 matrix ax and
contributed also from the Yukawa constants gi s, gs k-

2 Effective potential and mass spectrum of com-
posite fields

In order to describe the dynamics of composite Higgs bosons the lagrangean
density (1) of the Model I must be rearranged by means of introduction of auxiliary
bosonic variables and by integrating out fermionic degrees of freedom [16]. Namely,
we define two scalar SU(2)L-isodoublets:

_ (o [ on
= (¢12) ’ 22 = (¢22> (5)

and their charge conjugates:

b= (), w-() ©

Then the lagrangean (1) can be rewritten in the following way:

2

2
L1=Lign + NA? Y 0L (a™u®i+i Y [0ea®fJer + 9Bl ok| + b (7)
k=1 k=1

The integrating out of fermionic degrees of freedom will produce the effective action for
Higgs bosons of which we shall keep only the kinetic term and the effective potential
consisting of two- and four-particles vertices. The omitted terms are supposedly small,
being proportional to inverse powers of a large scale factor A. The Yukawa constants
are chosen of the form

gx=1  Gr=g (8)
for kK = 1,2. The first choice can be done because the fields ®; and ®, can always
be rescaled by an arbitrary factor which is absorbed by redefinition of polycritical
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coupling constants ay. Other constants g, x are taken equal for the simplicity. Their
value g induces the quark mass ratio my/m;.
The consistent approximation can be developed in the vicinity of (poly)critical
point,
Amn
AT
which signifies the cancellation of quadratic divergences [18].
Then the effective potential of Higgs fields in this model reads:

81%a-t ~ o +

~
mn

|A;] < Az, (9)

N, 2
Vers = (— 3 (010)) A — 84 (®19,)% In ¢

2
8 k=1

A2 1
+1+4[8<1>*<1>2(1 +—)
(1+4% [8(9:9) n4(q)1©1) 5) T
9 3
3 (2101) 4 2(21:)" + 2(2[01)(21 )+
3 3 3
+Z(‘I’I‘I’2)(‘I’§‘I’1) + g(q’lq’z)z + g(‘bgq’ﬂz“

—%-g(qﬂ@l) ((@122) + (8}@,)) +

+\/T§(‘I’£‘I’2) ((‘I’J{‘I’z) + (‘I’;‘I’l))D +0 (%) ; (10)

where the bilinear “mass” term is in general non-diagonal and represented by the real,
symmetric 2 X 2 matrix Ag. This is the two-Higgs potential in the large N, approach
and a more realistic potential should involve the true Renormalization Group flow of
Two-Higgs Doublet SM ! with initial conditions at high energies taken from (10).

We assume the electric charge stability of the vacuum, i.e. that only neutral
components of both Higgs doublets may have nonzero v.e.v.[1, 7, 17]. Hence, one can
deal with only neutral components of the Higgs doublets in the effective action for
studying DCSB.

In general there exists a special regime where the ratio of v.e.v. of neutral Higgs
fields is complex [18]. Here let us consider the phase where CP-parity is not broken
spontaneously. Then one can relate real fields ¢, ¢2 to the neutral components of
Higgs doublets:

159

$12 = @15 P22 = ¢a. (11)
The condition of minimum of the potential (10) with the charged components of Higgs
doublets put to zero values: ¢1; = ¢21 = 0, brings the mass-gap equations for them:

SVerp(d,0*) 6Verp(d,¢7)
7 7 Se 1)

lsee the updated one-loop RG equations in [19] and references therein.
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which solution may cause the DCSB if it is an absolute minimum. In the explicit
form they are:

2
4 2¢2

4¢2
+(1 +g4)[—@¢3 & \/—¢f¢2 + g¢1¢§

Aoy + Aagdy = 16¢3ln + 1643 ¢* In ——

V3

3\/' 5v/3
Agopo + Dy = (1 + 94)[2%452 + ——¢1d; + ¢3 {ﬁ] (13)
The solution of the mass-gap equation of Gross-Neveu-type is:
det A AT
¢ = —~, $r1 R ——¢ 14
' 16(1 + g*)Azln (%) ’ App (14)

There are also abnormal and special solutions discussed in {16, 18] in details.
The true minimum is derived from the positivity of the second variation of the
effective action around a solution of the mass-gap equation,

bk =< ¢ > +ox(z) + imi(z). (15)

This variation reads:

1672
N eff

= (0’, (Aaap2 + Baa)o,)
+2 (7, (A™p* + B™)o) + (r,(A™p* + B™)7),  (16)

where two symmetric matrices - for the kinetic term A = (A}fn) , 1,7 =(o,7)and
for the constant, momentum independent part, B = (B,‘,Jn) - have been introduced.
In the CP-conserving phase: A°" = B™ = 0.

The mass spectrum of related bosonic states is determined by the solutions of the
secular equation :

det(Ap® + B) = 0, (17)

at —m? = p? < 0 in both scalar and pseudoscalar channels.
The "kinetic” matrix A as being multiplied by p? is derived in the soft-momentum
expansion in powers of p*:

N,
ﬁkin = 1672

>, (If,il(ama)(amml) + 11‘,2<au¢72)(8u¢m2>) (18)

I,m=1



and (! m ) contributes to the kinetic term for charged components of Higgs doublets
and I(?) defines the latter one for the neutral components:

1 = ) AT AT = (£0)fum(0) + 6 oi0)fon (0)) In
+/(ft,l(7)ft,m(7) + 6" () fom(7) —
dr In ‘%’27
= £:a(0)fim(0) = ¢ foi(0) fo.m (0)) — +0( A;)- (19)

The related integrals for I,(Ti)’(z) have been calculated at large values of A, in the
large-log limit In(A?/m}) ~ In(A?/m}) > 1 and for the CP conserving phase. After
substitution of (4) kinetic matrices A take the form:

4ln by -3
nean e F 7

2 2

(20)

Let us now obtain the matrix of second variations of the effective potential for the
Model I :
v 812 07

= ———V,
M Nc a¢la¢m bk
As we consider the CP-conserving case we can split this matrix in the B matrix for
scalars and BJ" matrix for pseudoscalars:

(I,m=1,2). (21)

By = (1+g" [64& In (“) 3t~ 05,5, - ﬁﬁ] ;
m? 2 ¢
-|—2Amﬁ — 64¢2g" In g%, (22)
1
B = —2A;+(1+g") [9¢1¢2 15\/_ \/_¢2} ' (23)
By = (1+4%) [9¢2 + £¢1¢2 D\/—d):*} + 24812~ i (24)
2 ¢ $o’
3
BT = (1+9¢") [-‘7’—[-@@ - */7—% - 3%] 1onL?, (25)
1 o
B = —2An+(1+g%) [—icﬁl \/—¢2 + 3¢1¢2] , (26)
T 4 \/_ 5\/— QSB ¢1
By = (1+4°) [“3¢;1) 5 —b1¢2 + ——2——;;] + 2A12¢2 (27)
By = 0 kil=(1,2). (28)



where the mass-gap equation (13) has been employed.
On solutions of the Gross-Neveu type (14) one finds:

4detA — 2A},

Bfla ~ A22 3 Bi’; ~ —2A12; ng ~ 2A22;
2A?
BT ~ — A;; By ~ —=2A.9;  BjF ~ —2Ag,. (29)

After substituting the matrices A, B into (17) one can get the mass spectrum for
the Higgs bosons in Model I. In particular, the Gross-Neveu-type solution brings the
spectrum for scalars:

2 det A 2 4A22

mi R — = 4mZ; mo, R ———— (30)
(1 + g2)A22 lIl (-2—;') 4 3(1 + g2)
and for pseudoscalars:
40y
2 _0. 2
m, —0, M 3(1 +g2). (3].)

3 Chiral symmetry restoration in QCD-like mod-
els

In large N. QCD [20] the leading contributions into two-point correlators of scalar and
pseudoscalar quark densities are given by sums over an (infinite) number of meson
poles

LGY = - [ d* explipe) (T (da(x) 34(0)))
Zg 4 a2
= Zn: mg—m + Cq + Cyp?,
N2(p) = [ d' exp(ipa) (T (a157%a(2) F157°4(0)))

ZTI’
= 4§ (zﬂ: Al - T +C3 + C;'p2) : (32)
Co and () are contact terms required for the regularisation of infinite sums.

The high-energy asymptotics are given by perturbation theory and operator prod-
uct expansion taking into account the asymptotic freedom of QCD. As well the
nonperturbative generation of gluon and quark condensates [14] is assumed to de-
termine subleading power-like corrections to perturbative asymptotics . The long
derivative in QCD, id, — 1D, = 10, + G, contains gluon fields G, = g,A*G?%, where
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tr(A*A%) = 26 and g, is the QCD coupling constant. The related gluon field strength
is defined as G, = —i[D,, D,]. Respectively, in the chiral limit (m, = 0) the scalar

and pseudoscalar correlators have the following OPE motivated behavior [14] at large

p*:

N, 11N.a;, 2
(1 __E_) p2 1n£_

2 ™~
Lon(P*)|p2s00 = A2 . 2
2ra,
4rrp?

(G + 3

F— p (30, A 940, X q) +(9(p )s (33)

s

+ —2{gv. M\ qg71.0 q)

for Ny = 2, in Euclidean notations. Herein a5 = g,/47 = o,(p) € 1; u > Acsg. In
the large-/V, limit

(HP(p2) - HS(PZ)) = Lsr (p ) Agsp =~ 2—4-(—]—VC—_1)-7T03(< aq >)?,

p2—)oo p

where the vacuum dominance hypothesis[14] has been exploited. This rapidly de-
creasing asymptotics is a consequence of the chiral invariance of the lagrangean of
massless QCD.

When comparing (32) and the first term of (33) one can see that in order to
reproduce the perturbative asymptotics the infinite number of resonances with the
same quantum numbers should exist in each channel. On the other hand, in the
difference of scalar and pseudoscalar correlators the saturation may be successfully
delivered by a finite number of low-lying resonances due to CSR.

Thus CSR at high energies may be thought of as a possible constraint on the
EQQM to be a manifestation of compositeness in the Higgs model [18, 21]. We shall
demand that, at the compositeness scale A, the relation (34) is approximately fulfilled.

Following the planar limit of the QCD, eq.(32) one can make the two-resonance
ansatz for scalar and pseudoscalar correlators provided by Two-channel EQQM model,

!

ZO’ Z(T
I1, = Cg;
A ET R
7 Z7r’ .
I.(p) = =l + 2+ ml + 7. (35)

We remark that for this type of models the constants can be taken CY = CT = 0.
From the requirement of asymptotic CSR (34) it follows that,

2 < gg >
cs = cgzc(=——-‘lq—-<o>; (36)

My
Z°+ 2% = Z+Z%,  Z°mi+Z°m} ~ Z™m?, (37)



if one neglects with a supposedly small Agp in (34) (see [13]). The first two relations
can be fulfilled in the conventional NJL model which corresponds to the one-resonance
ansatz, Z°™ = 0, whereas the last one can be provided only in a two-resonance model.

The soft-momentum limit of the correlators is connected to the structural con-
stants of the effective chiral lagrangian [22] (in our case of the EW lagrangian in the
large Higgs mass limit [24]),

A AS
2t C = 16B3(2Ls + H,);
z" )
— +C = 16B5(=2Ls + Hy). (38)

!

These relations together with the empirical estimations on the corresponding vertex
may serve for the determination of the size of the (techni-,top-)quark condensate
C, = —BoFZ. When eliminating the unobservable constant H-, one comes to the large-
N, sum rule [4, 13] for meson parameters based on the phenomenological constant Lsg
22, 23],
o o' ! :
z -Z—,; - 52— = 64B; Ls. (39)

2
m, ma.r ma

4 CSR sum rules in Quasilocal Quark Model

In order to build systematically quark correlators we introduce conventionally
external sources which couple to the scalar and pseudoscalar quark densities. As these
densities in our model are doublets, eq.(2), the relevant sources X; = (x1;), X2 = (x2;)
are taken as doublets as well. The sources are complex: xx; = skj + ipk;, generating
both scalar and pseudoscalar densities. The structure of the corresponding vertices
in the quark lagrangian is similar to the Yukawa vertices in (7). Let us simplify our
analysis and set g = 0 as m; > my. Then the introduction of external sources can be
performed by shifting the Higgs fields in the quark part of the lagrangian (7):

bk — i + Xkj- (40)

The dynamical boson fields arise as fluctuations around the solutions of the mass-gap
equation (13): ) ) i
k1 = k1 — Xk1; PRz = Gk2 — Xkot < Pr2 > . (41)

In terms of doublets X, @ the supplementary lagrangian takes the form:

2
AL = NCA2 Z [X,;r(a—l)kzXz—X;r(a—l)qu)l

k=1
~®f(a™)uXi — X}(a™)u(®) = (9]} (a " uXi] . (42)
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Let us restrict ourselves with neutral components only and neglect terms linear in
external sources irrelevant for correlators. Then with notations:

¢k2 =0 + i7r;c; Xk2 = Sk + ipk) (43)

one obtains the quadratic part of the lagrangian £ consisted of (16) and (42). As it
Is gaussian one can easily unravel the dependence on external fields with the help of
classical Egs. of motion:

ol = 16r242 Z (A""p2+B”> ;1S 22A2§:(A”"p2+B“)H S
l,m=1 =1
el = 16742 5_2; (A9 + B™) 4} P 2A222j (a™p? + B7)

Im=1 =1

P,(44)

which is simplified in the vicinity of polycritical point, 8r2ag} ~ &y,.
The resulting effective action for generating of two-point correlators is given by:

N.A?

8

P~ 2 (Se0%S: + A R)

k=1

-1
DY = w20 (AP + B7) 5 T = du— 202 (45" + B™) . (45)

When taking the approximate expressions (20), (29) for matrices A, B one derives
the inverse propagators:

-1 A? i
(Aaap2+Baa)kl ~ [61n—(p + m2)(p® + m? )]

P — 2/, \/— PP+ 240,
f2+2A 4pIn & 4 HBude-odly |
22

1

[Glnﬁp (»* + m] )r

( 2p — 2A4, \é—p + 244, )

(5

2A2 (46)

\/—p2 + 2A12 4p In Ai - El’f

In particular, the strictly local quark density can be presented as a superposition of
two currents:

1, -
= 5(Eft = V3ifat), (47)
and respectively in the scalar channel the correlator (32) (for Ny = 2) reads,
NA? [ (o v - v z° z
L") = 35 P19+ 305 —2varig] = ¢7 + P rmE o ml
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NA? 2<qg>
22 - Mo ’
NA?

a 21n A2 (1h2 _ 12
487!' lnm—?(ma, md)

4011 Agg — BA2 2
x [24\22 +4V3A,, — 31122 L (12111 A—2 - §) m2] ;
Azz my 2

Cc’ =

) NA*

487%1n %27 (m

o

2
o

4A (1 A9y — 6A2 2
X [2A22 +4V3A; — 3——2 att + (121n A—2 - é) m?2 ] {(48)

Ul
Agg m; 2

,—m?,)

and similarly in the pseudoscalar channel,

NA% [, x r A Al

- . NA? 2<qq>
C = == 272 - Mo !

. NA* 6A2,
z = ~ 48n2In 7’:1——22- m2, lQAn +4V300 + Agg !

/ N A* 6A2 A 3
A el 245 + 4V3A 12 12ln — — = | m2,{.

487r21n%7m,2,, [ n+ 4300 + Az +( nm? 2) m,,} (49)

Now we are able to impose and check the CSR constraints (37). First of all one can
see that the chiral symmetry is not broken in leading asymptotics, C™ = C'?. Next we
check the subleading asymptotics which represents the generalized o-model relation:

N.AY

272’

2°+ 27 = 2"+ 2" ~ (50)
which is fulfilled, in fact, at a higher precision including subleading 1/1n A? terms.
The last, approximate constraint in (37) is satisfied in the leading-log approxima-
tion because from (48) (49) : Z, ~ Zpn > Z,, and from (30), (31) : m2, ~ m2,.
Thus:
Z°m? + Z7'm?, o~ Z2°'m?, ~ Z™m?,. (51)

However in the next-to-leading order this relation is not automatically satisfied for a
variety of coupling constants A;; and becomes also sensitive to the value of four-quark
condensate Agp in (34), i.e. which, in turn, is model dependent. We postpone the
analysis of this constraint at subleading order to a next paper.
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5 Conclusions

1. We have proved that CSR at high energies indeed takes place in the EQQM of
type I for Two-Higgs doublets in the Gross-Neveu phase. Thereby these models in the
GN phase can be regarded as effective models originating from a QCD-like underlying
theory. More realistic predictions for masses and coupling constants should be based,
of course, on the full SM action including vector bosons and on the RG improved
calculations of low-energy parameters both in Higgs and in fermion sectors.

2. One can also show that in other phases explored in two-channel models in
[16, 18], such as the anomalous or special phase, the last CSR constraint cannot be
fulfilled for any choice of parameters. It means that such phases cannot be realized
in effective models motivated by underlying QCD-like fundamental theory. But the
question remains open about what kind of underlying theory could induce such phases
at lower energies.

3. The CSR requirement to the leading order prescribes the rather large gap be-
tween masses of the lightest scalar Higgs boson and Higgs bosons in the second dou-
blet. Meantime, all heavy masses are predicted to be nearly equal mp ~ my ~ mys.
Their relative splitting is defined by the next-to-leading order which requires to draw
a particular model for dim-6 terms in OPE.

4. It is remarkable that the above pattern for heavy Higgs particles corresponds
fairly well to the predictions found with the help of fine-tuning hypothesis [26].

5. There exists another way to build multi-channel (nonlocal but separable) quark
models [25] and it is of certain interest to develop the similar CSR analysis in that
approach.
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