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1 Introduction

A Lagrangian theory of tensor fields over spaces with contravariant and co-
variant affine connections and metrics [(L,, g)-spaces] [1] has three essential
structures [2], [3]: the Lagrangian density, the Fuler-Lagrange equations and
their corresponding energy-momentum tensors.

The Lagrangian density can be considered as a tensor density of rank 0
with the weight ¢ = %, depending on tensor fields’ components and their first
and second partial (or covariant) derivatives.

The Fuler-Lagrange equations can be obtained by means of the functional
variation of a Lagrangian density and of these of its field variables considered as
dynamic field variables (in contrast to the non-varied field variables considered
as fixed and non-dynamic field variables).

The corresponding energy-momentum tensors can be found by means of
the Lie variations (Lic derivatives) of a Lagrangian density and all of its field
variables (dynamic and non-dynamic field variables). By means of Lie varia-
tions (change of the field variables by draggings-along of the tensor fields and
their covariant derivatives) the corresponding energy-momentum tensors can

be found.

1.1 Lagrangian densities of type 1 and type 2

In accordance to the two different considerations of a Lagrangian density one
can introduce the following definitions:

Lagrangian density of type 1. Tensor density with weight ¢ = % and rank
0, depending on components of tensor fields (with finite rank) and their first
(and second) partial derivatives with respect to the co-ordinates as well as on
components of affine connections and their partial derivatives

; A
L = \/=dg. L(gi, Gisks Gisets V8, Va0 Vi), (1)
where L(2*) = L'(z*') is a Lagrangian invariant, ¢i; are the components of the
covariant metric tensor field g = g;;.dz'.de? = gug.e*.¢?, dat.dz? = Hda' @

dz’+do’ @dz'), gi; = g,i, VA p are components of tensor fields V or components

of an affine connection I' or P, d, = det(g;;) < 0,
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Lagrangian density of type 2. Tensor density with weight ¢ = ! and rank
0, depending on components of tensor fields (with finite rank) and their first
(and second) covariant derivatives with respect to basic vector fields and to

the corresponding affine connections

L = /=dy.L(gis, ks Gijurts V8 VA i VA i) (3)



where L(z¥) = L'(z¥') is a Lagrangian invariant, ¢;; are the components of
the covariant metric tensor field g, V4 g are components of tensor fields V =
VApea®el = VAR.0,4 @ de® with finite rank, A =14,..55, B = Ji--gps kL€
N, V4 g.; are the covariant derivatives of V4 g with respect 1o the basic vector
fields J; (or ;) (the Greek indices o, 3,... are related to a non-coordinata basic
vector field ¢; = e,).

From the propertics of the tensor densities and the invariant volume ele-
ment dw {4] the properties of the product L.dw determining the action S of a
Lagrangian systemn,

S = / Ldw | (1)
Va
follow. L.dw can be represented by means of the Lagrangian density L
Ldw=\/—dj. L 5 eqw? =L cpwt =
= /—d, L.d"z = Ld™z = L.dV, ,
d™z = da' Adz* AL Adz" , dimM =n , (5)

EA =& .in = €¢y.en s (5511...in =10 s
wA =de" AL Ads = et A LA

€i,..in 18 the Levi-Chivita symbol [4]. From

1
Ve(Lodw) = (€L + 5.1.g[Veg)).-dw = —dg (€L + é.ll.g[vfg]).df% . (6)

where €L = £.1; = L;.€, the relation follows between the action of Ve
and V; on L.dw

1 -1 .
Vel —cawt) = (Vel) —eaw” (7)

Ve(L.d™z) = (V,L).d"z | _ (8)

vEL = —dg{él/ + %_Lg[qu]} = (())
=/—dy(Ly + %'L'giigij;k)fk - l

Two different definitions ¥V, and ’V\7’u for a covariant operator , acting on
tensor densities (relative tensor fields) [4] as an automorphism in the relative
tensors algebra, could be introduced and applied in the lagrangian formalism
(1] for tensor fields. The covariant operator V, along a contravariant vector
field u = u' e, = u*.8, acting on a tensor density @ of the type

Q= (dr)".Q ,dx =det(K;) #0, K; = K}, , q€R,
Q=Q" pea® el = QY p.dc @da? |
A=u.4;, B=j.n., C=L.1, D =my..my,

is determined as

V.=V, + 2q. Pi-i,c./u’C .



Vo s the covariant differential operator [1], [5] along u. acting on tensor
fields [for example. on a contravariant vector field » = v¥.0p = .9,
Vaur =¥

k
)uu—(n +],,
or on a covariant vector field p = p.c* = py.da

vt =V e = (¢ +l

SRR

Vep=V,, p=u"N,p=(cpx + /kl pat et = p, Ik p) ot daet

Phe covariant derivative V,,Q) can be written in the forms

_2:((11\)(’VQ+[ W(di).Q =
B =V.Q+2¢. P Q=0 yiut r1v\\(H
=R pa +T8.QC 5+ 1") Q" p+ 2004

The " Leibniz rule’

“for differentiation ¥V, [(dy)7.Q] =
is fulfilled for V,Q from (10).

; (10
} cqate”

(dr )"V Q+[Vuldi)'].Q

For the introduced in (L, g)-spaces by other authors [1] covariant operator
Vu by definition in a co-ordinate basis {0} as

%” =V, + 2(].1”,,111c

with
UCJ = L(_{L\;)q‘vu(p) + [5711(@_){1](2 + 2(].(’7]\, » [k_a =
:VHQ_*_Z(]I u'Q QA k“‘(‘)\f\)({IH: (11)
=[O ha+T8,.QC 5+ PEQM p42q.P5.Q " glak.d, o dat
('kz - [);i, - [1. B

the first relation of (10) is not fulfilled. For tensor fields ¥, = ¥, %E =
Ve.

If the components K4 g of a tensor field A = K4 4.¢ AP
dz?

= 1\ B- ()4
depend on components of other tensor fields and their covariant deriva-
tives, 1. e. if

A B = ]\’A B(Vc 1)....) S
TJmr C =k ke, D =1,...

where A = ¢, .. . then the following
relations will be fulfilled afler a change of the tensor hrl\l\ to another tensor
basis:

an B= g

]'A’ Bo= IVA A

Lo .
.IH:H.[\‘1H .
i Al At
IA1:1“’1 /111

, TB’ — ‘,11, 2 ”“1“:” o
py 4 . ! ry .
I @ = Ay, k"---/1/c, N ITRE =Ap oAt
. ¥ .
NY g =h A H’(\ ¢ [)',...) \ 1<

Y “
b= Ty 1y
= h’l k'....h-: L
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e, BTVl D}( 4 ' K" g) A B o
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[t follows from the last expression that the partial derivalives of the com-
ponents of a tensor field with respect to components of another tensor field on
which the first components arc depending are again components of a tensor
field. This statement is proved by Schmutzer [6] (pp. 51-52) and is generalized
for spinor and bispinor fields [6] (pp. 36-37).

2 Variation operator

Variation (veriational) operator. Operator, acting on the components of tensor
fields in a given basis and mapping these tensor fields in tensor fields with the

same rank, with the following properties:
1. Action on a tensor field A"

5 K 56K K, §K € s (M),
K = 6K ea®eP =8KC p.0e 2 dal, K = K2 geae? = KC p.de o da?,
KAy Cr(M), 6KAycCr(M),zeM.

2. Action on a function f:
§:f—=4df, f,6f e C"(M).
3. Lincar operator with respect to tensor fields:

5((1.[\,1 + H.l{g) = (1.5[\’1 + [)’.51\'2 5
@ BeR(orC), Koeah (M), i=12.

4. Differential operator acting on tensor fields and obeying the Leibnitz

rule:
8(f9)=68fg+ [dg, [fgeC (M), [gens(M),
(Q@S)=00QwS+Q®S, Qew (M), Sexm™ (M).
5a. (Possible) commutation relations (commutation relations of type A)

with the Lic-differential operator:

(501:’,9} :£;,)O(S, (SO.:E(“ :,E,.“od.
50££‘£5€:££O(§.



5b. (Possible) commutation relations (commutation relations of type B)
with the covariant differential operator:

doVy =V 06, 60V, =V,068, 0Vi—Vsz=Ve06.

5c. (Possible) commutation relations (commutation relations of type C)
with the contraction operator S:

JoS=506.

From the properties 2. and 4. it follows that 61 =0, 1 € N C C"(M).

Proof: 8(1.1) = (81).1 + 1.(61) = 2.(81) = 61 : 61 = 0.

From the properties 2., 3. and 4. it follows that da = 0, =const. € R
(or CYy C C"(M).

Proof §(a.g) = a.dg = da.g+ a.bg: da =0,Vg € C"(M).

3 Consequences from the commutation rela-
tions of the variation operator with the Lie
differential operator

3.1 Consequences from dofy = £50danddof,, = £, 04

I. Action of § and £ on a function. From £5 f = 8;f = f;, f € C"(M),
6(£a,f) = 6(f;),£5,(8f) = (6f);, and 60 £5 = £5 0§ the commutation
between the partial derivatives along the co-ordinates and the functional vari-
ation of a function f follows in the form

6(f5)=1(8f); - (12)

2. Action of § and £3] on a contravariant co-ordinate basic vector field.
From £, 0; = [0;,0;] = 0 € T(M), it follows that §(£50;) = 60 = 0. On
the other side 4(8;) = 6(1.9;)) = (61).0; = 0.8, = 0 € T{M). Therefore,
8(£5,01) = £5,(80;) = 60 = 0.

3. Action of ¢ and £, on a contravariant non-co-ordinate basic vector
field. Iron the relations £, ¢5 = Cug”.€,, deg = (8l).eg = 0.e5 = 0 € T(M),
S(L£e,ep) = (8Cap").04, £c.(beg) = £.,0 = 0, and §(£,,e5) = £,.(deg), it
follows that

8C.z" = 0. (13)

4. Action of § and £5, on a covariant co-ordinate basic vector field. From
the relations £5 de* = (P}, + T;).de*, dda’ = (§1).dz' = 0.da' = 0* €



T=(M), §(Ly,dc*) = [5(Py; + I‘L)].dzk, £y (6dr') = 07, and §(£4 da') =
£5 (ddz'), it follows that

B(P +Ty) =0, 6P = ~6(I},) . (1)

5. Action of ¢ and £, on a covariant non-co-ordinate basic vector field.
From the relations £.,e” = (P2 + 12 + C,.%.c7, 8(£.,¢%) = [8(P7, + 17+

Cla‘ﬁ)].t", def = 0%, £, (8¢%) = 0%, and §(£.. %) = £, (8¢, it follows that

(P, + 10, +Cha”) =0 (15)
6. Action of 4 and £5, on a mixed tensor field. From the relations

£5,K = K* 5 ;.04 & da® + K* B-£5,(04 % dz?),
£5,04=0, (£,0,=0),  £o,da¥ = (Pp, + I']).da”,
F LB)] = —SDi Hk'[‘zj’ I)g] = —S[)l Hk-l)lzjv

£5 K =Ky, + (PE +TD).K"p].04 0 da® =

J

= (£3][\’A B)-BA & dl‘E,

6(£a] I\") = {(S([\'AB,J') + [5(})5 + fgj)].[X'A[) + (PEJ + ng).él\,AD}f)A @ do? =
= [0(£3, KA5)].04® dxB, 65,87 =0 (because of (5_(]} =0),
{16)
£3] (51\') = [(éf\’A B),j + (PII;J -+ ng).JI\'AD].(?A % drP =
= [f,a] (51{'4 B)].BA & dzB )
P 4T, = ~SpPH(P 41
and p. 4., it follows that 5(1’{% + f‘g]-) =0, JP,?J- = —(SIN‘QJ.
From the commutation relation 6(£5,K) = £5 (0K) ~ &6(£5 K" p) =
£, (6K* p) the commutation between the partial derivative and the functional
variation follows

§(K*p;)=(6K"B), . (17)

7. Action of § and £5, on a contravariant affine connection I'. From the
a]
relations

Vs, 0 = T'%.0k, 6(V5,8,) = 6758k,
L5, [6(V5,0))) = £5,(8T%.0k) = (8T%) 1.0k + 618, £5,0k = (6T5) 1.0k
£6,(V5,00) = £5,(T%.0p) = T ,.0c + T8 £5,00 = T'};,.0
8[£5,(Va,8:)] = 6(I'E )0k ,

i
the commutation between the partial derivative and the functional varia-
tion of a contravariant affine connection follows

(wa,‘k),l = 5(1‘jk,/) : (18)



2. Action of 4 and £ on a covariant affine connection 7. From the
relations

a8V drt)] = i’;,((JI’;J dr*) = ((5[’[]) rdrt 4 dP. £a,da*
’{:’l(ll = (I)lr‘l4 Im.l) ({Im .
€480V de)] = ()3 + (P + ) 61

mj)

].(/.rk

Lo (Vayda') = £, (Pgdr®) = Py deh + P gy deh =
= [lkj{ + (I)I:? + 1 Z}) (S[)iln]] dl'

(P, +T,) =0,
S (Vo de)] = [5(1};%,) (P AP ] det

mjy

the commutation between the partial derivative and the functional varia-
tion of a covariant afline conmection follows

(61),zlk)-1 = 5“7&-41) . (19)
9. From the relations
£(Vu(‘/j = vr"(’g — vr;’(‘“ — '['(("“ ('[i) A

(e, 0) = 8(Ves) - 5(V,»,,(u,) = 8[T(ca. )] .
§C 476y = (61‘7,“ — 51'31, ~8T,57)cy 8.7 =0

it. follows the condition for 87

it

Sl = 617, ~ 817, . (20)

fa

3.2 Consequences from d o £, — £5; = £, 04

L. Action of § and £¢ on a function. From the relations £¢f = £/ = &.f .
[ € Cr (M), £sef = (86)] = 0615, £(0f) = E(6]) = (81),.6-(3 0 &1
E5e)f = (L 08), it follows that 8(f,) = (8f); for V€ € I(M) [s. (12)].

2. Action of § and £ on a contravariant co-ordinate basic vector field ;.
From the relations £:0; = [€,0] = —¢& ,.0;, £6¢0; = —(38),.0,. §(£0,) —
£5E(')l = [—5(6] )+ (551),1].6]', ££((5d,) =0, (5 o] £5 - £5€)(), = (.ff 0d)d; =0
for V€ ¢ T (M), it follows the relation

(€)= (66 . (21)
3. Action of § and £; on a covariant co-ordinate basic vector field dat
From the relations
Leda = [f’ + (P + l o) E5)dr
Egedrt = [(36) , + (P 1 ). 86K ded . (58 o= 8L
S(Lpdety = [A(s' Q)+ A(I’_,k + I‘ik).f" + (P + l‘iu.&g*‘]xl.z--*



£((§(/1 )= £(07) =07,
O Eedr') — Lyedr' = £e(dda') =07 .
g)ﬁ SGTERINELE DN um+1;r‘:
(€)= (86) . B(Ph+ I‘Qk)
a commutation relation follows in the form

HE ) =(5€), . o S w0y = Il )

The last relation after using (21) leads to €8 [ 5(f* 1. f, 1) = 0 for VE* | €
("{M) and therefore, to the relation for f*4 and f,*

S f,) = 0. | (23)
From 8( P}, + I‘gk) =0and §(f'+.f;') =0, it follows that

SE )+ 8P+ T

S(I) = 8(f 1 U f; ™) = 81 = 100 f

and i
2t __ Nt .
(51ka— Jllk . (21)
4. Action of § and £; on a contravariant non-co-ordinate basic vector field
cy. From the relations

"Efcﬁ = ‘(6‘960 + C/g,y ".f’\’).(’“ s
Lseeq = —[eg(87) + Cgy 6870y
8(Leeg) = —[0(es€”) + Cgy " 067 + £7.6C5, %] eq
0(£eep) — £seep = £e(bey) =0,

the commutation relation follows in the form

S(esl™) = es(d¢") . (25)

5. Action of § and £, on a covariant non-co-ordinate basic vector field.
From the relations

Lo = [eal” + (DL ATT 4 Con N8,
e} = [B(e,8) 4+ 8PL + U, 4+ Con VO 4 (P 4 T 1 Cu P38

ay

SR+ 1T, + (o7 =0,
L1 = [ea(86%) + (&W+ua+(mﬂae]“

ul8E7) = [, [, (8€°)) 17, . £e(8e) = O
S(£ec”) — £55(’ﬂ = i'g(&f") =0

the relations follow in the form

B(eLE7) = e, (8€7) LSS pufs™) =08 f" 5 =55,
Sftg=frsbf .l



6. Action on § and £; on a mixed tensor field. From the relations
.f:f[\’ = 4 ;g.].fj.(')A o2} da® + K4 B-££(({)A & d‘ZB) = £51X’A 3.8,1 & dzB
£§(9A = SAm Cn.fm ,n.a(; N

i.‘deB = —[fﬁyﬂ + ([)7:7c + [‘Z){k]dxA )
£5[\’A B = KA B,j-fj -+ Scm .4n.["C B.fm n
*A"'Bm Dn.[\'A I)-[fm o + (Pﬂ + I‘ﬁ).fk] ,
the commutation relations follow in the form

(K% p;)=(8K*p), . (27)

7. Action of § and £; on a contravariant affine connection T'. From the
relations

3

Vesea = [0g.00 , 8(Vesea) = (6T0).e, , 8(e,) =0 |
Leld(Vesea)] = [€.e5(0T75) — (€587 + C5,7.67).6T e, |
,E(;E(Vcﬁca) = {(56‘5.65F;ﬁ — [65(567) + Cgp'y.éfp].Fgﬁ}.e,y y

5005’\/ =0 ) J(Gﬂfa) = e’@(éfa) )
the commutation relations in a non-co-ordinate basis follow in the form
6(651’15) = 65(5I‘Zﬁ) . (28)
8. Action of § and £, on a covariant affine connection P. From the relations
Ve, e* = Pg ef | J(V_eve") = 5P§7_.eﬁ , ~
£(Voe?) = (¢7.e,P8).67 + P2 lesé™ + (P, + 5, + Cpp ).£7).€°
H[£e(Ve, ™) = (667 .ea Pg, + §7.6(e. Pg)].e”+
+8P2 legt™ + (P, + [5e + Cpp 7).7].6%+
05 [6eg€™) + 8€°.(P5, + TG, + Cp, ) + §°-0(Fg, + 5, + Cgo ™)),
5(P§p + FEP + Cgp =0, 5(525") — 63(55,:) :
the commutation relations in a non-co-ordinate basis follow in the form

o(es Pg,) = es (6 P5.) . (29)

4 Consequences from the commutation rela-
tions of the variation operator with the co-
variant differential operator

4.1 Consequences from 60V, = Vyodand oV, =V, 04

. Action of § and Vs, onafunction. From the relations Vol =0, f=[,f¢
C(M), 6(Vy ) = 8(f,), Vo, (6f) = (6f);, and (Va, 06)f = (60 Vo )f, it

follows that
(5f),j = (S(f,J)



2. Action of é and Vja, on a contravariant co-ordinate basic vector field 4.
From the relations

Vo, 0 = %0k , 6(Va,0;) = 6750, , 60. = 0.,
Vs, (80) =V 0=0,
((5 o} Vg,])&- = (VBJ o 5)81 . 5(‘73]81‘) = Va]((gf)l) =0 s

it follows that
oIt =0. (30)

3. Action of § and V., on a contravariant non-co-ordinate basic vector
field. From the relations

Vieso = Fzﬁ.eW ,0{(Veseq) = g6y beq =0,
Ves(dea) =V, 0=0,
(60Ve,)ea = (Ve, 0 8)ea : 8(Veyea) = Vey(dea) =0,

it follows that
511;7 =0. (31)

4. Action of § and V5, on a covariant co-ordinate basic vector field dz'.
From the relations

Vo det = Piy.de* | 6(Vs,da') = §P.da* , 6(da’) = ddr' = 07,
Vo, (ddz') = V5,0 = 0*,
(60 Vs,)dz' = (Vg 0 §)dz’ : §(Va,dz') = Vg, (8dz’) = 07,

it follows that

5P =0. (32)

5. Action of é and V., on a covariant non-co-ordinate basic vector field .
From the relations

Ve,e® = Po.e?, §(Ve,e?) = 8P5.€, §(e*) = be* = 0",
Ve, (de™) = V0" =07,
(8 0V, )e® = (Ve 08)e": §(Ve,e®) = Ve,u(be) =07,

it follows that
§Pg, =0. (33)
6. Action of § and V5 on a mixed tensor field. From the relations

Va][\" = K4 H;j-aA [ P s
(5(Vaj [() = 6(1\"‘4 B;j).(?A ® dzP y
Vo, (8K) = (6K p),;.00 @ da?
(50 V)R = (Vi 0 8)K : 8(Vy K) = Vo, (61) .

10



the commtation relations between 1he covariant derivative and the fune-
tional variation follow in the form

S(KY ) = (6K )., . (31)

Irom the last expression, alter writing the explicit form of §(A B:,) and
(OW A g), us ng the expressions
KA, = KV, 4+ 18 Ky + PRKA ),
I = =S I PE; = =Sk, PEPL 08 =0
$1°A no_ v -
e, =0.6P5, =0 .4 L =0.8P, =0

SN g, )=6(h"y NEARINYS ‘B + PESKA
(SR y), = (614 H) + l"1 SN+ 1” SRA
SN o) = (AR ).

the commutation relations hetween the partial derivative and the functional
variation follow

S(K"p,) = (6K ), . (33)

7. Action of § and V;;J on a contravariant alline connection 1. From the
relations

;()*lk('?k. ( (;()
Vi (Va,8) = Vi (I ):(1,,+|"1¢n, D .
[V (Va,00)] = [8(I'5 )]0k .
V;,,[d(V;;J&)] (’1[61 ()k] = (S] )1 ()A + (\l k /;;,{‘)k =
= (6I5),. dk -0, :
3V (Va,0)] = Va[5(Vad)] .

O oI}, =0,

the commutation relations follow in the form
(L5 = (8T%), = 0. (36)

From 81", = 0 and §(I'i; ) = (6T%). = 0, it follows that the functional

variation of th( components of the contravariant curvature tensor is cqual to
zero, 1. e,

(g]gl =0 (37)

8. Action of & and V,> on a covanant affine counection f°.

From the
relations

Vi, dr' = = P da* ,5(V,; (/T)—(W” dr* .(5[” =(.
Vo ld (‘7;(11 ]— 5/“) .z +40 Y ;,(lr = (417, ‘]10'1 =0.
5{V (V;({I )]:[Y( )] (]I
SV (Vo dat)] = v,,,[&(v;,(/.r')] =0.

11



the commutation relations follow in the form
§(Pg,) = (8P) =0 (38)

From 6P}, = 0 and §(P} ;) = (6P);) = 0. it follows that the functional
variation of the components of the covariant curvature tensor is cqual to zero,
1Loe.

5P =0. (39)
9. From the relations
6[’;,3 =0,8T,;" = 51‘;;0 — 51'1[, —8C,7,
it follows that
0T.5" = — 6C,57 . (40)
4.2 Consequences from 6 oV, — V45 =V, 04

1. Action of § and V, on a function. From the relations

Vef=&f=8.0,, JeC(M), Vif=(0f=
(Ve f)=68(Ef) = 8(&.1,) =8¢ .1, +&-6(4,)
(Vef) = Visef =8.6(1,) Vebf =E£(6]) =¢.(8]),

66]‘.[,) b

the commutation relations follow in the form (12)

8(f;)=(81), (in a co-ordinate basis),
8(eaf) = e (éf) (in a non-co-ordinate basis).

2. Action of § and V¢ on a contravariant basic vector field (e, or 8;}. From
the relations for ¢, (analogous relations are valid for d,)

Veea = €. Vo,eq = gy,
8(Veea) = 8(67.Vpea) = (55”-1‘19 + 5”-51‘10)-6& :
Viseen = 55‘3.V8ﬁea = 56*’].1‘;"67 ,
§(Veeo) — Ve, = .fﬂ.(ﬂ’zﬁ.e;, ,
Ve(de,) =V 0=0,
8(Veen) — Vseeo = 08T 5.0, = Ve(de,) =0, VE€ T(M)
fﬁ.él’zﬁ =0,

the following relations for the variation of I (or I‘;k) arc fulfilled [s. (31),

{30))]

8174 = 0 (in a non-co-ordinate basis), 6T, = 0 (in a co-ordinate basis).

12



3. Action of § and V¢ on a covariant basic vector field (e* or dz)

. From
the relations for ¢ (analogous relations are valid for dz)

Vee® = .V, e = 5’7.1);,7.6‘6 ,
§(Vee) = 8(67.V o, e%) = (8¢7.P5, + €.6P2,). |
V(;ge" = 5£W.Vh€a = P§7.5§7.eﬁ .
d(Vee®) — Ve = 67.5]?;7,60 ,
V{(ée") = v€0* =0 s
H(Vee™) — Viee® = £7.6P5 €% = V(6e*) = 0
£.5Pg =0 for V€ € T(M) ,

b

the following relations for the variation of PJs (or P}y are fulfilled [s. (33),

(32)]
§#)53 =0 (in a non-co-ordinate basis), §Pj, = 0 (in a co-ordinate basis).
4. Action of § and V; on a mixed tensor field. From the relations

VE[X’ = 1\’A B/a.fa.EA @ €B s
S(VeK) = [6(KA p£)].e @ eF =
= [60.5([(’4 B/a) + Jfa.IX'A B/a].eA ® eB
Vgg[\" = K4 B/OAéfa.eA ® eP y
S(VeR) ~ Vik = €2.6(KA p;,).en @ P
VC(SA' = (5[\’/1 B)/Q.fa.eA 2 eB
§(VeK) — Ve K = VeSi |
€. 8(K o) = (6K p)ja b, VE € T(M) |

the commutation relations follow in the form [s. (34)]

2

ki

¥

(K g/a) = (6KA B)/a (in a non-co-ordinate basis),
8K g;) = (6K4 B);i (in a co-ordinate basis)

By means of the relations

6(1\"4 B/a) = (5(6(1]\”1 B) -+ Féa,(SA'CB + Pga.(SI\"A D,
((5[\’/1 3)/{, = GQ(JIX’A B) + I‘éa.élx’cg + Pga.(SI\'A D
(because of 818, = — §(S¢, Iy.) =0,
6Pg, =~ 8(Sp,PP.P],) = 0),

commutation relations follow in the form [s. (35)]

Slea KA gy = ea(8K4 5) (in a non-co-ordinate basis),
S(K4g;) = (6K* g); (in a co-ordinate basis)

5. Action of § and V¢ on a contravariant affine connection I'. From the
relation

Ve(Voeq) = Ve(lg.64) = leolng + 207, ,
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commutation relations follow in the form [s. (36)]

8(esl25) = €,(8T75) = 0 (in a non-co-ordinate basis),
8(I%,) = (8T% )1 = 0 (in a co-ordinate basis).

6. Action of § and V; on a covariant affine connection P. From the relation
VeV, e”) = Vg(ng.eﬁ) = (engw + P;W.Pga).f".ﬁﬂ ,
commutation relations follow in the form [s. (40)]

5(601357) = 60(5135’7) = 0 (in a non-co-ordinate basis),
J(Pjik_[) = (5P;k)‘, =0 (in a co-ordinate basis).

5 Consequences from the commutation rela-
tions of the variation operator with the con-
traction operator

If the variation operator commutes with the contraction operator, i.c. if the
commutation relation

§oS=S08, (11)

is valid, then by means of the relations in a co-ordinate basis or in a non-
co-ordinate basis

S(de' @ 9;) = [';, S(e*®eg) =[5,
(6085)(de" @ 3;) =815, (60 5)(e” @eg) =0f4,
Hdr'® 0;) =0 ®" (M), 8e*®es) =06 @' (M),
8(dz') = 0", de* = 0", 89, =0, 6¢;=0,
(608)(de' ® 8;) = (So0d)(dz'®8;) =0,

the conditions for 6 f*; and §f% 4
8f;=0, §f*p=0 (42)

follow.

Since the contraction operator commutes with the covariant differential
operator and with the Lie-differential operator the following commutation re-
lations can be used if the variation operator commutes

{(a) with the covariant differential operator:

Vy, 0 (60S)=1(609) oV, , (13)
(Sod)oVy =V, 0(Sad), '
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{b) with the Lie differential operator:

I'rom the relations (12) and

(,f,‘,;] odo S')((IJ-’ & ()k) = ,f;,) o) (S)/z L= ((Sfl k),] =0.
(Sodody ) dator D) = (80 £y) [ % =d8(f4,).

it follows <hat

S = (6, = 0.
8P+ 17 ) =0 (because of £a,08=3804y). (13)

g g

S[P AT )] =0

mj T L

From the commutation relations V;;] 0doS = Sodo Va,. Vi o 6=4do V;;]
and 08 = So04d it also follows that

([ k) = (61, =0

The method using commutation relations of type A is the common (conven:
tional) method wsed in the classical field theories and could be called method
of Lagrangians with partial devivatives (MLPD). The method using commuta-
tion relations of type B is called method of Lagrangians with covarian! dervie-
atwes (MLCD}. In this case the affine connections appear as non-dynamic
fields variables and the variation commutes simultancously with the partial
aud the covariant derivatives of the tensor fields components. The commu-
tation relations of type C could be used when the contraction tensor field
Spo= 1.0, 09 de? = 4.0, & ¢ is considered as a {fixed) non-dvnamical
tensor field or when Sr = Kr = g;.a, ®dr? = gg-Co & e, te. when the
contraction tensor field Sr is equal to the Kronecker tensor field K. In botl
cases d 0.5 = 5 o4 appears as a sufficient condition for af; =0.

The MLCD has been used in the Einstein theory of gravitation [7] for
finding out in a trivial manner the Einstein equations and the corresponding
energy-momentum tensors. It has also been used for constructing the Finstein
theory of gravitation in (V,,, g)-spaces [§].

6 Conclusions
In this paper the variation operator is introduced and its commutation relations

with the covatiant differential operator, with the Lie differential operator and
with the coutraction operator acting on tensor fields are considered. 1t is
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shown that the commutation relations of the variational operator with the
covariant differential operator lead to necessary conditions for the application
of the method of Lagrangians with covariant derivatives in (L, ¢)-spaces. In
this method the affine connections appear as non-dynamic field variables and
only the tensor fields and their covariant derivatives as constructive elements
in a Lagrangian density take the role of dynamic field variables. This fact
distinguish the MLCD from the MLPD and could be used in entirely covariant
Lagrangian formalism for describing tensor field theories over differentiable
manifolds with affine connections and metric.

The authors are grateful to Prof. A. N. Chernikov for interesting discussions
and to Prof. D. [. Kazakov for the kind hospitality at the Joint Iustitute for
Nuclear Research. This work is supported in part by the National Science
Foundation of Bulgaria under Grant No. 1"-642.
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Matnos C., Iumurpos B. E2-98-205
(L,, g)-npocTpancTea. BapuaumonHsiii oreparop

Onpenenex BapHALMOHHBIN ONEPATOp KaK TMHEHHBII avddepeHIMaNbHEL Ore-
paTop, ICHCTBYIOIMI HAa TEH3OPHOE MOMNE B 3aNaHHOM Gasuce. BpeaeHsi KOMMY-
TalMOHHBIE COOTHOMICHHA 3TOrO onepatopa ¢ audrpepeHunanbHLIM onepatopom Jlu,
C KOBapHaHTHLIM AU(eEPEHIMATBHEIM ONEPaTOPOM H ¢ OnepaTopoM CBEPTKH
(koHTpakuuu). lNomyueHsl cneacTBUS MPUNOXEHMH 3THX KOMMYTaUHOHHBIX COOTHO-
IUEHHH BAPHALIMOHHOrO OMEPaTopa K Pa3sHbIM audepeHUHaTbHO-TEOMETPHYECKHM
06bexTaM (PYHKIMAM, CBAHOCTAM, TEH30PHBIM No/1sM). Ha 270l ocHOBe onpenene-
HBbI 1BA THIIA J1aTPaHXEBbIX METO/IA: OOBIYHbIH (KAHOHHYECKHIT) MeToN JIarpaHXHaHoB
€ 4aCTHbIMH npou3BognbiMH (MJTUIT) n meron narpanxmuaHoB ¢ KOBapHaHTHBIMH
npou3BoaHsIMH (MIIKIT).

PaGora sbinonuiena B JlaGoparopumn teoperuyeckoii ¢u3nku um. H.H.Borono-
6osa OUSIU.

Mpenpunt O6beNHHEHHOrO HHCTHTYTA AAepHbIX UccaenoBauil. [Iy6Ha, 1998

Manoff S., Dimitrov B. E2-98-205
(L. 8)-Spaces. Variation Operator

A vanation operator is determined over (Zn, g)-spaces as a linear differential

operator, acting on tensor fields in a given basis. Its commutation relations with the
Lie differential operator, with the covariant differential operator and with the
contraction operator are imposed. The corollaries from using the different
commutation relations in a Lagrangian formalism are found and two types of
variation methods are distinguished: the common (canonical) method of Lagrangians
with partial derivatives (MLPD) and the method of Lagrangians with covariant
derivatives (MLCD).

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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