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1. INTRODUCTION

"The spaces with different (not only by sign) contravariant and covariant affine connections
and metrics [(L,, g)-spaces] have, on the one hand, all properties necessary for their use as
models of the space-time [2] - [4] and, on the other hand, they have interesting properties
which distinguish them from the usual spaces with one affine connection and metrics
[(Ln,g)-spaces]. At the same time, they provide a differential-geometric background for
considerations analogous in some sense to that of the bi-connection theory of gravitation
[11.

Contravariant and covariant tensor fields considered over (f,.,g)—spaces have as in
(Ln, g9)-spaces tensor bases constructed by means of tensor products of bases of one and
the same vector space [tensors of ®' ,(M) are constructed by the use of 2 ® tensor
product of basic vectors of T:(M), tensors of ® (M) are constructed by the use of
@ tensor products of basic vectors of T (M)]. If the tensor basis of a tensor at a given
point £ € M are constructed by means of basic vectors of two different vector spaces at
z € M, i. e. if the tensor basis can be represented in the form

(®*(ea)] ® [®u(e?)], K, leN,

where
®"(ea) =€, ®€a;@...B€a, , €q,/z € N(M),
() =ePr Qe Q.. @eft |, o /z € L (M),
dimN, =k, dimL,=!, i=1,.,k, j=1,.,1,

and a tensor K in the given basis at a point £ € M can be represented as

K: = K4 5(z).eq r®eB/, ,
€ajz = (o, ®€a; ® .. Qe )e, ¢ e={eP1 @@ . e,

then K is called mired tensor field of rank ®*; at a point z € M. If N (M) =T (M)
and L(M) = T; (M), the K is called mized tensor field with contravariant rank k and
covariant rank | at a point z € M.

Definition 1. A mixed tensor field K with contravariant rank & and covariant rank |
A tensor field K -z — K. (M), K. (M) = K(z) € @, 1= (M) [or K(M) € (k, 1) (M)],
(M) = [B*T(M)] ® [T (M)].
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In a co-ordinate basis a mixed tensor field K can be written in the form

KR = I(AB.HA ®d1’B , 0a = 8,-1 ® A..®8,‘k R (1)
d‘L‘}}:dIJ‘@“.@dIJ[ y A:il..ik, B:JIJI .

In a non-co-ordinate basis K will have the form

K:]\"AB.CA@)eB , €A =€q, @ ... Qe€q, , 2)
B et A=a.ar, B= BB

Mixed tensor fields of one and the same type (with equal contravariant rank and equal
covariant rank) fulfil relations determined by the properties of the tensor product ® and
by the properties of the vector spaces to which the tensor fields appear as sections:

1 (K14 K)@V = Ki@V+K,®V, Ky, Kz € @F (M), V € @' m(M) [distribution
Jaw with respect ‘o @ (M)].

2. K@o(WVi+Ve)=RKaVi+ KoV,, Vi,Vh € @' (M) [distribution law with respect
to &' (M)

3 aheV =a(leV)=Ke@aV , a€R for C, or C"(M)], K € ®F (M),
Ve m(M).

4. KgpV
VEQ m(M).

5 K 4 Ky=Ka, K;egb (M), i=1,23

6 (et N =aK+3K, Kea* (M), o feR for C, or CT(M)].

There are some special tensor fields related to the action of the contraction operator
on mixed tensor fields.

il

BK@V)=BKeV ,feRlorC o C(M), K& (M)

2. SPECIAL MIXED TENSOR FIELDS
2.1. Kronecker tensor field.
Definition 2. Kronecker tensor Jield Kr. A mixed tensor field of second rank which
components i a given basis are equal to the Kronecker symbol
Ar = gjv Siorda! = yg5.en @ A Krew (M),
= L =g gi= 11 o=
bo, i#J 10, a# 8

‘The properties of the Kronecker tensor K7 are determined by its specific coustant
components in a vo-ordinate or in a non-co-ordinate basis

Ar = ggce® ef = gg,l.cm % e =y R e = )
=gl 0 dal = gd @ del’ =0 m drt )
W o, ,, ,
SUKr) = 3 Slea @) = g5 Sleae’) = g5 ST =10 =T
{b)

Kr{u) =58 (Kr@u) = SP (95 -ea® e? uYey) =
=ggu".5 e";ew).ea = gg»fwfﬂyea =uY fieq = [Hyu e =
=ufe,=u, ur=f*,u’, u, UE T(M).



p(Kr)=S"(p® Kr) = 574 (py.e? ®gfea@e’) =
= P'y-gg~5‘ya(5‘y, ea)fﬁ = P'y-ggf‘ymeﬁ = p'y~f7[1-€ﬁ =
=p5¢" =B, pg=F"ppy., p, PET (M)
If S = C, then the properties of Kr determine the well known properties of the
Kronecker symbol:

(a1) C(Kr) = gg.gg =n, dimM =n.
(b1) (Kr)e(u)=u, ueT(M). (1)
(c1) pc(Kr)=p, peT*(M),
where
(Kr)e(u) =CP (Krou) pe(Kr)=C",(p® Kr) .
C? ., is the contraction operator ' acting on the basic vector fields e and ey.

Action of the covariant differential operator on the Kronecker tensor field.
The action of the covariant differential operator on the Kronecker tensor field is determined
by the general conditions for its acling on mixed tensor fields. On the grounds of the
specific constant components of the Kronecker tensor, the covariant derivative along a
basic vector field determines the relations between the components of the contravariant
and the covariant affine connections.

The covariant derivative of the components of the Kronecker tensor field along a basic
vector field determine the relation between the components of the covariant affine con-
nection P and the components of the contravariant affine connection T" by the condition

P +T1g, = _qg’/AY (in a non-co-ordinate basis),

X ) 5
P+ T = g3, (in a co-ordinate basis). (5)
The preof of the last statement follows from the relations
VeRr = V(g ea ®e?) = 95748 -€a ® ef = (6)
= Vel(g; .0 @ dad) = g};k.fk.(?,- ©dxi , £e€T(M),
96/n = 95 + U3y gh + PR g8 = Pg + I (7)
¢vg5 =0 (in a non-co-ordinate basis)

s

Tk = Gt T+ Pl = T34 Py
954 =0 (in a co-ordinate basis).

From (7) and (8), it follows that the necessary and sufficient conditions for the eris-
tence of a covariant affine connection P different only by sing from a contravariant affine
o N Ja _ Do ST RN L¥1 . iy
connection T" (i. e. Im = Fﬂw' Ijk = Ijk) are the conditions

95/, =0  (in a non-co-ordinate basis), 9)
9% =0 (in a co-ordinate basis). '

From the properties of the Kronecker tensor field and its covariant derivative along an
arbitrary given contravariant vector field € we can find relations between the components
of the Kronecker tensor and its covariant derivative.



(10)

In a co-ordinate basis
6=k Th(5a)m = 280m
(6 8o = Gt + G0 0L(95.90)im = Ghm 91+ k-GEm (11)
A VE[Cjk(KrQbIA\’r)]A:VgKr, s=C, 12
G w(Kr @ Kr) = CF k(g8 ® dad ® gF 0 © da') | (12)
» (3 ((Kr © VeKr) = Vekr , S=C, 3)
Ci e (Kr® VeKr) = O (gy.0: © de? © g5 €70k @ dz')
Cil(VeK @ Kr) = K% p;.6.048 deP @8, S=C,
(14)

I\"Ai B3 .g:‘ = I(Ak B
B~ K¢ p.dc @dz? .

Kr = g{‘.ak [o29] dz! ., K= K4 B.0a® 9; @ dz
ive of the components g5 of the Kronecker

g;-;k = P;k + F;k is called covariant derivat

tensor K7 in a co-ordinate basis.
;- S =e¥.C:
(15)

Special case: fii=¢%g
G = Pt Tl = ough, VeKr=a(6).Kr, 4() = oLt
fij,k = Plik'fl j +I‘S-k.fi[ and 1ts

The last relation follows from the condition for f*; :

explicit form.
Action of the Lie differen
action of the Lie differential oper
its action on the tensor basis of K
LeKr = £¢(95 €0 ® M) = (€93)ea ® P+
+95.(Leea @ e +ea ® Lee?) = g5 (£eca © ef teq® £ee?) = (16)
= £Eea®e"+ea®£56"‘ , E95=0.

tial operator on the Kronecker tensor field. The
ator on the Kronecker tensor field Kr is determined by

On the other side,
9§ Leea = (= g5 cal’ + 95-6°.Csa )by =
(17)

= —(ez&" — E@C,sﬁ").e., = Leep
a5 ._iigeﬁ = gg.kﬁ_a,(f)Ae"' = ke 5(5].eﬁ =
[ea€™ + (Pgy+ FEW + Cpy T).£7).eP = £ee
—(eak® ~ £V .Cya?)ep e+
Ca ® Eﬁ s (18)

£eKr = L'Ee(,_@ e +eq @ Lee™ = —
@ ept™ + (Pgy + TGy + Uy 5.1’ = (ffgfa')

+ €a
Legg = —lep™ =& -Cyp®) + epl™ + (P + Gy + Cy .87,
L2 = g5 & = IHAE 1y = Tyo * &) + 95067 g~ Tps T€0) = (19)
= g, € = (6% 15 = Ton “ ") + (&%~ Toy 5 £7) - '
In a co-ordinate basis
LeKr = (Legh).0: ® dzi | B
&)+l (6Fy Tt E) = (20)

Legh = Q;kak — gk (&% - Tt g
g€ = (€, T ) (€~ T €



Special case: f ; = e“".g} S =e¥.C:
F =gl Legi =gl 65, EKr= VK 21
fit=e 95 Egj—gj;kfv ¢AT = VeAT . (21)

Action of the curvature operator on the Kronecker tensor field . The action
of the curvature operator on the Kronecker tensor field determines the relation between
the components of the contravariant and the covariant curvature tensors.

In a co-ordinate basis

[R(ak, 6,)]Kr = [R('ak, 6{)](_(]}6, ®_dzj) = (R‘J-k[ -+ P'vjkl)ﬁ,' @ dr! = (22)
= (g};l;k - g_;';k,l - g;,mﬂk m)(')’ ® dx’ ’
R i+ Pl = Gk — Tkt — Gy T ™

23
P ik = R ji+ g — ikt = Gy Te ™ (23)

Action of the deviation operator on the Kronecker tensor field . The action
of the deviation operator on the Kronecker tensor field determines the relation between
the Lie derivatives of the contravariant and the covariant affine connections.

In a non-co-ordinate basis

[£T(€, e3)]KT = [£T(€, 1)) (95 €0 ® ¢°) =
=95 [£L(€ e5)](ea ® €”) = g5 {[£T(€, 6)]ea} @ e/ +

24
95 €a @ {[LT(€ e1)]e’} = g5 £T 05 ® € + g5 e ® £ PL . = &4
= (££Fg~, + £EPHQ'7)'BOI ® 60 y
where
[E0( ex)lea = £eT0y05 ,  [LT(E,e))e” = £.Pf f (25)
In a co-ordinate basis
[£T(€, Ok)IKT = (£¢T5x + £ Py).0; @ dz? . (26)

The action of the covariant differential operator on a product of an invariant (invariant
function, form-invariant function) and the Kronecker tensor field is determined by its
action on a product of a function and a mixed tensor field

Ve(L.Kr) = (V¢L).Kr + LVeKr = (EL). Kr+ L(VeKr), (27)
L'(z*') = L(z*) e C"(M) ,
where L(z*) is invariant function with respect to diffeomorphisms, which are local
transformations of the co-ordinates {z*}.
In a co-ordinate basis

Ve(L-Kr) = (L.g5)u-£5 .8 @ dz’ = (g}.Lx + L.gi) 6.8, @ do? | (28)
(L.g})u = g Lx+ L, Li=Ly, (29)
(Lgl)y=Lgl;+Li, Li=(Lgl),;- Lgl;. (30)



The action of the Lie differential operator on a product of an invariant function and
the Kronecker tensor field 1s determined by its action on a product of a function and a
mixed tensaor field

£e(LKr) = (L) Kr+ LLKr = (L) R+ L.(LR7) . 31)
Li(z*'y = L(z*) € CT(M) .

In a co-ordinate basis

Le(lgh) = Le€"gi+

i i i a1 32
-+ 1/<[g;;k-£k - (Ei e Ijk ik) + (E F ]lk fk]] - ( )
Special caser [ = e?.95 S =e?.0"

Le(L.Kr) = V»E(L.Kr) , (33)

Le(Logh) = (Lagy+ Lgsx) €= (L.g3) k€5 .

2.2. Contraction tensor ficld. The functions f* 5(z*) and f' ;(z*) obtained as a
result of the action of the contraction operator on basic vector fields of non-co-ordinate or
co-ordinate basis have transformation properties of components of a mixed tensor field over
the manifold M. On this basis the uotion of contraction tensor field can be introduced.

Definition 3. The mixed tensor field St = [* g.ea® ef = fli0edet s called contrac-
tion tensor field Sr.

From the action of the Kronecker tensor field Kr on itself, i. e from
Kr(hr) = (95 -€a @ e)(gh o ® ef) = 5% 5 (g8 Ca R ", Gh0a & ey =
= gﬁgg.S(e",ea).ca @el = g2 g5 [0 a® e = fr e mef = 8r,
the relation between Kr and S follows
Sr=Kr(Kr) . (34)

The components of the contraction tensor field Sr obey the conditions for the com-
mutation of the contraction operator S with the covariant differential operator

erft = PR f g AT T F k= Phed e (35)

The action of the covariant differential operator on the contraction tensor field St is
determined by its action on mixed tensor fields as well as by the relations which have to
be obeyved by the components of Sr in a given basis.

The action of the Lie differential operator on the contraction tensor field 57 is deter-
mined by its action on mixed tensor field of rank {1, 1) [or @' ((M)].

In a co-ordinate basis

Sr = fi]'.(?,‘ @ dxt N LEST = (Lffi J)()._&X) da? - a6
el = [ € — 15 (6~ T €+ Sl = TR 8 (36)



The action of the curvature operator on the contraction tensor field St is determined
by its standard action on mixed tensor field of second rank (1,1). At the same time, on
the basis of this action, the integrability conditions for the equations of the components
of the contraction tensor field can be found, if the components of the contravariant and
covariant affine connections are considered as known {given) functions.

In a co-ordinate basis

[R(Bk, 8)]Sr = [R(Bk, 8)](f* ;.01 @ dat) =
SUT 3R met+ [ P™ j10).8, @ da? = (37)
=gk = awed = 5 T ™). 0 & dad

R+ Ploi=f i — f'_j;k;l + 1 ym T ™

. ) ’ (38)
B =" R ks Pyu=fnPmu.
After some computations we obtain the conditions
(RK 376-9: + pP“ 0‘15‘95_)‘-f0 x = R" ﬂwﬁ»fa « + P¢ a“ré-fa 8= (.;9)
= Ra/i'yé +]Jn576 =
In a co-ordinate basis, the last relation has the form
(R jkign + Plaktgl) fhm = B i f' o + Pt 7 =
— pi i . (40)
=R kit Plg, =0
From the integrability conditions for the equations (35)
Fokr—F6=0, {41)
where . . )
Prakn = P+ P PO G+ (U 4+ T T )k i
H T+ P RO I AL )
after some simple caleulations we can find the relations
Frikae—fgun =R e S+ P e 1P o= (i)

= “([C"'Jk(.fzm + 1 nk{-f” _,} =0

Therefore. tae conditions (40) appear as integrability conditions for the equations
(35}, determining the action of the contraction operator if it commutes with the covariant
differential operator. These conditions can be found directly from the conditions (41), if
the structure of the components of the contravariant and the covariant curvature tensors
is well known, or they can be obtained if the conditions, following from the commutatiop
relations between the contraction operator and the covariant differential operator, are
imipose on the components of the contraction tensor.

The action of the deviation operator on the contraction tensor field is determined by

its action on mixed tensor fields of second rank (1, 1).

[£1(8,06)]Sr = (f' ;. LeTiy + f11.Le PLL).6:i @ da? (44)



2.3. Multi-Kronecker tensor field.

Definition 4. The mixed tensor field MKr = gg,eA@)e =45. 8o ®@dz? is called multi-
Kronecker tensor field of rank | (A = 1.4, B = j1..1, C = ki ki, D= my..m,
{=1,2..,N, l=rankgB).

The properties of the multi-Kronecker tensor field are determined by the properties of
the multi-Kronecker symbol. If we introduce the abbreviations

MKr=g4 ea®eB | K=KCpec®el,
rank MKr =1, rank K =@ (M) = (1), (45)

the properties of M Kr can be proved:

(a) CBo(MEr®@K)=K = CB (MI\r K). CB K is the contraction operator S = C
acting on the indices B and C and CB (eB,ec) = gB.

(bYCP 4 (K@ MKr)=K.

(c) C (MI\r®Ix)~I\ =Kpel ®ec.
(d )CAB(MI\T)_n n=dmM. . ‘
(e) S MI”‘) = 93<SAB(€A)EB)) SaBlea,eP) = fBa, fPa=fri

— . I
F=g. P $% w0k = T
() CBc(MKr® MKr) = MKr.
If we introduce the abbreviations

MEKr=ghes®e?, rank MKr=1,
K=KCpec®el  rank K = (1,1),

then the properties of the multi-Kronecker tensor field can be proved

(a) V¢[CB (MK r@A)] = OB (MKr@VeK)=VeK, (94.KCB);y =98 KBy =
K gy, (98K p)s = 98 K Bk = K* By

(b) CP 4 (VeK @ MKr) = VE[C A(K®@ MKr)] = Vf K,

CP (K @ MKr) =K, . (K¢ D 93)/‘1 = K¢ D/~- QB = I\ Bfy»

([\'A (;.g;}),k = K4 (.-;k-g,(é = K4

2.4. Multi-contraction tensor field.
Definition 5. The mixed tensor field
MVr=Spaes® es ® eP wer =
= Spi A]ﬁA & ﬁj ® dz® @ dz? ,

A=dy.a, B=j.g1, .
Ba=08, @ .0, df=dsh @  &de? .

Definition 6. is called multi-contraction tensor field of rank |+ 1.

The properties of the multi-contraction tensor field MVr are determined by the prop-
erties of the multi-contraction symbol.
Let

M\’r:SBaAﬁ.eA@egQ;e @ e, Q:QCD"’.ec@eD@en, ,
A=a,. .o, =H/..08, C=vm1..m, D=4,



be given. The the following relations are fulfilied for the tensor product MVr Q)
CAP(MVr®Q)=Spa PP Qp el e wec @ey . (46)
CaPPeMVrRQ) =552 QF pTes@e® ®e, = (47)
:Qam’aﬁg Ze* Qe Q{X”‘G = SBa D"’,Q” n_Y. !

The prepertics of the components of the multi-contraction tensor field MVr could be
used in the construction of a Lagrangian formalism for tensor fields over differentiable
manifolds with contravariant and covariant affine connections.

By the use of the tensor fields

MVr = Spa®Pea® es & ePwer . Q= QC p e @ €y
the following relations can be found:
VelCa PP c(MVr@ Q)] = CaPB o(MVr @ VeQ) (18)

where J, "% = Sp, PP.QB p .
In an analogous way,

7;(1 8 /p = (SC(: AﬁAPC A’Y)/n = S(J(x AB-P(: A’Y /e (49)
where MVr & ®k+1 k+1(AM), P S ®k+1 k(A)W), A= (£ It ' C = Hl...ﬁk.

LCAPE c(MVr@ Q)= Ca PP c(MVr £:Q) (50)

£:Q, 8 = £:(Sha D3RP ) = Spa Dﬁ-foH p . (51)

In a co-ordinate basis

_ . . . _
Q= (Sp P .Q k) =S PIQP k. (52)
L ek —
75-Q:% 4 =@ gl = QN &= 1=
=(Sp QB p )k = Se Q8 pE
Pkl = (Sei M .PC 4%) = Sci M .PC 4Ry

)
h

gL PR =P gk = PR g = (S M PO AR e = S M P Atk (53)
£eQ: 5 = 8p I £,QF pk, £ePiM = Sci M £ P04 (54)

where o T o ‘
Q" = 8p: P1.QP p*, PN = 8ei M PO,k (55)

By the use of the special mixed tensor fields different structure can be found, connected
with a Lagrangian formalism and its applications in theories constructed on the grounds
of tensor fields over differentiable manifolds with different contravariant and covariant
affine connections [2] - [6].
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3. SYMMETRIC TENSOR FIELDS
Let 1 be a covariant tensor field of rank k : B € & (M):

B = Bade? = Be.o© = By, i, dat @ . @de™ = Ba, a6 0@ ek
1 k 1 k

and let B be a contravariant tensor field of rank & - B e ®y(M):

B=TBA0,=BCec=DB" %8, & . Q0% =87 .8

For every covariant (or contravariant) tensor field a full symmetric covariant (or con-
travariant) tensor field (B3 {or +13)

s8 = Bg, o.dr' o drtt = Ba,. o) €Tk
B=DBlow g, 8, =Bl e

' (56)
€y g

can be found. The components of (B (or . B) are not changing under a change of the
order of the indices. The same is valid for the basic tensor ficlds. They do not change if the
place of the basic vector fields [(de?r | e®t) or {8, €q,)] In the tensor basis [(dz™....dz'*,
e or (0, Ois €ay - -Cay)] ATE changing their places.

B, iy are the components of the full symmetric covariant tensor field B in a co-
ordinate basis. They can be constructed by the use of the s. ¢. symmetric Bach brackets
[7] (p. 41). The following decomposition formulas are valid for the symmetric Bach
brackets:

H(n” i) & i?-[B(iu; Tk—1)ik + B(nt:. ik—2tk)ik—1 + B(lnz U o

a7
ot Biigis a0i) = (Bl s Gnie) - (57)

The transposition (interchange of pairs) of indices does not change the value of the
corresponding components of B:

Biiria i) = Bliziv i) = Bliria decin) = Bliyi, eivo) - {58)

Since a permutation of symbols may be obtained from a scquence of permutations {8]
(p.93) the components of B does not change under a change of the row of the indices (a
change of the order of the basic vector fields building the corresponding tensor basis). A
full symmetric co-ordinate (or non-co-ordinate) tensor basis is denoted as dr(d)

dzt) = dri doi .. dz'* elA) = et g2 | Mk

3(A) = (7,"...6“ N 6(A) = €qa, - Cay -

(59)

Remark 1. If some of the indices are not included in the procedure of symmetrisation
they are put between straight lines: (iyiz... | _1iii41 g2 k)

If we consider the procedure of a symmetrisation as an action of an operator Sym
{called symmetrisaiion operator), then we can define the operator Sym and its action in

the following way [8] (pp. 88-81):

Definition 7. Symmetrisation operator. The operator

11



Sym B — SymB = B, B, BeacM),
Definition 8. is called symmetrisation operator.
Here,

B =58, ;. .dz'® @ dzix = Ba, o €& .. 0%
B =Bg, iydeh o dett = B gk

(44
¢ k

oy € s

1 . 1 - )
B, iy = P Z Bi, dz' . drtt = — Z dz"' & .&dz' | (60)

k!
(i k) {11 k)
1 -— 1 —
[f((‘lx L) < p Bal. T eX e = p Z‘ e Q... ek (bl)
" (. ag) " {ay. o)

{#1...ix) or {o1...ax) denote all permutations of the indices i; or ar ({=1,...,k). Thus,
+B is invariant with respect to the permutation of the indices in a given co-ordinate or
non-co-ordinate basis.

Analogous considerations and formulas can be found for contravariant tensor fields:

Sym : B - SymB = ,B B, ,Be ®k(M) ,

where L .
3 = B O ®..Rd, =B™ TRy BBy (2)
B =BH ‘“‘).3,1“..({),',‘ = B = "*).6{”..“(:“ ,
— 1 — ] — ~
Bl i) - = Z i O,...0, = L L & ® .20, , (63)
Y in) ’ () 14)
— l — 1
B(cn L) — p Z B ook ; Coy-Cap = E—’ Z o, 0.0 Cop - (64)
" (o Lok) ) (o g

Remark 2. The action of the symmetrisation operator Sym can be extended to every
geometrical object and on the whole to quantities having indices of one and the same
type.

The symnietry property of a covariant (or contravariant) tensor field is mdependent
of the change of the tensor basis or the co-ordinates of the manifold. This is obvious from
the construction of a full symmetric tensor field.

Example 9. Full symmetric covariant tensor field of rank 2: B = B, dz'' x dz',
B e ®y(M).

B = B(i],Q).dzi’.d:L‘iz s B(izi;) = %‘(B,’lig + Bi,i, ),

dzit . dz'? = %.(d:ni‘ ® dr*? + dr'? @ dz'r . (65)

12



Example 10. Full symmetric covariant tensor field of rank 3: B = B; i, dz" @ de*? ©

drir, B e ®3(M).
sB = Biiigiy).dz* dat? da’s
Buluu/ = ;17 (Bnuz, ‘+ Bunn + Blal21| + Blnau + BH”’? + B'2'3“) ’
(dz" ® de'* @ dz*> + dz** @ dz' ® dzPi+ (66)

de't detzde* =
+drr @ dr? ® dz" +dr' @ dr'® ® dr'? + dr™ @ dz' @ dx'i
+dz'? @ dz' @ d2™) .
I'he full symmetric tensor fields obey the rule of a symmetric algebra [8] (pp. 87-91)
The symimetric multiplication ”.” 1s
(a) Commutative: ;A4.,B = SB.SA
{b) Associative: (;A,B).C = ;A.(;B.C).
(¢) Distributive: (;A+ (B).,C = ;4,C+ ;B.C.

A, ;B and C are full symmetric covariant (or contravariant) tensor fields. For
designation of the set of all full symmetric covariant (or contravariant) tensor fields of
rank k& we will use the abbreviation * @, (M) [or * @F (M))].

The symmetrisation operator acts as a linear operator on tensor fields

Sym{a B) = a.SymB =a.,B, «a€ R (or C),
(67)

Sym(o Bl + 3.B3) = a.SymBy + 8.SymBy = a. B1+ 3.:By ,
Bie(M), i=1,2, a,3€ R (or C).

Sy commutes with the covariant differential operator and with the Lie differential
operator
Sym o Vs, = Vg, o Sym , Sym o £5, = £5, 0 Sym . (68)
Proof:
Sym|Ve, B] = Sym[Va, (B, .. dr't @ . @ dzt*)] =
= Sym[B;, .idet @ . (X)dz"‘] = Bi i dzh (69)
= B(“A . )',.dl'" ..... dr'* = B(A) dr{4)

Vo [SymB| = "[k:' Z(n k) H ik'%‘Z(i, i) dr* @ .. @ driv] =
1 j{:l.zk) B, .. Uct kv Z‘H ) driv & .. @ de's+
o B e (51 8) Va ( dI" ®...@dz's) =
R Doy dzt k' 24 Ba k' Z(A) Vo, (dz?) =
_-JA, > A|]}Al Z(A) d.’l? +—“ Z(A BA k‘ L(A [A (11‘” -
= k‘ Y(A Bai. Z(A) dzt + k"z )BB i ( FH dzt =
I H"' :3— 2a) d‘” + 5 L Be T B) Py Z(A)dIA =
; } dz(A) = ( )‘,dl'( ) = B(“ i J ]

- ;JB{A)!
~(B) _ (B)
[ A T l(A)'

= i

|}

—
=1
o]
~—

T

because of
The proof also follows from the linearity property of the operators Sym and V,
(a)- Z(A y Bagny- deA] =

Vs,1SymB] = Vo, (4.2 & Z
= pr (A)(l)‘Z(A)(z) Baqyi- dlx"("’) =

1 A(Q):ZIT (A)BA;.’.E.Z(A) dz =5ym(Va‘B() Y)

71
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where (A)(1) means the permutations (A) of the first term By = Ba and (A)(2)
means the permutations of the second term dzA() = dz? in the sum.
The procf for Symo £5, = £, 0 Sym is analogous to that for SymoV,, = Vs, o Sym.

4.  ANTI-SYMMETRIC TENSOR FIELDS. DIFFERENTIAL FORMS
One can construct a covariant or contravariant full anti-symmetric tensor field in analogous
way as this was done for a symmetric tensor field.
Let B be a covariant tensor field of rank k:

B = Ba.dz® = Be.e€ = Bi‘,,,ik.dzi‘ ® .. ®dr* = Ba, ap- ™ @ . @™
and let 73 be a contravariant tensor field of rank &:
B=B"8,=B%ec= B -"*.6,-1 ® .00, = B_"“"““.ea] .. ®eq, -

For every covariant (or contravariant) tensor field a full anti-symmetric covariant (or
contravariant) tensor field ;B (or 4 B)

B Bp,. ig-da A Adeie = B[a,,ak]e‘/\ Aedr
=Bl3dg, A AG, = Bleodeg A Aca,

can be found. The components of 4B (or ,B) are changing or not changing their sign
under a change of the order of the indices after an odd or even permutation respectively.
The same is valid for the basic tensor fields. They change their sign (respectively their
orientation) if the places of the basic vector fields [(dz® | e*t) or (i, €q,)] in the tensor
basis [(dz™....dz'* , e*'....e®*) or (8i,...0;,, €a,..-€a,)] are changing after an odd permu-
tation of their indices. They do not change if the places of the basic vector fields [(da?
%) or (8, ¢a, )] in the tensor basis [(dz't...dz'* | €™ ...¢®*) or (3;,...0;,, €a,...-€a,)] are
changing after an even permutation of their indices.

By, . i, are the components of the full anti-symmetric covariant tensor field ;B in
a co-ordinate basis. They can be constructed by the use of the s. c¢. anti-symmetric
Bach brackets [7} (p. 41) . The following decomposition formulas are valid for the anti-
symmetric Bach brackets:

B[n KM k [B (182 0k— 1)1»; B[ixiz--.l'k—zik]ik—x + B[i1i2---ik_-aik_xik]ik—2 + ..+
+ (=1)* 1 Biiia.ini ) = (Bliy s i ia] > OF
(Bisfis ia)lirovin] = Bivin] = #-Bisfiain] = Bialivia i) + Bisfiviaia i)+
4o+ (D* LBy i)

(73)

We can consider the operation of the anti-symmetrisation as the action of an operator
called anti-symmetrisation operator (alternating operator) [8] (pp. 91-97) that maps a
covariant (or contravariant tensor field) into its full anti-symmetric (skew-symmetric) part.

Definition 11. Anti-symmetrisation operator. The operator

Asym:B > B=AsymB, Be®(M), JBe‘ Qr (M) = AF(M)
aB = Bp, i )dzt ALLA deix = B[A] dxA = (74)
= Bla,..ax]-t* A LA eSk = B[C] ec

)
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Definition 12. where

B, a0= Z]' Z sgn(iy . 1k).Bi, i = By . (75)
(31.t)
13{,,, ] = % Z sgn{ay..ag).Ba o = [f[q . (76)
(g ok}
dr't AL Adrtt = 7} Z sgn{iy. g )det o det (77)
(11 1k)
AL AT = Kl; Z sgniogog).e™ e et (78)

(g k)

is called anti-symmetrisation opcrator.

The sum is over k' permutations (7.} [or (@) ...x)] of the numbers fromi | to k.
In an analogous way one can define the action of the anti-symmetrisation operator Adsym
on contravariant tensor fields. The set of all covariant full anti-symumnetric tensor fields of
rank k over the manifold M is designated with the symibol AR (M) or with ® & (M), We
will use further the generally accepted symbol AR(M). For the sct of all contravariant full
anti-symunetric tensor fields of rank k over Af the indications * «f (A1) or Ag(A!) can be
introduced. We will use the indication Ax(M).

Remark 3. In the symbols ©F or 2k the upper or lower indices k are used with respect to
the components of the tensor fivlds of rank k [i.e. ®F means a set of contravariant tensor
fields of rank k (B € @F T B = DY 8, ®...60;,) In contrast to Sk that means a set of
covariant tensor fields of rank k (C € @y - C =, _j,dr?' @ .3 dri)]. In the symbols
A% or Ax the upper or lower indices are introduced with respect to the basis of the tensor
fields of rank k [i.e. Ax means a set of full anti-symmetric contravariant tensor fields of
rank k (3 e @ 3= BY .0, © .. ;) in contrast lo A that means a set of full
anti-symnetric covariant tensor fields of rank k (C € @ C=G  edr & @de?x)]
Many aathors use mstead of @* and s the abbreviations (k,0) or {0, k} and mstead of
A% and Ag they use A(D, k) and A{k,0).

The property of anti-symmetry of a full anti-symmetric tensor field B (or B) is inde-
pendent of the change of the tensor basis as well as the change of the co-ordinates of the
manifold. 1t appears as an intrinsic property of the anti-symimetric tensor fields.

The external (exterior) product of two full anti-symmetric tensor fields is defined [8]
(p. 94} as

dAN B = .(aA® WB) . (79)

The full anti-symmetric tensor fields obey the rules of an anti-synumetnc algebra {ex-
terior algebra, Grassmann algebra). The anti-symmetric multiplication (exterior or alter-
nating, Grassmann, wedge product) [A] is

(2) Anti-commutative: ¢ AN B = (~1]’c CBA WA cAcAYM). W Bc€ AL(AD) Tor
A E Ak(ﬂ’!), B E AI(M)],

(1) Assoctative: (4AA B A LC = aAA (aB A C).

15



{c) Distributive: (A + B)A oC = sAA C+ BA C.
a4, o B and C are full anti-symmetric covariant {or contravariant) tensor fieids of the
type respectively

ad = Ap, ,k].dl'” A ANdok = A[a, Lag TV A AT k=1,.. N,

aA= Al g A A, = Alnade AL A, (80)

Remark 4. For designation of the set of all full anti-symmetric covariant (or contravari-
ant) tensor fields of rank k we will use the abbreviation A*(M) for Ax(M)).

Definition 13. Differential form. A full anti-symmetric covariant tensor field ,A €
AR(M) is called differential form.

Definition 14. k-form. A differential form ,A of rank k . A € A*(M) is called k-form.

The operator Asym obeys the relations:

Asym(A® B) = (A®@ B) = AN 4B = AsymA A AsymB ,

A€ (M), Bea(M), (81)
Asym(a.By + 3.By) = a.AsymB; + 8. AsymB; = a..By + 8.4 B> , .
Bie@w(M), i=1,2, a BER (orC) (82)
Asym(f) = id(f) = f, Asym(dz') =id(dz') = dz’ |, Asym(e®) =~ . (83)
Example 15. A = A;,;,.dz"' @ dz?? | A € ®2(M).
AsymA = oA = Apy, i, dz’ Adeis (84)

Apiyiy) = 5 iy, — Auay) dz Adz'i = 1 .(dzh @ da*? — dz'1 @ dz™) .

The properties and applications of the differential forms are considered in the theory
of the differential forms [9].

The anti-symmetry of the tensor fields leads to specific forms of the action of the
operators acting on tensor fields.

4.1.  Action of the contraction operator on a contravariant vector field and a
full anti-symmetric tensor field.

Action of the contraction operator S on a contravariant basic vector field
d, and a full anti-symmetric covariant basic tensor field dZ4. Let we consider
now the action of the contraction operator S on d; and d7 4.

- ; 1 L. .
dT 4 = dx'' A A de' = i Z sgniiy . dg).dz™ ¢ e dete . (85)
(i1.-ik)
S5(8;,dz*) = S(8;,dz" A AdZ™) =
1 : )
= S(0y, Ik Z sgn(iy .. ig)de’'' @ ... @ dr**) =

(11 i)

16



Z sgn(iy...ix).5(8;,dz").dz"2 @ ... @ dz** =

|-

(i1..ix)
1 L . 1 i )
= & (‘Z )sgn(n.A.zk).S(Oj,dz").m.dz Q.. .Qdsx =
11,0k
1 ) . )
= I Z sgn(iy(iz...4)).S(8;, dz').
(11(i2...1k))
1 L . .
STV E sgn(iz...5).dz"? @ ... @ dz'* |
U (iz.dk)
g ~a 1 S i i i
(9;,d2%) = . ST sgn(ir(in...ix)).S(8;, dz").dz* A A dax (86)
(i1lia..ix))
where
. . 1 . .
dz'? A Adz'e = Fon Z sgn(iz...1x).dz'? @ ... @ dz'* | (87)
T (ig.k)
5(8;,dz™) = fir ;.
Therefore,
1 : . )
5(0;.d2%) = L. > sgn(is(ip..ix)). [ jdzt A L Adet = (88)

(13 (32...1%))
= (fi] j4d:Ei2 AN dl‘ik)[,‘l,‘yv_ ik] .
Action of the contraction operator S on a contravariant vector field ¢ and

a full anti-symmetric covariant basic tensor field dz 4. Let £ = ¢'.0; = £%.¢,, be

a contravartant vectar fiel! [£ € T{AN)] and 74 = de' A A de™ be a tensor basis of
rank k. “Then

S AT A = S(E 3, 45 = £.9(8,,d7 Y =

=& T :Z_: sgn{iy (dg. )} f" jde’s AL A det =

IEETEPRRTSY

! — .. . § i- i
= L sgn(ip{ie.. k). [ ;.80 de? A LA dete =

(ifte.. 1))

1

1 - - . .
T L sgn(iy(iz...ig)).E . dx™* A A datE

(31(i2..2k))

= (€M.de" A AdZ Y = fhe (89)
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Action of the contraction operator S on a contravariant vector field £ and
a full anti-symmetric covariant tensor field ,A. Let € = £1.8; = £%.€q be a con-
travariant vector field [¢ € T(M)] and oA = Apa.d2* = Ag, G.dztt AL Adzt be afull
anti-symmetric tensor field of rank k. Then,

S(E, 4A) = S(Ej.(?j,A[A].diA) = §j.A[A]‘S(3j‘d§_A] = A[A].S(.f,di") =
= A[il.._:k]-fil ;.80 .dxr A LA dz'* = Ay, €0 da A LA dr'* = (90)
= AL7~ Edzz A LA dr'* = Ap, Lin]-S(E, dr*r).driz A LA dzix

ikl

Action of the contraction operator S on a contravariant basic vector field J;
and an external product dz4 A d7 B of two full anti-symmetric covariant tensor
bases d 4 and d3 8. Let dz4 = dz** A ... Adz's and dz B = dzi' A .. A d2?t be two

full anti-symmetric covariant tensor basis of rank k and {. Then

dEAAdEB = de' A Adz' Ade? A LA de

and
y oA gmBy_ oa ] N ,.
S(()j,d.l‘A /\dzB] = S5(95, ik Z sgn(iy..i).de" @ .. ®dx'*A
{iy.eik)
1 o ) )
A i Z sgn(ji...ji).dz’' @ .. @ dz’) =
(j1---d1)
1 . i i i
= Z sqnliy...ix).S(8;,de'" ) d2? @ ... @ dz'* A
(i1..-3k)
1 o i )
A I Z sgn{(ji...Ji1)-dz”* @ .. @ dz?' +
(Gr---51)
+]§ Z sgn(iy..ix).de’t @ .. @ dz**A
(i1 ik)
1 . i . i
A (~1)k.l—!. Z sgn(jr...31).S(9;,de?) de? @ ... ® d2’' =
(Fu--d1)
= S(8;,d54) A dz P + (-1)* 24 A S(8;,d27) - (o1)
Therefore,

5(0;,dz A Nz P) = S(0;,dz ) AdZ P + (~1)*.d2 " A 5(8;,dz 7).

The contraction operator S acts on a basic contravariant vector field and an external
product as a differential operator not obeying the Leibniz rule but obeying the rule for

anti-differentiation.

18



Action of the contraction operator S on a contravariant vector field £ and
an external product dz* A dz 8 of two full anti-symmetric covariant tensor
bases d7 4 and dz . By the use of the above relations we can now find the explicit
form of the expression S(€.dzZ 4 A dZ P)

S(6,dzA AdZ P) = S(€7.0;,di A AdZB) = &.5(0;,dz A A dT P) =
=& [S(8;,dF A) A dE P + (~1)*.dEA A S(9;,dEP)] =

= §(€7.9,,dF ) AdZ D 4+ (~1)F.d2A A S(€7.0;,dz B) = (92)
= S(6,dz YA dT P + (—1)*.dE4 A S(€,dT B) .
Therefore,
S(E,d2AANdTP) = S(E,dZ YA dE T + (—1) . d2 A A S(€,d2 P (93)

Action of the contraction operator S on a contravariant vector field £ and
an external product ;A A B of two full anti-symmetric covariant tensor fields
A and B, Let ;A = A[A]AdeA = Ap,. ,-k].a'.r"‘ A ... AdzF and B = B[B]dEB =
B, j1.de?t AL Adz?t be two full anti-symmetric covariant tensor fields of rank k and [.
Then, the external product A A ;B can be written in the forms

dAN B = A[,‘ ,k],dl'" A Adxtr A,BUI'- jl].d:I‘J‘ A AdDt =
= Ap, i3 By, det AL AdetE Adzit AL Adz? = (94)
= A[A].H[B].df’q Adz B

The result of the action of the contraction operator S on & € T(M) and ;A A 4B can
be found by the use of the relations

S(€, aA N oB) = S(&2.0;, Ay By d3 * A dZ P) =

= {iA[A].B(B].S((?j,dEA AdzB) = A[A].B[B].S(E,df" Adz Py =
= A[A]AB[B].[S(E,dEA) AdZB 4 (—l)k.d?fA A S(E,d.’?‘,n)] =

= Aa) By S(E, d7 M) A dZ B + (—1)F Ay By diAnS(e 2By = )
= S(¢, A[A].de) A B[Bl,d’i By (-l]k.A[A].de‘\ A S, H[B].df ”) =
= S(€, aA) A oB + (=1) aANS(E, oB) |
in the form
S cAN aB)=S(€, sA)A B+ (-1)* cANS(E, oB) . (96)
The contraction operator S fulfils also the relation
S8, 5, aA) =0. (97)

Proof:

S(E, (€, aA)) = Apyiniy.ig) €1 £ d2> A Adzr =
= A[i;i;ia.,.i‘,]-fiz»fh-dzia A Ade™ = —Af i, g £ €2 dT A L Adr =0
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4.2. Inner (internal) product of a contravariant vector field and a full anti-
symmetric tensor field. In the theory of the differential forms one of the important
operators is the operator of the internal product used instead of a contraction operator
acting on a contravariant vector field and a full anti-symmetric covariant tensor ficld.

Definition 16. Inner (internal, interior) product (8] (pp. 170-173). The operator i¢ for
every contravariant vector field § mapping a full anti-symmetric covariant tensor field . A
of rank k (k-form) in a full anti-symmetric covariant tensor field of rank k—1 (k—1-form}
in the form

i A= if(a/‘i) = IC.A[,’]_ ik],S(ﬁ,dIi‘).driQ A .. Adz* )
WA EAR(M), ig(aA) € ARTHM), £EeT(M),
koAl i = Ty St an) SIP(Tk) Ay Aeer(M).

is called internal (inner, interior) product by §.

The operator i acts on a full anti-symmetric covariant tensor field like the contraction
operator S [compare with

S, o) = Ay SE S A AdE™) = Liglad)

1
where in contrast to i¢ (4 A) the contraction operator Sin S(€, 4A) acts on £ and dz A
and not only on dz'1 as it is the case in 5(€,dz™)).
The internal product has the properties:
(a) Action on a basic covariant anti-symmetric tensor field dz A = dc A Ade

ig(dz4) = k.S(,dz™).dr's A Adz*
ig, (dT4) = k.S(aj,dx“)dr” A Ade =k fdet AL AdE =
k—i—T.S((')j,dz'“)AE(w ik)sgn(ig...ik).d:c"®...®d:c“‘ .
(b) Action on an external product dZA AdZ B, dz P =dzit A Ade?
ip,(dz A AdZP) = (k +1).5(8;,dzh).dz’* A Adas Ade)t AL AdE! =
= £.§(8;,dz).da’? A Adz's Adalt AL AdzTit
+1.5(0;, dz*).dz™ A LAdrie Adzit AL AdTY =
=iy (dEA) A dZ P + 1.5(8;,da?) dz’ A .. Adz' Adzl? AL Adel =
=iy (dE4) AdZTP + (—1)*.d2 A Nig,(dZB)
where ) ) ) i )
S(9;, dz*t).dz*2 A LAdzte Ad?t AL AdE?t =
= —5(d;,dz™).de’t Adzr A LA dz_‘k Adzit AL Adz? =
= (—1)’°4S(0j,dzj‘).d;r"' A AdEi Adeir AL A dTd
ie(d2 A AdEP) = ig(d2*) N dT P + (—1)*dz4 nig(dz Py, £ eT(M).

(¢) Action on an external product oA A . B of two anti-symmetric covariant tensor
fields oA and , B

ic(aA N oB) = ig(aA) A o B+ (=) AN (aB)
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Proof:

(AN B) = if(A[A]de A B[m.di‘\ﬂ) = A[A].B[H].if(de A de) =
= A[A]4B[B]4[i€(d’I\A) Adz B 4+ (~1)k.d§"1 A if(d?ﬁ)] =
= if(A[A].dEA) A Ig[Bl.diB + (—l)k.(4[A]4d5'1 A iE(B[B].dEB =
=ic(aA) A B+ (—l]k.aA Nig(a B} .

The internal product 7 acts on a basic contravariant vector field and an external
product as a differential operator not obeying the Leibniz rule but obeyving the rule for
anti-differentiation.

The operator 2 has also the property

7e(ig(ad)) =0

Proof: . v
if(if(a/'i)) = 'l.E(IC.A[,l ‘,’k]{“ dz2 AL A dII") =
= k.(k=1).Ay, €0 67d2 A L AdT =0
because of E;‘ ,5;2 = .f;’f;' and Ajii, 0 =~ Afgiy i -

The propertics of symmetric and especially of antisymmetric tensor fields over (L, g)-
spaces are important for the working out of the symplectic geometry of differential forms
over these spaces.

Acknowledgments

The authors are grateful to Prof. A. N. Chernikov, Prof. B. M. Barbashov for interest-
ing discussions, and to Prof. D. . Kazakov for the kind hospitality at the Joint Institute
for Nuclear Rescarch. This work is supported in part by the National Science Foundation
of Bulgaria under Grant No. F-642.

REFERENCES
[1] Chernikov N. A., Different questions in the theory of relatunty. Elementary particles
and atemic nucleus 18 (1987) 5, 1000-1034 (in russ.); A background conncction as a
necessary object i general relativity theory. Preprint JINR Dubna P2-88-778 (1988)
(in russ.); Einstein’s theory of gravitation from a point of view of the tensor analysis
Comm. JINR Dubna P2-90-399 (1990) 1-17 (in russ.)

[2] Manoff S., Kinematics of vector fields. In Complex Structures and Vector Iiclds. eds.
Dimiev St., Sekigawa K. {World Sci. Publ., Singapore, 1995), pp. 61-113

[3] Manoff S., Geodesic and autoparallel equations over differentiable manifolds. Intern.
J. Mod. Phys. A 11 (1996) 21, 3849-3874

[4] Manoft S., Fermi-Walker transports over spaces with affine connections and metrics.
JINR Rapid Communications 1 [81] (1997) 5-12

[5] Mauoff S., Fermi derwatiwe and Fermi- Walker transports over (L,,, g)-spaces. Class.
Quantum Grav. 15 (1998) 2, 165-477

21



i6] Manoff S., Lagrangian formalism for tensor fu {ds. In Topics in Compler Analysis,
Differential Geometry and Mathematical Physics. eds. Dimiev St Sekigawa K. (World
Sci. Publ., Singapore, 1997), pp. 177-218

[7] Schmutzer K., Relatwistische Physik (Klassische Theorie) (B.G. Teubner Verlagsge-
sellschaft, Leipzig, 1968)

[8] Bishop R. L., Goldberg S. 1., Tensor Analyszs on Manifolds ("The Macmillan Company,
New York, 1968)

[9] von Westerholz C., Differential Forms in Mathematical Physics (North-Holland Publ.
Co., Amsterdam, 1978)

Received by Publishing Departinent
on June 22, 1998.

22



Manos C., Iumurpos b. E5-98-182
(L n » 8 )-ipoctpancTea. CrielHasibHEle TEH30PHbIE MO

PaccmoTpensl TeH3opHoe none Kpokexkepa, KOHTPaKUMOHHOE TEH30PHOS HONE,
MYJIbTH-KPOHEKEPOBOE U MY/IBTH-KOHTPaKIIMOHHOE TEH3OPHBIE 110715 Ha NPGCTPaHCT-
BaX C KOHTPaBapHaHTHON W KOBapUAaHTHON adbuHHBIMK CBA3HOCTIMH. Onpenenesbl
AEHCTBUE H COOTBETCTBYIOLUME NPOM3BONHbIE KOBAPHAHTHOTO AMGQEPEHLIMATBHOIO
oneparopa, Aud¢epeHUManbHOrO  omepatopa JIM, omepatopa  KpHBH3HBI
H JI€BHALMOHHOTO ONEpaTopa Ha STHUX NONAX. PacCMOTpeHb KOMMYTaLMOHHBIE CO-
OTHOWICHHS ONEpaTOpOB Sym U Asym ¢ KOBapHaHTHBIM AHDEPEHLHATLHEIM Onepa-
TopoM M ¢ audrpepeHuManhHeiM - omeparopoM JIH  Ha  MpocTpaHCTBax
C KOHTPaBAPHAHTHON W KOBAPMAHTHOM CBA3HOCTIMH.

PaGota Brinonnena B Jlaboparopun teopetuyeckoii ¢pusuku uM. H.H.Boromo-
6osa OHSH.

Coobuenne OGbeaHHEHHOTO HHCTHTYTA IEPHBIX HccienoBanuii. Tybua, 1998

Manoff S., Dimitrov B. ES-98-182
(L, . g)-Spaces. Special Tensor Fields

The Kronecker tensor field, the contraction tensor field, as w=ll as the multi-
Kronecker and multi-contraction tensor fields are determined and the action
of the covariant differential operator, the Lie differential operator, the curvature
operator, and the deviation operator on these tensor fields is establishad.
The commutation relations between the operators Sym and Asym and the covariant
and Lie differential operators are considered acting on symmetric and antisymmetric

tensor fields over ( Zn , & )-spaces.
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