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1 ~ORDINARY DIFFERENTIAL, COVARIANT AND LIE DIFFERENTIAL

1.1. Ordinary differential d as a contravariant vector field. Let us recall some
well known facts about the ordinary (common) differential.

The co-ordinate differntials {dz' i = 1,...,n, dim M = n} of the co-ordinates {z'} in
a neighborhood 7 of £ € M are considered as covariant basic vector fields in 1™ (L7 C M).
They define the s.c. covariant co-ordinate basis at every point @ € /. On the other
side, the co-ordinate differentials dz' can be considered as components of a contravariant
vector field d = dzt d;, which is called ordinary differential given in a co-ordinate basis.
I'he reason for the last interpretation is the following:

Let a co-ordinate transformation in M be given of the type

P8 () = gha e (@) =Tt =2 (@), ek, (1)
where ¢ is an infinitesimal parameter and €' are components of a contravariant vector
field € in a co-ordinate basis (£ = €'.0;).
The difference between the new co-ordinates 7 and the old co-ordinates z' for e — 0
defines the co-ordinate differential dz(z*) at the point € M with co-ordinates z*

=i kY It 1
dr'(z*) = lim = lim —..£'(2) = €'(z¥) . (2)

e—0 £ e—0 ¢

The co-ordinate differentials dz? appear in this case as components of a contravariant
vector field €, inducing an infinitesimal co-ordinate transformation of the type ¥ = z* +
dt(z*).

R.(xn}ark 1. The possibility of defining co-ordinate differentials as components of a con-
travariant vector field is considered in a different variant by [1].

The notion of ordinary differential operator d can be introduced on the basis of the
possibility for considering the covariant basic vector fields as components of a contravariant
vector lield [2}.

Definition 1. Ordinary differential operator. The contravariant vector field d
d=dz'.0; = X ey = d".0; = d% e, , (3)
is called ordinary differential operator.

The basic vectors in T*{M) (dz* and ¢®) appear as components of the ordinary dif-
ferential d in a co-ordinate or non-co-ordinate basis:

d: [=df =de'.0if =" enf feC (M), r>1 (4)



The action of the ordinary differential operator on a function [ is called differentiation
The result df of the action of d on [ is called ordinary (or total) differential of the function
I

The properties of the ordinary differential operator d are determined by the properties
of the contravariant vector fields and by the peculiarities of its construction:

(a) Linear differential operator, acting on functions over a manifold M

dlo.f+ 8.9) = adf + 8.dg , a, € R (or (V)
d(f.g) = (df).g + f.(dg) , fgeCr (M), r>1.

(b) The action on a function f can be given in co-ordinate or non-co-ordinate basis

d - f:> (1f: dri.(?if:(fu-('ufy
Jecr (M), r>1.

Remark 2. df in this case is interpreted as a function over M with values in TH{Al).
Le. df is a covariant vector field (Pfaffian form, one form)

df = (0if).de’ = (eaf). o™

Here d; f and e, f are components of the covariant vector field df i aco-ordinate and
1 non-co-ordinate basis.

{c} df is form-invariant under the changing of the different types of hases

3

df = dat.bif = Ay i
A(I

N R N RN
eCeaf =ghe®esf = e f
AP = g8

Ik
o

{d) dz* is co-ordinate differential of the co-ordinate ' at point z € M.

The co-ordinate differentials {dz'}, can be interpreted in two different ways:
1. {dz'}, arc the components of the contravariant vector field d at » € M-
2. {da'}, are a co-ordinate basis in the co-tangent space Tr(M)at e e M
Remark 3. Many authors [sce for example [3], (4] | define df as a mapping by means of
the condition

df € A& =6f ET(M), [ECT(M), r>1,df €T*(M),
df(§) = €0 ] = (df ) da(§78;) = (df )i € dz'(8)) = (df )i £0.g° = € (df);
(dfyi = 0: f .
In df the components of the contravariant vector field d are interpreted as basic vectors

of the covariant vector field df.
From the definition for df it follows that for { = z*

de®(0) = dia* = g~
which is in accordance with the action of the contraction operator € on the co-ordinate

basic vector ficlds dz* and 8, [C(da®, ) = C(d;, (l;I‘k) = daf () = _:1:"}‘ re. the contrac
tion operator S is identificd with the operator €.



Remark 4. The definition of df. given by means of the expression df(€) = £f, when
S = (. can be generalized for S # C' in the form

df & - df(§) =£&f, EeT(M), JeC (M),
gf:gu),[:gaf,,f, r>1, df e T*(M), (5)
Ef =fl e, =[5

Sidat,3,) = S(0y. d) = 4 (0)) = T

Remark 5. The components of the ordinary differential d in a co-ordinate basis are
considered as constant functions, r.e. (dz') ; = 0.

Action of the covartant differential operater on the ordinary differential

The action of the covariant differential operator on the ordinary differential is deter-
mined by its action on a contravariant vector field and by the peculiarity of the construc-
tion of d.

In a co-ordinate basis

Vod=d 5.0 = (de'); 8, 5
(da'); = T%,.dz* | (6

where (dz'},; is the covariant derivative of the covariant differential dz*, considered
as a component of the contravariant vector field d along the contravariant vector field d;.
The covariant derivative Ved will have, in a co-ordinate basis, the form

Ved = (d2*);.7.8; = T};.dz* &8s . (7)

Remark 6. If the covariant differential operator V¢ acts on a co-ordinate basic vector
field dz (the other interpretation of dx'), the result of its action is different from that
when dz? 1s considered as a component of d:

7, JOE IR o 3 SN 4 7 gt — progd N3

Vg, dat = [,‘de , Veda' = TS dr

dr' - basic covariant co-ordinate vector field,
Vo, de' = dpdet =

- component of contravariant vector d .

(&)

duat

The differences in the action of V¢ on dz' in the cases of different interpretations ol
de' have to be taken into account when co-ordinate differentials are used, 1if additional
conditions for identification of both the results of the action of Ve an o are not required,
ie.if the condition Pl = 0 is not required. On the other side, these conditions have to
be in accordance with the result of the action of the Lie differential operator on dr’,

In a non-co-ordinate basis

v

d=V (6" ea)=c¢* 160 = (l Sy Co
€%y = ey () f'l‘

v

Action of the Lie differcntial operator on the ordinary differential



The action of the Lie differential operator on the ordinary differential is determined
by its action on a contravariant vector field and by the peculiarities of the ordinary
differential.

In a co-ordinate basis

Lod=0, Led=-g ,deld; = (Led'), |

. : ; 10
Lo,dz' =0,  dx' - component of the contravariant vector d (10)
On the other side, the Lie derivative of dz’ as a covariant basic vector field is
S 7 k .
Ly, de’ = (P,Zj + r;‘/).(l.r . ()

The compatibility conditions for both interpretations (taking into account the o
patibility condition also for the action of the covariant operator) are

Pho=0 1% =0 (12)

Therefore, the compatibility of both interpretations of the co-ordinate differential o

can be fulfilled only in the following cases:

a) P =0, [y = 0 at a given point z € M .

b) P=0, I, =0 on agiven trajectory z(r) in M, r € R

c) P =0, Il = 0 at every point 2 € M, ie. when [R(E u)]v = 0, V€, u,v e T(M),
(R, u)lp=0,VEue T(M), Vpe T (M).

Since P and T cannot vanish simultaneously in (Zn,g}sparos, these conditions can be
fulfilled only in (L,, g)-spaces, where S = C and P = —I.

In the general case of differentiable manifolds with different (not only by sign) con-
travariant and covariant affine connections and metric the two tnterpretations of the co-
ordinate differential have to be used separately and independently of cach other without,
mixing the contents of the notion of the ordinary differential.

(
(
(

1.2, Covariant differential as a special case of the covariant differential op-
erator. The covariant differential operator along the ordinary differential d defines the
notion covariant differential

D := covariant differential | D=Vy=de'Vy = eV, . (13)

The properties of the covariant differential 2 are determined by the propertics of the
covariant differential operator and by the construction of the ordinary differential d:
(a) Action on a function over the manifold M

Df =Vuf =df, FeC (M), »>1.
(b) Action on a contravariant, vector field:

Dv=Vgv=1" ;da? . = .9 =
v e = Do e, veT(M), DveT(M) .

vt =o' 5 de? s called covariant differential of the com onents of the contravariant
B L
vector field v in a co-ordinate basis and Dv® = o” €7 s called covariant differential of
the components of the contravariant vector field » in a non-co-ordinate hasis



(¢) Action on a covariant vector field:

Dp=SNup=p,d.dr = Dpde' =
= Py cd? et = Dpye™ o o pe (MY o Dpe (M)

Dp, = pi,.d! = posdal s called corariant differential of the components of the
covariant vector field pin a co-ordinate basis and Dp, = ]1(,/_4,(1“‘ = pags-c’ s called
corariant defferential of the components of the covariant vector field pina non-co-ordmate
hisis

() Action on a mixed tensor freld:

DR =Tyl = K4 p,d dy codelh = DA iy onda?
=Nt [;’/(,.1[” (4o B — ppA Bta B
hoe (A

DN o= KA p, 0t = N g ,-datis called covariant differential of the components
of the mixed tensor field A in a co-ordinate basis and DR p = K ‘“(,“.(1“ = Nt Biat
is called the  ovartant ditlerential of the components of the nixed fensor field A in a
non-co-ordinate hasis.

Remark 7. In the definitions of the covariant differential of components of vector and
tensor fields dat and ¢ are considered as components of the ordinary differential d moa
co-ordinate and a non-co-ordinate basis. For this type ol interpretation of de’ and ' we
will use the designations ! and d® in contrast to the case, when dr’ and * are mterpreted
as covariant basic vector fields, “To avoid ambiguity the mterpretation of dat and  have
to be explicitly given in every different case.

(¢} Action on the contravariant vector field d:

Dd =Vl =d' .0, = Ddbdy = d® pp.d’ oo = Ddva,
Dt = = VA d DAY = = (cad VY

Remark 8. The applications of the covariant differential allow different interpretations,
if the covariant differential is considered not as a special case of the covariant diflerential
operator Ve for & = d | but as a different-from-N' 4 operator. which nrits action on tensor
fields changes their covariant rank with 1. 1e.

DN = DK, Kear (M), DR e X
DR = R4 pgded ooy w det = N Bia e "
(dat and ¢ are interpreted as basic veetor fields).

In the case, where the covariant differential 1) is considered as covariant dilferential
operator V. its action does not change the covariant rank. e

D=y N = DN =Syh . K .DRKc~Fan

This is due to the fact that the co-ordinate differentials i d are considered as compo
nents of the ordinary dilferential o and not as covarant basic vector fields



1.3.  Lie differential as a special case of the Lie differential operator.  The
Lie differential operator along the ordinary differential o defines the notion of the Lie
differential

£,z Lie differential |

‘The properties of the Lie differential £, are determined by the properties of the Lie
differential operator and by the construction of o:

{1} Action on function over manifold 17:

Laf =df - feC™ (M), r>1.

(b} Action on a contravariant veetor field:

L= —Lid=[dov] = (L) 0 = (LgeT e,

Lot =0t |, d =d? e (M),

Lagv™ = (ege)d? — 07 (e “Y e Clgy Y

Lartis called the Lie differential of the components of the contravanant vector field
ran a co-ordinate basis.

(¢} Action on i covariant vector field:

Lap = (Lypi) dat = (Lapa)e™ . pe (M),

Lapy = piyd +p, (P + l‘ik).dk .

Lapi is called the Lie differeniial of the components of the covariant veetor field poiu
a co-ordinate basis

{d) Action on covariant basic vector fields da' and

Ladr' = (Pl + l‘;k).dk.(lzj ,

Ly = [(‘;71[; + (/’;ﬁy + I'Zw + ('ﬂﬂ, ﬁ).d"].("/’ .

The introduction of the notion of the ordinary differential d as a contravariant vece-
tor field allows another way of introducing notions of the covariant differential and Lie
differential On the other side, the so-defined notion is different from the notion of the
ordinary differential df ol a function £, which has found many applications in the caleulus
of fexterior) differential forms.

2. TENSOR DIFFERENTIALS
2.1.  Tensor differential as a mixed tensor field (ordinary tensor differential).
In the previons section we have considered the ordinary differential as a contravariant
vector field d = dat . = "¢, acting on functions and tensor ticlds. Moreover, the co-
ordinate differentials da? are considered as components of the ordinary differential i a
co-ordinate basis. They are not interpreted as covariant co-ordinate basic vector fields
but as constant erements dz' of a function f € C7(M):

df (e} = o f(z) de', det € R™, (da®) =0 .
d=dr* ), = "¢, dat, et ECTM)

On the other side, one can construct on the analogy of the ordinary differential operator
d anew differential operator d. The only difference between both operators is that in the
new operator d the co ordinate differentials are considered as covarant co-ordinate basic

veetar fields

Definition 2. Tensor differential d. The mixed tensor field



d=dz' &0 :g{,dzi(g)aj =e*Qea=g2c"Qeg , de*, e € T* (M) .

is called (ordinary) tensor differential.

The tensor differential d appears as a mixed tensor field of second rank of type 2
[d € %) '(M)] in contrast to the Kronecker tensor field Kr = g{.aj @dzt = gle, ®ef
which 1s a miixed tensor field of second rank of type 1 [Kr € ®!1(M)).

The properties of the tensor differential follow from its construction and from the
properties of the contravariant and covariant basis vector fields:

(a) Action on a function

d:f—df, fec (M),
df = fidet €T (M), dz* € T*(M) .

The tensor differential d has also the property
d(df) = fij)-da’.da?.

Proof:

d(df) = (de* ® 8)(f;.d2’) = [ de’ ® dz? = §.(fij + fj.).d2’ @ d2l =
= %(f‘lj -+ f}jy,‘).%.(dﬂ?' ® dz? +dz’ ® dz") = f('i’j).dx'.d:cf s

where

foin = %(f,J + fji) dzi dzi = %.(d:c"ebdxj + dzf @ dz')
feC M)y, r>2,  fi;i=/Fji:

{(b) Action on a tensor field

d:K 5dK, Keo (M), dKe*e" 4 1(M),
AwF 4 (M) is the linear (vector) space of affine tensor fields of rank (k,I + 1),
K =K% B.04® de¥ = K¢ Do el s
dK = (dz' ¢ 0)(K* 504 0 d2?) =
=RKAp,det @04 deP =dKA & 04 © da?
dKA B = KA ]g,.(l:l?l .

AR 55 are called tensor differentials of the coruponents K4 5 in a co-ordinate basis

The tensor differential dK is a tensor field only with respect to constant (affine) co-
ordinate transformations. dA* p transform with respect to the basic vector field da' as
covariant tensor ficlds of rank 1 under affine co-ordinate transformations. 445 5 appear
with respect to the basic vector field dat as a set of covariant (affine) tensor fields of rank
in contrast to dA i appearing as a set of functions over M.

dK is a lensor ficld only under affine (lincar) transformations of the co-ordinate P
e, dK is an afline tensor field of contravariant rank & and covariant rank /.



The action of d on the components K4 g of a tensor field A is similar in its form to
the action of d on K4p € C"(M). The difference between both actions is due 1o the
different meanings of the co-ordinate differentials dr’ (i = 1. .. ny:

dKA g = KA p, det . de' € T*(M)
dRA B = KA [;',\d.l" . da* € (*r(/w) LT I

In a non-co-ordinate basis

K=FKpecwel |
dK = (™ % ca)(NY poee ('D) =
= (ea KC ple®®ec el =dKY pwen o el
H[\'(" D= ((’1, 1\'( [)).(‘(

d has also the property:

d(d]\’) = ]X’A “(v,.j).drj.dy‘z & ({)A o] dl‘n . ]\'/1 i /\’A B -

(c) Linear operator with respect to tensor fields (including functions)

d(o K1+ 8.Ky) = adK| + 8.dKy |
a, 3 e R (or C).

Keesb (M), k=01, I=0,1... ,i=12
(d) Differential operator with respect. to functions over M
d(f9) =dfg+fdg, fgeC (M), r>1, dfdgc 1 (M)

Proof: d(f.g) = (dz' © &)(f.9) = da’ © 8;(f.g) = [0:(.9)).da* =

=(0if g+ [ Oug).dz’ = (0:f.g).dz" + ([.0ig).dx* = _

= (0;f.de').g + f(Dig.d2x"’) = df g+ f.dyg, whfre (f.g).de’ = (0 fdat) g drig =
g.dx*.

(e) Differential operator with respect to tensor fields with rank > | not obeying the
Leibniz rule

dQ®S)y=dQw S +dPggs , EPQ s =dS° & Q& Jr w0 dz”

or

dQ S)=dQ ® S + dz* RQ®ES=dRQR S+ "% Q6 cnS

Proof:

AQ®S) = d(Q" 4.9 % dz? © S p.0c 6 daP) =
= (dx‘ & 0,-)(@" B0s & dz® ® S5¢ p-0c & d.‘l_‘l)) =
= (QA IJ.SC 1))‘,.(11'1. D01 ® dz® & O & dr? =
= (QA 13,1'.5'(7 D+ QA ];.S(" I)Yi).d.’L‘z 04 & dzt @ O o de? =
= (HQA B.SC D+ QA [3.;175(" /)) & da @ dz? ¢ Oes 2 da? —
= EQA B s @ dzP @S¢ n.Oc 5 dz? + dse D& QA .04 dxt o e o dr? -
=dQu S+dSC pw Qe e de” | Qe wk (M), 5 ewm (MY



I'he contraction operator S acting on o f and on a contravariant vector ficld & leads
te the relations

Sidf.ev=dfigy =& .
df(o;) = f';.0.0 = = 0=75.
Proof:

=S da) (&) = &0, [ S(det ) =& [0 =
Gf=E . =080 =80 =008 k=] ,0.

Speetal cases [ =

dak = ik det = gf‘ drt = dr*.
S(dak &) = Sidae* &) = dr¥(€)y = f* , 61 = &5
2.2. Covariant tensor differential. By the use of the covariant differential operator

Vo, (instead of the partial differential operator @) we can construct the covariant tensor
dillerential.

Definition 3. Covariant rensor differential. The operator

D=dr Vs =2V,

is called covariant tensor differential.

The properties of the covariant tensor differential 1 are determined by its construction
and the properties of the covanant differential operator along a contravariant basic vector
field:

(a) Action on a function

D [-Df, Df=df. [eC(My. r>1.
Df=(dat 0N ) f =de* Ny f = 0;fde’ = df

D) = fji.dr* & de? f,=1;
Proof:

D) = 75((7[) = (de' R Vy )(f; dady = fiidrtde! + /’f',.f_k,d.l" Woded =
S (L 4 PAS)dr @ dad = [, det wde . [, = )

In a non-co-ordinate basis
ﬁ(ﬁf} = (eacpgf + [’;".wa).(:" @et = J1ja-ct® e fra=caf
(b} Action on a tensor ficld:

DR = (dr* 0 Vs K =dr' @ Vo K = det o K g 04 0 delt =
=K1 ”’,'.(l.’l" YN drf = DRA pdy o delt R
N =NA [{.(),1 Ny {LI‘“ c :-Q‘k [(AI) , ﬁ]\ A 5= /\"" '4_,.11.1" R
VoK =k 1040 dre? Ve W= K poee DR,y = KO Dot



D(DR) = A By de? ode e dy dr!t

) appears as an operator increasing the covariant rank of a tensor field with |
D K- DK, KNoesR 0 DR e L ()

DRy are called covariant tensor differentials of the components &4y, of (he 1ensor
H I !

field A 1n a co-ordinate basis.
(¢) Linear operator with respect to tensor fields:

Dl Ky + 3 K2y = o DK, + 30Ky
l\}EZAk[(fW) = 1 2. a,3€ R {or ).

(d) ifferential operator with respect 1o functions:
Difg)=Dfg+[Dg=dfg+ fdy. Jge (M)

(¢) Differential operator not obeying the Letbniz rude with respect to tensor fields with
rank > 0 i . o
I)(Q v 5' =D S+DPy 5,
DPG 4 5 = DSC 5 Qs e v da?? = det 0 Q v Vo s =
= I)S‘ D Q et =t w Qs VS
Qexk (M), Seu™m (M),

Proof:
DIQ 5 S) = DIQA 3.5C p.0a o dzB o 8w (u-”) =

=(Q ' p.SY p)aidrt o0 7 <l1" e o da?? =
= QN ST +QY . SY ). d;I wwda v delt o r)( dre? -

=7 ga-det v (M sdet o .5'( ),()1 o (/.I'
+ 8¢ padet QN s u'z (}(‘ sde? =
=DQ S+ DSC Qs /“.

2.3.  Lic tensor differential. By the use of the Lie differential operator L (iustead
of the covartant differential operator Vg ) we can construct the Lie tensor differential

Definition 4. Lie tensor diflerential. ‘The operator

L=de'e Ly =" Lo

15 called Lee lensor differential.
The properties of the Lie tensor differcntial are determined by its construction and
the properties of the Lie differential operator along a contravariant basic vector field.
{a) Action on a function:
L fEf, fec (M), r>1, Ef=dfel (M),
Cf={de' o Lu)f =da* Ly f =d' O f = fidet =df = DJ |
Lf=Df=df e1*(M).

10



EEf) = [f+ (Pl + Ff ).fildz' @ de? = (£4,p;).dz* @ dz! , p;j=f; .
Proof:
E(Lf) = £(df) = (de' ® £5,)(f j.d27) = dz' ® £4,(f;.d27) =
=dz' @ (f;d2’ + f;. Lo d2)) = dz’' ® [f.5..d2? + f,k~(PJki + I‘fi),dzj] =
=[fi+ P" + F" f.k].d.r Qdri = (£alpj).d:c" ® dxd | pi=Ff;-

{b) Action on a tensor field K € @ [(M):
£ K-> ER, Keg* (M), ZKeo* (M),
EK =LK ® 04 ® dz? IKAp = (£5 K% g).ds’ .

Proof:

£K = (d.z'i ® £a‘)(I(A BOsAQ® d:l:B) =dz* ® £3.([X’A B.0a4® dIB)
=dr' @ (£5, K4 p).0x ®dzP = (L5 KA p)dr' ® 04 ® dzf =
=LK*p® 94 @ dz®

L(EK) = (Lo, £5,K% p).d2? ® dz’ ® 84 @ dz®

LKA g are called Lie tensor differentials of the components K4 g of the tensor field
K in a co-ordinate basis.
In a non-co-ordinate basis

IK=EKp®@ec®e?, EKp=(L. K p)e®
(¢) Linear operator with respect to tensor fields:

L(a. K+ B.Ks) = a LK, + 3.EK; ,
Kie®* (M), i=12, a,8€R(orC).

(d) Differential operator with respect to functions:
£(f9)=(Lf)9 + f-(£9) , figec (M), If, £9€T"(M).

(e) Differential operator not obeying the Leibniz rule with respect to tensor fields with
rank > 0: _ _ _
LQeS)=LQ®S+LPygs ,
LPyps=dr'@Q® LS =e"@Q1 £S5 .

"The proof is analogous to that for D(Q @ 5).

The different types of tensor differentials increase the covariant rank of the tensor
fields with 1. It is possible the action of the tensor differentials to be specialized for full
symmetric and full anti-symmetric (skew-symmetric) covariant (or contravariant) tensor
fields. The additional condition for the action of the tensor differentials on these tensor
fields is to map a full symmetric tensor field in a full symmetric tensor field and a full
anti-symmetric tensor field in a full anti-symmetric tensor field. Because of the structure
of the tensor differentials (they contain a covariant vector basic field and increase the
covariant rank with 1) this condition can be fulfilled only for covariant symmetric (or
anti-symmetric) tensor fields.

11



3. SYMMETRIC TENSOR DIFFERENTIALS

The tensor product of two full symmetric covariant {or contravariant) tensor fields is not

a symmetric product and the new tensor fleld is not a full symmetric tensor field. The
symmetric product of two full symmetric tensor field is defined as [3] (p-89)

eA® B)=Sym(,Ag B)= ;A B . A€ (M), e " (A1)

Let we now consider the action of the tensor differential on a full syninmetric covariant
tensor field ;| B.

d(xB) = B(A)J,dl‘l e dT(A) = [( ,,B(A)].(‘“ o (“/‘) .

_____ e Buay=1Bi ... Biay = Ba,

i T

If we additionally impose the condition for the full symmetry on the affine tensor field
d(,B), then we have to act with the symmetrisation operator Sym on d(,/3) using the

decomposition formula for the Bach brackets for Bii, i)

Sym[d(, B)] = Bas)dz'.de® = (e, Bay].c* .ot =
= Bliy dpiy-datdettode'™ = (e By, el e e® ek

where

[Biayil(ai) = Braiy = B, iy = %-[B(u...zk_m),z + Blivisixviyie T Blovia iy_sipanin
+.. .+ 13(1‘21;,v..ui),i1 .

We can now define an operator ,d by the use of the tensor differential @ and the
symmetrisation operator Sym. It will map a covariant tensor field with rank & in a full
symmetric covariant affine tensor field with rank & + 1.

Definition 5. Symmetric tensor differential. The operator

d=Symod B~ ,dB = Sym(dB)
B e o (M), sdB € A%y, (M)

is called symmetric tensor differential.

Remark 9. Since d contains in its construction a covariant basic vector field (dx* or ™)
the symmetric tensor differential can map only a covariant tensor field in a full syminetric
covariant affine tensor field. Contravariant tensor fields cannot be entirely symumetrised

by the use of (d:

2O = Sym(dC) = Sym(CA ;dr' @ 94) = O, da* 600y, |
CEea*M).

The affine tensor field ;dC is not a full anti-sytumetric contravariant affine tensor field

because of the existence of different type of indices (contravariant A and covariant i) in a
co-ordinate (or non-co-ordinate) basis.

12



Remark 100 We will further consider the action of od only on covariant tensor ficlds.

The properties of the symmetrie tensor differential o are determined by its construe-
tion and by the action of the tensor differential on covariant tensor fields.
ta) Action on a function ’

f=df o fecTn
Proof:

Jf = Sym(df) = Symi(d, Jde'y = [ Sym{dety = fodet = df

beeanse of Sym(de’) = dat .

o has also the property o L
d(odf) = d(df)
(b)) Action on a covariant tensor field
A3z d( B .
Proof:

(B = .\'ym(ﬁ/ﬂ = Sym(Ba;.dit @ drt) = H(,L,',,ll.l'(' wodet =
= H(Av,)‘rl.r’.({.rl“) = H(A‘,)mlr("‘)x[.r' = d(; ).
BE (M) . B = Biaydett

where

A= Baiydetde™ = e B le Y B e )

(1) = Sy (B dat dry = II(A‘,;.(I.I'('A wdet) = /f(__L,-,,(/,1".(!'.1'("” =
= Bia ,).d.r("‘),d.t" .

.d has also the property
SJ(SﬁI}) = 13(,\.,3_])‘({.1“".(/.1".4[1'("” .
(¢) Lincar operator with respect to covariant tensor fields

A By + 8.82) = o dBy + d.,dBs
B € 2 (M), i=1.2 a,3€ll(or().

Prool:

Ao B+ 3.8y) = (Symod)(a. By + 3.132) = Sym[d{a B, + 3.3 =
Syn{o d By + 8.dBy) = o Sym(d ) + BSym{dI) — o dBy + 3 A1
where Sym{a. ) = a.Syml — o B .

() Differential operator with respect to covariant tensor fields

AN BY o dA B AdB L A e e (M) L B (D

13



Proof:

A By = Sym[d(A ) = Syn{dA - B4de A o8] =
= (A B+ (det 2 A e BY = (dA LB+ det AL (808 =
AAB+ A det 2 OB = dA B+ (AL (d) =

= dA B+ Al

where the relations are fulfilled:

Sym{A % B)y= (A% B) = (SymA).(SymB) = A B .
Sym(a.B) = a.SymB =a B . «a€ R (or (),
Sym(n.By +.3.8By) = a.SymB) + 3.5ymBy = . By + 3.1,

Bi€ve(M), 1=1,2, a3 e R (or (),
LA = Sym(dB) = Biayy-dztda' = Sym(Ba,det v det) =
= Sym(Bay, det = de'M) = Sym[d(, B)] = d(, 3)

If .4 and B are full symmetric covariant tensor field, 1. e. A = (A wd 8= (I3, then
oA acts on them as a differential operator obeying the Leibmz rule

A% B) = dA) B+ ALdLB) .
sAE T X (M), (Be o (M),

3.1. Covariant symmetric tensor differential. On the analogy of the delinition
of the symmetne tensor differential we can define the notion of the coviriant symnetric
t-nsor differential

Detfinition 6. Covariant symmetric tensor differential. ‘The operator

= Symo D

15 called covariant symmetrie tensor differential.

The properties of the covariant syminetric tensor differential [T are determined by its
construetion and the properties of the covartant tensor differential:

(a) Action on a function

D = Sy Df) = Sym(dfy =df | feCT{(M) >0,
df e 17 (M) . Sy (f) = wW(f) . Symide'y = id(dz")
JDGDS) = Ddf) = Joagy dalde'

(b} Action on a covariant tensor field

575“ = sj(s[f) s
LD = ]1’(,1’,},([1,‘1.(1;17(/1;' = [¢(a /1,“].1:”‘.('(’“ .
Proof:

= S'ym(ﬁ]i’) = .S'ym(l)‘A;,-.(Ixi o de?y = B dzt oy det) =
= Braqy.detde™ = By delMdet = /D B),
Bewu(M), oB=Bdelt)

14



where
D(B) = Sym(Biays dzt & deld)) = B(An).dm(i & dzt = B(A:,-).da:".d.r(") =
= B(A;,')Adl‘(A).d;L" .

.17 has also the property

«D(;DB) = Bas;)-de’ de*.dz'®) = (D(DB)) .
(¢} Lincar operator with respect to covariant tensor fields:

JD(e By + 3.8) = a.Sym(DB,) + 8.Sym(DB,) = o, DB1 + 8., DB>
Biexe(M), i=1,2, «f€cR(orC).

(d) Differential operator with respect to covariant tensor field:
DA B) = ,DA,B+ ;A D(,B) .

Proof:

DA B)=Sym[D(A® B)] = Sym[DAQ B+dr' @ A® Va,B] =
= Sym(DA S B) + Sym(dz* ® A® Vs, B) =
= [Sym(D A)].SymB + [Sym(dz')].SymA Sym(Vae, B) =
DA B+  Ade (Vs B)= ;DA B+ A,(Vs, B).dr
= DA B+ ,AD(B),

I

where

AV, BY.det == [V, (5 B_ﬂ.dz’ :_H(C);l.dx(c_)vdr" :_B(C;,').dl’i,dl'(c) =,D(B),
DA= DAY, DB=,D(B).
On the basis of the last relation we obtain that

‘_/)(1\ [ lf) = \ﬁ/\cb‘ + .«A'.:E(s B) = sﬁ(s4)1H + sf/‘-s—[j(slf) .

\

Therefore, the covariant synunetric tensor differential ;1) acts on symmetric covariant
tensor fields as a differential operator obeying the Leibniz rule

Didw By = Dl (An B)) = ,D(AB) = D A) B+ A D(B) .

3.2. Lie symmetric tensor differential.  On the analogy of the definition of the
covarianl symmetric tensor differential we can define the notion of the Lie symmetric
tensor differential.

Definition 7. Lie symmetric tensor differential. The operator

L =8ymol

is called Lie symmetric tensor differential.

15



The properties of the Lie symmetric tensor differential are determined by its construc
tion and the properties of the Lie tensor differential

(a) Action on a function

SLf=Sym(Lf) = Sym(df)=df, feC (M), r>]

df € T*(M),  Sym(f) =id(f),  Sym(da') = id(dr') .
- _ o 1
£(:£f) = (L(df) = Ly pjyde’de? | pi=f;, Lo,pj= 5»(150.11] + Lo pi)

{b) Action on a covariant tensor field
LB = ,ELB).

Proof:
JIB = Syrn(fB) = Synl[(‘EB. BA).dl'i ® dl’A} = [£B(,B/\)]-d'r(z & (IJ‘A) =
T )] et .{:8( BA) dx(A)-dIi = sf(sB) ’

= Sym[£, Bay.dz’' ® dz{A)] = Sym[£(,
Be®k(M), ,B= B dz)

where
sL(:B) = Sym(i:a‘B(A).dz" ® dzA)) = L9, 84 dzl @ dz?) = Lo, Bay do* dz!
= £6(,HA) dI(A) dI .
sL has also the properties
SL(EB) = (E(,E(:B)) ,
Symo L = 5Symo L£oSym , SymoLoSymo L =SymoLol .
SL(EB) .

sL£(,EB) = ,£(IB) = Sym(£(£B)) =
L EB) = L5, £0,Bay.da? dz’ dz*) = (L5, L5 Ba)(jin).-da? de* dz)
(c) Linear operator with respect to covariant tensor fields

£(a.By + A.By) = a.Sym(£B1) + B.Sym(EBy) = a. LR + B.. LBy
Bieaw(M), i=12, a,B€R(or().

(d) Differential operator with respect to covariant tensor field

LA B)= LA B+ A E(,B) .

Proof:
Sym[L£{A® B)] = Sym[£A@ B +dz* @ A Ly B] =

LAgB) =8

Sym(LA & B) + Sym(de' & A £5, 1) =

= [Sym(LA)]. SymB + [Sym((lr')] SymA.Sym(£, 13) =

TLALB A Ade (L5 B) = JEALB + A (Lo B).de® —
=,LA B+ ,ALE(LB),
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where
L B dat = Ly Bieydatdet = Lo, Beydedet = (L{LB)
O R N A N I { = O £}

On the basis of the last relation we obtain that

LA o = LB AL = BB LR

Therelore, the Lie svintetrie tensor differential (£ acts on symmetric covartant tensor
ficlds as a dilferer tial operator obeying the Letbmyz rule
BV sy = L B = L) = L)L B+ LR

1 AN SYMAMETRIC FENSOR DIFFERENTIALS {EXTERNAL DIk FRENTIALS)

The vesult of the action of the tensor differential d on ol anti-svimmetric tensor field
LU E AR can be found i the form

di 1 = Ay dat dr? = Apepaet . Ay = o

It we tmpose the additional condition that the affine tensor field di,. 1 has 1o be a

full anti-syimmetric afline tensor fickd. then we have 10 act with the anti-synmmetrisation
aperator Asym on d(, 1)

Vsym(d(, ) = Asyi{( Ay ) Asym(dat & dr By = Nyt A de
= Asym( Ay ) daet A i = Ay dat A ditt

where
Asym(Agna) = Ay Asy(de’ Sdr By = de' ndi ¥

On the other side, the operator Asym anti-symmeteises the tensor product

1B
Asym (A w BY = Asymn(Ay, L, By ) det A da' Adade A

Adrit =
= A, 0By, apdettoa oA dat Adritv A LA dat =
= A, ] det A AT A B, gl A oA dent -
= AA B = AsymAA Asym B = (A0 ).
From B B
2d( ) = Asym(d(, ) = Ay de’ A dlt
and by the use of the expression {or Asym(A o I3) for Az Ay drt cde

Jl."_l]l”((‘l‘.‘1) = d((_[/‘) = Asym(Ap, drt o drly - Ay dat A it

it follows that

Ad) = (dY)
We can now define an operator o constructed of the operator Asyin and the operator

¢ inthe form ,d = Asymiod

Definition 8. Antrsvimetrie tensor differential (external diflferental). The operator

17



ad A= dA = Asym(dA) Ae (M) dAet s (M)
is called anti-symmetrac tensor differential (crternal defferential).

ad maps a covariant tensor ficld of rank & in a full anti-symmetrie covariant affine
tensor field of rank & + 1.

Remark 11. Since the operator od contains in its structure a covariant basis veetor fivld
drt or e” [(ﬂ = Asymod = Asym o (dr' 2 8)) = Asym o (¢ 2 ¢,)], 1t cannot act on
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant
tensor field in a full anti-symmetric affine contravariant tensor field. This is the reason
for considering the action of ,d on covariant tensor fields only.

The properties of the anti-symmetric tensor differential are determined by its definition
and the properties of the tensor differential:
(a) Action on a function

Wdf = Asym(df) =df |, Jdf=df=[.det . feCT(M) ., JAf €17 (M) .
=z . 4

WAfE)=df (€)= fif 6 =€ f, =8, E=€0:.

od has also the property

Proof:
d(adf) = od(df) = flijde? Ade' =0, because of  fo; = [, .
{b) Action on a covariant tensor field A € 4 (M)
WdA = Ld(,A) .

Proof: [t follows from the relation a(aA) = u(J({,/‘l)) and the definition of ,d.
«d has the property

Lemma 9. (Poincard lemma):
,,}Z(GEA) =0: ado ad=10.
Proof:
,‘J(HJA) = ,,J(J/\) = /1sym[a(a/\)] = Asym[dz? & (’_)j(AHEz e de' @ dz?)) =
= Asym[Ay ;. d2' @ dat o dz?] = Apgigda? Ade* Adz P =0
because of Ag ;5 = Ap . A1 =0.

(¢) Linear operator with respect to covariant tensor fields

wld( Ay 4+ A.A) = o d Ay + B,dAy
Avem(M), i=1,2, a B8€R(or()
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Proof

ad{c Ay + 3.4.) = Asym[d(a. Ay + §.4)] = As‘ym[i(a 1) +d(3.A9)] =
= Asymla.dAy] + Asym[B.dA;] = a.Asym(dA)) + 8. Asym(dA;) =
= rY.aJ/h + ,H.adAg .

The last relation follows also immediately from the linearity of both operators Asym
and d.
(d) Differential operator with respect to covariant tensor fields

ad(A 2 B) = ad(a AN oB) = odAN B+ (—1)* AN dB |
Aeow(M), Bew(M), odA€ &k (M), odB € *@p (M) .

Proof:

ad(A & B) = Asym[d(A @ B)] = Asym[dA®@ B+dz' © A® §;B] =
= Asym(dA) A o B + Asym(dz* 8 A® §;B) =
= JdANA B4 Asym{d' @ A® 0;B) .

For Asym(dx® o A% &;B) we can find the relations
151}7!1[(11i ®AQIB)= Asym(dxi) A AsymA A Asym(0; B) =
= dz' A a/l/\[B[(] df(v]* (—1) A/\B[c’i].dx"/\dic =
=(-1)f AN Asym(dB) = (1) L AN ,dB .

Therefore,

WA @ B) = JdANA B+ Asym(dz' © A 8;B) =
= dA/\ B (=D AN B

On the other side, from the relation ,dA = a;iA(aA), it follows that
WA= B = (Al (A® B)] = Jd[Asym(A @ B)] = d{aAA B) .
Putiing the last expression in the relation for ,d(A % B), we obtain

(AN GB) = qdAN B+ (=1) AN B .

By the use of the relations (dA = aa(a/l), LdB = ag(a B) we can determine the action
of od on the external product ;A A ¢ B of two {ull anti-symmetric tensor fields , 4 and ;B

al{a AN oB) = [ad( A A o B+ (=D 2AA[d(B)] .

Therefore, ,d acts on full anti-symmetric tensor fields as a differential operator obeying
the rule for anti-differentiation (1. e. the Leibniz rule with respect to the external product
and with a possible change of the sign [(~1)*] in the sccond term after differentiation).
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4.1. Anti-symmetric covariant tensor differential (covariant external differ-
ential). On the analogy of the definition of the anti-symmetric tensor differential we
can introduce the notion of anti-symmetric covariant tensor differential. Instead of d in
«d we can put D and find an operator of the type ., = Asym oo D,

Definition 10. .70 = Asym o D is called anti-symmetric covariant tensor differential
{covariant external differential).

«D maps a covariant tensor field of rank k in a full anti-symmnetric covariant tensor
field of rank & + 1

oD A= DA=Asym(DA), A€ (M), . DAE (M),
Remark 12. Since the operator <D contains in its structure a covariant basis vector field
dx* ore® [ = Asymo D = Asymo (dz* @ Vy,) = Asymo (¢* &) V)], it cannot act on
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant
tensor field in a full anti-symmetric contravariant tensor field. This is the reason for

considering the action of ;D on covariant tensor fields only. This case is analogous with
the case of the operator d.

The properties of the anti-symmetric covariant tensor differential are determiined by
its definition and the properties of the covariant tensor differential:
{(a) Action on a function

Df = Asym(Df) = Df =dJ , WDf=df = fidat, fecr My, DfeT (M),
D) =df (€)= fif' ;8 =€ f:=Ef, £=¢€0i.

o1 has also the property
oD(Df) = T dz’ Nz’ =
= 3. (P — PE).frde? Ada = LU 5 o dad A dat
f,i,] f,],zu fep( ): 722

(b) Action on a covariant tensor field A € ©, (M)

DA = D(.A) .
Proof:

DA = Asym(DA) = Asym(Ap,; de* @ dz?) = A[I]J].dl’i Adzlt

On the other side,

oD(aA) = Asym[D(,A)] = Asym(Apy;. dri@dz?) = Ay -det Ade =
——ABI] dr’ /\(1'11” N

hecause of the property of the anti-symmetric Bach brackets

At = (A = Apay -
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Therefore. .
D= DA

L1 has adso the property

DDA = gy et Adat A dE "
(¢} Liear operator with respect (o covariant tensor lields

DA 4 ) e, DA+ 3, T
Ao, i= 1.2, a. 3¢ IE{or()

Proof
a2 ) = e[ D0, 4 340 = Asgn|[Dia ) + DT ) =
= Asymla DG4 Asumn[3 DAY = a Asym(DA Y+ 3 Asymi DA =
=a. D+ 4,0,

The Tast relation follows also numediately from the linearity of both operators sy

and [J

i) Differcntial operator with respect (o covariant tensor lields

A B+ (=D, 1A Dl

DU By = DA A ) =
e (M) DB e Lt

: uﬁ‘
Ae (MY Beoy(M). DA€
Proof
DAY = A\.s'.f/m[ﬁ(.\ B = .‘H}/Hl[ﬁf‘ R det L
= .'lmym(ﬁ.ﬂ) A a4 Asym{de’ o AN, B) =
= AN LD Asym{det & A0 N 13)

A=

For Asym{de’ 0 Ao ¥y, B) we can [ind the relations

Asym{det = A NV ) = Asym(de Y A Asym A A Asym(Ty B) =
=dri A LA [Ii’[(v]‘, (I.?(v} = (—l)k.aA A /f[“,].xl.l‘l AdFC =
= (=1 AN Asym(DB) = (=D A DB

Therelore,
uﬁ(,f‘l W 13) :_{,ﬁ/‘l A B+ Asym(de’ o AN ) =
= G DAA DB (D5 AA LD
On the other side, from the relation , A4 = uﬁ(“;\). it follows that
) = DL e Y = LD sy (e Y = LD VA L)

Putting the last expression i the relation for D4 00 BY we obtaimn

DA ) = DAA B (=D A DB
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By the use of the relations A = a/)((, 1), DB = d/)(,,l!) we can deternmne the
action of , 1) on the external product ;AN B3 of two full anti-symumnetric tensor fields WA
and , /8

aPAA GB) = DA A B+ (=1 ANLD 1))

Therefore. 1) acts on full anti-symmetric tensor fields as a differential operator ohey-
ing the rule for anti-differentiation.

2D naps a full anti-syminetric covariant tensor field of rank & in a fuil anti-svinnetric
covariant tensor field of rank & + 1.

4.2.  Anti-symmetric Lie tensor differential (Lie external differential).  On
the analogy of the definition of the anti-symmetric covariant teusor differential we can
introduce the notion of anti-symmetric Lic tensor differential. Instead of 7J in LD we can
put L and find an operator of the type ,L = Asyin o L.

Definition 11. £ = Asym o £ is called anti-symimetric Lie tensor difforential (Lie ox-
ternal differential).

of maps a covariant tensor ficld of rank & in a full anti-synimetric covariant tensor
field of rank k + 1

sk A A= Asym(LA) . A€ (M), JLAE tug (M)

Remark 13. Since the operator o £ contains in its structure a covariant basis vector field
dzt or e” [UZ = Asymo £ = Asym o (dx' 2 L) = Asymoe (e & L)), it cannot act on
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant
tensor field in a full anti-symmetric coniravariant tensor field. This Is the reason for
considering the action of £ on covariant tensor fields only. This case s analogous with
the case of the operator D.

The properties of the anti-symmetric Lie tensor differential are deternnimed by s
definition and the properties of the Lie tensor differential:

(a) Action on a function

WL = AsymdLf)y = Lf =df |, Lf =df = [, de'
Fecr (M), JLf et (M), )
WASE) = df (&) = [ [ 8 =& [o=Ef, &80,

A4 has also the property
I[llf) = L,;,[y]),].(/.l'/ Ada’ o= f
(b} Action on a covariam tensor field A € M)
aLA = LAY
Proof:

WL A = Asym(EA) = Asym(Ly, Ap.de' dz”) = Lo, Appda® A dr &
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On the other side.

) = AsymlE(A)] = Asym{Lo, Ay da' & dE D) = £g Ay de A dF ¥ =
= Ly, Ap)dzt A dz ¥,

hecause of the property of the anti-symmetric Bach brackets

Lo, Ay = (Lo, Apisg = Lo, Any -

Therefore,

EA= L, A)

<L has the property

L(aLA) = Ly, L5, Apyd2’ Ada' AdZ P

{¢) Linear operator with respect to covariant tensor fields

Lo AL+ B.A3) =aEA + F..EA,
Aren(M), i=1,2, a,3€R(orC).

Proof:

cEla AL+ 8. A0) = Asym[E{a. A} + 3.A3)] = Asym[L(a. A1) + £(8.42)] =
= Asymfa LA + Asym[ﬁ.filg] = rx,As_ym(fA )+ 8. Asym(LAq) =
= (lha.ﬁAl + ﬁ.a.f,Ag .

The last relation follows also immediately from the linearity of both operators Asym
and £

(d) Differential operator with respect to covariant tensor fields

GL(4 9 B) = LA o B) = JLAN B+ (=D*aAA LB,
Acon(M), Bea(M), ;LA€ @ (M), £B €&y (M) .

Proof:
LiADB) = Asym[E(A® B)] = Asym[LAR B +dr' @ A® £, B] =

= Asym(z JA oB 4+ Asym(dr' @ A® £4,B) =
LAA B+ Asym(dz' & A £5,B) .

For Asym(dr® % A& £y, B) we can find the relations

Asym{da' = A @ £y, B) = Asym(da®) A AsymA A Asym(Ls, B) =
=dx' A J AN L B (,].dl C] = (-1 )k.a./l A £U[. Bepde' A dz¢ =
= [(=1)f AN Asym(fﬁ) = (71)“'4‘,/1 A L3, where
da' A Asymn( Ly, B) = Asym(da* & £4 B) = Asym(f[}) = LB

Therefore,

LAwB) = = o LAN B + Asym{de’ @ Ag L5, B) =
= LAAN B+ (=D)F AN LB
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On the other side, from the relation LA = af(uA), it follows that
(A B) = L (A B)] = L[Asym(A® B)] = L(.AAN D).
Putting the last expression in the relation for ,L£(A & B}, we obtain

dE(eAA GBY = JLAA B+ (D AN LD

By thoAusc of the relations ,£A = ,,f(aA). LB = af(}, B) we can determine the
action of , L on the external product ;A A 3 of two full anti-symmetric tensor ficlds A

and B

aL(aAN oB) = LEGAA B+ (D L ANLLB) .
Therefore, oL acts on full anti-symmetric tensor ficlkds as a differential operator obeving

the rule for anti-differentiation.
<L maps a full anti-symmetric covariant tensor ficld of rank & in a full anti-symmnietrie

covariant tensor field of rank &+ 1.
There is a relation between the action of the anti-symmetric Lie covariant differential
L and the tensor differential d. I'rom

LA = Asym(EA) = Asyrnldr? @ £, (A)] = Asym[(La, Ap).da’ i da’]
and the explicit forms of Ly Ay and (Ly, A];).d;r:j
(Ly Ap)de? = Ap,.ded + (P, + TG Ac de?! = dAp + Ppj.da’
where
Puj = (PG + TG ) Ac . dAp = Ap;de? . dA = dAy ode”

we obtain

f/l = 3/\ + P, P = Pnj.(/.l’j &) (1,1’” .
Then, N _ 8 N
LA = Asym(£A) = Asym{dA+ P) = dA+ P,
o = Ppjde? A de B adA = Apy jy.de? Ad B
Special case: S=C 1 ;= q} : I’;k + l‘;k =0,
P=0, LA =4dA JLA = LdA.

The Lie derivative of a full anti-symmetric covariant tensor ficld along a contravariant
vector field & can be found on the basis of the Lie derivative of a covariant tensor field
W e (M)

'!‘if W = (L; VVA).d,ITA = ("CE M””).(:“ N
LeWa = Wa s -5 ¢ BUWwp 8+ (PR + 1)y wy e

The Lie derivative of df can be found after direct computation in the form

Leladf)  ALus € 4 106 (P 1)) e
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Specaad cases So= O[Tt o P =Pl "y =0 Slip Ivn)

Lot od V=0 f, & 4 .8 vdet = ((f,,.8 + [..80 hdet = if, 80, =
; d £ i £
lr(.d/] = ,J(Eft = ,‘(YQ;Lgf) o obecanse of Lef =8 f

Fhe Lie dertvative of accovariant vector field poalong o contravariant vector ficld € can
swritten i the form

Lopa (Lephde’ = py s fl‘ +op & ) ll” l ) E“\ dr’
I the special caseswhen S = (0 Lqp can be expressed by the use of S and | d
Specral case: S = (7 , .’/3 [’»/Vk + ]‘.:L}" = /?;k 4 ["»’:A_ == ()

Lep = 290 dp) + Wd[S(p &3] = deladp) + adlicp)
= (ig e =+ do ey
Proof
Lep = {py W E8 €Sy de = = i R A b &R de =
- ];M._E" drt + (pe &) daet = py &5 drt =
= iy pai) E8dr + [S(p &Y, dat =
= .‘)'I"‘:’-H Ek dat 4 4{[5’( )] = 2. “«(E ” (l']!l +7 ,,(/[ ( f”

P E8det = py, det €8 = dpg £F = ((lp) .

Sty O = A8 = St 2]

On the other side,

Wdp = Ple,ipdet A dok = = PLok)- dr* A dr

SEadp) = pra & det = Liludp) . S(Ep) = S(p.€) = igp

Therelore.

Lep = 2.5(&, ﬁp) + ‘,J[S(;)‘E)] = ig((ﬂ/}) + ,1}7(1'51») .

Remark 14, In (7, ¢)-spaces [in contrast to (L, g)-spaces] relations of the type Ly
ald = qde Lo Leoig = g o Ly are not fulfilled.
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Manos C., Jumutpos b. E5-98-183
(L, ., g)-npoctpancrea. O6suHbIE 1 TEH30DHBIE N0J4

PaccMOTpeHDb! pasHble THIIBI AupepeHHANIoB KaK 4acTHbIE CIydYaH aucdde-
PCHUHATIBHBIX OTIEPATOPOB, AECHCTBYIOLIMX HAa TEH3OPHbIE NOMS Ha MHOrooOpasusx
C KOHTPABapUAHTHO# W KOBapMaHTHOH a(phHHHBLIMH CBA3HOCTAMU. OGBIMHELL aug-
chepeHnnan U KOBapHAHTHBIIL AudipepeHiIan paccMOTpPeHbl Kak 4acTHbie ciydyau
KOBapHaHTHOro 1u(hepeHIMANBHOTO Onepatopa. Rudpdbepenunan Jln paccmorpen
KaK YacTHEIH Ciyyait nugpepenumansHoro oneparopa JIu. OnpegeneHs! U ccneno-
BaHb! CBOMCTBA TEH3OPHOIrO AnchhepeHIana 1 ero 4acTHble ciiyyaM (KOBapHaHTHBIH
TEH30PHBIN AHbepeHIHan 1 TEH3OPHBI mutpdepenunan Jlu). Onpenenenst u pac-
CMOTPEHbI  KOBADHAHTHBIA CHMMETPHYECKHH TEH3OpHbII, AHTHCHMMETPHYECKHI
(BHELUHWI) TEH3OPHBIA, cHMMeTpuyeckuil JIn M AHTHCUMMETPHYECKHUH (BHELIHMIA)
Jlu Tensopubie auddepennyanst.

PaGora srimonuena B JlaGopatopuu TeoperHyeckoi ¢usuku uM. H.H.Boronio-
Gosa OUSIN.

Coobuwenne OOBENMHEHHOTO HHCTHTYTA AUEPHBIX Heeneaosarni. JyGHa, 1998

Manoff S., Dimitrov B. E5-98-183
(L, .g)-Spaces. Ordinary and Tensor Differentials

Different types of differentials as special cases of differential operators acting
on tensor fields over (L, g)-spaces are considered. The ordinary differential,

the covariant differential as a special case of the covariant differential operator,
and the Lie differential as a special case of the Lie differential operator are
investigated. The tensor differential and its special types (covariant tensor
ditferential, and Lie tensor differential) are determined and their properties
discussed. Covariant symmetric and antisymmetric (external) tensor differentials,
Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined
and considered over ( L,l , & )-spaces.

The investigation has been performed at the Bogoliubov Laboratory
ot Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1998
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