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Abstract

The mass of the W boson is obtained from the reconstructed invariant mass dis-
tribution in the fully hadronic channel. The sample of WW pairs is selected from
54 pb~! collected with the DELPHI detector during the 183 GeV run in 1997. The
selection of the events, and the assignment of jets are performed with two neural
networks. The distribution of the two invariant masses is then fitted by a binned
likelihood method to obtain the mass of the W boson

myw = 80.126 + 0.183(stat.) £ 0.050(syst.) + 0.100(BE/CR) £ 0.030(LEP) GeV /¢



1 Introduction

This note describes a new measurement of the W mass in the WW — qqqq channel
from the data collected at 183 GeV in 1997 by the detector DELPHI. The integrated
Inminosity was 53.5 pb™!. The note is organised as follows : a brief description is first
given of the Monte Carlo samples used in the analysis. Then the event selection and the
jet assignment with neural net methods are described. Finally, the W mass is extracted
from a 2-dimensional likelihood fit of reweighted Monte Carlo events.

2 Monte Carlo samples

The simulated events allow to predict for each W mass the expected mass distribution
which will be used in the fit. We have used 410000 fully simulated W events in this
analysis. Among these events, 370K were generated with EXCALIBUR [1], including all
four-fermion diagrams, and 40K with CC03 PYTHIA [2]. The EXCALIBUR sample is
divided into 5 subsamples with different values of the generated W mass mge,: 45K at
79.35, 60K at 79.95. 160K at 80.35, 60K at 80.75, and 45K at 81.35. These 5 samples are
reweighted to the same mass in the analysis, as described in section 6.

To train the neural network algorithm, 556K WW — q4qq events, restricted to the gener-
ator level, have been generated with PYTHIA (see subsection 5.3).

In addition to the signal events, 1 million ete™ —qq(y) background interactions were
generated with the program PYTHIA.

3 WW — qqqg event selection

Using the Monte Carlo sample generated at myw = 80.35 with PYTHIA, the expected
observable cross sections for the signal and the background are summarized in Table 1.
They are calculated from the numbers of events surviving the selection cuts described
below and the mass reconstruction procedures described in Section 5.

| Process ] Ocuts (Db) [
ete” =WW — qqqq | 5.830 & 0.087
ete- —qa(7) 1.348 + 0.013
ete™ =77 0.178 £ 0.008

Table 1: Cross sections of signal and background processes after analysis cuts.

A neural network [3] is used to tag the signal at 183 GeV since it is clearly more
efficient than the simple sequential cuts. It allows an improvement of the purity by 14%,
when compared to a standard procedure using the same variables. The efficiency and the
purity were estimated to be 85% and 80% respectively. The number of events selected
from the data was 401, which corresponds to the expected numbers of events from the
simulation with 316 WW, 9.6 ZZ, and 72.8 qq(7y). A preselection is applied with the
following cuts :



o The visible energy is above 105 GeV and the neutral energy less than 110 GeV.
e There are at least 20 charged tracks.

e The effective center of mass energy is larger than 150 GeV.

The event is forced into 4 jets using DURHAM [4] and each jet is requested to
have at least 4 particles. The number of jets will be unfrozen later on for the mass
reconstruction.

A 29-29-1 neural network pattern is then trained on the full simulation. The 29 variables
used for the learning and the computation of the neural network output are the variables
of the preselection, the electromagnetic and hadronic neutral energy, jet masses, the
particle multiplicity in jets, the number of reconstructed jets with a gy, = 0.001, all
the yeu to form 2 to 8 jets, the quark-quark-gluon-gluon matrix element [5], the Fox
Wolfram moments, the thrust, the oblateness. Figure 1 shows the neural network output
for the signal WW — ¢gqq events, generated with PYTHIA, at mw = 80.35 GeV/c?, and
the qg and ZZ background contribution. The overall agreement between data and Monte
Carlo is good. The neural network output is required to be larger than 0.5 for the selected
W hadronic events.

Events

output weight

Figure 1: The neural network output: the black circles are the data points, the light
shaded histogram the signal events, and the dark-shaded histogram the qq(v) and ZZ
background. The arrow indicates the selected range. The simulated histograms are nor-
malized to 53.5 pb~!.



4 Kinematical fit

In order to improve the mass resolution, a kinematical fit, called MULTLJETS (6] has
been developed for multijet final states to impose the constraint of energy-momentum
couservation at the jet level in the final state. We assume that the quality of the tracking
aund the granularity of the calorimeters are good enough, so that the direction of the jets
is not altered in the fit, while the absolute value of the momentum is modified. It can
be checked from the simulation that 77% of the reconstructed jets are within 5 degrees
of the generated direction. A x? is defined taking into account the individual momentum
measurement errors of the jets o; which are parametrised as function of the polar angle.
The momentum and energy conservation (4C fit) are imposed by Lagrange multipliers.
A fifth constraint can be added. The 4C fit has been chosen since it gives informations
on two masses for each events and moreover no improvement has been obtained using
a 5C fit. Details of the constrained fit method are given in reference [6], with a minor
modification. The masses of the jets, fixed in the previous reference, are now rescaled as
the energyv :

AM;, AP, AE;

M; P, E
where M, I, and E; are respectively the mass, the momentun modulus, and the energy
of the measured jet ¢«. The corrected momentum is then
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where «, ? and v are the Lagrange multipliers. F4 is the sum of jets energy belonging
to one W | z; = 1 for these jets and z; = 0 for the jets belonging to the opposite W.

5 Jet pairing

The jet multiplicity distribution is sensitive to the choice of the parameter defining their
size in the DURHAM algorithm. It was found advantageous to chose a small jet ‘size’
with y., = 0.001 in order to isolate a very pure 4-jet sample. We see in figure 2 that
the simulated and reconstructed jet multiplicities with this definition are in agreement.
When the final particle configuration is not enforced into 4 jets, the possibility of a better
assignment of the jets after they have been kinematically corrected is left open, but the
combinatorial background quickly becomes severe.

The events are separated into two classes with different neural net parameters after
the 4C fit : the 4-jet events, and the others.

5.1 4-jet associations

The chosen value of y.,; = 0.001 yields a statistics of 107 WW — gggqgcandidates events.
The jets are coupled in three different ways. The output layer of the neural net includes 4
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Figure 2: Distribution of the number of reconstruted jets with y.,, = 0.001 using

DURHAM. The black circles are the data points, the light shaded histogram is the signal,
and the dark-shaded histogram the qq(v) and ZZ background.

nodes : one for each of the 3 previous combinations (node i is equal to 1 if combination 7
is correct), and one for the background (node 4 is trained with 1 for background events).
For each combination, two input variables are used to discriminate between the different
solutions, the sum of the jet opening angles (interjet angles) 6;; + 6y, and the difference
between the two reconstructed masses |M;; — My|. The hidden layer includes 6 nodes (as
many as the input variables). The distributions of these variables are shown in figure 3
for the three possibilities and for the solution chosen by the neural net. The W bosons
have a small boost and the pair of quarks is almost back to back, resulting into an angular
sum in the range of 200 to 300 degrees. The difference of the two masses is peaked around
zero and follows a gaussian-like distribution, as after the 4C fit, the masses of the two W
are close to each other. It is also seen in figure 3 that the third combination, which pairs
the most energetic jets with the weakest, the good one in more than 70% of the cases.

5.2 5-jet associations

When the final state configuration is reconstructed with 5 jets the combinatorial back-
ground increases to ten differents combinations. The jets are coupled into two di-jets
for one W and three jets for the opposite W. When the jets are reordered as a function
of their energy, only seven combinations are retained out of the ten possibilities, as the
bi-jets combinations 3-4, 3-5, 4-5, occur in 2% of the cases only.

Three variables are used to discriminate among the different combinations :

- The opening angle between the two jets in the bi-jet side 0;; + 6k

- The absolute difference between the two associated masses of the ’candidate’ W’s -
|Mi; — Myum| (as with the 4 jets).
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Figure 3: Distributions of the sum of the jet opening angles (left) and the bi-jet invariant
mass difference (right) for the three differents pairing possibilities in the 4 jets events. The
fourth histogram shows the selected combination. The black circles are the data points,

the light shaded histogram is the signal, and the dark-shaded histogram the qgq(y) and
77 background.
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Figure 4: Selection variables of 5-jets events. The jet opening angles sum (a), the bi-jet
invariant mass difference (b), and the minimal angle between the jets in the three-jet side
for the selectect combination by the neural network. The black circles are the data points.
the light shaded histogram is the signal, and the dark-shaded histogram the qg(y) and
77 background.



- The minimal angle between the jets in the three-jet side. We then favour solutions
where a gluon is emitted with a softer jet at low angle.

The 6 and more jet events are re-clustered as 5 jets for the pairing. The hidden laver
consists of 21 nodes and the output layer includes 8 nodes, one for each of the sclected
combinations, and 1 for the background. The distributions of the three discriminating
inputs are shown for the combination selected by the neural network in figure 4. It is seen

once more that these variables are well described by the simulation.

5.3 Training of the neural network

The training of the neural network to the recognition of the correct jet association will
be performed with the generated particles (i.e. before the simulation of the detector).
to avoid the ambiguities arising in the assignment of a particle to a given W at the
detector level. A generated jet is then assigned to one W if the energy fraction from this
W is larger than 50%. It turns out that 85% of the jets have more than 90% of their
energy coming from a single W. The matching of the generated and detector jets allows
to monitor the performance of the neural network. Two jets are matched according to
the smallest angle between their directions. It is seen in figure 5 that although the neural
network was trained with the generated hadrons, the energy distributions of the generated
and detected jets (after the 4C fit) are very similar. At this stage, the invariant mass
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Figure 5: Jet energy comparison for the 4-jet (left) and for the 5-jet (right) between
generated jets (solid line) and detected jets (dotted line) after a 4C fit.

of the generated jets belonging to the same W is computed, and called “true W” mass.
A comparison between the true W mass distribution and the one found by the neural



network at the detector level is shown in figure 6. It is seen that the quality and the
cfficiency of the neural network training on the generated particles is quite adequate.
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Figure 6: Comparison between the true W mass and the reconstructed one by the neural
network for the 4 jets (right) and the 5 jets (left).

To avoid the bias arising from a single generation mass, the neural network has in fact
been trained with 55k W*W~events with generated masses spread uniformly in the range
TH < my < &6 Ge\”'/cQ.

6 The 2-dimensional likelihood fit

When the two reconstructed W masses of an event differ, the reconstruction accuracy
can generally be expected to be poor. The difference of the two masses, after a 4C fit. is
then an indicator of the reconstruction quality of WHW~ events. The W boson mass is
extracted from a likelihood fit to the 2-dimensional plot formed by the average and the
difference of the two W-masses, using the distribution predicted by the full simulation. In
order to obtain the Monte Carlo spectrum for arbitrary values of mw, the Monte Carlo
reweighting technique is used as in [7].

The background distributions are normalised to the expected number of background
events, and are assumed to be independent of myw. A binned log-likelihood fit to the
data i1s performed. The fit is restricted to the range 50 < Mligﬂi < 89 GeV/c?and 0 <
M, — M,| < 80 GeV/c?. For an average mass above 65 GeV, and a difference of masses
lower than 40 GeV, there are 7 x 21 bin uniformly distributed, and 153 bins are emploved
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Figure 7: The mass difference versus the average mass for the W*+W ~(left) and the
background (right). The relative normalisation is arbitrarv. A 2-dimensional hinned
likelihood fit is applied to these distributions to extract the W mass.

to cover the full 2-dimensional domain. The log-likelihood is formed as
Nbins Noins \C

N:
ﬁ(mw = —2. Z Z \IdatalOg 1\7\1C)

Tot

where N ; is the number of observed events in the (¢,j)th bin and NM¢ is the total
number of Monte Carlo events assuming a W boson mass of my. The minimum of £ will
be reached when the simulated expected mwdistribution reproduces the data distribution.
This method includes all the effects from the detector and the jet-clustering, and avoids
the analytical parametrisations of the shapes, needed in an unbinned likelihood. In order
to limit the statistical fluctuations from large weights, the 5 Monte Carlo samples with
generated masses between 79.35 and 81.35 have all been used to reweigh each distribution
to a new W mass my, leading to an improved Monte Carlo statistics. For each sample

with a given generated W mass mye,, the weight w(i) of event i will be:
Mmy, (5)
legen (Z) l2

where the matrix elements M, or My, .. computed by the EXCALIBUR programme
take into account all the 4 fermion contributions. The effective statistics is Nog events

N2
(=N w(i))
520 w(i)?
where N is the number of Monte Carlo events. The different samples of generated masses
are then combined with the proper statistical significance.

As the final states with jet multiplicities of 4, 5, and above, have very different mass
resolutions, the overall likelihood used in the fit is the sum of the three independent

w(z’) =

Neff -

9



likelihoods, evaluated with the 2 dimensional Monte Carlo probabilities pertinent to each
class of final states.

7 Results

The mass value and the statistical error obtained from a 2-dimensional likelihood fit to
the data using our neural network are

The expected statistical error from the Monte Carlo is £0.215 GeV/c?. Figure 8 shows
the mass distribution for the 183 GeV data compared to the reweighted Monte Carlo
prediction at the fitted mass.
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Figure 8: Reconstructed mass distributions for the data (points with error bars) compared
to the reweighted Monte Carlo expectation (solid histogram) corresponding to the fitted
mass using a neural network analysis for the process WW — qqqq.
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8 Consistency and stability checks

8.1 Linearity of the reweighting technique

The consistency of the reweighting method has been checked on the independent Monte
Carlo samples. We find with the fitting programme :

Mgy — Mgara = SlOpe * (Mgey — Myaga) + shift

slope 1.05 +0.07 |
shift (GeV/c?) [ 0.01 +0.03 |

Table 2: test calibration of the algorithm.

The slope is consistent with one, and the shift with zero, which confirms the validitv
of the reweighting technique.

8.2 Event selection

The events are selected from the data and Monte Carlo by requiring the neural network
output to be larger than 0.5. This cut was varied from 0.4 to 0.6 and the measured mass
changed by less than 4 MeV. The statistical error remains the same.

8.3 Shapes

No apparent discrepancy are observed between the shapes of the data and simulated
events for all the variables used in the neural network algorithm.

8.4 Clusterisation Algorithm

Changing the value of y., around 0.001 does not modify the previous result on the W
mass. In order to investigate the effect of the clusterisation algorithm, all the analvsis
has been repeated with the CAMBRIDGE jet algorithm [8] instead of DURHAM. The
statistical error is respectively 5 MeV/c?and 20 MeV/c? greater with the CANBRIDGE
jet algorithm for the Monte Carlo and the data. A downward shift of the mass by
75 MeV/c? is however found with this algorithm. Part of this shift at least originates
from statistical fluctuations in the sample of jets, and should not be fully included as a

systematic error. This large shift has to be investigated with more Monte Carlo on farther
studies.

8.5 Background contamination

The expected background remaining after the selection is 18%. Changing the level of the
background by +10% introduces a systematic uncertainty of Amy = 5 MeV/c?.
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8.6 Preliminary sources of systematic errors

The analysis of all the systematic uncertainties has not been performed in this note and
we borrow some numbers in reference [9]. More profound studies are in progress.

[ Source of systematic error  Error (MeV/c?) |

Fragmentation 30
Calorimeter calibrations 25
Jet energies 20
Background level 5

LS.R. 20
LEP energy 30
Reference MC statistics 10
Colour reconnection

and Bose Einstein corr. 100

Table 3: Contributions to the preliminary systematic error

9 Result for efem >WW — qqqq
This neural network analvsis on the fully hadronic channel gave the following result
mw = 80.126 £ 0.183(stat.) & 0.050(syst.) + 0.100(BE/CR) + 0.030(LEP) GeV/c?

where “stat” denotes statistical error, “LEP” the uncertainty on the beam energy,
“BE/CR” comes from the Bose-Einstein and Colour Reconnection systematics.
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