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1. Introduction

It is known that Lotka-Volterra systems (LVS) of Ordinary first-order
Differential Equations (ODE) are applied to describe some kinds of nonlin-
ear interactions in various branches of science. Historically, LVS appeared
to model interactions between interconnective biological species [1. 2], and
to study kinetics of chemical reactions [2]. Later, LVS have aroused consid-
erable interest due to problems of the mode coupling of waves in physics of
lasers (3]. Interest in LVS was revived by the paper [4]. It was established
there that the fine structure of spectra of Langmuir waves in plasma is
described through a special VS with all the coefficients being equal to £1.
The next step was made by L.Brenig. He proved [5] that a large set of
ODE’s (the so-called generalized LVE) implied in various fields of physics,
biology, chemistry, and economics, can be reduced to LVE by quasimono-
mial transformations of the variables. Korzukhin, as has been reported in
the book by Ebeling [6], proved the following theorem:
if

dCi/dT = F(C1,Cy,...Cy), i=1,2...f,

where C; is the concentration of the i-th reagent and F; is an arbitrary
polynomial of non-negative integer power,
it is possible to build at least one asymptotically equivalent chemical re-
acting system.
Thus, due to this fact, arbitrary nonlinearities are permissible within the
chemical kinetics.

The formal reacting system by Lotka [2] is written as a system of chem-

ical arrow equations
ky

"1 + .\’1 e 2.\,1 .
Xi+X, 2 2y, (1)
X, =X r

and is described through Lotka's system of ODE

_X;-l = A..Yl - A.Y] <Y<_),

- - . (2)
X-g = ,'\1)(2—/\'3.

where ,Yl = Clkz/kg, .Yz = Cgk;»/k‘3, A= kch/lﬁg. T = kgt. [t must be
remarked that this form of equations can be written under the assumption
C4 (a concentration of A) = const.
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Now we consider the three-component system of ODI

Ty = Quz — Yr1Ta,
Ty = paaas + yriay, (3)
Ty = —ax133 — Brax3.

The system (3) is a special form of VS, which was introduced in our pa-
pers [7, 8]. Solutions and a detail investigations of (3) are given in our
papers [8, 9, 10]. The peculiarity of (3) is the skew-symmetric matrix of
coefficients. As a result, diagonal terms are equal to zero and that is why
terms proportional to X;X; are absent. Besides, there are no linear terms
in the system (3). It means, from the chemical or formal kinetics point of
view, that the left-hand side of appropriate arrow equations cannot con-
tain terms like 2.X, where X labels an arbitrary chemical substance. For
example, the reaction 25 — T + ... stipulates in the corvesponding difter-
ential equation a term proportional to ("3, where S and 1" are substances
and Cs is a concentration of S in the common chemical notation.
Let us notice, that VS is a subcase of equations LVS [1]

2. o= iy, =1, N; wherey = Ax+ b (4)

if there exist such @ # 0, that 3;a;; = —3;a;:. but system (3) 1s its subcase
(8 = 1,1 = 1,...,N;b = 0). Moreover, in turn, system (3) is the general
case of VS with antisymmetric interaction matrix (see {9, 10]).

We attempt to find some example of a chemical system that is described
with in those differential equations.

2. Conversion of formal kinetic

The formal kinetics point of view is that an actual chemical process 1)
is described by a set of chemical equation formulae approximately which
in its turn that 2) produces a set of ordinary differential equations. After
solving these equations one can study some of-their properties and of real
chemical reaction, if he is lucky.

The reverse way to deal with this problem is to obtain a set of chemical
equation formulae for a given set of differential equations, so that the
kinetic properties of a veal chemical process are described in terms of the
properties of solutions of those differential equations.



One can say it is not important. if there are no chemical equation
exactly for these differential equations hecause real chemical phenomena
are described by the known formalism of chemical cquations only approx-
imately. But from a theoretical point of view it is very important to know
that no finite set of chemical equations will be sulficient what ever de-
tailed the description of the processes treat may not be (but in the same
formalism).

We cannot give a regular rule how to get a chemical cquation from the
differential one. But if we can enumerate all sets of chemical eqnations in
some formal language (maybe some of the mentioned sets of equations can
be found meaningless but later on this will not lead to consequences). we
hope that it will be found in the course of enumeration if a suitable answer
exists (using the direct kinetics correspondence rule to verify 1t). So. one
needs now only to formulate the exact definition of this enmmerable formal
class.

3. Class definition

Let us consider the class K of dynamical systems
D =(Ap. Pp,Un),

where Ap = {Ay, A,, ...} is an alphabet. that is, the finite list of "chemical
substances” and variables of the same names,

Pp = {Py, Py, ...} is the finite list of schemes of "chemical reactions™ of
the form

—
-t
~—

Pi Al + apAg + o =5 GaAr + BoAs +

where all «;j, i, ki are differrent symbols.
Qp = {Q1.Q, ...} is the list of ODI in the one-to-one correspondence
to each variable of the alphabet Ap of the form

QJ : d‘AJ/(“ = ZP\'EPD ]\'i(,‘i:iji - (l’jj) HAkEA[‘/ .‘A\i:kl. (())

Any set of "formal cliemical equations™ may be found as a member
of that class and vice versa: some set of differential eqitations may be
found there. The equations are cousidered equal to cach other if they
are identical after substitution of some numbers or expressions instead of
symbols oy;, 3i;, ki



can formulate auy problems, concerning the existence (or

Now one
«. o that the predefined ODE satislv them

nonexistence) of some scheme
or may be converted into those.

4. The problem

The problem 1s the existence of a system D in the class i . such that
its component Qp has the form

o= arz—yry.

go= Syz+yr

L= —azr - 33y

—
-1

5. Solution

In general, the problem stated may be unresolved or resolved in negat ive
sense. But this problem has a simiple solution

L
vy = 2.

y A+ = LER P (3)
ko

R

where ky =y ky = —3.ky = .
6. Growth and disintegration
The well - known case is
Ap = {a}
(9

k
[)I) = {Px Loy — 1ff,1']‘
Op = {Q«: ro= kA - okt 1.
I k(3 —a) >0t corresponds to growth; otherwise. to disintegration.

A more general equation

i= [ with being of continuwous f{y) # 1 (rm
is of the same kind dne to the conversion
.1':(*I o . and M(d—a)=1. (1



Let us treat the case

.‘l[j) = {I}
Py a2 LI 1T
Pp = . (12}

Fn
Pn : 0nI — jn‘l'

Qp={Qs: 3 =" kil — a;)a}

for some simultaneons processes of growth and disintegration.

The system (12) may have some critical points (where the right part
of ODE equals to 0), i.e. stable, equilibrium points of the kind of a focus.
No other kind of critical points exists in one-dimensional case.

Any equation of the type

y= Iy
whose finite set of critical points (where f(y) = 0} equals a set of zeroes
Yo ki = ag)at =0,
1s of the same kind as (12) due to the conversion satislying the equation

dr iy

-

|
\

7. Ca‘se of two substances

Let us treat the case

Ap = {x,y}.
Py = {P'Oll'+0'27/"£\;') A+ it} (13)
Qp = Qx i@ = k(B — ay)ary©2, '
b= Qy 1y = k(A — az)amyr |
It 1s easily seen that the integral curves of those ODE are
i3 —crg
y=gzart o

where C' is an arbitrary constant.
The set of critical points of ODI include the union of coordinate axes
(z=0o0ry=0).



8. Linear ODE’s

Let us consider such a subclass of the class of dynamical systems, which
has a;; in (5) all equal to 0 or 1 only but only one coefficient a;; equal to
1 for each equation P;.

It is well known case of linear ODE‘s. All sets of critical points in that
case are linear subspaces.

9. Quadratic ODE’s

Let us consider such a subclass of the class of dynamical systems, which
has a;; in (5) all equal to 0 or 1 only but no more than two coefficients a;;
equal to 1 for each equation P;.

It is the case of Lotka-Volterra systems (LVS). The reason for such a
constrain is that known correct kinetic processes have chemical equations,
which may contain one, two or three substances in their left-hand side. In
other cases those equations must be detailed with the aid of intermediate
substances.

10. Qualitative kinetical consideration.
Examples

As is known, formal reactions are usually written in the form
ki
P; :ai1A1+ai2A2+---k£Bi1Al+ﬁi2A2+---s (14)
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where both the arrows have their k1, ko > 0. It is a restriction on the origi-
nal class of dynamical systems and the problem defined may be unsolvable.

In a formal kinetical context this is meant that reactions are interpreted
as reversible quasistationary ones. Really, at each given instant both the
direct and reverse reactions occur. This difference between reactions men-
tioned above leads to a certain direction of the course of reaction until the
point of equilibrium is reached. Let us suggest existence of some corre-
spondence between equations (8) and certain real chemical reactions. In
that case we can say, that those reactions can be described only in the
limit of ky;—0 (see eq. (14)). In other words, they must be asymptotically
non-reversible.



In the case of quark physics the above scheme of reasoning may be
applied too. Let us now consider a "quark” gase composed of three sub-
systems with equal numbers of quarks coloured in, say, blue (b). green (g)
and yellow (y) colours, which is confined within a closed bag. At equal pro-
portions of colours the system as a whole we shall assume to be colourless.
Let us call collisions of quarks of the same colour elastic collisions, and
collisions of quarks of different colours—inelastic. Further, let us define the
following rule of colours transfer: a blue quark changes its colour to green
after a collision with a green one, a green quark-to vellow after a collision
with a yellow one, and a yellow quark becomes blue after a collision with
a blue one, 1.e.

btg—gtg gty—yty yrb-ob+bh (15)

Given this rule of colour transmission, when there are three quarks only
in the bag any random choice of the first collision to take place inevitably
leads to a causal chain of the processes (16), resulting in the coloured final
state.Indeed,

btg—g+g, gFy—y+y. gry—yTI (16)

which corresponds to the following chain of changes of internal states imside
the bag: bgy — g9y — gyy — Yyy- Thus, the last quark to cnter “the
game” is the one to "win”, because his antagonist is lost in the "first
combat”.

When in our "hadron” the number of quarks of each colour is Tvery
large™ (that correspond to the current quarks representation in the quark
theory) and all three inelastic reactions run with the same intensity,
then the object can be regarded as colourless during periods of time that
are greater than the mean time of collision. Suppos¢ now, that the ob-
ject is absolutely stable, so that we can’t fix the fluctuations of its colour
by means of measuring random painting of its decay products statistics.
Then we can, on the same basis, construct a model without any elastic or
inelastic collisions within the bag. In other words ,if the reactions within a
compound system form a closed cycle, then statistical equilibriuim cannot
be distinguished from the absence of dynamical microscopic interactions.

The most part of the solutions of eqs (3) describes the statistical equi-
librium in a system of three isolated phases. That is why we cannot take
initial conditions with one of the phases absent in order to achieve an “equi-
librium” solution, and the system, in Yquark” terms, inevitably acquires
one of the two remaining colours.



It should be pointed out, that the aperiodic solutions of the system (3)
posesscs, by the following remarkable property. Namely. this is the drift
of represcntative point on the phase triangle into any of its corners where
in the very vertex any two of three phases disappear (that correspornd
to colouring of the object in consideration). This state occurs in infinite
period of time.

In the physics of real quarks such a situation is tmpossible due to an
additional condition: the exclusion principle for fermions which prohibits
the presence of two quarks with the same colour (and the same other
quantum numbers) within a common well (a given hadron), 1.e. in the field
of action of their gencralized mean potential. Morcover, the essential point
in our context is that the quark-gluon quantum field theory forbids the
quark-quark interactions at small distances in general. which is called the
asymptotical ultraviolet freedom of quark.

11. Conclusion

It is shown in this paper that the Lotka-Volterra-kind system of ODE
stipulates a formal chemical-kinetics system written down in a usual for-
malism of arrow equations. On an assumption of existence of some cor-
respondence between equations (8) and certain real chemical reactions we
can say that those reactions can be described only in the limit of kz;—0 (sce
eq. (14)) and, in other words, they must he asymptotically non-reversible.

We discuss a possible interpretation of the mathematical object (3) as a
(multi)quark colourless one consisting of three painted interacting species
of quarks. The system (3) has a special form of VS. which was introduced
in our papers [7. 8]. The peculiarity of (3) is the skew-symmet ric matrix of
coefficients. Solutions and detailed investigations of (3) are given in papers
(8,9, 10]. But now we realize that a classification of solutions eq. (3) must
be done as a whole. It will be given in the next paper.
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Hy6osuk B.M., Fanenepun A.T., Puxeuuknii B.C. E4-97-417
CoOTBETCTBHE MeX1Y XMMHYCCKUMH CXEMaMH
H IHHaMHYECKUMH cHcTeMmamu JloTka—Bonsteppa

TMokasano, yto cuctrema OIY tuna Jlotka—BonkTeppa

x=oxz—Yxy, y=Byz+yyx, z=—ozx-Pzy (H

o0ycnaBHBaeT HEKOTOPYID (hOPMATLHO-KMHETHYECKYIO CHCTEMY B thopManHIME CTPENOYHBIX ypaBHEHHIH,
HUMEIOLLYI0 BHI[

yio k, k, k, .

X+y—2y, y+z1—>2z, 1+x— 2, 2)

e k=Y, k,= -8, ky=o. Mapa u3 cuctembi ONIY U CHCTEMBI CTPEIOUHBIX YPABHEHHH NPHHALIEXUT

BBCJICHHOMY B pabOTe K1ACCY IMHAMUUECKHX CHCTEM, OMPENENseMIX andaBuTOM TIEPEMEHHBIX COCTOAHUS

1 3aKOHaMH JBHXCHHUS, 3aNMCaHHBIMH B hopMaTH3IMax Kak cTpeaodnbix (AE), Tak u audbepeHIHATLHBIX

(ODE) ypaBHCHHil B BHIC COOTBETCTBYIOLINX CRHCKOB. O6CYXIaeTcs BOMOXHOCTD HHTEPNpeTaLHH

MatematuHdeckoro obbekra (1) xak «MHOTOKBapKoBOro» 6enoro (6ecuseTHOro), COCTOSLIErO M3 Tpex

COPTOB OKPAILUCHHBIX BIAUMOUCHCTBYHMX KBAPKOB, MPHYEM TaKuM 06DA30OM, YTO HX IIEPMaHEHTHOE

TPEXYACTHYHOE B3aUMOIECHCTBHE HE pacmanaeTca Ha HBYXYACTHYHBIE B CHI1IY aHTHCUMMETPHYHOCTH
MaTPHLbI B3AUMOUCHCTBHS.

Pa6ota Bhtionnena B J1aGopaTopuM BEICOKHX sHepruit, B Jlaboparopun TeopeTueckoil GHIHKH
uM.H.H.Boroio608a, B JTaGopaTopui BLIYHCAMTENLHONH TeXHHKH M aBToMaTH3awuy OUSTH.

Coobuwenue OObeIMHCHHORO HHCTHTYTA SHEPHBIX HCCAEO0BAHMII, Hybua, 1997

Dubovik V.M., Galperin A.G., Richvitsky V.S. E4-97-417
The Correspondence between Chemical Schemes
and Dynamucal Lotka—Volterra Systems

It 1s shown that the Lotka—Volterra-kind system of ODE

Y=uxz-yxy, y=Byi4yyy, I=-oz-Baoy (1)

stipulates a formal chemical-Kinetics system written down in a usual formalism of arrow equations as

k k, k

x+y-‘—)2,\'. YHAI= 2 T4x— 2, (2)
where k=7, k, = -, ky =0 A couple of systems of ODE's and arrow equations belong to the class K
of dynamical systems =(4,, P,,. @,) introduced in the present paper, i.e. dynamical systems that are
defined through their variables of state (so-called alphabet A,y and laws of motion written down both
in the arrow equation (AE) formalism (a list of AE £,,). and the ODE one (a list of corresponding ODE's
(,,). The problem is the existence of such a system D in the class K that its components 0, could be

written down as AE's. The correspondence between equations (1) and (2) give a simple solution of the
problem. We discuss a possible interpretation of the mathematical object (1) as a (multi) quark colourless
one consisting of three painted interacting species of quarks.

The investigation has been performed at the Laboratory of High Energies, at the Bogoliubov
Laboratory of Theoretical Physics. at the Laboratory of Computing Techniques and Automation, JINR.
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