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1 Introduction.

The Lotka-Volterra equations (LVE) are systems of ordinary nonlinear
differential equations of the form

= =100, where y = Ax + b. (1)

The Volterra equations (VE) are a special case of the LVE [1], when there
exist such 3 # 0, that
ﬂi(l,'j = -—-,’3]'(Lji. (2)

I the odd-dimensional case of the VE, the matrix A is degenerate. Initially
even-dimensional systems were studied with variables coupled in predator-
prey pairs, admitting classical Hamiltonian approach (see [2]) with non-
degenerate symplectic structure. The classical approach, however, cannot
be applied in a straightforward way for odd-dimensional systems, and also
in even dimensions, when the equations for the central equilibrium point p

Ap=—b 3

gives p; = 0 for at least one 2. In the biological implementations. the de-
pendent variables x; are regarded as real positive numbers. representing
populations of species 1, the components of the vector b are called hinear
growth rates, or malthusian terms, and A is called the interactions ma-
trix, the diagonal terms describing self-interactions of species. and the off-
diagonal terms being responsible for interactions between different species.
The terms of interactions matrix A and the malthusian terms b are ar-
bitrary real numbers in the case of the general LVE. In the case of the
VE, the terms of the interactions matrix are not completely arbitrary. {or
instance, the self-interaction (diagonal) terms are all equal to zero.

The Volterra lattice model, usually written as {;—i]\'} = Ni(Nip1 — Niz1)s
studied with the Hamiltonian methods in [3], known for close relations
to the Toda lattice model and the Korteweg-de Vries equation (see [16,
18, 20, 19]), and cited by Giumral and Nutku [8] as Faddeev-Takhtajan
system, turns into different subcases of (2) under different houndary con-
ditions. For example, the 3D case of periodic boundary conditions (22)
complies with the form of CABC-matrix” (4), used in [5, 4, 8]. while the
conditions, used in [16], do not. Both are subcases of the general anti-
symmetric interactions matrix studied in [21], which, in turn. Is a subcase
(B; = 1,Vi; b= 0) of the VE, and the latter are a subset (2) of the LVE



(1). We classify the systems with multiple pairwise interactions, called
LVE in [17], as Volterra equations.

To make things clear, we use the definition of the LVE and the VI com-
plying with that given in [7, 11], the works that we cite most extensively.
But, in contradistinction with [7, 11], we do not assume the "natural”
z; > 0 conditions.

2 Bi-Hamiltonian structure.

The first example of a bi-Hamiltonian structure for an LVE systemn of a
special form was given by Nutku [4]. For the system studied earlier by
Grammatikos and others [5] with “ABC” interactions matrix:

0 C 1 A
A= 1 0 A ]| ;b=| pu (4)
B 1 0 v

on the conditions
ABC+1=0,v=uB - AAB
for the constants of motion

Hy=ABlnaz,—Blnas+1lnzy; Hy = ABax,+ay— Ara+rvine, —plnag
()

he has written Hamiltonian equations as
@t = JFV Hy = BV H, ‘ (6)

with the antisymmetric Poisson structure matrices .J; and J; which we rep-
resent here by corresponding vectors j; and j; so that j; = ((J;)**, —(.J:)'3,
()T : | . ,

= (—€U2$3s‘301’11’3,c-’011‘2) s (7)

J2 = (z12223, —Cayzs(2g + v), Cayaa(Avs + ,“))T ) (3)

satisfying the Jacobi identity

AU vy A R O (9)



I the 3D case, the Jacobi identity for the Poisson stracture matrix J.
represented by vector ). becomes

(j.rot ;) = 0. (10)

which is recognizably the condition of the theorem of Frobenius on the inte-
grability of Pfall’s form. the fact heing more than a mere coincidence. and
subsequently substantially used in [3]. However, the "ABC-matrix™, on
the terms of the constraints used. is a very \p(‘(ml casc of the juteractions
matrix of a Volterra type.

3 The primary invariants of Cairé and Feix.

The invariants of motion lor the LV'E of the most general forn were studied
in [6, 7] by means of the gene sadized Carleman embedding method. These
invariants come together with certain constraints and have heen classi-
ficd by Caird and Feix {7} into the primary imvariants of three tvpesc the
secondary invariants and those deduced by rescaling.

If and only if det(o1) = 00 the primary invariant type |

N
I, = ] (1)
=1
exists with a; and s satisfying
Ao =0, 5= —(a.h). (12)
Deflining the anxilliary matrix 1) and the vectors n and diag(.1) according
to
diy=ay—aj;n=_(L1.... 1)’/‘. diang(A) = (an. o . . avy)lo (1)

the conditions for the existence of the primary invariant type 1T are (N —
(N = 2)/2 equations

F,ﬂ. =d;,ddi; + dydijdy =0 (1
together with the conditions
by =b

= .. = by = hy. that is. b= by (1)

2



The form of the invariant type Il 1s

N
d
I = (- 1,+Z—”1,) (16)
i=1
where a; and s are found from the equations:
ATa = —diag(A), s = —b(1 + (a.n)). (17)

Considering the time dependence, Caird and Feix state, that s =0 when
N is odd. This statement is based on the assumption rank(A) = N
which does not appear among the conditions, but is used in the proof
of their theorem, and becomes not valid, when det(A) = 0. Here is the
example that makes this clear:

3 3
4 1:b=13 |;Z; :.1'2"3.7'22(—.1'1 —ry—ag)e M (18)
3

3
A=1 2
1 3

O Lo

The primary invariant type IIl of Caird and Feix

I
I”[——-H7 (1 -I-Z:(;)—lllﬂ'[)('sr (e

=1
exists on N(N —1)/2 conditions
ay; a5 .

For this invariant, o and s are defined from
ATa = —diag(A), s = —(a.b). (21)

There is a certain correspondence between invariants Il and I in the
neighbouring odd and even dimensions that Cairé and Feix have discov-
ered. However, for the primary invariant III their statement is that s =0
for even N. The controversial example for the latter statement is the same
s (18), with an additional equation
Ty =a4(—3—324); L1 = T231314 (14 a4 + Ty 4 23+ ry)e”
We can see from the given examples, that the conditions « = 0 for the
primary invariants type Il in the odd number of dimensions and type IT1in



the even number of dimensions to be explicitly independent of the time are
not fulfilled automatically. Time-dependent cases exist for these invariants,
as well as for the corresponding secondary invariants [7], containing only a
subset of species in the linear polynomial part of the invariant expression.

Considering the classical Volterra invariant, Cairé and Feix use a pro-
cedure of obtaining a limit of invariant III when the diagonal terms of
the interaction matrix tend to zero. They have managed to obtain it for
N = 2, but in the case of the “ABC-matrix” (5) their result for the Volterra
invariant is H;, which is not correct, since the expression for the Volterra
invariant should contain the coordinates of the central equilibrium point,
or stable population levels, thus the correct expression should be H,. This
i1s a consequence of the fact, that the generalized Carleman ansatz does
not contain logarithmic terms additively to the linear ones.

4 Bi-Hamiltonian technique versus rescal-
ing. '

Giimral and Nutku [8] studied the Poisson structures of dynamical systems
with three degrees of freedom from the point of view of the theorem of
Frobenius on the integrability of Pfaff’s equation. Among the others, they
used the same “ABC-matrix” example (4) and Faddeev-Takhtajan system
closed modulo 3

0 1 -1
A=| -1 0o 11}];6=0 (22)
1 -1 0

as its particular case. Although the bi-Hamiltonian structures for the
LVE given in [8] are the same as in [4], the general considerations on
the forms of the bi-Hamiltonian structures are important. Namely, the
Poisson structures include, in general, the terms of the order from 0 to 3
in the powers of z;. The Poisson 1-forms, corresponding to the Poisson
structures, should be compatible, so a conformal factor should be used to
add two of them. In a certain case, the equations of motion can be written
in a manifestly bi-Hamiltonian form through the exterior product of the
gradients of two Hamiltonians. It was also pointed out in [8], that a ratio
of components of Poisson structure functions obeys a partial differential
equation, which could be quite a manageable one. An analogous idea was
used also in [9, 10].



In [9] a representative set of three-dimensional autonomous svstems
was studied, the LVE being the last and the most difficult case. The
procedure implemented therein, included rescaling of the vector field and
using the Jacobi identities for the Poisson structure matrix as partial dif-
ferential equations to obtain one of its components. The idea was that
every particular solution of these equations should identically satisfyv hoth
the Hamiltonian form of the rescaled equations and the Jacobi identitjes.
However, to find a particular solution in the case of the LVE with primary
invariant I as the Hamiltonian function, an additional constraint

d32(a23a11 - a13a21) = d31(a23a12 — @13ay,) (23)

was imposed. In [10] the same idea was used, but two constraints were in-
posed. The common feature of both the works [9, 10] is that no numerical
examples are given, so the question arises, whether the solutions obtained
are consistent with the initial systems. On our part, we have found that
the formulae from [10] do not reproduce the malthusian terms b for s = 0.
The Poisson structure functions obtained in [9] are also not applicable if
s =0, though the constraint (23) and the two constraints imposed in [10]
are satisfied with matrices (32) given in section 6. The correct Poisson
structures in this case we give in section 7.

5 Hamiltonian structures by Plank.

Plank studied generalized Hamiltonjan structures in the LVE [I1] using
time-independent constants of motion as Hamiltonian functions and
quadratic Poisson structure functjons '

Jit = ez, (24)

where ¢;; are the matrix elements of a constant skew-symmetric matrix
C. To the usual items of the definition of the generalized Hamiltonian
system: “ (i) & = JVH is the vector field wit], smooth real valued Pois-
son structure matrix J and Hamiltonian function H definced on an open
subset (7 of RV, and (ii) the Jacobi identities for the skew-symmetric .J
are satisfied”, he added the third item “(1ii) The matrix of linearization
at every fixed point can be written as a product of a symmetric and a
skew-symmetric matrices.”



The forms for Hamiltonian functions Plank deduced from explicitly
solved case N=2:

N
H{x) = Zﬂ,’(l‘,‘ —pilnay); (23)
=1
N N
Hiz)=T[=(1+ 3 Bi), B #0; (26)
=1 =1
N N
H(x) = [T =2 (3 Bi), Bi #0; (27)
=1 =1
N N ;
H(x) = Zai Ina; + —Biiz%fl—Bl—ﬂ B = 0. (28)
=1 Lk

All the forms (25-28) are explicitly independent of the time. The quantities
B; and p; in the expression (25) for the Volterra inva riant are the same that
enter in its conditions of existence (2). (3). Since the expressions (26) and
(27) are the time-independent versions of Caird and Teix’s invariants 111
and 11, respectively, the coefficients B; are proportional tot he cocfficients in
the expressions (19) and (16), while the a; are obtained from the equations
(21) and (17), respectively, in which s is to be set to zero. Cairoé and leix
[12] regard the constant of motion of the form (28) as a limiting case of
their primary invariant type 1. The following example shows that this
limit is not so simple, if at all possible, to obtain:

3 -1 L 0 rya l—ag—u
A=| -3 -1 =2 | ;b= 1] H(2)=In =52 23
0 2 1 ~1 3 1
(29)
because the equations for a (21) give a; = a3 for Z;;; in the contrast with
az = 1, a3 = —2 in the example. Although the conditions of existence of

the invariant type II1 are satisfied automatically in this case. the coefficient
a1 /by goes to infinity in the limit, when b; tends to zero while ¢y tends to
3. So, it is impossible to obtain the algebraic expression of /1(xr) in (29) as
the limit of a type II1 invariant. It is more natural to derive the invariant
expression (28) from the Volterra invariant of a related system. which is
the result of the transformation 2y — 1/ag, @ — i/, Vi # k and differs
from certain VE by a common factor xy in the right-hand sides. When the
invariants (26) and (28) are used as Hamiltonian functions. as we shall sec
in the following sections, they imply sccond Poisson structure matrices of
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different algebraic forms, as well as different measure preserving density
functions, so they should be thought of as separate invariants.

However, all the Plank’s theorems. with the exception of that on the
Volterra invariant, in case N > 2 are not valid on the part of the prool
that the first part of the definition of a Hamiltonian system is satisfied.
Calculating the Hamiltonian vector field & = JV /I . the author [11] aets
the correct expressions

N
;= g(;r).ti(bi + Za,-j;ztj). (30)
=1
where g(z) = 1 for (25), g(x) = I, 2" for (26, 27), ¢(2) = +f' for

(28). The proofs of the mentioned Plank’s theorems end with the following
similar words: “Since the factor g(z) is positive in the first orthant. it can
be dropped without altering the phase portrait of the differential equation.
Q.E.D.” All these words are true except for the last 3 letters ~Q.1.1."
hecause the definition point (1) demands the differential cquation itself t()
be written in the Hamiltonian form, nof the phase portrait. So. Plank Las
discovered, or, rather, constructed Hamiltonian systems with quadratic
Poisson structure matrices, having the same phase portrait as certain 1NV
in the first orthant. For the genuine LVE another {orm of Poisson structure
matrices should be used with Plank’s Hamillonian fanctions:

) 1

Jil = ¢y (:H )

g(x)

In three dimensions, the Jacobi identities with this form of Poisson struc-
ture matrices are satisfied. When N = 4, additional constraints arise from
the closure of the Jacobi identities: « = b = 0 when def{(") # 0. or
det(C') = det(A) = 0. Of course, when N > 4, still more additional con-
straints will appear. However, the open subset G in which the Hamiltonian
system should be defined, may be extended now, in certain cases. to the
entire of RV, excluding the subspaces z; = 0.

6 Degeneracies with 3D Plank’s structures.

The puzzling absence of the analogue of Caird and Feix's primary invariant
type I among Plank’s Hamiltonian functions can be explained comparing
Nutku’s example (8), with cubic terms, and Plank’s ansatz {24). without



cubic terms in the Poisson structure matrices. But, in fact, all the Plank’s
Hamiltonian functions (26), (27), (28) imply the degeneracy of interactions
matrices in three dimensions, which is easily proved by straightforward
calculations of the vector fields through JVH. The following formulae
(32), (33) are the results of such calculations. Defining v as the vector
dual to the matrix C and introducing By = 1 for (26) and By = 0 for (27),
we have for the cases of Hamiltonian functions (26), (27):

M By (M +73)B2 (M —72)Bs A
A=1 (A2 —n)B A2 By (Aa+7)Bs |;b0=8o| Az |, (32)
As+72)B1 (A3 —m)Bs A3 B Az

where A = Ca = [a,4]. In the same notations, for the case of Hamiltonian
function (28), with & = 1 we have:

Ay v3Bs -2 B3 0
A=1 Xk 3B, (M1 +73)Bs |; b= v3Bo . (33)
Az ~(m +72)Ba ~¥2 B3 —¥2 By

The determinants of these matrices are

det(A) = By ByBs(n,7)(A,v) =0 (34)
for (32) and
det(A) = BaBa(n,¥)(A\, ) =0 (35)

for (33). They are identical to zero because (A,7) = ([a,v],7) = 0. This
means, that primary invariants type I should exist in both cases. Moreover,
7 is a solution of equations for this invariant with s = 0. The corresponding
equations in Plank’s form are ATy = 0; {y,b) = 0 for the constant of

motion
3

K(z) =[] (36)
i=1

Any solution ¥ of these equations may be added to a in the equations
(12), (17), when s = 0, so, & and 7y are not uniquely defined. However.
A is defined uniquely. The equations (12), when s = 0, coincide with
Plank’s conditions for the LVE to be volume preserving with density func-
tion Hf\il X~ When N = 3, the degeneracy of the matrices (32), (33)
implies, that these density functions are also defined not uniquely. So,
some normalization may be used. When (n,v) # 0, the normal form of
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a; can be defined as the limit of the solution of the corresponding linear
nondegenerate system, when (X, ~) tends to zero. This normal form obeys
the relation a = —(y + (A, n])/(n,v) for (32), which is consistent with the
form of the Morse function for (22). The corresponding relation for (33)
is « = —[\,n]/(n,7). Note, that the exact expressions from [7] make use
of a different normalization.

It should be noted, that the LVE of the form (33) are volume preserving
with the density function z7%27'23", owing to the fact that (—1,0.0)7 is
obviously a particular solution of (12) with s = 0. The existence of the
corresponding measure preserving density can be established for Hamilto-
nian versions of the invariant (28) in higher dimensions also, which Plank
has not mentioned.

7 The “manifestly bi-Hamiltonian” equa-
tions.

With the invariant (36), we can write, using Giimral and Nutku's expres-

sion, the “manifestly bi-Hamiltonian form” of the equations of motion of

the system as
z =m(z)[VH,VK], (37)

so that
jg =m(z)VK, and jx = —m(x)VH, (33)

where the scalar function m(z) is defined from (37) using a component of
the vector field:

m(z) = [, =i " for (26), (27)
and (39)
m(z) =z, [[2, z; ™ for (28).
Along this line, we get the correct form of Poisson structure matrices
with Plank’s Hamiltonian functions, in dual representation:

JH = m(’n) H 337"1 (112273, V27123, “/B-PJ-ITQ)T (40)

which is equivalent to (31), containing quadratic terms due to their origin
from VLK. The Poisson structure matrices for time-independent case of
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the invariant Z; of Cairé and Feix contain only cubic terms when this
invariant exists together with Plank’s Hamiltonian function (27). and with
Hamiltonian functions (26), (28) the quadratic terms are included also. In
the dual representation, the expressions for the Poisson structure matrices
corresponding to the invariants (26) and (27) are:

3 (O’1L+ B]fl']).r-z.’l'g 3
JK = — H 7" | (ool + Byxy)ryzs | with L= B+ Z Byr,,  (41)
i=1 (0'3[; + 33.1‘3)1?1.1'2 =1
and for the invariant (28)
3 (C\‘].Tl - Bg - Bg(l;g — B3.’l‘3).l?-2.l'3
j[\' = — H l‘;—% (Q’-z.l'] + BQIQ)I].I';; . (42)
=1 (031?1 + B3.1'3).T1.1‘2

Reminding of the statements we have made at the end of the section .
we note here, that the constraint (23) used in [9] is satisfied identically,
while the additional constraints imposed in [10] are satisfied for interac-
tions matrices (32) when By = B, = Ba. While checking the validity of
the structure functions from these two papers, one should take care of the
proper normalization, then the result is, that they reproduce the appro-
priate vector fields with the invariant (11) as the Hamiltonian function.
when s = 0, only if 6 = 0. Our formulae include the case b # 0 for s = 0.
In general, coordinates and time rescaling procedure used in [9. 10]. alters
the structure of the phase space, so it can destroy the correspondence be-
tween the Hamiltonian and the Poisson brackets, in other words, it is not
always a valid transformation, analogous of canonical transformations in
the classical Hamiltonian method. It should be noted, that the logarithmic
form of the invariant A'(x) could be used in the bi-Hamiltonian formula-
tion (37) instead of (36). If this is done, then the functions 1/ (+) (39)
become equal to density functions, with which the equations are volume
preserving.

8 Non-degenerate 3D interactions matri-
ces.
The degeneracy of interactions matrices (32) in the case of Plank’s Hamil-

tonian function (26) is implied in three-dimensional case hy the condi-
tions of the corresponding theorem Ca = b; ¢y = Bi(d; + ¢i). But in the

1t



case of Plank’s theorem for the Hamiltonian [unction (27) the conditions
b=0; ATa = ~diag(A); Bidyy = —Bid,, do not imply the degeneracy of
A. In the latter case. if a row €(3y, By. By) is added to each row of a de-
generate interactions matrix A, the corresponding matrix 1 (13) remains
the same. The determinant of the new interactions matrix A is nonzero,
thus, the invariant A'(2) ceases to exist for the new systemy. The phe-
nomenon appearing in such a case is clear from the following example with

e=1,0=0:

) -2 1 0 1 03
A= 1 0 -1 |o4=|4 -1 2] (43)
0 -1 2 3 -2 5

with the constant of motion
fi(m) = :vl_3/4a‘;/21'53/4(3.1'1 — Iy + 323) (14)

in common with both the systems. It is a Hamiltonian function of the type
(26) for A, but it is not for the new system with the interactions matrix A4,
since the values of the components of the vector field coincide for these two
matrices only in the invariant plane P : 3z — x5 + 323 = 0 of the invarjant
Iy, defined in [7]. Thus, the conditions of Plank’s theorem for this case
are not sufficient to reproduce even the phase portrait of the differential
equation. .

However, all the known examples of Hamiltonian structures lor LVE
up to this moment, have been of degenerate interactions matrices in the
case N = 3. Here follows an example with a non-degenerate interactions
matrix with bi-Hamiltonian structure of Lie-Poisson form:

— ,d ¥
A= o —f v 1:6=0 (45)
a -y
Hy = 0By - ya3); Hy = vy, — 13) (16)
1 aiy 1 Bay — v,
Jm=—=| ary—yx3 | jy, = — By . (47)
—9z2 7 —vy23

The equations (45) were derived by Brenig [13] from the equations of asym-
metric top and resonant three-wave interaction system. The Hamiltonian

12



functions (46) could be thought of as secondary invariants of Cairé and
Feix, since Plank’s Hamiltonian function of the type (27) must have all
the coefficients B; # 0 in the linear polynomial expression. The Poisson
structures (47) are not equal to those given in [8] for Euler’s top, but are
of the same linear type.

9 Conclusions.

The conditions of Plank’s theorems on the Hamiltonian systems for the
LVE with Hamiltonian functions of the types (26), (27), (28) are not sufhi-
cient to reproduce the vector field of the LVE with the quadratic Poisson
structure matrix (24). For (27), the conditions are not sufficient to repro-
duce even the phase portrait of the LVE (43). A modified Poisson structure
matrix (31) should be used, an additional constraint det(A) = 0 is implied
in the 3D case of the Hamiltonian function (27).

In the 3D case, the interactions matrices (32), (33) are identically de-
generate, implying the existence of the second Iamiltonian function (36)
and allowing for the Poisson structure matrices to be obtained using the
gradients of the two Hamiltonians. The parametric representations (32),
(33) served us as the source for controversial examples, which show that
Plank’s Hamiltonian function (28) is not a limiting case of the primary
invariant 1II. This helps to realize, that the generalized Carleman ansatz,
used in [6, 7], is not sufficient to obtain the constants of motion in which
both the linear and the logarithmic terms appear.

In three dimensions, Lie-Poisson type structures may appear in the
cases when secondary linear polynomial invariants of Caird and Feix exist.
In the given example (45), the interactions matrix is nondegenerate.

Plank’s conditions for the absence of time dependence of the constants
of motion are more exact, than that of Cairé and Feix. The existence of a
sufficient number of time independent constant s of motion is important, as
it makes possible to apply directly bi-Hamiltonian [8] or, more generally,
multi-Hamiltonian [14, 15] formulation, thus the complete integrability
might be proved more easily. Up to this moment, the maximum number
of analytically established functionally independent constants of motion,
has been N + 1 symmetric functions of odd powers for 2N 41 dimensions,
given by Itoh [22] for the VE without the malthusian terms. Damianou’s
integrals of motion for the Volterra lattice model [16], containing both
odd and even powers, are not functionally independent. The most useful
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feature of Cairé and Feix’s secondary invariants, appearing due to some
special symmetries of the terms of interactions matrices, is, that there may
exist several invariats of the same order in the powers of variables. which
1s demonstrated in the example (46). The methods used in [22. 16} do not
show such a possibility, because the symmetries of the systems studied in
this papers are of another special type.

On the other hand, for the more comlicated case of the general LVE,
the subcase s > 0 leading Cairé and Feix to the asymptotic reduction of
the dimension of the phase space by one for the cases of the invariant type
IT from even to odd number of dimensions and of {}e invariant tyvpe [1]
from odd to even number of dimensions, remains valid, but the examples
of s # 0, that we have given, make us suppose, that such reductions can
take place in other cases also. However. since the asymptotic reduction
can occur only after the infinite time interval, it could not he accompanied
in reality with a time rescaling. so the reduction of the dimensions by
two, which has been snggested in [7]. cannot take place without addifional
model assumptions which should allow to perform the transition across the
barrier of the infinite time.

With the exception of the case of the Volterra invariant. e correct
forms of Poisson structure matrices include the product ol certain powers
of dependent variables, which give their contributions to the left-hand sides
of the Jacobi identities, implying some additional constraints when .V > 3.
For instance, in the case of N = 4. either both the Poisson structure matrix
and the interactions matrix are degenerate, or the Hamiltonian function is
linear.

The authors thank V.P. Gerdt, O.M. Khudaverdian. 1.V, Komarov.
A.N. Leznov, and P. Winternitz for discussion, and A.B. Shabat for a
useful remark.
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Ily6oeuk B.M., I'anenepus AT, Puxsuukuit B.C., Crennes C K. E4-97-416
YCloBus CyILECTBOBAHHS TIEPBBIX HHTErPAIOB

H raMHIIBTOHOBBI CTPYKTYPHI ypaBHeHuit Jlorka—Bonsreppa.

KomMmenTapuii K HeaBHO onyGIHKOBaHHBIM paGoTam

YTOUHSIOTCS YCIIOBHA CYLIECTBOBAHHMS TEPBBIX MHTErPATIOB M AMMIBTOHOBbIX CTPYKTYp TS Ypas-
Henu# Jlorka—Boneteppa (JIB), cchopmynupopantibie HenaBHO PANOM aBTOPOB. B yacTHocTH, B MaTpuIle
TyaCCOHOBOH CTPYKTYPhl, NPeLTOXEHHON TLIaHKOM 11 He 3aBUCAWIHX OT BPEMEHH raMHIbTOHHAHOB,
OTCYTCTBYCT BaXHbl KOHGODMHBIA MHOXHTEIb, B CHITY Yero YC/IOBHA pAfida TEOPEM He SBISIOTCA
HOCTATOYHBIMM [UTsl 3aITMCH YPABHEHHH IBMXEHUS B raMHIBTOHOBOH (hopme. B cnyyae 3D npencranienne
[nanka amg MaTpuus! nMyaccOHOBOH CTPYKTYpI IDMBOMMT K BBIPOXKICHHIO MATPHIbI B3AUMOACHCTBHI H
K CYIHECTBOBAHHIO BpeMSHE3aBUCHMOro uHBapHaHTa Kopo—®D3kca Tvma I, 4To jenmaeT BOIMOXHOI
GuraMnbTOHOBY hopMynHpoBKy. C IPYroit CTOPOHBI, IyaCCOHOBbI CTPYKTYPbI, IOCTPOCHHSIE 115 BHIPOX-
LEHHOH MaTpHUbl B3aHMOUCHCTBHI NPH HATHYMM JIMIUL OMHON KOHCTAHTbl JBMXEHHS, HE MO3BOISIOT
BOCIIPOM3BECTH THHEHHbIE (MATLTYCOBBI) WieHb! ypaBHeHuit JIB, KOrina 31a KOHCTaHTa He 3aBUCHT SBHO
OT BpeMeHH. PesynbTatel paGoThl OCHOBaHBI Ha mapameTpusauuu 3D ypasHenmii JIB, BeiTeKaomein u3
raMHIbTOHOBOH (hOPMYIMPOBKH C HCITOMB30BAHHEM MOAMGHUMPOBAHHOTO npeacTaienus [Tnanka.

PaGota semonnena B JlaGopaTopHu BeICOKHX 3Hepruit, B JlaBopaTopuu TeopeTHYecKoi (MIMKH
um.H.H.Boronio6osa, 8 JlaGopatopuu BHYHCIHTENbHON TEXHHKH M aBTOMaTH3aumMu OUSIH.

[penpunt O6LENMHEHHOTO HHCTHTYTA AAEPHBIX HccetoBanuil. Iy6Ha, 1997

Dubovik V.M., Galperin A.G., Richvitsky V.S, Slepnyov S.K. E4-97-416
The Conditions of Existence of First Integrals

and Hamiltonian Structures of the Lotka—Volterra Equations.

Comment on Some of the Recent Papers

The conditions of existence of first integrals (partial integrability) and Hamiltonian structures
(possible complete integrability) of the Lotka—Volterra equations have been analyzed recently by many
authors. In some cases, these conditions should be stated more correctly. In particular, an important
conformal factor is not present in the Poisson structure matrix, suggested by Plank for time-independent
Haniiltonian functions. for which reason the conditions of some of the theorems formulated by the
mentioned author are not sufficient to write the equations of motion in the Hamiltonian form. In 3D
case. Plank’s ansatz for the Poisson structure matnx implies the degeneracy of the interactions matrix
and the existence of the time-independent version of the invariant of Cairo and Feix's type I, thus the
bi-Hamiltonian formufation becomes possible. On the other hand, the attempts to construct Poisson
structures for degencerate interactions matrices. when only one constant of motion is present, which were
made in two of the papers, do not give the possibility to reproduce the linear (malthusian) terms in the
Lotka—Volterra equations, when this constant of motion is explicitly independent of the time. Our
statements are based on the parametrization of 3D Lotka—Volterra equations, implied by Hamiltonian
formulation with improved Plank’s ansatz.

The nvesugation has been performed at the Laboratory of High Energies, at the Bogoliubov
Laboratory of Theoretical Physics, at the Laboratory of Computing Techniques and Automation. JINR.

Preprint of the Joint Institute for Nuclear Rescarch. Dubna, 1997
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