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INTRODUCTION

1) 2)

crossing equations for Tro1rp scattering, which enabled us to write

In a previous paper , we solved the Balachandran-Nuyts
the most general partial wave expansion, convergent in the Mandelstam
triangle (s>,0, t 20, u>,O), consistent with crossing symmetry. In
the course of the analysis we found all the constraints on the partial

. . . 2 . .
wave amplitudes in the region O\< s &£ 4m_"_ which follow from and which

ensure crossing symmetry.

In this paper we generalize that analysis to T scattering
with isospin. We again find the most general partial waves in the
region 0K s ¢ 4mi, consistent with crossing and isospin invariance.
The general form gives rise to constraints on the partial wave ampli-
tudes, some of which have been reported elsewhere 3). We find two
constraints involving only s waves, three more involving s and p
waves, and the nﬁmber increases rapidly with the number of waves. As

2
an example, the s wave constraints are (in units where dm, = 1)
{

fO’S)(z 'S:(:)(sj -5 :F(:‘)(s)%ls = 0

{ (1.1)
001-5)(35-0 (%) + 2 £9()ds = ©

0

where fgI)(s) denotes the s wave with isospin I. These constraints

(0)
(2) N
fo satisfying (1.1), there always exist amplitudes with the proper
(0) .(2)
-9
o} o
respectively. Similarly, the five constraints on s and p waves are

are not only necessary but sufficient. That means, given £ and

crossing properties, of which f are the I =0, 2 s waves
sufficient to ensure the existence of amplitudes with the proper crossing

properties, of which the given waves are the s and p waves.

These relations always involve the amplitudes in an unphysical
region. But using dispersion relations, it is possible to transform
them into constraints on the imaginary parts of partial waves in the
physical region. However, in this form the constraints are not very

useful because they involve an infinite number of partial waves.
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The chief use of the constraints will be to models for the low
partial waves of 'ﬂ'Tr scattering which do not have crossing built in.
By adjusting some parameters in the model, one can try to ensure the
validity of our relations, thus guaranteeing that crossing is satisfied
for the partial waves under consideration. Or else, given models for
the partial wave amplitudes, one could insert them in our relations to

get a feeling for how badly crossing symmetry is violated in the models.

The paper is organized as follows. In Section 2, we review some
kinematic aspects of T T~ scattering. In Section 3, we outline the
Nuyts—-Balachandran approach to this problem, and derive the form of the
crossing equations, which are solved in Section 4. In Section 5,. we
apply this solution to derive constraints on the amplitudes. In Sec-
tion 6, we discuss how these results could be applied to various models
of T T scattering, and in Section 7 we apply them to the Brown and Goble
model, in an attempt to use our crossing relations to determine the
0 mass from the j> mass. The attempt is unsuccessful and reasons for
the failure are discussed. Finally, the conclusions are presented in

Section 8.

KINEMATICS 0F W T SCATTERING

The amplitude for T W scattering in the s channel can be

written as 4>

‘E(;) Xsts,t,u) = 5‘(‘ SxS Hcsltf“>+ Sotrg\gs -B(Snt:“) + 546 5 XC(S,'t,u) (2.1)

where a((@ (0/3) denote the isospin indices of the outgoing (incoming)
pions (see the Figure). By crossing symmetry,

Alst,u) = Alsu,t) (2.2)

B (s:t’,u) = H’(‘t,s,u) (2.3)
0($,t'u> = H(MtS) . (2.4)
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In the s channel, the isospin amplitudes are given by
Tk, tu)= 3RGHW+ Altsu) + Aly,st) ' (2.5)

T (sit,w) = Alhsu) - Alwst) (2:6)
T(l’ (S,‘t,u) - F—\(t,s,u) =+ H(“/S/t) . (2.7)

The amplitudes T(O), T(1) and T(2> will be compatible with

crossing symmetry and isospin invariance if and only if we can find a

function A(s,t,u) subject to (2.2), such that (2.5)-(2.7) are valid.

As a function of three variables, A can be written as a linear
combination of functions which transform irreducibly under the permu-
-tation group operating on the variables s, t and u. It is shown in
Appendix A that, in view of (2.2), the most general A can be written

H(s,’t, u) = jt(S,‘t, W) + (RS—T—u)g (st u)+ (™-t*u?) h(s,t,u) (2.8)

where f, g and h are totally symmetric in s,t,u. In terms of these

new functions, we can write

TUbtw) = 5 (st w) + o?(J?S-t-u)g(S"f,“)*’7(25?"’77'1475(5.1:«)(2.9)
TOlsbu) - 3lt-u) glstu) + 3Ew) bt 2.0

T(“[s,'t,u) = Z-HS,f,u) + Z‘t-tu-.?s)g(s,t,uh (tz-ru‘.?s’)k(s,t,a)_(z.ﬂ)

The amplitudes T(O), T(1), T(2) will be consistent with crossing and
isospin invariance if and only if there exist three totally symmetric
functions f, g, h such that (2.9)-(2.11) hold. In the next Sections,
we shall exploit the ideas of Balachandran and Nuyts to examine the

implications of (2.9)—(2.11) for the partial wave amplitudes.



3.

THE BALACHANDRAN-NUYTS APPROACH

2)

that to simplify crossing symmetry, it is useful to expand the ampli-

The investigations of Balachandran and Nuyts have indicated

tudes in the Mandelstam triangle (s 20, t20, u>,0), in terms of the

functions
v} 4 — (64,9 |
So—e (S't) = 0'5) ’qu (ls-l) /PQ(ZS) ’ (3.1)
where Pﬁ is the Legendre polynomial, ijﬁ + ’O) is the Jacobi

polynomial 5 y Zg is the scattering angle in the s channel

Z,= |+ 2t (3.2)

s-) 2

.U~ is an integer running from [ to ™, and we have taken units such

that
Hme = | . | (3.5)

We shall denote the Mandelstam triangle by 4\ .

| S < i £
Teye £ 5w} 460 oo

where (aEri>),L are constants to be determined. Since Sﬂ_e (s,t)
form a complete orthogonal set in A s any ,E 2 functign can be
expanded in terms of them. EVe assume that T 1 (s,'t,u) has no poles
in A s, sSo that the expansion (3.4) is possible.] The advantages of
this particular complete set are twofold. First, the partial wave

expansion is easily obtained, namely

20+, 0)

0 2 9 (et
-'%()(s): (_ZQ-‘?(G"")(Q&))IQ’S) o0 (,?S-l) ,

(3.5)
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where féi) is the f'wl partéil wave of isospin 1. Secondly there
exists a self-adjoint operator 0, symmetric under permutations of
s,tyu of which all the functions S&f_i(s,t) are eigenfunctions with
eigenvalues G'(U’+2), dependent only on U and not on ,é . This

simplifies the crossing relations enormously, as we now show.

The usual crossing relations can be formulated as

; Z () |
T( (t)sl‘*) Z‘ A‘J T (S’t'“) (3.6)

)

where Aij is the crossing matrix. Substituting (3.4) gives

2 w)ae,.)@ ) S (ts)

N

o~
“

e G) (3.7)
gz 07(7*')(34"’)2 A‘J (a-J) a_e (S' )
Using the orthogonality relation 2)
¢ w _ L m
(S,_L) Sr-m = 4([450“: Sv'e(s‘t)sr_mls,t> 5.8
T Amp(244r) 5‘2”‘ dot )
we find
G) =z () .8
( o") ZZ 1("+')(20fn)z At()@ ) ( (3.9)
=0 0=0 P
where
(S t) -S (ts) (3.10)
Since both &: 0 .y are eigenfunctions of O with eigenvalues

g~'(a-'+2) and a—(a—+2) respectively, the scalar product on *he

right-hand side of (3.9) vanishes unless O = o '. Thus, the crossing
relations, expressed as constraints on the (ai?))e take the»form of
finite dimensional matrix equations involving only thcse a's with the

same value of G . They are :



J7e =0 (3.11)

) S .
(CL 'f)e’ =2 2 Geeo;- 4 (ag))l )
where '

T 2(0’*/)(J€+I) A:/ (Tal-;' ) ‘SVi ) ' (3.12)

vl
LQUQ
The explicit form of G can be worked ocut hut is not necessary for

what follows.

The problem of finding the most general amplitude consistent
with crossing symmetry is the problem of finding all the eigenvectors
of G of eigenvalue 1. We shall now do this by exploiting the

results of Section 2.

SOLUTION OF THE CROSSING PROBLEM

In this Section, we follow the techniques of I very closely.

p(1)

(2.9)-(2.11) will satisfy crossing symmetry for any choice of symmetric

Briefly, the idea is the following : the amplitudes given by
functions f,g,h and will therefore have an expansion of the form (3.4)
with (a i,)e satisfying the crossing equation (3.11). By choosing

a complete set of functions for f,g,h we will generate a complete
basis for the solutions of (3.11). In particular, we shall take f,g,h
to be symmetric polynomials in s,t,u, which are also polynomials in

the variables

X= $t+$u+tu. (4.1)
)’ = stu (4.2)
w = S+tew =1 . (4.3)

As an example, suppose

f(s,t,u)z xmy7 (4.4)
3(s.t,u): h(s,t,u)= (&)



Then

4 1 > 5 .
T tw) = wy?:{? gzzlﬂ')@é”)@ o) Souls £) (4.5)

-0

T(')(S,t,u\) - g;22(¢+:)(2€+l)(a.m7,r)e Sve [s,'f) (4.6)

T4 - vy = 7, L lentate) (03 SEtst) oo

Since both sides of (4.5)—(4.7) are polynomials in s and t, the
sums on the right are finite sums; there is no question of conver-

gence, and the equality holds for all s and t.

Now consider the limit s - ®, Z fixed. In this limis

t = = (z-1) (4.8)
- _g_(zﬂ) ) | (4.9)
so that
X =~ _51[22+3) (4.10)
lf
)l = —93(22—1 | (4.11)
Y )

so that the left-hand side of (4.5) goes as

EST o™ (22)" ()]

Each term on the right-hand side of (4.5) is a polynomial of degree g
in s, so that asymptotically, the terms with the highest value of g

will dominate, and the largest G must be of the form



U= Jm+3T . (4.12)

For this value of @~ , using the asymptotic result 6)

to 7 / o
(/-s)e Pﬁﬁ' )(Js—/) =)t o) s

(4.13)
(0=¢)! (0'+4+/),/ ’
and equating the leading terms in s, we find
Fln™ (243 )"’(;__/ )7 =) 2@9%,)@,, )(—:} LB (x)
4 4 f=0 (O".e)’(ﬂlfl)’
This relation is easily inverted to give (4.14)

(0 ), = €

with o~ given by (4.12).

) & @) @) £ (124 g
(2re2)! f(z .?/ I) 7/)’(/:.1)5)

Similarly we find, for this value of g~

(a’ci)?,r )@ - (Q -

(4.16)

(Qme)y =0

(4.17)

Equations (4.15)-(4.17) give one solution of the crossing equation (3.11)

when @~ 1is given by (4.12). TPor fixed @~ y there are as many solutions

of this kind as there are different solutions of (4.12) for non-negative

integer m,q. As was shown in I, these solutions can be put in one to one

correspondence with the integers in the closed interval [0/3, 0/2].
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One can repeat the same kind of calculation by taking f=h=0
and g=xmyq or f=g=0 and h=xmyq. In that way, we generate
different solutions of (3.11). The arguments of I show that these
solutions are linearly independent, and form a complete basis for the
solutions of (3.11). After doing the simple calculations, one finds that

the most general solution of (3.11) can be written as

%] 51 g

Co) ch ("‘f) Z_,Zc[,,@d ZZ&P(X (4.18)

p{%] P15}

. o T c .
with c¢_ , dr ’ er arbitrary constants and

(O(?)e = (V—()!(frﬂfl)! J ?e(Z) (Zl+3)3r-v[1-zz)m2rc{z (4.21)

(7), = @0 ) | R (2337 (1) 7 o

(57), = @) @t '.(7% (2) (zizf’”"(/—z*)“"”?%_z_*) dp(e.s



(§ P = ~(a-0)!(te)! if?g(z)(z%);f’m[/—z)

72
r Z ‘{Z (4.24)

Leal;)e : »(U'ff)!(@lﬂ)! f?c(z)(213)3?%20'2‘)&?-12 JZ‘(4-25)

5.

-

We have used the notation :

~—
3
-
1l

= (smallest non-negative integer > /%)

= (largest integer < U7/2).

™
q

~

™)
I

RESULTS

We insert the solutions (4.18)-(4.20) into the expansion (3.5).
This will give us the most general expression for the partial wave ampli-
tudes in A which have the proper crossing properties. The point of
these solutions is that the arbitrary constants s ’ dF ’ eF do not
depend on .e s, Wwhich gives rise to correlations among the partial wave

amplitudes.

Suppose, for example, that the s waves for I=0, 2 are known.
By the completeness and orthogonality of Pg’o)(Qs—ﬂ on the interval
o (0) (2) : :
0sL1, this fixes (a‘_r )o and (ao’, )0 for each OO , i.e., it

fixes

r4) =)

@w o Z Ser &), +ZO?J’Q§’;,') 202 e

P {%j {"" p: a—:.j (5 1)

and
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[%] [=] [£]

@ 2 0'(“ a(,( () ZC (f) - (5.2)
(@) - FZM ¢ )g{_;ljrgf P‘f?}

Suppose @ = 0. Then

@?)o = S5¢c, @:Z (5.3)
CCL(:))“ = dCo (), (54

() - 5@ 59

But from (3.5) and the orthogonality of Pa;’o)(2s—1), we can write

v )
@)
(QC:))O . g@—s)fa(s)ds , (5.6)
so that (5.5) becomes

'g(l‘s) T ds - % _(G'S)JC?)(S)JS : (5.7)

[~

This is one constraint on the s waves of ﬂ-ﬂ' scattering. Now

suppose ¢ = 1. Then

(a"’ = 2d, (ﬁ (5.8)
(1) = - d/ (ﬁ) (5.9)



so that

(o) Q@)
(@) +2a¥) = 0 (510
Writing this as an integral relation, we have

(@-s)(3s-D( Fly2f) ds = 0 (5

Since the 7 Cqr° emplitude is %(T(O)+2T(2)), this result can also

be written as

'g("SX3S-I) JCZO(S)O(S =0 (5.12)

("]

where fgo(s) is the n‘orro s wave. This equation was already de-

rived in I.

One can see that there are no more restrictions on the s waves
from crossing alone, because for T2 2, at least two arbitrary cons-
tants enter into (a 39)0 and (a(j))o, so that no relation exists
between them. If the p wave is also considered, we find one more
relation for ¢ = 1, another for 0 = 2 and another for o~ = 3.

These are

(al:))o . &(Q’(:))"

O

(5.13)
202) -5 @?), - 602) -
5.14
L (a_(;))o - 5-(0'(;))0 iy '/5(0,('3) (5.15)

The integral form of these relations can be written as

[G-X3) £90)ds- -2 o9 £y ds (519

v 0



§U'S )( 05"~ %5+1) (2 £()-5§99)) ds = | (5.17)
’ b gQ-s)" (5s-1) £%s)ds

o

SQ-;) (3555 45524155 1) (2FS6)-5FE05)ds =
!
=15 fQ'S)l(Z/s’—/Zsﬂ) Flo)ds .

(5.18)

For arbitrary O  , the unknowns are cpb , 4% and eaf; for

. appropriate values of r The number of unknowns is [0'/2:]+1. The
knowledge of all partial waves é‘.‘ L, for all isospins, determines
I_-(3L)/2]+2 conditions. Consequently, given all partial waves for
.eé L for all isospins, the number of constraints for a given T is

(assuming @2 L)

[%}“[%]"" (5.19)

if this number is positive. Thus for L=1, we find two constraints
for (" =1, one for O = 2, and one for O = 3. Going to the d

waves yields ten more constraints, and higher waves lead to even more.

It should be stressed that the constraints we have derived are
not only necessary but sufficient. That is, given functions foo and
fg2) satisfying (5.7) and (5.11) there exist crossing symmetric ampli-
tudes T /(s,t,u) of whick féoj and fgz) are the I=0 and I=2
s waves, respectively. In this sense, (5.7) and (5.11) express the full
content of crossing symmetry when restricted to s waves. Similarly,
the addition of (5.16)—(5.18) to these two relations expresses the full

content of crossing symmetry applied to s and p waves.

Using the Froissart-Gribov representation for the partial waves,

the integral equalities can be rewritten as constraints on the absorptive

parts. For €>/ 2, we have 7)



¢
(5.20)

_z, A (st C&(&t-.)ozt

£
T 1-s

ff)(s)z )

where _Agzi](s,t) is the absorptive part in the +t channel with iso-
spin 1 in the s channel. Because of the possibility of subtractions,

the representation may not be valid for {:= 0 or —C== 1. But, following

8)

termined in terms of the absorptive parts up to the arbitrariness

JC(:) s) ch)(S) + 9a +2b(3s-1) (5.21)
‘F(:)(S) — _F(’!)(S) - b(l -s) (5.22)
£21s) — ‘f(:)(s) +Ja —b(3s-1) (5.25)

where a and b are arbitrary constants.

Martin y, We show in Appendix B that the s and p waves can be de-

Having expressed the partial waves in terms of the absorptive
parts, we can rewrite all the constraints like (5.7), (5.11) in_terms of
integrals over the absorptive parts At L (s,t) or (d/ds)At 1 (s,t).
where the integration domain is 0< s<1, 1<t<®. Recalling that

ﬂiﬂ(s,th ZW*')IM v"’[‘(t)? (“"75 (5.24)

these constraints become integral constraints of the form

fo{t 27 LT By -

(5.25)

where B(ii(t) are known functions. These equations (for different n)
are the necessary and sufficient conditions on the absorptive parts in
the physical region to ensure crossing symmetry [brovided fﬂ(t) is
such that the amplitude has the requisite analyticity so that the usual
dispersion relations are satisfie@], Moreover, from the derivation, it

follows that the relations are independent for different n.
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For example, the relation (5.11) can be rewritten as

( 45 [P‘t (slt)q-ZA (st)] (s )3 ')[tas ; t—s 24t

\

l-s t&s- (5.26)
2 . 1
+ s (l-s ) [:(fﬂs— ,)" (‘t _5)’-] } =0

In principle, expanding AI%Q_'] + 2A,IG:2] in terms of partial waves in

0

the t channel, as in (5.24), one could perform the integral over s
to obtain a relation like (5.25), but it is difficult to get a closed

form expression for B\ /(%).

L

APPLICABITLITY

The chief application of the results of Section 5 will be to
models for the low partial waves of T  scattering, which do not
have crossing symmetry built in. For example, in a model for s and
p waves, one could try to choose some of the parameters in the model
so that (5.7), (5-11) and (5.16)-(5.18) were satisfied. One would then
have incorporated the full content of crossing symmetry into these models.
(We are implicitly assuming that the models can be continued into the un-—

physical region O$s3§1.)

9)

for the s waves of YT scattering with free parameters which they

For example, Wanders and his collaborators construct models
fit so that the amplitudes are consistent with all the constraints which
have been derived on the basis of analyticity, unitarity and crossing.
Although Atkinson 10) has shown that there is a very large class of
functions, labelled by a symmetric function of two variables, consistent
with these general principles, the work of Martin and his co-workers 11)
has shown that for low partial waves, at least, the amplitudes are
numerically constrained below threshold. The authors of Ref. 9) choose
a particular parametrization of the s wave amplitudes which automatic-
ally satisfies elastic unitarity, and which has free parameters. They
find that the constraints of Ref. 11) severely restrict their parameters,
and lead to phase shifts in the physical region which are in rough agree-

ment with experiment.
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Our results represent further constraints. Since they are equal-
ities, they serve to eliminate some of the parameters, rather than to
restrict their range, as do the inequalities of Ref. 11). Furthermore,
Wanders 12) has pointed out that since the aim of his work is to obtain
results on the general shape of the phase shifts, our constraints, in-
volving integrals over the amplitudes, are perhaps better suited to this
purpose than those of Martin, which often take the form of inequalities
on the amplitudes at certain isolated values of s. It should be pointed
out, though, that Martin has really derived inequalities over a range of

s, but that they are sharpest at the isolated values which he tabulates.

Another application could be to the theory of Padé approximants
applied to the partial waves of WT“ﬂ-scattering, derived in some Lagran-
gilan framework 13). By taking the Padé approximant of the partial wave
amplitudes, one can satisfy unitarity, but one violates crossing. By
comparing various terms in our equations, one has a measure of how badly
crossing symmetry is violated in this way. This check has been carried
out by Basdevant et al. 14) for the Padé treatmenﬁ of the )\ ¢4 theory,

and indicates that crossing is very well satisfied.

Still another application could be to models which attempt to
unitarize crossing symmetric amplitudes, e.g., Lovelace's work 15 on ﬂ'ﬂ‘
scattering based on the Veneziano model. TLovelace interprets the
Veneziano amplitude as the K matrix. In this way, he automatically
satisfies unitarity and violates crossing. But since the left-hand cut
in his model is largely arbitrary, one could try to determine it in the
low partial waves to be consistent with our crossing relations. A

similar problem will be investigated in more detail in the next Section.

THE MODEL OF BROWN AND GOBLE

6)

uhitarizing the current algebra results on I || scattering. They write,

Brown and Goble L have given a particular prescription for

for the s and p waves

. OLL)
19 = fo (s (1)

¢ (0.~ G)eA. )
[+ he(s) £, “ley
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i 1
where f(l)CA(s) is the current algebra result 7). From elastic

unitarity, one has

Tm l(‘:)(S)= ”’% Imi<s<lome™  (7.2)

where
S= Lf(kz""w’it> . ' (7.3)

In order not to build in a singularity at s=0, they chose

W) = - ik o b f[Erak ) + ke (),
S

(7.4)
ng m ¢24Wn
‘where k&i)(s) must be a real analytic function without cuts
in the range O¢s (16m$r . Their initial choice was to take kgel) =0

for the s waves( and a constant for the p wave. The constant was
.1

chosen so that f1

then found.that the JO width was well predicted (~130 MeV). This

(s) has a resonance at the mass of the .fD . They

success can perhaps be taken as evidence that their form for the p

wave is reasonable from threshold up to the j? mass.

However, recent data 18)

have shown evidence for a resonance in
the I=0 s wave as well. This was not obtained in their initial
formula, which took kgi)(s) =0. In analogy with the p wave, they
then 19) took koi (s) to be a constant, whose value was chosen to

reproduce the O mass. They have shown that for mg in the range
2 2 T
B3ms* < M, < 20 myt (7.5)

their formula is consistent with the phase shifts of Ref. 18).

However, by unitarizing the amplitudes, they have destroyed the
crossing symmetry of the current algebra result. We have attempted to
restore the crossing symmetry by using the relations of Section 5. If
one is interested only in the I=0 s wave and I=1 ©p wave, there

is only one relation



!

(7.6)

§(1—5>(3s-:)ff"’($)= -2 f(/—s)zf,“}s)o(s

o

in units where 4mi.= 1. (Since we shall discuss only the I=0 s wave
and I=1 p waves, we can drop the isospin superscript,) If one takes
BrownAand Goble's form for f1, and parametrizes fo as in (7.1), (7.4),
with ko an arbitrary constant, one can try to solve for ko by im-
posing (7.6). One would then have a prediction on the @ mass based

on the p wave and crossing.

The integrals cannot be done analytically, but we have compared
both sides of (7.6) numerically for different values of m_ . The
result is that it is not possible to satisfy that relation for any
value of the ¢~ mass above threshold. This means that the parametri-

zation of Brown and Goble is not satisfactory in the region 0gss¢1.

One can explain the failure of the parametrization as follows.
The unitarization has given the amplitudes the right analytic structure
above s=1, but their parametrization has no left-hand cut at all.
But we know from crossing and unitarity 20 that f(i>(s) must have a

2

cut beginning at s=0, and with a discontinuity behaving like

T dls) ~ (%— 01+ Iﬁ(l)(f))z)(-s)% (2.7

—_ ! o 2 2 2 9Q
T $0s) ~ (’%.Hf’.)l +2 lfﬁ)(')l)és) (7.8)

for s< 0, |s| small. Because of the factors (1-s), (1—s)2, (7.6)
is more sensitive to the amplitudes near s=0 than to their values near
s=1, and since the amplitudes have the wrong analytic form near s=0,

it is not surprising that (7.6) is violated.

One can try to choose kl’(s) to have a branch point at s =0
with the proper discontinuity. The results will depend on how one para-
metrizes the function. We chose two different parametrizations of

kl,(s)’ which were motivated by the following considerations. kl‘(s)
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must have a discontinuity behaving like s% near s=0. Moreover, we
want kl. (s) to tend to a constant at large s, so that the singular-
ity at s=0 does not affect the form of the amplitude near the o
or P meson. Finally, we want the current algebra result to be appro-
ximately valid in the region 0 < s £ 1, which is the smoothness

assumption of PCAC. From (7.1) this will be true if

CA.
hels) 7& (s) << | B ogsg | (7.9)

Numerically, QSA(s) is small, so that (7.9) will be satisfied if hé(s)
does not have a pole in the region Og sg71 or if the pole of }h(s)

coincides with the zero of ng.

The first choice of kL<S) was

ol

kl(s): C¢ + =
'5%_%%

(7.10)

where CL ’ D{L are constants to be determined, andCAsz is the loca~-
tion of the zero of the current algebra amplitude o - The parameters
O(Q were fitted to satisfy (7.7), (7.8) where f(gi)(‘l) was taken to
be the current algebra value. This choice of fol (1) was reasonable
in view of (7.9). c, was then fitted to reproduce the f resonance
and c, was determined from (7.6). The result was again that no value

of Mo above threshold was consistent with (7.6).

The second parametrization was

QQ(S) - S 3

Q¢+ bg 53/"

where a b are constants to be determined. a was again deter-
s VR 4

(7.11)

1
and b, then have the same sign so that k1(s) is not singular in the

mined by (7.7) and (7.8), and ‘b1 chosen to produce the f pole. a

region Ogss’l. However, if bO is to give rise to a O resonance,
we find that a, and bo must have opposite signs and that ko(s) must
have a pole in the region Og s< 1. The location of this pole does not

coincide with the current algebra zero, so that condition (7.9) is



- 20 -

violated. This solution for bO would give rise to two zeros of fgo)(s)
in the region O« s <1, whereas current algebra predicts only one. This
would violate the spirit of PCAC.

In summary, we have not found a parametrization of the I=0 s
wave which is consistent with unitarity, the wvalidity of the current
algebra and PCAC, the crossing relations (7.6)—(7.8), and the existence
of a _5) and g  resonance.

One can interpret this in two possible ways. First, perhaps none
of the parametrizations we gave was really adequate. Since (7.6) is
sensitive to the amplitudes near s=0, one should perhaps have taken
greater care in determining ant(s) on the left-hand cut. In fact,
given an assumed form for the s and p waves near threshold, the
arguments leading to (7.7) and (7.8) can also fix the coefficients of
(—8)5/2, (—3)7/2 and (—s)9/2 in hnfli(s). The inclusion of these
higher terms will define the left—-hand cut much more precisely, and it
is possible that a parametrization which satisfies these constraints

would be consistent with all the principles outlined above.

It may also be that no simple parametrization of the amplitudes
will have the features of the-f and ¢~ resonances, the current
algebra, unitarity and crossing symmetry. This view has some support
from the investigations of Ref. 9) into T amplitudes consistent
with Martin's results L and satisfying elastic unitarity. In their
parametrization they cannot reproduce Weinberg's scattering lengths
predictions. There is no doubt that there exist functions consistent
with all the properties listed above. For example, Iliopoulos' 21)
solution a) is consistent with crossing, current algebra, the constraints
of Martin, and unitarity to a given order in (1-s). Although this model
cannot incorporate resonances, one could extrapolate it to higher s in
many ways, so as to yield a T and a f? . But the hope of Brown and
Goble was more ambitious. They wanted a simple parametrization (however
badly defined that may be) valid from threshold up to the jD mass at
least, satisfying elastic unitarity exactly, consistent with current
algebra and predicting the resonances. The constraints of crossing may

mean that their functions have to be quite complicated.
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One point should be emphasized in these considerations. Since
the amplitudes should be well approximated by the current algebra re-
sults, one might argue that changes in ke/(s) could hardly affect the
validity of (7.6). However, since the current algebra results are
built to be consistent with crossing, they automatically satisfy (7.6),
so that one should really interpret that equation as a relation on the
deviations from the current algebra predictions. Then changes in

ki&(s) play a significant role.

CONCLUS IONS

We have found the necessary and sufficient conditions on the

‘ITTI' partial wave amplitudes in the region O\< sg 4m$r which follow

from, and ensure, crossing symmetry. Moreover, we have found the most
general parametrization of the T J] amplitudes in the Mandelstam

triangle which is consistent with crossing symmetry.

It follows from this parametrization that if, for example, we
are given s and p waves consistent with the relations (5.9), (5.11),
(5.16)—(5.18), then it is possible to construct many different ampli-
tudes with the proper crossing properties of which the given waves are
the s and p waves. It will usually be the case, howevelr, that none
of these amplitudes will have other desirable prOperties like unitarity
or analyticity. That is to say, these other principles restrict the
s and p waves further than our relations do. Examples of such res-

trictions are given in Ref. 11).

22)

who has found the necessary and sufficient conditions on, for example,

the ﬁ'Qﬂ’o partial wave amplitudes below threshold which follow from

In this respect our work is complementary to that of ¥ndurain

and ensure the proper analyticity and the positivity of the absorptive
part. Combining his constraints with our general parametrization will
give the necessary and sufficient conditions to ensure crossing, analy-
ticity, and the positivity of the absorptive part. So far, however, it
has been very difficult to extract any significant consequences from the

combination of the two approaches.

’
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One of the limitations of our results is that the constraints
are formulated in the region O:gs;g4nﬁ}. Using dispersion relations,
we have shown how these constraints can be rewritten as constraints on
the imaginary parts of the partial wave amplitudes in the physical region.
But the equations do not seem very useful in this form, since each

involves an infinite number of partial waves.

We have suggested that these constraints would be most useful
in models for the partial wave amplitudes which do not have crossing
built in, for it might be possible to adjust certain parameters to
guarantee that crossing is not violated in the low partial waves. In
these models, we could also test how badly crossing symmetry is violated,

by comparing various terms in our equations.

We have applied our ideas to the model for ﬁr77' scattering due
to Brown and Goble. We have tried to use the freedom of their model to
satisfy the one relation between the I=0 s wave and the I=1 »p
wave in an attempt to determine the o~ mass from the 59 mass. But we
have not found a simple parametrization for which this rather naive
"bootstrap" is successful, and consistent with current algebra and PCAC.
We have suggested that the failure can be traced to an improper treatment
of the left-hand cut, or else that our attempt to find simple parametri-
zations for the s and p waves, consistent with unitarity, cufrent
algebra, the existence of the j> and o , and crossing, is overly

ambitious. We hope to pursue this matter further in a later work.

The next problem that arises is the generalization of these
techniques to processes with unequal mass, or with spin. The general
framework for the unequal mass case, or the case of T N scattering,
has been developed by Balachandran et al. 23). However, since the
application of these techniques will probably be to models for the low
partial wave amplitudes, it may not be necessary to find the general
solution to the crossing equations. It is important to find all the
constraints on the low partial waves, and to write them out explicitly,
so that they can be readily applied. The technique for this has been

given in Ref. 14), for any elastic scattering process.
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It is also possible to derive results on arbitrary processes
relating the low partial waves of AB—CD to those of AC-—BD. This
depends on the existence of a region R in the s,t plane with the
following property : for fixed s, zS varies from -1 +to 1; for
fixed t, 2z, wvaries from -1 to 1, and similarly for fixed u.

v 24)
Such a region always exists

if the scattering particles are stable,
and not massless. We continue the full amplitudes of AB—-CD or
AT-BD into this region, where the crossinngOndition implies that
they are equal. We then multiply the two amplitudes by the same poly-
nomial in s and t, and integrate over R. The results must still

be equal. Since for fixed s, +t 1s linear in Zy and for fixed t,
s 1s linear in Zt’ we then get integral relations between a finite
number of partial waves in the two channels. Crossing symmetry in R
is equivalent to satisfying these constraints, for arbitrary polynomials
in s and 1%, Dbecause a function orthogonal to all polynomials in R

necessarily vanishes.
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APPENDIX A

We wish to show that if F(s,t,u) is an analytic function in a
domain D where D 1is invariant under all permutations on s,%t,u,

then on D we can uniquely write F(s,t,u) as

F(sf u) = HS u) + (o'ls-'t-u.>3(5‘, W + @ u) (st ) ey
#(dsttu) hilstu) + E2u)hGt “)+(5't)(t WNu-s)g(s ),

where £, 819 8o h1, h2, j are symmetric functions which are analytic

in D.

This decomposition of F dis the decomposition into irreducible

representations under the group S of permutations of s,t,u where

3
f and j correspond to the symmetric and antisymmetric terms, res—
pectively, while the terms with 81 and g, OT h1 and h2 form
bases for the mixed representation in which the (t,u) permutation is

taken to be of the form
O
(tu) - (o-,) : (a.2)

To prove the decomposition, we first project out those pieces of
F transforming according to a given row of a given representation. So

we define

S(S't,u,) = i‘ [ Fls,tw)+ Ft,us)+ Flust)s Flsut) +F(E,su) F{WE:,:.)]B)
R(s,t'u) : i[F(s,t, )t FLEws)+Flu st)-Flsut)- F[t,r,u}F[u,ts)] (a.4)
M'(S“t'u) = —6'_& F(S,t;u)’ Fl‘t,",s)'F(U,S,{:) +2F{5,",'b)’ F.[tls'“)—,:(“,t;s) (4.5)

M lsita) & (2Rt Flbns)- Flusd)-2Flsut) + Flbsa +Flyt9 [, o
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so that

F:S"'A"'M."'M,_. (4.7)

We now identify

‘&‘(s.t,u)-’- S(S:t,“) (A.8)
@’t)(t'u)(u-S)J(S.f,u) = Alst,u) (4.9)

@S—t-»&g.(s.{;' w + (2sEE4u?) histw) = M. (s,t,u) (A.10)
(‘t—u) jz(S,t,u) + (fz—uz) h, s, t,u) = Mz(s,‘l:,u) C(a.11)

It is clear that f(s,t,u) is totally symmetric and analytic in D.
Similarly, j(s,t,u), being the quotient of two totally antisymmetric
functions is symmetric. Moreover, it is analytic because A is analytic
and antisymmetric, so that A/(s-t)(t-u)(u-s) is also analytic. It

remains to show that M1, M, have the representations (A.10) and (A.11).

2
We write

(S ‘t ) _ Mo(slt;“l)[sz.{.uz,ﬁ‘t‘l_ M( [tls}u) [_t#ua_’zszj
8‘ yHu) = 3(t'5)($—u)(q-f)

(A.12)

/L,(S',t,u) - M (S;t,u)[a?t-s—ct] - M,(i’,s,u)[,,?_s-t_u]
3(f’$)(s-u)(u--b)

(A.13)

Mz(S,f,u)[s:.u’] - Mz/flé; u)[fiu'] (a.14)
(f’f)(s-u)(u-t)

9alst,u) =



M) - st les)- Ml o) (urt)
(E-s)Xs)lu-¢) :

(A.15)

It is easy to show that this ansatz satisfies (A.10) and (A.11),'and

using (A.5) and (A.6), it also follows that 819 8oy h1, h, are

2
symmetric and analytic in D.

To prove the uniqueness of the decomposition, it is sufficient to
prove the linear independence of the terms on the right-hand side of
(A.1), i.e., that if P(s,t,u) vanishes identically, so do f, g1 899
h1, h2, jo TUsing the result that terms corresponding to different
representations, or different rows of the same representation, are in-

dependent, it remains to show that if

(o?s—i'u )j, (S,‘t, Q) + (,?5"',{'.“‘) A( (s,i‘,u) =0 (A.16)

Uf—u)ﬁ,_(fft,u) + (’éz"iz) Az[S;t:“) =0 ) (A.17)

then 819 h1, 859 h

all vanish. Suppose for example that g, Z 0.
Then '

2

As-t-w  _ _ hi(stu)
Qstt-u* j,(s,t;u)

(A.18)

The right-hand side of this equation is totally symmetric; the left-
hand side is not, which is a contradiction. Thus 8, must vanish, and

similarly, 8o h1, h2 also vanish.

It is also clear that if F(s,t,u) is symmetric in t and u,

then 859 h2, j all vanish.
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APPENDIX B

Given the Fr01ssart—Gr1bov representatlon for partial waves for

Ly 2, |
Do 7
‘&C)(SF G,)e_Izr_f;_ ( A% @/J; )Jt oo

we wish to solve for the ffrtlal waves ng), fgz), f§1) in terms of

(s,t).

the absorptive parts A
For i=0,2, we write

69 Z @)W (.2

CV!n

-fm(s) X Z(ﬂ*') ﬁ (S)?(zs) »'(3,3)

em %2

Inserting (B.1) into (B.3), and using the Darboux-Christoffel formula

Z (J&-I)alz)@@(w): 'z'f w-z w+z ’&‘ NH)J (B.4)

Leven»2

we find

INTIE ‘f (s) + -fdt A (St)[’zl;*—'ﬁ 4 I%SUQA f”,":l'

(8.5)

Similarly, we can write for i=1
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Tm(s,t) .3 {f")(s)(H ﬁ)

ca é(’ 32*) Aths-l
SL&H (s {)[t't t+i+s— U-s)* -s)* { j"'t—%/ -4

(B.6)

In the t channel, we have T(o)(t,s) and T(2>(t,s) symme tric

under interchange of s and u, while T(1)(t,s) is antisymmetric.

This implies

™ . (B.7)
| (l:,s)|$:“L =0

LTM(" )L % Ta)(ts)ls“: 0O . (B.8)

But since s+t+u=1, treating s and t as independent we find that
t'—' I’ZS (B.9)
assures that

S= u - (B.10)

Using the equations (B.7) and (B.8), the crossing relations

2 .
T(t)(t,5)= Z R'J T(J’(S,'t> ) (B-11)

20
where

A - sl
t) - ,/5 72 _576 ) (B.12)
V; -l '/6

and the representations (B.S) and (B.6), we find equations for

|
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§ 400 - £ 40003 1 (1 202))

LA 544‘% BB 2tz - 281 (125)
®3 “ds ds +3 —-I;[+ SZ‘S S Q'S)i

. J.Ol‘fom(s) _Lcljcf’(g)_:s_ doc.(s)l A-25)\ - 2£46)(1-25)
R A v 2{ ols(rS- ()

(0)

in terms of the absorptive parts. These determine fo ’ fgg) and f§1)

up to solutions of the homogeneous equations

(0)= (b)= ()= o . (B.13)

The solution of (B.13) can be obtained by adding (b)+2(c) to obtain

3Co(°)(5) + ,2{?)(5): COVXST R (B.14)

solving for f( ) from ( ), 1nserf1ng this solution into (b) and

(o)

The result is that the amplltudes f (2) f11) are determined by

using (B 14) to eliminate f to %et an elementary equation for f

the absorptive parts up to the amblgulty

‘ff:)/5> — ‘F?)(S) + 5a +a'?£(3s-c ) (B.15)
f9%) — §9%) - b(l-s) e



{'é)(s) —5 1L2)(s +2a - 5(33-1) (B.17)

where a, b are arbitrary constants.

It is easy to see from our expressions (4.18)—(4.20) that the
ambiguity in fgo), fc()z), f1(1) is given by (B.15)-(B.17). Since the
absorptive part fixes all partial waves for 4&& 2, all the coeffi-
cients c; , 4% , e;-' are fixed for U> 2. The coefficients for
o°=0 and g =1 are cg and dl respectively. They enter only
into the s and p waves, and are therefore not determined by the
absorptive part. Leaving them arbitrary, and using (3.5), (4.18)-(4.22)
and (4.24) gives the result (B.15)-(B.17).
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Schematic diagram of mm scattering,
with isospin indices a 8,y,6.



