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of the non~relativistic sum rules obtained in previous in-
vestigations.
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I. INTRODUCTION

One of the mosgt promising ways of treating elementary particle
physics is the classification and intercomnnection of particles by the use

of symmetry groups.

We have been accustomed to find symmetry schemes which, on the one
hand, seem to be badly broken and on the other lead to amazingly good
1

results. Therefore, one important problem is to find a method for treating

broken symmetries, based more on general arguments than on specific models.
¥y 9 £ & 1Y

. . . . . . . . 1
A first suggestion in this direction has been given by Gell-Mann

—

who pointed out that in a field theoretical framework, although the symmetry
might be actually badly broken, the equal time commutators of charges and

currents generate the algebra of the underlying symmetry group.

A methed to exploit these commutation rules together with complete-~

2),3)

ness has been recently developed In these papers it has been shown
that the one-particle contributions do .correspond fto the group theoreitical
result, whereas the many-particle terms (which are directly related to the
symmetry breaking) give the corrections. The most important corrections
can be evaluated by means of a dispersion analysis in terms of observablc
quantities like coupling constants and mass differences and have led to

very reasonable results.

2),3)

that the scparation between the different contributions is not a Lorentz

Onc difficulty found in Refs. comes, however, from the fact
invariant onec and, in particular, thc one-particle term is multiplicd by
kinematical factors which tend to one in the exact symmetry limit. Al-
though a very reasonable prescription has been given in order to properly
interpret the results, a fully covariant approach does indeed represent a

great advantage.

In this paper, we want to propose a relativistic generalization of
the previous method which allows a clear-cut separation between one-

particle and many-particle contributions.
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The central idea of our approach is based on the essential use of
local commutativity to obtain relativistic sum rules,; analogous to the
well-known dispersion relations at fixed momentum transfer. This covariant
approach is especially useful in the case of dynamical groups which involve
not only isospin and hypercharge but also spin and parity 4)0 The well-
known difficulties related to a relativistic interpretation of these groups

Z
have their counterpart, in the method of Refs. 2),3)

, in a very critical
dependence on the kinematical factors which makes an unambiguous inter-

pretation rather hard.

In Section II the general dispersion approach will be discussed.
Section IIT will be devoted to thé discussion of the sU(3) results likc
the renormalization of vector currents, mass formulae and form factors.

In Section IV we shall examine the general principles for extending thc
method to dynamical groups. As an application, a very beautiful sum rulc
for the renormalization of the axial vector current, already found by Adler

5)

and Weisberger ; wWill be derived in a simple way. In addition, wc
shall obtain two sum rules for isovector and isoscalar magnetic moments
of the nucleon, which allow to understand under a new light the electro-

magnetic structure of the nuclcon.
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II. THE GENERAL METHOD

As recalled in the previous Section, a symmetry group and its
algebra can be generated by the equal time comnmutation relations of a
set of physical charges Qg , the generators of the group. In the case
of SU(3) +that we shall consider in this Section, the Qy  are simply
given by the space integral of the fourth component of an octet of
currents i&ot)(x), The starting point to derive sum rules for any
quantity oif physical interest is the consideration of the matrix element
of an equal time commutator between a generator QCL(t) and a local
operator, having well-defined properties of transformation under the

group
- . r -
‘_Qd(o)) tﬁ(x,oﬂz ‘Fo{(l) ty"('o) (1)

The constants f are determined from the group algebra. Of course, in
the particularly interesting case in which the 33 operator belongs to

an octet, the f's are the structure constants of the algebra.

2.a) In order to obtain relativistically invariant sum rules, we shall
derive a covariant represcentation for the matrix element of the commutator

(1)° Let us use the relation

Q(L ['(OU x~fD(><)oll’X et - x,) (2)

where

()
:DGL(X) = a/uj/-w (x) (3)

is vanishing in the limit of exact symmetry. . Thus we can write
{a,|[Q, (o), taX o)A,y =

. (4)
fa‘ yQ(-)’a CHIRY y)} £, o] lagy> = }0 (Qilt (X L9 ag>
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A

o ) ) ) . R - i(pa=po)es
Using invariance under translations we can extract the factor e (p1 14)

in both sides and get

f(Qil[Dcfz ), té‘”?“‘*—g?’ &t Zo)déz- = gf,y<a'1’t,}*w” g (5)

We now make the further assumpition that the commutators between the local

operators D&'(x) and t/g(y) vanish for spacelikc scparations

] ' 2 )
| Dy, tﬂ(y)]: O  for (Xx-y)<O (6)
It is worth while to remark that the microcausality condition (6) gives an

explicit invariant meaning to the quantity

M =f<a..;:[bd<z>, ol asy e d's ")

An important point to be discussed is the contribution from the integration
on the surface at +t=-w. The matrix elements (alDd.ha)9 which appear
using completencss in Eq. (7), will have an oscillating behaviour in time,
if the energies of the states ]a:> and h1> are different. This,
according to the usual rules of the game, leads tc a vanishing contribution.
In this case, of course, the analogous formula obtained starting from

t=+®

M = ‘f(ailCD&(z), tﬂm)'j(ap B, o2 (7]

is completely equivalent to (7).

The question becomes serioug in the pathological situation (like
for instance, <'NID£—)II’Xj> ) where the energy difference can vanigh,
Here we have to deal with a very unpleasant problem of asymptotic. behaviour
of the product of operators. We are unable up to now to give a completely
satisfacory answer, however wec are convinced (on the basis cof some models)
that the correct recipe is to treat -m and +m on the same ground,

and to write
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M=- @i ellar 2o d'z ()

Let us now come back to the expression (7) and introduce the Ffunction

P(k) defined by

. k2
Flk ) = J/OMZ ek z,)<alp e, tonla,> e ()

and

M= Lim  Fk) (9)
k- o

The essential point of our method consists in the observation that P(k)
is the Fourier transform of an advanced causal commutator, vanishing any-
where outside the past light cone, and that one can apply to it the
standard procedﬁre to derive a (one—dimensional) digpersion relaticn. For
simplicity, we begin by considering the case in which ayy @, are both
spin zero particles and E@ is a scalar operator, so that M is a gcalar

2
function of m?, m; and A 2

2 . . . -
= (p1—p2) . Owing to the introduction of
. ' 2 .
the four vector k%, which we choose of zero length k =0, I will
depend on additional invariants. More precisely, we introduce two four

vectors k1 and k2 such that

ptRy =prky h, = R

and we shall fixA

Ia,,ez kb =o

(10)
2 A 2 2
VLZ=(H+!€,~—P£) = (A+k) =4

which requires

Ak”l:'o (11)
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or

P;"ZI = Pz'hq;zv

Finally we define the variable

y= o PtP o Repy (12)
Thus T will be a funcition of the "“external masseg" kfp kg and of the

. . 2 ) . .
two invariants A and 7V , and the quantity M under consideration

will be obtained for IH-aO, Y —0, k2—>A

e shall study the analyticity properties of F in the variable
Y s keeping | [32 and the external masses fixed. These properties are
completely analogous to those of the scattering amplitude of particles of

N
masses k?::o ki:: 02 (represented by the fields D, and ta ) on

In this way we are led to a dispersion relation in the energy

Y at fixed momentum trangfer A 2.

8,y Bpe

o
Fev, &) ,i;f (yd)dy"‘i f}_‘;(l..—_ﬁd)/ (13)
v/ VYR
o]

= o0

where the spectral functions are given
i b _ :
Ar= 5 2, (3" 0(pe b p, )< D (o XN (o) @y > (14)

(141)

A= 5 %, @™ S(py k= p,) ([ £, (o) W< Dol | Ay

In the expressions (14) and (14') for A; and AL, we separate the
diagonal and the off-diagonal contributions. The diagonal terms, coming

from particles in the same representation as a, and Y give risc to
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polar terms whose denominators are of the form (y - (m§-m§,)/2ma) and
the numerators contain "coupling constants™ represented by the matrix
elements (a”Dd !a'> 5 (a' “’/{, la2> . We see clearly here the
reagon for the dominance of the pole term as compared to higher contri-
butions: in fact the denominator is of the order of the mass difference

in the multiplet,

The approximation of keeping only the pole terms can be considercd
as a covariant definition of the group theoretical limit. We scc also
that the rcasons for the approximate validity of the group theorctica
formulaec are not essentially different from thosc in favour of similar

one-particle approximations, like for instance periphcral models.

In those cases where the kincmatical gsituation is such that the

denominators Y' £ )}/ can vanish, the¢ preceding discussion leads to

the rceipe of simply using instead of F(V )

FO) —> § JFomin+ Fivmiq) |

2.b) Tet us now discuss the relativistic genoralization of the sum rulcs
for renormalization constants discussed in Ref. 2)° We have secn there
that the evaluation of the renormalization ratios is on a somewhat diffo--
rent footing from the usual group theoretical rclations, in the sense
that the higher corrections arce of the sgcond order in the breakiag o)
and they arc more strongly dampéd by a squarcd denominator. Théreforc
they necd here a scparate treatment. Tet us congider the commutator
between Mopposite charges" (i.c., the gencrators corresponding to oppogite
roots) which, according to the standard formulation of the Lie algebra,

equals a linear combination of the diagonal gencrators

[Q, & J= 4 Q oM (15)

*
) We denote with Q‘i the generators corresponding to a (nov nuil)

root OL and with Q, the mutually commuting ones.
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. . - i ) . . .
In particular in SU(3) @ Q, will be a linecar combination of charge
and hypcrcharge so that it has only diagonal matrix clements without ro—
normalization. Then we takce the cxpectation value of Eqg. (16) in a well-

defined state

(@, @a1lay = o caj@ lay O

Using for QiOL the reproscntations

Q""OL J:D'Tol Xo) O‘Z')( \12)

we obtain

lalpll Q,, Q-oJlaipy =

:{d"‘x O“"/(“PJ[[D&(X)/'D,:’(( Yl atpy)) Bixs) O Y, )= @) 6(ﬁ -ppy ™'

with
M'= fzoa(-zo)ol"z al[D2), D ytonllad (20)

We introducc again

k2
@“‘) :[9(“20) d*2 ¢a|[Dy2), D_(o)][a) € (21)

. 2 N
and being now the external masses equal, we have A =0 and we arc

thus lecd to the consideration of 2 forward dispcrsion relation. Finally

M = _ 4 Q,’uw, Sb(h,)-_i_.g.__ Qo 2P (529

Ma Vo0 dV e
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On the other hand, sincec

(alQ lad= cim (ZW%S(E..@) €, (23)

i . . \ ar
(cqq being of coursc the appropriate Clebsch-Gordan coefilclent), Wwe
e

get the invariant sum rule

4 A P PR,

a;Cly, ma Yoo O ¥

u
2N

(24)

Equation (24) is the relativistic cquivalent of Egqs. (3.12), (3.13) of

Ref. 2 o Writing now a dispersion relation for

o0 o
(v) = 1./ Ar ) Jyro A PeO) 4, .
¢ v ) S o vy dy (25)
)

with

AL = 1;:_2,"(_2W)hcg(p4n~p,,)(alD’l(0)’n><hl D golay  (20)

Agw) =2 2,8m4E(p-R-po)aiD n<ni Dyellay (200

We geparatce from the continuum the one-particle poles which have residua
proportional to the square of the renormalization ratio. The contribution
of the continuum could be formally cxprecssed in terms of the cross—scction

of massless scalar particles whose "currcnts" arc given by Diy s

*)

In order to simplify the notation, wc assumc herc invariant

normalization for the states <b1 p2>> = 21 g(pq—pQ)(2TT)3a
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10,

We notice that the 9,/<91) derivative in Eq. (24) lecads to o
squared encrgy denominator which causes onc more order of magnitudce in
the dominance of the pole term. This is the dispersion equivalent to

the Ademollo-Gatto theorem b).
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11.

IIT. APPLICATIONS

3.a) In the previcusg Section, in order to illustrate our method, we
limited ourselves to the case of a scalar operator %6 and of spin zero
particles. The generalization to higher spins does not offer any new
esgential difficulty, but only more complicated expressions have to be
considered. \¢ an indication we shall discuss here some explicit

examples.

Let us begin by comsidering two spin % particles, t/3 still
being a scalar operator. In this case the quantity F(k) given by
Eq. (8) is the

0

ame ag the scalar meson-baryon -scattering amplitude.

)

Thus it can be written in the form

F(h): A, Z oLy, A') + 3(y,AY) [y K, A‘Zﬂ} Uy

(27)
A: Pl‘pﬂ, ) K:%(w,,fng) j V = P1|W,1/m4

In the limit we are considering, k1—+O, Y -0, ko—*[l, only the
first invariant survives. All previous considecrations can be applicd

just by taking

M = A O{(V,/Jg) (28)

Y=o

If we now take t/g to be a four vector and ayy 2 two spin zero

2
particles, +the expansion of the matrix element of the commutator in

invariants isg

- Y (p4 : ) o,
F/:A(n) = G 04 J(Pitpg),+ Gy, A JP=Py)ut Ry, Gyly, &)

*
) This separation is more useful than the standard one A+ X‘ K5,
The rclation between the two scets of invariants is :

=—2/5(m1+n12) ;s A=qf +/5 ]:Armﬂ/ + (m1)~y;_))___] .
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Our method leads in this case to dispersion relations for both invariante
Cyy Gy (G5 |
appearing for instance in the X - ey dccay.

need not be considered) which correspond to the form factors

For more complicated situations, thc number of indecpendent inva-
riants increascs. In this papcr, we will not consider other casce than

those discussed above.

3,b) As a first application we shall examinc in detail the dispersion
sum rules for the rcnormalization constants. As alrcady explained, 1T
is sufficient to take the external masses equal and, as a conscquence,
42==o. We begin by recalling somc uscful relations. TLet us consider

the matrix element of a vector current betwcen two spin zero states

" a o) '("oz; .
<PlT, e = Cra i(i”r* P%Gimﬁ +(P.—p2%G£ (Aa)k (30)

where c10 is the appropriate Clebsch~Gordan cocfficient and the prescncc
of thc secord form factor GECL) ig a display of the non—-congcrvation
of i‘gd) Then
() .
‘ L(mb-mdyc, t G )
L DyoNps> = Almi-mC T G U G50
where
2 () 9
Gpt) = Gl — (52)
o -y - W‘% g

For spin %-particles, the analogous formulac are :
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13.
o § o = ¢ ;
Shl 300> = o WGty v 600 (b ),

) 9
+ G, @I G- Pz)y} Uy

(301)
_ . co (k) -
<p I Dyter]pyy = tim -my)C, QD(A?) Uy g (311)
o) .2 (o] 2t Gw' £)
Gl = lat)e A Ge 8
;. M!~m2 (Jﬁ)

The rcnormalization ratio is defined as the valuc of GD( 42) at zero

momcntum transfer

(ct)
Ty = G, (el (3)

and in this limit wc can writce

o,
< Pi l Dd | Pg > = 6124" Ta (mlz - Wﬁz) for bosons (54)

o — emions (a41)
<Pl Dulps) = Cagl o U, u, for fermions (54')

To discuss the invariant sum rule for renormalization ratios, we

can usc Eq. (24)

4, :_f__..- /(,/VV\ :D-.-..E-:/] (/::;-—4:(?) <24v)
Af iy EWMa V20 DV |

65/998/5



14.

In the casc of pseudoscalar mesons, we have an invariant amplitude only,

which obcys a dispersion rclation of the form

’-(V)‘ Co(( “"‘W‘ Iw\ Foo/) Ay’ (35)

Qma(yo_)/) /Y v/ -y
where
th W!Q
Y, = _o &
2 Mg

Aftecr derivation :

?2 A Iun., FO7)

o T Nk v’ = 4 (36)

In the fermion casc, wec can writc the dceccomposition (27) and for L

the digpersion relation holds

e, o 2.¢ s :
v y (351)
iy (Vo — V) v/ -V
go that for fermions we get the compl‘otely analogousg sum rule
?2 _,L T na O(L)/ J dy' = 4 - (361)

In conncetion with Eqs. (3%6) and (36'), wc want to cmphasize two
pointsa. Flrst of all, our sum rulecs arc defined in a unique way, without
the presence of any kinematical factor. This has to be comparcd with the

2),3)

gituation found in Refs. where p depcndent sum rules were obtained.

*)

o 2 .
The additional factor (ma+mo) in the polar term comes from

the summation over the spin of the intermediate state.
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Our present treatment, being a covariant one, chooses automatically what
we called the best sum rule (i.c., the one we obtained clscwherec in the
limit p—»a>). Secondly, the deviation of r2 from unity is represented
by an integral which contains llia[DA]nJ>l2 termg. These laticr can

be understood as the total cross—scctions for the scattering of a scalar
"particle® D, of zero mass on the target a. Thus, one might use
general arguments as unitarity Or Pomeranchuk thcorems to get some model

independent information about the sizc of the corrections.

3)

obtain mass formulac was through the use of the commutation relation of

3.¢c) In Reference ; we have shown that the morc immediate way to

the type
[@;, N;] = O (57)

with

b

N =(QF H] =[Q,  Hg]
:,/i[oﬁx Dy )

Equation (37) should be interpreted as the expression through commutation

(38)

relations of the usual hypothesis that the breaking part of the Hamilton-
ian transforms like the eight component of an octet. As explicitly
pointed out in Ref. 3), one obtaing with this mcthod encrgy formulac,
i.e., p deprendent sum rules, as a consequence of working with a non-

invariant opcrator.

In order to obtain a covariant generalization of the method, we
shall make the more restrictive hypothesis that the divergences DA
themselves belong to an octet, i.e., we admit the validity of the cqual
time commutation relations between the and the local operator

D, (x,t)

QA
. . |
[Q&y, DyZit)] = o , (59)
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At this point we can apply to the commutator (39) the general techniguc
developed in the previous section, taking t/g(x) = Iva(x). We begin by
considering the case of pseudoscalar mesons : 1in particular we choosec

A=K, =K', a_.=K . Then we introduce the quantity

29 » By

=~ + 4 - 'W/_/ -
gz)(lz) = [d%z O2,) <w*I[DJ2), Dicer]l K ye' (40)

and Eq. (39) becomes

Lo Pth) = o (41)
kh = o |
For gé (k) we can write a dispersion rclation (at A 2 fixed, # 0)

and, using Bgs. (31), (32) to selcct the polar contributions, we get :

' ) 2 (k)
Py, &) = {Wi-v‘*‘i)??“’)q( ’(AQJ+ (2o w20 G ab)
) 2 -t T ¢
’(M _ m:mz M":‘m -y VMZ‘MM S
4 [ Tw P04 (42)
3 o) - 2 [ e £028) 4y
" NV

Then Eq. (41) becomes :

(K)

OM - )f"" g )+ 3 41 2! (; B)* = {Im P
| Vi (43)

In so doing we get a continuous set of sum rules, one for cach value of
the invariant momentum transfer A 20 In particular, we can choose the
relation on the mass shell (considering only spurions of zcro mass),
that is for A 2:=O° We obtain -
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CMK-MW)?,’T"‘E(MK—W”‘)’?Q:.— IVV\ ¢OI/ ) AV’ (44,,
/
" %
If we remember that the deviation of r from unity is O(fa) (according
to the Ademollo-Gatto thoorem), the r prescnce will affcet the corrcctions

only in the O(fj) terms. Thus we can safely put v ~ 1 and finally we

obtain the classical SU(3) quadratic mass formula

41/14?( -31/144?- I/Mi, = C (45)

and the correction € is clecarly of order f2.

We can proceed analogously in the fermion case and get, using

(311)
¢(V =44 (wa,?—ng)(ww 0T, G (
,B) =

— _z,_ - P3 f’
_ 2
A u -V
2 2£44P
—_ il - ¢
+ 1 (M2 mz)(wp mz)aii Gp ta%) +3(5>n)
AM: I/V)Q"l/l/lg
- —= =+ Vv
Wiz
— (_é ’ g
™ v/ —y

*
Fixing 432==O ) and neglecting the deviation of r from unity, wec have

the lincar mess formula for baryons

Qm/»i-r EW\P-— m -my = C

C = C)(ljg)

(45")

We can notice that in this case - where the external masscs arc
different -~ the wvaluec A,2:=O can be rcachcecd either through
analytic continuation in the unphysical region, or by keeping
5’1 =i§2=£’ and then taking the 111;%45 p—w. This corresponds

to the procedure we used in Ref. (Section 6.3) to derive mass
formulae and to write corrcctions in a covariant way.
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18.

As far as the corrections arc concerncd, they can be evaluated
through the continuum contribution, i.e., by means of the dispersion
integral of Ih;ﬁ. Formally, it can be relatecd to the imaginary part

of a sgpurion baryon scattering amplitude

o

(D7) + =7 — (D) + P (4

= )
In this connection, onc might get arguments that such an amplitude should
be strongly damped at high encrgics, because the process goes through the
exchange of large quantum numbers (A S=2). Ve know that, as a conso—

quence of general theorems 7), the favoured channel at high energy is for
no quantum number exchange. This can.suggest, in the framework of dig-

persion thecory, an explanation of the smallness of the corrcctiuns to the

mass formulae,

3,d) As a final example, we shall treat the case in which t/$ “is a
current density. In particular, we want to consider the strangenecss
changing vector current (A<Q=:A S) which describes, for instance, thec
K— fTe v decay. In this way, wc shall bc able to. conncct the form

factors for this process with the clectromagnetic oncs.

We start by congidering the commutator between the strange charge

QE and the opposite current J(K_) :
- ~+ _(K7) — (&) 3 Y) -
L (;h& / {AA } - ‘%AA + E{ > | (47)

We recall now the definition of the matrix element of a currcent betwecen

‘pscudoscalar particles.
) & ©) | L) g7
AR IIERSY {mfpg% G, &%) + @ -py),, qs.c/,\?_}} |

where
o)
C,1 ©)= 2,
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19,

Ir J(o() is a conscrved current [@his is the case of J(‘B)7 J<y)
if we consider semi-stroung intcractions breaking SU(ZI]9 then
2uT =0 (42)
and thus
C;OU (4f) = o (49)
and |
7y =4 (50)

We takec now the matrix clement of (47) between two Tr+' states :

(@, 74 M = <ne T ey (51)

To evaluate the left-hand side commutator, we first write it in the

covariant form :

U1
no
~

f<ﬂ+{P|]' [:D:(Z)) _S/L:: -(,0)]! W+(P2)> Q(.-2o) 0’[12 (

and then we introduce

q/bu<m= dh2 BeL)Cm(Dre), T T iy €

(w*f[Q*;'y‘“'>],n+>: 0 Lamn (k)

M b0 M

On invariancc grounds, wec put

‘é,,m )= (PP, OBt = Pall ) 0 88 ¢ Ry, 0, 47) (54)
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20.

g0 that we can identify

gey
b lo, AT = Eaqa (07 (55)
D (oA = O (55)

With the standard procedurc we get for ¢1 and ﬁz the following dis-
pcrsive representations (wc scparate explicitly the Ko polar contri-
bution) |

P K ww¢ G Y DN (57)
NN
d??(\f AYY) = (W W o) Tne (_’,3(: (A7) 4 | )
U -y — BN
+ N T d}z (3", /;\“1) A

i ) N

(We do not writc an analogous cxpression for @, becausc it docs not
contribute as k—0.) Then, from (55) and (56), we got [using the fact

2
that roo = 1+0(z°)]

I b - ( 7 i"\. Ni { \‘Q \‘ rh ‘
Cu},\,m/\ (L\) 4 ,}{ &,} L‘UJ‘; q.24 {_\s\,”’}i )d\l' = C;As‘in (/}.\) (rc:;)

Z”Wu 'ﬁ
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K- K=
Onc sees that the deviation of Ggii% from Ggqgﬂ (or Gg%}% from

zoro), represented by the continuum contribution, is o(f). of coursc,
in the lowest order approximation of Eqs. (59) and (60) we recover the

usual SU(3) limite :

(f_‘) i D [

G, (M) G oAy G ATz O(¥)

" — AR 2 2 nw -

We rcmark, however, oncc again, that in our methcd we can obtain an
unambiguous identification of what has to be taken as the corrccet limit
of SU(B). In other words, the problem of the kincmatical factors and

of the p dependence of the sum rule docs not exist.

Concluding thig Scction, we have gecen that the dispersion approach
introduces a unique separation between diagonal and not diagonal contri-

butions.

The relations one obtains, taking only the pole contribution, arc
very rcasonable indced and coincide with whal many pcople had already
gucsscd on the basis of intuitive considerations. In this context, it
is amusing tc notice that this mcthod lecds automatically to mass formulac

which are linear for fermions and quadratic for bosons.

One can remark that from purcly group thecoreticel standpoints,
all choices of the kinematical factors are on thc samc footing. Iowever,
we want to stress that if the sum rules are cast in the form (5),
the corrcctions can be simply cxpressed as dispersion integrals analogous

. . ) < . . .
to thosc appearing in fixed ZS‘ dispcrsion reclations.

Thus, onc might take advantage of arguments as unitarity or
Pomeranchuk theoorems for an cstimate of these corrections or for

obtalning some uppcer bounds.
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IV, DYNAMICAT SYMMETRIES

ur aim 1g now to discuss the application of the previous method
to dynamical groups, which involve also space-time quantum numbers like

gpin and parity.

P

4.3) In this cage the main problem still open is to understand the
correct physical meaning of the group theoretical results, especially in
relation to Torentz invariance and unitarity. On the other hand, we have
already seen that the method of Refs, 2)’3)7 baged on completeness, leads
to very serious gquestions of interpretation, since the form of the sun
rules depends critically on the choice of the reference frame. Thus, we
have in this casge to rely almost completely on the dispersion approach
which, as we shall show in some examples, is of great use as an unambiguous

meang of investigating those controversial questions,

Let us start with the 8U(3) xsU(3) group of Gell-Mann 4) which
connects states of opposite parity. If we indicate :
ooy L ‘
T J TN S s (671)
e —
dpo <R K (62)
the generators of the group are
(3. = 1 . (j'{xx
2N \J :A:u) (63)
o~ \_‘ SRR
Gu = &y 27x | (64)

The commutation rulcs between the operators in Egs. (61), (62), (63) ana
(64) can be easily obtained from those of SU(3) by using the following

rule
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[cven ,even] - even
[oven | 0dd] - oda (65)

[bdd s odé] - even .

The dispersion treatment can be casily extended to this case by writing

p
Cle - \‘- Do (5) BL-%2) 2 x

o (65)
D, o= \J T « () B (~xXa) A4 x
N e )
o (67)

= =
Do = B %,
Therefore, as in the previous Scctions, the equal time commutators betwecen

charges and currents can be reduced to the investigation of the exprecssions

N P VN I N Tran™ LV X
Vo x T o) L@ Dadxy T ANlla™> e \
R { VL DO \V.TD@C Y 4 € (68)
(. p o | () e e x
V@I By <aif Dal), L7 (o) J1a> e (69)

!
o

in which both cven and odd charges and currents appear.

If we now make the agsumption that the commutators between all
D and Jj vanish for spacelike scparations, the expressions in (68) and
(69) are fully covariant and can be taken as the basis to derive relati-

vistic dispersion relations.

The contribution to the dispersion integrals will come, first from
the one-particle poleg, then from the many-particie cut. Retaining only

the polar contributions, one gets a set of relations involving observable
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guantities and renormalization ratios which can be considered as the
simplest physical consequence of the dynamical group. Of course, there
is also the contribution from higher terms and there is hope that at
least some of these effects could be reasonably estimated as in standard

dispersion thicory.

We want to stress fThat all identities obtained on this basis have
an unambiguous physical meaning and this shows, at least in our opinion,
that the causality condition is necessary to give a clear interpretation

of the dynamical groups.

We shall illustrate the previous consideration by means of twe
examples. The first one refers to the renormalization ratio of the axial
vector current. We shall present a simple derivation of a beautiful sum
rule obtained by Adler and Weilsberger in a more involved manner, using
the method of Refs. 2) and 3)a A second example will be based on the use
of commutation rules between charges and currents. We shall get two sum
rules for the anomalous magnetic moments of the nucleons whose physical

mecaning is rather interesting.

4.b) Let us now considcer the commutator

-

DS T1=2G €=

(R, & (70)

k

—t ’ + 3.
where Q- are the "axial" charges transforming like & and Q7 is

*
the isovector charge. We write ) H

-

FlO= A <RIl D® 00, D7 (0] oS e TR @Y% (74)

< Ny . 5 2 s - ,
and, as in the previous Section, k° = 0, Equation (24') tells us +that

* . .
) More preciscly, P(k) is the no spin flip part of the amplitude

E.see Eq. (27)] .
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?m, LISV z A
Wk L‘, o N D

2
The polc term can be evaluated by rcecalling the definition (for k™ =0)

TTT oy
- [ TR s . i A T O v
PP TTIND E g (W) W ¥s Wy Tig (73)
where the renormalization ratio Ty is, according to universality, cqual
to the ratio gA/gV
S ) g(
g&? [ % N
The dispcrsion relation for F(V ) has the form

N

g pd PR
(V) = (Wi —wie )
:{ My

i\

- (74)
,\;“-'-w \
L N ety gy '
4 = & BRI +
5 N'-
where
Ry =l @™ 3 Z9i0 TS <my D P> S (brx )
e ) *‘N
‘ 7
s . R (75)
Pos L@ 2nD  jasan D U > B (i)
Z. O AN

The continuum distribution can be reasonably estimated by using the
approximate rclation

—_— )
<0 e

X
)

(ppe™ (76)
(E 8 R
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where

gz Lol DT> (77)

and Tvr_p 0 is the scattering amplitude T o — n. Fquation (76) is
" SRS 4

L . . P . 12
the generalization of the well-known Goldberger—Treiman relation )

*
Eﬁmalned by taking for fn\? the one-neutron state )]

‘i’\?i D(-, 3N\> el 52__) U-L {’ '\_/\ ‘w \\L{:& ‘i\ u N rL \;\
0 N (78)
= U galy ‘;)m\) Rm
> UJ\?Q
or
o= A W
o - (79)

SO

Bquation (76) can be obitained in two ways. The most intuitive derivation

makes use of the Gell-Mann- Lévy 1) proportionality relation

—

= () oAk
D= Cd

N (80)

and assumes that the continuvation from mass zero virtual pion to real

pion is harmless.

A less restrictive proof, analogous to the dispersion analysis of
DF >

in the square momentum k2 = (p~pr)2 associated with D and by retaining

the Goldberger-Treiman relation, can be obtained by continuing <:P

only the lowes® contribution given by the pion pole :

*)

The standard form of the Goldberger-Treiman formula is obtained by

multiplying both sides of Egs. (78) and (79) by gx and re—
calling that g, = gz r, and a g (related to the 7T{ Llife—time)

is equal to gz X7y e
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(81)

Ingerting now Iq. (76) into (74) and (75), and using Eq. (71), we obtbtain

e o
-
- ! \ H
T %_ D‘I I § ‘s\)\’ #
R A IR S . ; N
o brl 0 J ) (82)
J i%.,‘“‘
aed 1
AL A

and finally, using Eq. (79), we arrive at the final form of the Adlexr-

Weisberger rclation

The result that the higher corrections to axial vector renormalization
can be expressed in terms of physical cross—sections, depends of course
on the fact that IF  has the same quantum numbers as the pion. It is
clear that analogous results could be obtained by exploiting other

particlesg of the octet like X meson.

400) Let us now consider the commutator
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Y

v (v " (s N . )
where émﬂ ), }T}f ) are the isovector and isoscalar electromagnetic

currents w). Taking the matrix elements between nucleon states, we get
[N —_ ( RV 3 ) .
Lo (ay= O (85)
where
(s | T Y o X
i (q) =\ dx< N (D (<Y, & - ‘:)Q\’;l\N\(‘m‘) e 1 X
L Ao R TN g R v (86)

The amplitude can be treatcd in cloge analogy with the Chew, Goldberger,
Low, Nambu 13) theory of photoproduction with the following identification

of their variables

P - %j.f_f,b N = Vo

PR )
n (87)

\.\\{j P \(‘;":”i i (% - \r

~
l\
H
N
P
el
A
wd
N
S

Equation (86) is wvalid for any choice of the "polarization vector"

but we shall choose
“ e = O (88)

We expand I in the form

- aMetnMe e xMe v oMo (89)

.)(.
) The sum rules we are going to obtain, as well as Eq. (83)9 can be

derived by just using SU(2) xsu(2).
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{\/\ T L To Yy i PN

2, i

(90)
Mo = = s gy T
Mo = = 2 XS Yo VuTud ¥ We XoXy Ty
n AN . . i P o \,' L\ 2 2
and X 9199 K © are invariant functions of 9 9 O o
In the limit quw = O only MA survives, since
‘\- z Y, T N *kli, < 31
J?p \6‘ & a bv b (901)

Equation (85) will thus involve a&,(\)yﬁsz,qa) only :

(91)

In complete analogy to the Weisberger—Adler case, the invariant

function ©f can bec analyzed through a dispcrsion relation in which
2 2
[ [ .
= = (S axeIl,

ZS q 0 ig taken

*)
In the limit M — 0 we get the two sum rulesg

*)

The cvaluation of the nucleon polar term requires a little carc

n

because we have to deal with a ratio of a vanishing numerator wi

o vanishing dispersion denominator. This can be casily handled by
tiic device of introducing a fictitious mass differcnce between the
nuclecong appearing in the matrix element <fN1’5lN9\>,. Putting
thig difference to zero lecads to a completely unambiguous deter—
mination of the polar term. A physical realization of this pro-
cecdurce can be found by considering the commutators involving

6(+) instead of 530
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Ve . . .
where )J\'( 5) arc the anomalous isovector and isoscalar magnetic

moments of the nucleon

(V,S)

Im X can be related to the sum

T o ANl D AN g I S SRt g-hm) (92)

As in the previocus case, using Eq. (76), Im o can be rclated to the

physical photoproduction amplitudce A

s ow = X L Aoz e 20 D (94)
3 )u %'ﬂu

{ 3
- [ ) \
U‘\Ewl,fiﬁ S JJ‘ v B andd 2 O (95)
. %“N i ) AVA!

(96)

Let us now discuss the physical meaning of Egs. (95) and (96).
We note first of all that the "group theoretical result", in which the
dispersion integrals arc ncglected, is that both anomalous magnetic

moments of the nuclcon vanish, This has already becn pointed out by
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Gell=Mann, and follows from +the form (61) of the.clectromagnetic currents,
i.c,, from thc absence of on "elemcntary" Pauli clectromagnetic coupling
If we want, however, to consider the dispersion corrections, we see that

Egs. (95) and (96) are on an cntirely different footing, since the sirong

contribution of the 3% disobar is present in Eqg. (96) only. A prelimi-

. ) . , 14
nary estimate of this term, bascd on the Gourdin-Salin H nodel, shows

. e , 3 * A
an almost complete cancellation between the N and N contributions,

m XN

leaving o very small difference 1o be explained in terms of higher re—

sonances.

We obtain, in this way, a simplc explanation of the fact that the
anomalous magnetic moment of the nucleon is csscntially isovector.

Equations (95) and (9F) can also be viewed from a different standpoint.

Equation (84), from which our sum rules have been deduced, can be

considered as coming from the more general (SU6)><(SU6) group where

both N and are members of the same multiplet. In this more general

N
33
framework, the group theoretical result is obtained by neglecting every-

thing but T and N, terms, so that Bq. (95) ieads to

)"ﬂ + By S (97)

e e A o £ e

whereas Eq. (96) gives a relation between M-é—-ﬁxﬂ and the transitior
) 4 P
N,ng magnetic moment.,

If we supplement BEq. (97) with the well-known su(6) relation 15)
Y, _— .%3}4\N =0 (98)
where
J= e | | (99)

65/998/5



32-

is relating the total magnetic moments of the nucleons, we finally get

(100)

The gyromegnetic ratios of P and N are given by pure Clebsch-

Gordan coefficients !

0f course, in order to accept Bq. (100) with full confidence, onc
needs a completely covariant and congistent treatment of all commutation

rules appearing in SU(6) x SU(6) symmetry. Work in this direction is
*

in progress

*
) S. Fubini and G. Segré. It is to be noted that, as pointed out
“
by Dashen and Gell-Mann 10), the PLW commutatlon rules do not
onlJ involve op@rators like J. d x and d x, but also

oo J /A
5&_\/}( ><,H(+dx and St\/x {ﬁﬂlkdxa
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