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ABSTRACT

A general method for calculating the renor-
malization of partially conserved vector currents due
to symmetry breaking is discussed. As an application,
the renormalization of the strangeness changing weak
vector current is calculated in the pole approximation

and its effect on universality is discussed.
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INTRODUCTION

Much attention has been devoted in the past few years to the
.question of universality of the weak interactions 1). Until recently
this was taken to mean that the unrenormalized coupling constants of the
M decay and the nuclear /g decay interaotiong?amiltonians were iden-
tical. The conserved vector current hypothesis then allows us to state
the equality of the two constants also in the presence of strong inter-

actions.

Cabibbo 3), within the framework of SU(3), has proposed a
slightly different version of universality, whereby the ratio of these
two constants is equal to cos® rather than 1. Furthermore the vector
gtrangeness changing coupling constant is in the ratio +tg©@ +to the vector
strangeness conserving one. Therefore it is of critical importance for the
verification of universality to have an accurate determination of the
Cabibbo angle 9, 1in the presence of interactions which break SU(3)
symmetry as the latter cause the strangeness changing vector currents

to be no longer conserved,

A first estimate of the renormalization of the ,A;SI = 1
coupling constant, or equivalently of the angle €, was made by Sakurai 4)
by comparing the decay rates of %* - §1T and ? - T, He obtained
for the renormalization ratio (ZS(K)ZE(TE))/(Z1(KTt)) a deviation from
unity (the unitary limit) of nearly 25%. It was later shown, on general
symmetry grounds 2 s that this renormalization was actually of second
order in the symmetry breaking which leads one to believe that Sakuraits
estimate was probably too large. The primary purpose of this paper is
to give a direct evaluation of the renormalization effects for the
coupling constant due to the violation of SU(3). A suitable technique
Tfor calculating these effects for partially conserved currents has

recently been proposed 6).
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In Section I we briefly recall the method of Ref. 6) in its
most general formulation and apply it to the recently investigated SU(6)
symmetry. In Section II we show how the contribution of two particle
sates to the renormalization can be evaluated and briefly describe a
method for studying the contribution of many particle intermediate states.
Finally, in Section III, we give the numerical results of a model calcu-
lation of the renormalization of the IASI = 1 current for K T¢ transi-

tion and discuss how this affects universality.

I. It was shown in Ref. 6) that by an apprdpriate use of the
commutators of the space ihfégrated‘current densities, defining the
algebra of a group, it was possibié to study the deviation of the
renormalized coupling constants from the bare ones, as a consequence

of the presence of a symmetry breaking interaction.

Assuming the underlying symmetry group to be a (semi-simple)

7)

Lie group, the infinitesimal generators can be written, in Racah notation '/,
as Ecc and Hi, the latter being the mutually commuting ones. The

integrated current densities can then be put in the form

() -

Qol. = [:_I—:u a X - Co LO(,
@¢=ij“d7

where we have explicitly introduced the unrenormalized coupling constants
o()
o]

}

(1)

i

Go H;

1

which are present in the Hamiltonian (some of them can eventually

be equal).
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In a given representation, the physical states are simultaneous
eigenstates of the Hi operators ;3 in the following it is convenient to
consider matrix elements only between states corresponding to the highest
welght M of the 1nvolved reoresentatlon We recall that the E "s
have non—varlshlnv matrlx elements only between |M>> and |M-0L>
states such that

(: F’l{ tzc& )[VﬂleOL‘> - \/ P/! Cii | ‘;. (2)

0& being the components of the root ¢{ . If the symmetry group is

broken and the Q are no longer exactly conserved, a manifestation

o
of this fact is represented by the introduction of renormalized quantities

(p) which are defined by

<r/t,ﬁ7(620()M—o¢)f§>4=\/'»‘W Q‘“‘(’p, Sg-py @

The deviation of. the G(0&>'s from their unrenormalized wvalue

G(oc)

is a measure of the action of the symmetry breaking interaction ; our
oL ol
aim is to express (G( )/G( )( )) as a function of this symmetry

breaking.

To this end we examine the commutator of "opposite charges"

_ L
iQ«s& , Gl = C;d) oL H,

QA—VOL':. Q;

and take the expectation value of this quantity between the physical

’(4)

state corresponding to the highest weight of the given representation

. G e
<M,P|[Qd’Q_d]{/"l,gol>: C'fg)o{ M 5(‘5>_‘;)>;J (5)
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We now insert a complete set of physical states and obtain, using Eq. (3),

(Ol)2

oz)gg - ¢ - 2 -
(- ") = (p) Op-P') + JQOL(P)&P’-P’)(@

where

é; g D) = { d M p’
Cv (P)O(p-p’) = oL””M 2, LP!QNIV')(M!QO,IM,p)

g ™-g
(7)

_ Zm;; Mp | Q  dn'>in' | Q 1M P)}

When the QoL 's are no longer conserved, they of course do not commute

with the symmetry breaking part HB of the Hamiltonaian, and we thus

write
r *ol |
where
l =4[ D dx
and C is a structure constant depending on the transformation

Q~B

properties of HB under the considered symmefry group. This then

allows us to express 5V}N as

2
5@2= (3 7)° 3, (D, ) c‘”’wmdmxmo-umg-
> Sl ? ° (£, -£, )¢

™M

- Ccrossed Eerm

(10)
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6)

corresponding to the different values of |fﬂ, the best of which, i.e.,

As explained in Ref. , Bq. (6) gives a continuous set of sum rules
the one for which the renormalization is smallest, is the obtained as
kﬁl-e @. This limit corresponds to having the momentum transfer equal
to zero and therefore G(w ) is what one usually refers to as "the

renormalized coupling constant'.

We shall now apply these methods to an examination of the
symmetry group SU(6) which has recently attracted much attention 8).

In the limit of exact symmetry, there are 27 additional constants of the

9)

motion other than the usual

(k) ) [ = o
Q = G, By, 'R AR (11)

where we only write down the baryon contribution. These other 27 conser-

ved charges are

R, - C«oeféx(,ysgot?
() ), - _ R (12)
Qe = Goe [B ¥, ysf "R o7

where the Fk (k = 1....8) are the usual SU(B) matrices and the fields
are assumed to be the unrenormalized ones. Let us treat, as an illustra-~

tion, the simple case in which

() (+] A -
Q, — @, = G //\/ T+A@y5/\/d? (13)

and the renormalized quantity is taken, e.g., between states of spin-up

. A - o,
P, W,HQS [N, p, 1> = G (p) S(F- 1) (14)
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Then, fbllowihg'our previous considerations, we take the expectation value
M 2 :
of [§§+), Qg %]_ = Gﬁ ng) between physical spin-up proton states,

introduce a complete set of intermediate states, and selecting neutron

spin-up states, we obtain
».925 = -, - qu IR ﬁ?’
C‘io (P‘P J‘-‘:C—f (S(P“y)'} -+ 5q gw}’-ﬁ;) (15)

with

4 | 9 . . ‘ |
SCA(M Stw) 2, 4:’ P D ’ld~><o<|a)3’zp,1\> S, P
o £ N(4) , -

- <EP~EN)

- Ccvosseo Ferw

(16)
Writing the weak axial current as being of the form

N(F +a"D)0‘KN
in the state limit, where the D" now represent the other éight-dimen-
sional representation of SU(B) we can state that the F part of the

current is not renormalized to first order in the breaking of SU(6).

II. We now wish to t%rn to the question of calculating the renor-
. . 2 . .

malization <§Gd_(p)/GgOb) , as given in Eq. (10), which is, as we have

previously emphasized; of second order in the symmetry breaking. Let

us begin by focusing our atténtion on the contribution of two particle

intermediate states. This caﬁ be written as

g 4
Scytpy = [ od® 3ehwh &) i) 00, )6ry)
2 & (s,+8,-8)7
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where

4

f . .
6; _ V -2 z
N ‘P~’ + Mg
and P dis a Lorentz invariant function. Introducing new variables

F): P+ P2 q = PP

and labelling P2 = s and (P-p)2 =,£\29 we arrive at the following

expression for (17)

SGi(p= L (T Ao 10

i

: - (18)
" : T — , 2

T(£:5) = § g §((q)wut) S (P4t )
6 (7-9.) o (Req) F

(19)
. . 2
F being a function of s, A and p-q.
N
As [p| - o, /__\.2 = Ai - 0 and the best sum rule is then
distinguished by
lw T(s,%) = I(s,0)
- :
[P =00
Making use of the following integrai relation - p 1is the four momentum

of the particle of mass m -~

(ds = 2wt (5 [@py] a*P
0 ’)1

- Mm%
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(17) can be recast in the form

e et e e e

(prpo o] (20)

.

I

» 1: QOO> v’V\ X i’“‘Pq ‘A P 5( r-‘i mf) é,\ ( 1‘);- y\,\:‘)
!r 2

-

S p) 9 Pao) 3\ P jF’{wz N(aF P) P U"Pzﬂ

which can readily be generalized to many particle intermediate states.
The problem then is to determine the invariant function F which, aside

from some kinematical factors, is given by

CPIDl b Py < pope D 1> = o Do [poy Cpipe I Dy (21

where the intermediate states [pdp2:> are"physical ones, that is eigen-
states of the total Hamiltonian H.

The most elegant treatment would probably be a dispersion theo-

retic one, eventually for the matrix element of JOCX(O), related to

(D@ = = Cal[Toue), 1] 19

I - ~ (22)
- Ea) <q l Jou <O> l 13>

I
AR
9 R
TN
M

keeping only pole terms as a first approximation and making use of known

data whenever possible.

What we have chosen to do however is a relatively simple pertur-
bation theory calculation, evaluating the Feynman diagrams given in the
figure and taking the effective symmetry breaking Hamiltonian as propor-

2 *
tional %o 5 m ) where g m2 is given by the mass formula 10

- 2 8 | s
me = m-+ Swm- Col (23)

and then making use of the Wigner-Eckart theorem; which is consistent with

a purely second order in the symmetry breaking calculation.

* —
) In fact, in the limit || » @, AR~ S °.
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IIT. Let us apply our considerations to the specific problem of
obtaining ar evaluation of the renormalization of the strangeness chan-
ging vector current due to the breaking of SU(S) symmetry, focusing
our attention on K- transitions. In this particular case, our sum

rule reads
6V _ 20 () 4, SG (=)
Cai:w Zz(@ s (Tr) G2 (24)

w T

where Gi is the bare coupling constant which is in the fixed‘ratio
tg® to the bare coupling constant of j} decay. In the expression
corresponding to (10) for (S‘G§1r, if we take for example as initial
state lm>, = ]Tr+>> we thus see that the intermediate states in the
direct term must have charge zero and strangeness minus one while those
"in the crossed term must have charge two and strangeness plus one.
Taking only into consideration the two particle intermediate states,
with the lowest mass that are allowed, i.e., one pseudoséalar‘meson

and one vector meson, we shall limit our calculation to estimating

this contribution, neglecting other states, e.g., two vector meson

or nucleon antinucleon states.

The contribution to the invariant function F of the graphs
of the figure where now, p (e.g., T *)  ana p, are pseudoscalar

mesons, and P, a vector meson is

| S\Q 2
(G 0 2 (M p ¢ 5 oMyt () ( P
-— % ,Z( At___.“o" E___,f; P,E + AZZ&I._P. + AZ» £y P*PJ (25)
2 (p- 2 Nt a2
(P.TT) (PH—P?.) ~ M UD Pz) - W\ <P”Fi)2— M
where m and M are the pseudoscalar and vector meson masses respecti~
vely, g a common ps-ps-v coupling constant, E.g the vector

meson's polarization, A1,A2, products of appropriate Clebsch-Gordan

coefficients times 6}1 and A5 a product of Clebsch-Gordan
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coefficients, times & NF TX In our calculations we have used the follo-
* . :
wing values ) of our parameters 1)

m* = <4—‘O MQ\/YL
M* = (g8 Mov )

- 2
. £ 26
() Swr = 12,74 10" Mev (26)
| 2 BT 2
SM* = 12,78 (0" Mev .
2
C*;;) f%t: ~ 0.7
- ]|
1.

) The square of the term in which one breaks the symmetry on the vector
line is logarithmically divergent. We have evaluated it by introdu-
cing a cut-off at s ~x 3(baryon masses)z. Moreover this contribution
is multiplied by a rather small Clebsch-Gordan coefficient and in
any case far from being the leading term in é;qi.

* : A ' .

) We must also add that our results are not very sensitive to the
masses introduced in the calculations of the graphs of the figure,
either physical ones or mean values for mass 8 M, as has been
verified in some particular case. The correction _Sbi, might be
changed by an amount of a few percent.

1t
) This corresponds to Clebsch-Gordan coefficients such that
by
’ 2
My = W\z—--—z—-&W\
3
2 2 2
My = W LS W
M= WM oWt
2 - 3 -
M ,‘—— 2 . .
My= w4 j%ggia ey
(1 d ., L z 2 2 PR
5MZ:V§(MW+4MK“SMn> EM™ = MK*"M?
*%) 1O B

This is a mean value calculated from the widths of K* and f)
decaying according to the Hamiltonians

G KM (T, 0K~ KT

2i%’PF (hﬁaDK”;'Tﬁ—DFv}>
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With these values we finally obtain

(Zoa)  _ 1067

—
Zow YA NIY

(27)

4)

which is slightly greater than one as opposed to Sakurai's value of

0.66. Taking our value for the renormalization and the b$st present

experimental value for € , which is 0.218%0.015 rad. 12’, we find

sine = (sin®) Nloo7T = 0.2283

COsSE = 0975 4+ 0. 003

(28)

which finally implies that the comparison between the muon weak charge

and the vector §3 decay weak charge is

Gn = (1.0225 io.0030>< (0,975io,003>

(29)
= (0,95’7 -_&0,006) Ga N

Our evaluation has of course been a rough one, containing several assump-
tions, the main one probably being to neglect all intermediate states
other than those cdntaining one pseudoscalar meson and one vector meson.
The value of Gfk = G§59 namely universality, lies within the range of
the experimental errors. We might add in conclusion that the effect of
the renormelization calculated by us is to make the agreement with univer-

sality slightly worse as it changes cos® by -0.001.
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the hospitality offered them.
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FIGURE CAPTION

The cross indicates the breaking of the SU3 symmetry.



	
	
	
	
	
	
	
	
	
	
	
	
	
	

