Author(s)
|
Zoeller, M M ; Bauer, C ; Baumann, I ; Colledani, C ; Conway, J S ; Delpierre, P A ; Djama, F ; Dulinski, W ; Fish, D ; Gan, K K ; Gilmore, R S ; Grigoriev, E A ; Hallewell, G D ; Han, S ; Hrubec, Josef ; Husson, D ; Kagan, H ; Kania, D R ; Kass, R ; Knöpfle, K T ; Krammer, Manfred ; Llewellyn, T J ; Manfredi, P F ; Meier, D ; Pan, L S ; Pernegger, H ; Pernicka, Manfred ; Re, V ; Roe, S ; Roff, D G ; Rudge, A ; Schäffer, M ; Schnetzer, S R ; Speziali, V ; Stone, R ; Tapper, R J ; Tesarek, R J ; Thomson, G B ; Trischuk, W ; Turchetta, R ; Walsh, A M ; Weilhammer, Peter ; Ziock, H J |
Abstract
| The inherent properties of diamond make it an ideal material for detectors in the high rate, high radiation environments near the collision point of future colliders such as the LHC. We have constructed charged particle position sensitive detectors using high quality chemical vapor deposited (CVD) diamond. Using detectors with a 50 μm strip pitch, we achieved a most probable signal-to-noise ratio of 27/1 and a position resolution of 12-15 μm. To ascertain the radiation hardness properties of CVD diamond, we have exposed detectors to 10 MRad ^60Co, 5×10^14 300 MeV pions/cm^2, 10^14 500 MeV protons/cm^2, and 10^15 neutrons/cm^2. The results show that CVD diamond is an extremely radiation hard material and well suited for particle detector production |