CERN LIBRARIES, GENEVA

TR

CM-P00056851

HIGHER ORDER CORRECTIONS TO THE COHERENT PRODUCTION OF VECTOR BOSONS

IN THE COULOMB FIEIDS OF A NUCLEUS

M., Veltman
CERN--Geneva

ABSTRACT

The wave function for a vector boson in a Coulomb field is
obtained in a high energy approximation. The Furry wave function
for a lepton in a Coulomb field is reconsidered and extended by
taking into account a term hitherto neglected. Both wave func-
tions are then applied to the coherent production of vector-
bosons and muons by neutrinos in the Coulomb field of a nucleus.
For low—energy muons the matrix element is improved by taking
into account all second order effects for the muon. The effect
of nuclear structure is briefly discussed.
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1. INTRODUCTION

Recently, Lee, Narkstein and Yang 1)’calculated the coherent production
cross section of intefmediate vector bosons by neutrinos in lowest order in the
e.m. coupling constant. Their calculations indicate a rather strong dependence
of the cross section on the mass and the magnetic moment of the vector boson and
it will thus be probable that mass and magnetic moment are determined from
experimental cross sections. Clearly any uncertainty in the theoretical cross
section will come out then as an uncertainty in these parameters and it seems
desirable to investigate higher order corrections. .The process in question is
very similar to electron-positron pair creation by a photon, which has been
studied extensively. For the case of large Z where higher order effects in
Ze2 “are important, the pair production has been calculated in a high energy
approximation by Bethe and lMaximon 2>, and it is the purpose of the present
paper to do the same type of calculation for production of vector bosons (here-
after calied W). This problem can be split into two parts, i) the calculation
of the wave function of a vector boson in a Coulomb field, and ii) the
application of this wave function to a special problem, for instance neutrino
induced production or muon induced production  Clearly, in attacking the
problem in this way, we have the advantage of finding a wave function which is
of use independently of the way other particles (jmon or electron) enter ﬁhe
probiem. TFor insfance, such a wave function can be used also in high energy
neutrino induced processes, where the muon (or electron) comes outvwith low

velocity, a situation which we sh&ll see to be of practical interest.

In Section 2, kinematical considerations will reveal that coherent
production necessarily involves a relativistic vector boson and a momentum transfer
whosé magnitude is small with respect to the energy of the W.. In Section 3,
we solve the equation of motion of a vector boson in a Coulomb field for high
energies and small momentum transfer. Section 4 treats the Dirac equation in
an analogous way. In Section 5, the wave functions of Sections 3 and 4 are
applied to the problem of neutrino induced W production, both outgoing particles
being relativistic. To improve the matrix element in the case of a slow outgoing
muon certain second order terms are added as discussed in Section 6. In Section 7
the importent nuclear structure effects are discussed. Section 8, finally,

sumnarizes the results of Sections 5 to 7.



2. KINEMATICS

For definiteness we consider a specific process i

v + Z =y + W+ 54

where v = neutrino, Z = nucleus of charge Ze, | = muon, W = vector boson.
Here and in what follows we will work in the laboratory system of reference and
neglect the recoil energy of the nucleus. Putting h =c =1 and denoting the
momentum and energy of the neutrino, u-meson and vector boson by '('q'_,E),

(p, 6) and (k,w) respectively, we have the relations :-

T-2-%-7 a=1@l=8  o=]3 =VE -n°
P T sVl - 87 B=g+w 2= Al

-
where Q is the momentum absorbed by the nucleus and m and M are the
masses of muon and vector boson. For given initial energy E the minimum

amount of momentum to be absorbed is given by

Q. = E -\/E2 - (v + 111)2

- —
This is when q, k and ? are all in the same direction, while & and w

are given by

E=mn — LW=1M -
1 +m M4m
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The restriction to the coherent process means Q fﬁ_[;ﬁél.>dim;7 -1, which gives
for instance for lead Q £= 40 MeV/c. However, larger momentum transfers will
also occur, although at a much reduced rate depending on the details of the
nuclear form factor. Taking for definiteness Q £ 100 MeV/c we get with

M =600 MeV and m = 100.MéV that B S 2500 MeV. This gives to & and (o

relativistic values which can be considered large with respect to Q.

' Suppose now thgt we want to observe muons coming out in directions
orthogonal to the incident v. The region of speciél iﬁtérest is fhen the low
muon energy region where & ~~ m and Q ~~ Qm + m, Of course, this Q will
be above the upper limit [Ehcl. dim;7 "1, but, depending on the special form of
the nuclear form factor, the excess will not be so.strong as to suppress all .
processes of this .form. The vector boson can never be slow, however, as its

mass is much higher so that Q,m + M is always far above threshold.



%, ' VECTOR BOSON IN COULOMB FIELD

The equation of motion of a W particle in the Coulomb field of a

point charge Ze is (in addition to B =c =1 we set Ze? = a') :

2
‘;Elmﬁ p - e é!fh -2y élfL
L 3 PRyl 3
axu v r bxv r oV axu
| (3.1)
P SO = a a2
_k6V4.(5§. i dX T2 %% 3 6v43%

I

Iatin indices will always run from 1 to 3, while Greek ones take the values.

1 to 4. X is the parameter for the magnetic moment by? defined by
eh
b T g A

There is a subsidiary condition (given in (3.3) below) that can be found by
P

bxv
can be used to eliminate the second term in the left-hand side of (3.1). After

to Eq. (3,1) and summing over v . This condition

applying the operatof
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with - , , o ,
o (2-N23% . )’ . (130 25
A = - 1l 4+ g - 4 m————

[ ] o M2, axi bx4 . M2 axi r Vﬁ M2 bxi %&

i=1,2,33 v =1, 2, 3, 4.

As far as is possible the right hand side has been written in terms
of commutators of ar"1 with differential operators in order to facilitate

the discussion below. The subsidiary condition is

lé%j

DX ;‘704 + {A] | : - (3.3)

=

One notes that at r =% oo this goes over into the subsidiary condition for

a free particle.

We must now find a wave function that obeys this wave equation in the
low momentum transfer limit. This corresponds to the limit of large r in (3.2)

and, neglecting all terms of order r_g, one is left with the equation :

(g- x5y - = of _ 4 (3.4)

The monochromatic solutions of this equation are well known and can be written

in terms of a confluent hypergeometric function 3). They differ from each other
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in the asymptotic behaviour for r — . We restrict ourselves to the
partlcular ‘solution needed when the W occurs in the flnal state of -a collision.

This means that we have to take the solutlon with ingoing spherlcal waves 4)

(0 () (x) = oM )2y -

\
B2t . (3.5)
= 1(@e (K)e T p (Lia j13ikr+ikr)
v 171 1
Tﬁal
ST 2 22 '
M((A)) = e ?—F(l-dal) W = k +M al = a‘li:

e v(k) is a polarisation vector depending on 1{’ and ) (see (3.7)). Clearly

1) .
13*1(— ia1 s 1 3 ikr + ikr) fulfils :

2 - -
(V' - 2ik¥ - 2_31}5)11?1(- ial;l;iﬁr’ + ikr) = 0  (3.6)

One way of seeing that this is the solution with the correct asymptotic
behaviour, is by taking the first order term in a of its Fourier transform.
This Fourier transform can only be defined if we include a damping term

exp (= A'r) with very small Ao

L o A s 4 . -
' jd‘Br e 1(q—k)r - AT ""l(- ial;lgik; + ikr) =

1
_ 8n)\'(l+ia1) _ 1 ma (1’+i>\') |
((F-0)%N?) (0%-x"-2ik) + >x “f—F 12+ e
((3—'12)?+2( ELTE) 4N Co2ikh )ial
(a 7;) e ?



-
For 3’% k and AN — 0 only the second term in square brackets is non-zero,
and one sees that in first order in a it coincides with the first Born
approximation for the potential 2acdr_1' and an ingoing spherical wave. The

subsidiary condition gives a restriction on the polarisation vector e V(k)' :

k. ev(k) =0 (3.7)

Clearly one can find 3 independent unit vectors that fulfil (3.7). This

corresponds to the 3 polarisation possibilities.

The wave function (3.5) is often not accurate enough for direct
application. Therefore, we try to improve it by calculating the next higher
order contribution. We do this by treating the r—2 terms in Born approximation,
where (3.4) is considered as the unper?u;bed equation. Dropping éli terms of

-3

order azr in (3.2), inserting yO

90 (x) = (exp 1Lot)%0 (x) we are léft with :
y v

2
G 2ar5)%(;> _ (2 ))K d 2a1k}y—,i(o)<-§> .

in all r-'2 terms and substituting

av a] T

-

3
(op) 97 Zaakigp (o) z) O )Lax garlj‘*”“’ V’4 ;

20M2 axjaxf * & 263M
-
ag- (o), SNk 52 2ayk{ (p(o), 2
T2 goj (=) - E 0¥ dx, T VZ (=)
r can e 3971 .

r 2M % ’
A O 283kl (o) = 1-N]Y 2s
- m{ﬁ;—r-l—]‘ﬂ () =+ L 2’ rl}%* (3.9)
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" where we have used é?~; 994 = 904 + ter@s of ordei % ?94(0 .
One notes that the rlght hand side contalns a r ° term and terms which have

a commutator of 57 and r o as a factor. We will treat tﬁem'separately
" mainly because the book-keeping becomes somewhat simpler. Consider the

commutator terms first. They require the solution of an equation of the form

(VZ + k2 _ EEJ_E)%(;Z) — [fal(—v))gg_a_l}f]yi(o)(z)

r J r

- -y

. s 7-—5 —_ 249 k v _; " ﬂ ‘—i—) L ’;4,..}
= n(W)e ikr [?ji(§7- ik),_%l—l ei(k)lﬂl(—lalgl;lkr+1kr)

(3.10)

where f 1is some function that can be given in terms of a power series. A

solution .of this equation is :

- .1'),; - - -
. (F) = n(we” {fjiw_ i) - £ (- )]
’ =3
e'(£)1F1< 181,1,3Lr+1rr>
i

as can be seen immediately by insertion in (3.10). Since the derivative of
1F1 behaves asymptotically as :c'--‘I this w j(§) has the asymptotic
behaviour required fof our problem. By this method we have now the solution
f (3.8) and (3. 9) as far as the commutator térms are concerned. Consider
next
S N
2 2 2aqk - o ikr i5 slsikniikr)
+ k5 - S5 (x) = = u(w)e F_(-ia_ 3l;ikr+i
(Vv % 7 171 1 (5011)

5)

a being some constant. We make the ansatz

e



-~y o(lﬁ(@) , e—liz'; |
9%(x) = ej(k) Jd:k 5 .

" 3 (k%x%hio) (3.12)

.

1 -

BT lFl(—ial;l;ik'r+ikr)
We insert this ansatz into the left-hand side of (3.11). In order to permit
differentiation under the integral sign we make the k! integration uniformly
convergent‘by adding a term - XN rﬁ - E“ in the exponent. By using the

equation for a confluent hypergeometric function

we get without difficulty :
2 2 2ajx N
(V" + x - _—-;,‘),7%(4) =

B R s - d .
(W) LT }
j 3 11 171 1 1

1 h;_ 1
= d_k Fmay {Fmi_2 Fre F

To calculate this we use the well-known representation :
3 .".‘ .
1Fl(-1al;1;1k'r+1kr) =
0,1 . g A
-1 - & t k'r+ik
& + iag l(t—l)lql o (1 r 11r)

(345)

The integraﬁd has a cut from t =0 to t =1 and we are in the sheet where
the arguments of t and t:- 1 are zero on the real axis to the right of 1.

The integration contour encircles the points o and 1 anti-clockwise. Taking
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the contour sufficiently close around the cut we can, for a given Al # 0,

exchange the t and k! integration. Performing'the. k' dintegration we get :

-
2 2 2a-k - alt () -ikr
- 1 ‘ - WA k .
(V" + ¥ - )y%(x) T ej( )e
+ |
o5l 44 21, lio 42 ikrt+ikrt 4m
fdt 7R T (4-1) T e :

rz(t—1)2+)32

The % integrand has now acquired two poles which approach the point t =1
as A' — O so that the contour is pinched from two sides. Therefore, we
expand first the contour so that the poles come inside by adding the residues
of the poles. These residues are seen to go.to zero if Al = 0, and
performing this limit we get the desired result (3.11). The solution (3.12)
goes over into the normal plane wave Born approximation if we let a, = O.
One establishes without difficulty that (3.12) has the proper asymptotic

behaviour.

We can now write down the complete solution of (3.8 ) and (3.9 ) :

W () .—.:300 P gpa’  (3.14)

with
o*-’ . .
VJ = Egig e--lLr_}_lmt evwaFl(~ialgl;ii;+ikr)
¢ Vouwr
el
Y -] i . -~
Vﬁ = §§£2 e 15r+1wt£1v e (k)lFl(—ialgl;ik;+ikr)
Vo uwv SVEH '
cD kT '
a M(Uﬁ ) e 1
¥ o= = a———-ev(k> d k' ——s—s -
V207 7 (k' =k -io0) \k_k'\

. -—* " .
lFl(-lal;l;lk'r+1kr)
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1
where we: have added the usual normalization factor (2(.»)V)_7 6). Q is

given by

41 T T2 Bz, §E>5§;_

fj C= El:fﬁ V2 - 2ik, Jé;‘ - -3— ik . ji—
: ‘44,, »2M2 { ‘ RN i% 2M iaxi

With the help of Eq. (3.6) for F, and the condition (3.7) we finally reduce

11
Q o

2

3 i &%
O - (1-M(d ikj>§%E ., [~ ix 9 . 9

o, A . {. —
1 X ' 1 X
0x 0%, ] 0%

QX
! (3.15)
0 ) 265 )i .
4L Py 9%

O - (1-N) ayk iAo d

a4 - P > Y% -
Moyt T gyt 0%
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4, DIRAC PARTICLE IN COULOMB FIETLD
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The Dirac equation for a particle in a Coulomb field is :

(Y‘u-‘@' - Y4 C—; - rl)(}f(> =0

qu (4.1)
Multiplying with (- Yuci/ o x + Y"4 ar_"/l - m) we have @
2a 9 41 .
. Wl = (28 O_ Il 2 ik
(D- = )c,u(;) - (& 5% +oav’y ;% r2)L})(w) (4.2)

There seems to be some confusion in the literature 7 concerning the use of
(4,2 ) instead of (4.1" ) In Appendix A we show that in second order the
diagrams of perturbation theory generated by (4. 2) are the same as those
generated by (4.1 ). TFor the complete proof of the equivalence of (4.2 ) and
(4. 1 ) we refer to the work of L. Brown and M. Tonin 8).
In a way completely analogous to the calculation in Section 3, we find
the solution (.[J(X) which takes into account exactly the first term in the
right-hand side of (4.2 ) and in first approximation the terms of order r-z.

Again specializing to the case of an outgoing particle we have :

(4.%)

- -y
Y N ~ipr+igt -, . S .
= ._.._..). e Tt & u(p). 7 (J_a?;l;1?5?+1pr>

c W 11

Y ite) gTiPTTIEY '5(39)}—Y4Y1~——»2) P (ia_3l;ipitipr)

vy aZF(6> g @—lp'r ' - -
QP = %7 u(p) {dBP Vo 2 5 ’ lFl(iaZ;l;ip'r+ipr)
a I ? I
4n\/V (p‘ -p )\‘p—-“'\
2 502 2 7 2
a_ = ae H(&) = 62 Mi+ia ) E =» +n
2 P 2
6)

E(p) is the Dirac spinor for a free muon of four impules p, cf. Ref. .



5. THE MATRIX ELEMENT FOR NEUTRINO INDUCED W _PRODUCTION

In thé forégbing we discussed the Wave’fﬁnctions of vector boson and
lepton.in a Coulomb field of arbitrary strength in the 1dw momentum transfer
limit. We shall use now these fuﬁctioﬁs for the particular case of W production
by a neutrino in the Coulomb field of:a nucleus where by the nucleus is assumed
to remain in the same state (odhefént‘précess). The weak interaction will be
treated in loWeét order. The‘matrii element for this process dorresponding
to the diagram of Fig. f, will depend on the four—moﬁenta 9 P and k of the

neutrino, muon and vector boson, and on the poiarisation of these particles.

eafriel

Fig., 1

Taking the neutrino to be in a definite state of helicity we need two indices
t and s +to indicate the polarisation of muon and vector boson respectively.

Denoting the matrix element by M(q, Py k, t, s) we have :

M(g,p kst,s) = igjd4i<b,tﬁpm(x)}d> Y“(1+Y5)<phyn(x>\q>‘
(5.1)
R ACUL)

In here \+/m, \4/n, g& stand for muon, neutrino and vector boson field.

"
We must now insert the wave functions calculated above together with a plane
wave for the neutrino. The wave functions from Sections 3 and 4 have the form :

R A

(=5

I

<k,s‘%ﬁ(x)‘o>

L

o ™ (x) |0y

11

o

L+ C;g +
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14.

where all yo and 99 are as indicated in (3.14) and (4;3), i.e., 99 and
ﬁb% stand for the solution of the equatlons of motion with the Coulomb field
:c'_1 alone (c f. (3.4)) Sﬂg and yb’ for the corrections ar1s1ng from that

part of the equation which could be written in terms of commutators of r

with v, and kpa, and 4; finally for the correction ar1s1ng from the

4883

-2 . a .
r Efrm (o;f. (3.11). Clearly, ¥9d}‘ 9{; are small compared with y%
and (%Jd, 9&; are small in comparison to q/b . Inserting these expressions

iﬂto (5.1) we have

(g 2k t,s) = £§fé4xég2 + q% + {;:é’llj‘\'/M(1+Y5)I[u-n g)eigé .
v

{%PC - »Qi - 9%,}
up<q) is the Dirac spinor for a free neutrino of four impuls q.

Evaluating this expression we will neglect the term involving (Qii 4/) 79 v@)

and we see that the matrix element is built up from five parts :

with

Lo Wyt 5y, 1 igx
d x YO(1+Y )u (g)e %2

o~
(@]

Yu(l+Y5)un(g)elﬂé %%

o))

N
b4

o<

igx

e (g)e ™ HE g

o,
N

N
ST

J
|

1y = o f e ) o 62)
J

o YH(14r7)u(g) '
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The integrals I1 -~ I3 are of the same type as those calculated by

Nordsieck 9) and Bethe-Maximon. BEssentially they can all be derived from

Nordsieck's result :
—a
[ eiQr-Xr R
vy _ . R . v (s - s _
I(A) = dBr————;—- 1F1(1a2,1,13r+1pr)151( 1al,1,1kr+1kr)

. 2 .2 > 2 .2
Am (2kQ-2ik)'%Q-kX >ial(2pq-2ip.w+g‘+x' j-iaz

B _ 2 2
S L L e ?

¢ Flotaysialil-x(Q,0) (5.3)

2 2., 2 s» o an 7
(Q%+ N)(Q +2%h+2pQ+2pk-2pk+ N =24 Mk=21i X p)
> - 5 > .. 2

(Q +2kT+ X "=2i N k) (Q 4250+ N =21 M)

X(Qakl) =

F is a normal hypergeometric function, see (5.10) velow. We have put

2 =73 - - k. The integral I, can be obtained by differentiation of I( A\ ')

with respect to A'y, while the integrals I2 and I3 can be reduced to

derivatives of I(0) with respect to p and k for fixed Q with the help
of identities of the type '

RO

A
;1;1pr+1pr) =

) ,
F(ia,

S
ax bpi ¥ (132,1,lpr+1pr)’ i=1,2,5%
1

11

For completeness we write down explicitly the three types of integrals

involved in (5.2) :

e
iQr -
{dsr 19 lFl(ia2;1;ipr+ipr)lFl(-ial;1;1E§+ikr) -

= (- 55 T,

2%5+a° 181, 2pa+a° -1
- (-:8%&.)131(;3—59—>"1a2{[%g - 290r(-ta ,1a,5151mx)
) Q > D
0%(k+p)  (kDp+pDy)x’ | )
- Zi{ - 2 Ll }F'(—ia ,ia, 3131-x) (5.4
D.D D.D 1 2
1 2 1 2

o~
(93]
[60]
W



(iaggl;i§f+ipr) 1F1(—ia1;1;£§?+ikr)

1
o
—
|
=
—
O
~—

F(wia ,ia ;1;1-X)
2 2 D o1 2
Q - Q

;aa»‘ 2 ‘_ Y 2
2kQ+G yiaj 2pQ+Q =iap -2iag .
(ZEeFL yien(Zpad ) L
2

2 k
ks =T B xQ - ‘
- 2p{Q (Qi+ks-5 %) T }F'(—ial,iapglgl-x}]

P1P2 Pa

-
i(r — " bad Py
[d@r e % lFl(iaq;l;ip¥+ipr)?§§— lFl(eial;l;ikr+ikr)}
D s T . Pl .
i

3
1<(5§—i 1(0))

>
Gi=const.

o402 ia, 23840 % —ia, | 2iaw '
2 A Pty - a - . .
= (— 5=/ (= 5 ) 2[ 5 f(-lal,laggls}—¥>
Q Q 1

2 D1
0 s Rk <0 o
- QK{Q (Q1+Pl s 1) - Ql‘SF'(—ia ,ia, 31l31l-x)
Dl 1 2

where now

2 2 - -
0°(Q +2%Q+2pQ+2pk-2pk)

3
x = x(Q,0) = =5
12
2 2
D. = Q@ + 20k
1
2 e
D = 2
5 Q  + P

One observes that x — o for 4 — 0. (Remember that the angle
- -~
between p and k is of the order Q/k or Q/p).

We consider next 14. The integral to be calculated is:

S : -3 3
‘ fd a k! elar 7 ( . olalg‘% 0 ) P (. 'ls_é» . )
BI' 3 (k'2 ‘_’ 1 l -—18.1, 91.,. r+1Kkr l l laz, ,lpI‘+1pI’

(5.5)
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7.

e ~» .
With-'& : =~§ + k = k'. This integral cannot be evaluated exactly and we must

nake some further approximation. Let us consider first the T integration :

. S
iar . L v (s
Jd3r e 1F1(—1al;1;1k'r+1kr)1Fl(1a

Z;I;ig?kipr)
(5.6)

In our approximation we need only take the leéding part of this for small values
of a. Now for small .« (5.6) has a leading term of the (3) type 10).
This allows us to change the factor /ﬁ -“E'l T in (5.5) so that the value of
the k' integrand is not changed in the point Kt o= a + X (or @ =0). A

change that fulfils this condition is :

1 (avz'-‘i)
JE=ET o P

This change has the further advantage that the new integrand has the same
derivative with respect to T in the point  §f =v§ + %_’as the Qld one.
This enéures that this term gets the same phase factor as all other terms in
the matrix element, which simplifies our final expression. The change just
described makes the integral (5.5) of the type aﬁsi,l(lA'). In ﬁhe further

treétment of (5.5) one can either do the T integration and the subsequent

-
convolution over k', or one can prove that

e"i.fi'; (77"-*_[:) N
[dBK' 5 ; ; é lFl(—ial;l;ik'r+ikr) =
(k' =x"=i0) L k'-k |
n2 —i_ltl:; i . LB
= EEIE e Sz; 1F1(~1a1;1;1kr+1kr)

We chose the latter way, the proof is given in Appendix B.
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At this place we want to clarify a little the above procedure. Adopting
_ the same reasoning as given above one would expect a- .d (a) function for 11.
Indeed, on performing the differentiation with respect to A' of I(A') one
also gets a term of the form  A' / ( )‘2+ which is of the &~ type
(éee Appendix C, Eq. .1 }). However, we consider only cases where Q % C,
so that this term does not contribute. Thus, in the case of I,, the terms

1
here neglected play a major role.

Wé can now write down the matrix element in terms of I(A ) and
t - . ,
¥, = 5EE T e )

M(g,p k,t,8) = 4migd(B-g- Q)% [- 1iei(k)(d—¥;\—,}5—'—2) o *
+ 1§ei(k)(;%)e ks-?—l(O) + ik 7;?—{—11(6) + kp%-?;‘;-i- I,
+ (k)QM—g‘fﬁ“{ k. 1(0) - iQ.1(0) —‘p%; 121]
+ 1 ei(k);—i‘;ﬂ:—z#{- (fga)k-a-%l(o) kpk, Bl?i I, - kk k ;—I(o)
+ MZK%I(O)}
+ 1,00 (x1) (- ZS;Ei)kg)kaEiI(O)
+ 1Zei(k>z<—l—”-$—%f1i51(o) - ﬁ% ) 5/-")};-1(0)}
* { 4 Z * 04 12 - % l: i ;\jei( )“égé %I( )
ts, ao,m° Q. D n° Qs D ]
+ 1 e (k)= (0 C—z-l?——k—_: g 64,55;)1(0) (5.7)
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where we have used the following relations :

| ¥ |
ML h A S S TR S A > vy
o)
Qo oV Y, Ruov
E);ia\) is the completely antisymmetry tensor, 51234 = 1.
' -Q"?. 9 l ,})
' Coi1Qr - . . ‘ . e
N i o e 9 1 [ w - ° R —
j d3r e 1P1(1a2,l,1pr+1pr)axl - akj ltl( 131,1,1Mr+1kr)
i
2
: 2 _2 |
= - < L T(0) - kpe———————T . :
J R
;—-»4
‘ elQr s R s
12 = jdjr ——5—1F1(ia2;l;ipr+ipr)lFl(~ial;l;ikr+ikr)
T

We look now into questions of order of magnitude. I

—

, (B2 (5.2))
contains the two leading parts 9DE - and 7%) of muon and W wave functions.

. -> - . . . . . v
However, if k, p and q point in the same direction and if k/es X /s

we have
£ o=
D
D2 1

which, as can be seen in (5.4 ) gives rise to a sfrong»canoellation in I1.
Because of this cancellation, and because of the fact that the part from
(5.4 ) containing a F'!' function is of lower order in the momentum transfer

: *
the integral I, becomes of the same order as I, to I It is this fact )

1 2

4"

e o e T T ey e % e w—

* : . :
) A further enhancement of this effect comes about through the spinor

factors in all these integrals.
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which makes necessary the consideration of quantities of lower order, i.e.,

of quantities of the order of'magnitude I(O). It will further be cleai from
this that the term (aI(A!') / a A Al = Ol must be manipulated without
further approximations. We drop all terms containing 12 because they are

one order of magnitude smaller in Q than the terms I(O). One may well ask
why we did not drop directly the terms 2 5 Z)j and ::'_'1 ij from ‘Xiluv ;
The reason is that we want to be correct also up to first order in the coupling
constant a and these terms contain still first order contributions, that are

extracted by the procedure (5.8 ). We insert now I( A!') from (5.3) into
(5.7) to get :

-1 2'h
M(g,p k,t,8) = ézégi—iéi—muonug)5(E-z_w%
v 72 oo

> 2

° 2 . 2 2 e
Q Q Q hoM D2 D1
A )
y = %— 2 =) - 1be® é%y +
1 2 BV 1
€ t t ty, s iQ
- {5 1 +05 1 -3 1 <+ v
( 4v u uv 4 wd v £k4vp k)e“ DZS
i t s c
+ £E§22W(X){l e (2X(§; + %l) - 2Q2(§+g )
Moo 1 5 105
2 33 p/a>
N nak(QQ +pQ -7 (kQ) Wi
a‘) Ead o) o
D1D2 Dl
2 > ko=
nap 9 +kQ-7 x
1D2 D2 povopvo 1
(5.9)
+ (8 1548 1t_5 1t+g lt) S(=X (2 2Q2p(
E RaTRNTE S ATV R s " RVt g %D, xpQ. - D, A+ =P )
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' -
with QH = (Q;0) and

A NRRAL ]
wv w° v M
- j?y )\ 8
ilQ gt d éu4Q
_ (2-Nx EN N
B =(k +4 )&———__p S I
VA" [VAY) M2 v MQ, .v4 4
2. k g oad 2 a®
- 12 5 0 @R)ER) - q ('pk-pk)zj‘k
vi 4
wM .
N ' 2
idk, iAk ikk Q7,5
Q{ v4Bu M p4Bv +‘DM26v4Qu Dz(pkipk)
iAk Q% an P idk Q2 »2 P
- 22 (ke (p -Px ) o+ o (E)s, 5, (p,-2k,)
ol 2o va Tk ol Do 4v 4u 4 k4
2
- _ e _p
B = xQ Dz(Qu+p Tk )

Because g 1 = 0 one may eventually write - p for (k+Q) . Further :
MU M M

v(x) = F(—ial;iaz;lgl-x)

ab ala+1)b(b+l) 2
¢ $C3 = — - .o e .10
Fla,bsc32) 1+ 1Cz + R GRS zZ  + (5 )
a,a, w(x) = F'(—ial,iaz;lgl-x)
2y 2 2
Qg - (p+x)h

x = D

172

» 5 >, 2 2
D, = 0% 4+ 20k = (1’<+‘§)2 - x° D, = Q2 + 20p = (p+2)° - k
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1)

In first order in a this formula agrees with the formula given in Ref. up
to the cut-off function in Q describing nuclear effects (seefSection'7). To
simplify the comparison we underlined the parts which contribute in first order

in a. If a, =a., V(x) and’ W(X)' are real functions of x. Davies, Bethe

1 2’
and Maximon 11) investigated the behaviour of these functions in the neighbour-

hood of x = O with the result

N .
V(o) = FOTTo RS ou(x) = - V(o)log = o< x&l

(5.11)

Formula (5.9 ) is correct up to terms of order aQ W or aQ €.~1, ieeey
it contains all terms in first order in a irrespective of theirforder in
Qﬂo or Q/£, and all terms in first order in Q/to  or Q/E; irrespective

of their order in a.



6. CORRECTIONS FOR TOW ENERGY MUONS

The present treatment breaks down for IOW'eﬁergy muons, because of the
fact that the second and third terms of the right-hand side of Eq. (4.2 ), which
we treated in Born approximation, cannot be considered as small with respect to
the Coulomb term if & = Q. For the energies of interest with the present
accelerators, as one can sce from the energy distfibution of the outgoing
muons given in Ref. 1), a considerable fraction of muons come out with relatively
low energy. It is, therefore, highly desirable that we extend the region where
our formula is valid into the low muon-energy direction. A very lucky circum—
stance is that the matrix element (5.9 ) deviates in structure really very
little from what one would get by treating in (3.2) and (4.2 ) all right-hand
side terms in Born approximation with respect to plane waves instead of Coulomb
wave functions. This makes it possible to change the matrix element so that in
the region of small p it is still correct up to second order in a. We want
to stress the fact that no change has to be made in the normalization factor
N(& ) given in Section 4, because it is related to the asymptotic behaviour

of the Coulomb wave function which is determined by the Coulomb term alone.

Let us now try to find the necessary second order correction. Consider
(4.2 ). Because of the fact that the Coulomb term is treated exactly, and
because of the fact that the a2/r2 term has already been treated we need to
solve (4.2 ) where in the right-hand side only the term 'xi/r3 is retained and

y/ is replaced by Vﬁé» from (4.3) :

2 2 iox . N7 ' : E;
@+ 2O = avh? 2R BT uss
r L '

(6.1)

. lFl(-iazglg-iE%-ipr)

where we take from iFT in the right~hand side only the lowest order part in

a. Using a representation of the form (3.13) for: 1F1 we get :
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P ra lFl(-ia ;l;-igflipr) =

. 2
l .

. a - -4)~ .t
- (onyeiniiy i eyt e

 After parfial integration we get in lowest order in A :

.é—;{-—-;-"lFl(-éiag;l;-iESf—ipr) .
i
‘ X L
N oia (—ipi—ipj%) 1 - e—}p?—lpr)
“72 (-ip?-ipr)
We use the identity
VIV S NS 46 0 GO SRR
i jivd Jr o J3
éo that (6,1) transforms into 3
> E:2 ia® vii} 1 XD
: _ o L2 g —— ~iPi.
(V2 + o2 Wx) = - we(a)e T =5 v £, S
pI’ pl’
(6.2)
::i— &(l _ e-lpr 1pr)'
DTHPT

In using the solution of (6.2) in the matrix element no attempt will be made
to 1ncorporate further Coulomb effects of either muon or vector boson and this
means that we need to calculate only the Fourier transform of the right-hand

side of (6.2). This Fourler transform is given in Appendix C, where also some
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other Fourier transforms pertinent to our problem are listed. The result
(Eqs. (C.9) and (C.lO)) is exactly the same as what one would get by treating
a diagram with two vertices of the type of the second term in the right-hand

12) results for the second order

side of (4.2 ). We could have taken Dalitz'
Born approximation for electron scattering were itvnotvfor the fact that our

initial muon is a virtual one, not being on the mass shell.
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7. THE CUT-OFF FUNCTION FOR HIGH MOMENTUM TRANSFER

The process uhder consideration requires high energy incident neutrinos
and Wlth the present accelerators most neutrinos Wlll be at best in the threshold
reglon for coherent W nroductlon. This means that the structure of the nucleus
plays a very important if not decisive role. Of course,'we are not able to treat
the Coulomb potential of any realistic nuclear charge distribution consistently
in the same way as we treated above the point charge Coulomb pOtential, aﬁd the
only thing we can do is to make some reasonable guess on how to improve our

formula for the higher momentum transfer where the nuclear structure is important.

Again, as in Section 6, we will try to correct our matrix element so that
in the momentum transfer region just mentioned it is still correct in first order

in a and as far as possible also in second order in a. Let us start by

1)

writing down the potential as used in Ref. , together with its Fourier transform

( u = constant related to the nuclear dimensions) :
_a —-ur W =lr ]
V(l’) = ;{(l - e ) - -é e (i (7'1)
Y Rl
v(Q) = |d_r elQT v(r) = ___ijfz__
3 2 02
0 (1+35)

o

The effect of the extra terms as compared with the point Coulomb field is, of
course, to suppress the higher momentum transfer part. As a consequence,
certain asymptotic properties, i.e., normalization constants and low momen tum
transfer behaviour, are not affected by the change from a point charge potential

to the potential (7.1).

In order now to see how the potential appears in our matrix element
we try to understand (5.9 ) in terms of a calculation with Feynman diagrams.

Schematically we write :

M(g,pskstss) = C v(x)(rl + F2) + iF3



with :
2 251) a '
P SEELy oAy
Q > 1 MM ) 1 A
LBy 1 48 1 -5 1 +s 1)
Q2 D2 4y [VAVARN'A ud v ¥ivp ¥° o
naz2 1 1 i 2
a -
F = ce—(=— 4+ —)1 - ———— - 10
2T (Dl Dg) i 4pD2{®(? Ja+el) +

R sténds for all other terms, i.e., all terms containing W(x) and the

3

imaginary part of the second order muon correction. F1 is precisely what one
would get in a lowest order plane wave calculation (see Fig, 2) and we see the
usual effect that the higher order diagrams involving the Coulomb potential
have a relatively small effect, through the function V(X) (whose lowest order
>’contribution contains a2 and is real). F2 can be seen as arising from a
second order calculation (see Fig. 3), leaving aside second order effects of
the Coulomb potential 2ac~J/r—1. Clearly, in order to make the matrix element

correct in first order in a we must make in F, +the change

1

1

=

N

2 N
Q Q“(1+%5)
v
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Fig. 2
The diagrams contributing to_vF1

1 = Interaction given by right-hand side of Eq. (3.2) in first order in a.
2 = Interaction given by right-hand side of Eg. (4.2 ) in first order in a.

The diagrams contributing to F

2

3 = a2/r2 interaction arising from the seventh term~oh~the right~hand
side of Eq. (3.2).

4 = a2/r2 interaction arising from the third term in round brackets on
the right-hand side of Eq. (4.2 ).

Re = Real part of diagram whereby phase is fixed so that the first two
diagrams are real.

5 = Interaction arising from the second term in round brackets on the

right-hand side of Eq. (4.2 )°
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Tn second order only the first term of F (first and second diagrams
of Fig. 3) can be calculated. For this part we need to change QT1, being the
Fourier transform of r—2, into the Fourier transform V'(Q) of V(r)2 which

can be calculated :

: ( Q) 2
vi(n) = % - %F arctyg . T o= arcty Et + 2”
’“ ‘" ; G I
2u 2 | (7.2)

This is a rather clumsy function and we replace it by '

1 1 1 3 ) C
v v ]_+;1._§ » (l+-'—?'> '
ue U

with A = 0.244, B =0.790 and C = 0.529., A comparison of the two functions

in the range of interest is given in Table 1.

We are not able to calculate the changes 1nvolVed in the other second
order terms. One can onlv say that for higher Q some cut-off should appear,
and one can establish the limiting behaviour in Q for Q — 0., It seems
reasonable to take (7.2) ;s a model for the other terms, and we take therefore
as cut—off function for the second and higher order terms the same function

which multiplies Q—1 in (»7.¢) or (7.%).

At this point we want to remark that the extra’ terms in the equations
of motion due to the différence between V(r) and ar'_1 can be treated in
Born approximation in the way we treated the T term, with an analogous
ansatz (the Eg. (3;L2) above), which is seen to be correct if pr <L *r + kr

or ‘;)p? + pr, or u <Lk _'Qr p and, of course, kr »»1, pr >>1

However, at least one arrives at the same results as above and one is
still left with the objection that such an approach is essentially inconsistent
because one should treat the changes in the Coulomb term r“1 exactly. We think
it therefore more realistic to introduce the cut-off as suggested by perturbation

theory with respect to the coupling constant a.
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TABLE 1

Percentage deviation between

(7.2) and (7.3) with Q' =Q /m

QI

10007 (@)/gh e(@) 1)

PUILIVIOLILVT VT LIV R R R R DR RN = = = =
- 'Y - - - ° - ° - . - . - . » L) . ) .

.

_- = = s > 000000000

3

8.09
-0.00
=-1.57
-0.06

1.34

1.77

1.35

0.61
-0.07
-0.49
-0.64
-0.56
-0.35
-0.06




8. FINAL RESULT

For comnletenesw we wrlte dovmn the whole maurlx—element with the

correctlonu 1ndlcated in SGCblOﬂS 6 nnd 7 We: femark Lhat

‘§+Q) - pro, as 2§p+® >o

2
Ci(gapakit,s) = B2 T demy (w)mum -y (2LyterDey-tas
V72 oo Q° %

—T_\VU){ is 22, 2 ) + 2 i)

T2 D D 2
q(14%5) H P h P 2 D,
o)
ma Q2 t A
- - sn(2)) - 1e) S
2 /a2 +283+p S|
t % t t, s iQ
- + 5 1 -3 1 <+ 1 —_—
(o, u uv 4 wd 4 Bav k)eu D, *
% .
4u v Vi 4 kvdu k° p jivd D 4
2 2-\.—}

e 2222 (on(0)]afel an (e ¢ L) - (R
o 1 > 172
ak, Q +ph-2(ka
= ( Dp k (k) - Q=)
D D
172 1

5 )
v 120 D, bovoDy
t t t ty s, -1

+ (5 1 +9% 1 -0 1 1 —

( 4i7 ui 4 pad i M £k4ip k)ep(2£D2>

o}
20p }

. 2xp0 | = ——=e (€ X - -

(2xp = (Qi + ok, pl))
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ia t s PR
—(d 1 =935 1 + 1. )e .. =+—d1 , h(Q
- 4 4 ov v 4 £2v4u k) p531v4 D2 (@)

P2 - § Ca é- i g 2
Q 3Q +p0. g\fz +2p+p -p | Qp Og(2§Q+Q )}
2 —) ——‘—"'w ) 2 2
0 02 O 2 Tﬁ+pl VQ2+2Qp+p2+p Q

I

2

. NPT
h()tsl‘illo(Q+2Qp ) b e \/Q+2Qp+p+pk
ot P Q2+2‘65+p2‘ .)%%2+2-6,7:5+p2 )/Q +20p+p -p
(8.1)

A11 notations are as in (5.9) with the additions :

Finally, the relation between Ve and nuclear dimension as given

in Ref. 1 :

oo saa0 . 5 00? o

|

I

619 . a3 . mev

where A is the mass number of the nucleus.

If we now consider (8.1) we see the following corrections to the
1)

1owest order calculation of Ref. :
i) the Sommerfeld factor M(c)N(E),
ii) the four a2 terms multiplied by V(y),
iii) a factor V(y),
iv) a group of terms multiplied by W(X),

v) second order terms containing logarithms.

Werremark that the imaginary parts of V(x) and W(X) are mostly
very small (see limiting formulas (5.11)). However, due to the appearance of
i)

X in the l this does not imply that there 1S no 1nterference of the

terms multlplled vy V(x) and the other terms.
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APPENDIX A

We show in this appendix that the second order diagrams be-
longing to (4°1) can be reformed into second order diagrams be-

longing to (4.2). The lépton part of this second order diagram

(Fig.4) is: ' /////,/

o~
~

2_ iYpltem Y iYp''- .
aa(p) s Lo L TIR TEyB (40 )y () (4.1) KA,
2 2 2 o > 2
Q. p' +m Q. p'' +m
2 + Fig,4
L Q L Ve Q= 0 = 0 Q
P P+ R, D P =P ot Ql + Q2 ) by + L5

There is one integration over a closed loop.

In this appendix p, p', p''y, Q.5 Q N are four vectors. Of course

1’ e’
the fourth component of the Q's is zero. The three-vector part of

a vector p will be denoted by 3. ﬁ(p) satisfies:

i(p)(inpv + m) = o (A.2)

We take the Y; part of Yp' in (A.1), commutate it with Y4 to the

left and apply (A.2). We get:

4 2o 4 4
2. Y iYQ »4+21Y Y iYp!''—m 5
a U(P)—E 5 2“ — P4 -3 *52—:—~YH(1+Y Julq) =
Q+2Q 0 207
Ql v2+ Q2p by Q +2Qp

4, 2= 4
2 - iY (Y 2& 1 Y iYp!' '~
- il (fRe) 2yt L Bl
Q2 Q2 Q2+2Q§ Ql Q +2Qp

-

We repeat this manipulation with Yg embodied in Yp'':

42> -GV 4
2 iy (vQ 2 1 Y YO +1Y + 21
- afu(p) (M) 2y L LTl r BT b
: Yal O - Qv)
Q2 Q2 Q2+2,2p Ql Q + 2Qp

H(1+72)u(q) +
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4_ -‘_a-; - - ' . .
o iYT(Y Q5),iVp . 1 1 5
a“u(p)( E (2 2 }HPJ TS ———— " (277 )ula)
o) 0
Q2 . 2+2Q2p )

T 4,2 ¥ :
_ Y L, i (V0 1 1 :
UV CAaeYEARILA ] R M A /SR WO
Q 2 5+27% T

22 (o) (1 (Y Vip) ey 1 (1Y4Y§l 2e)Y“(1+Y ). (0)

Q2 Q

1l

02 2! 8] Q Q2 o1
+ 27 p) 8 +20
) 1oP 1 P

vH(33,) 28y

Q 9° a+28 P 0

nN
n
N

2
2 2 72 2 1

2~ 1 L |
+ aulp) 5 ”ﬁYu(l+Y5)u(q)

Q +20p

Q. Q

1
2
1
After performing the integration>over the closed loop the
-2 =2 -1
factor Ql Q2 goes into o.570 , i.e. the Fourier transform of
-2 . .
r and ve have the desired result.
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APPENDIX B

Equivalence of ansatz and derivative formula.

§ ] e

I = {d_k'= CFT(-ia ,l 1k'r+1kr)
: 2 2 1 1 1
> (xrfa®e10)® (R0 K)
— -y + + -
—ikr ol . iqr(t-1)-)a [ .=2> .
- - X k
_ e _ (at + iaq l(t—l)lal a_q q'e L e(lcr+1 r)t
2mi ‘ L 3T Ti, 2 e 2
(¢“-23k~i0)q (5.1)
e will set A= o
Condider first the g-integration
A 337 (4-1) o 197 (t-1)
1(q) = Jd a q, — = - 2 S -
- i 2 = i(t-1) 2 , 2 > 2
 M(q"-2dk-10)a HE-1)@x, 352 ghei0 )
We neglect difficulties around g = o as they are unreal in this

case. Using [I'eynman's trick we get:

igr(t-1)
e

1 .
1( iz |a :
Cl ]_.-lej i { J 3q{(&—§2>2+(—ikz+o)2$2

Using (C.1) we gets
22 1 e(wkr+1kr) z(t-1)-or(t-1)

\
(a) = 7577y 5}" Ojdzzazz:.s

2

ﬂ x¢ (ikr+ikr)z(t-1)

= ar jdz% k +k—= ) ‘%+ g }
_ i K +k§“ (ikr+irr)(t-1) 1]
T ik (1Kr+1kr)(t ")i -

There is no pole at t = 1, so A= o is justified. We insert now

I(q) in (B.l), use the relation

t—ial—l

. _ 1 a  —i .
)lal 1 Sl lal(t—l)lal
a_ d

(t-1
t
1
“and perform a partial integration (no "boundary'" terms arise as

the eontour never goes througq a cut):
=

-ikr 2 0y l . . L.
[ =8 7 (1 +k§l)]dt cmie1(gopyte e(lkr+1kr)t
2ni. ik.ia, i
e—l%; n2 . R
4883 = ;—1;—' o —l— ,.5—}-2—- lFl(—ialgl;i1~:I’+ikr)

1 i



APPENDIX C

We 1list some 3 dim. Fourier transforms of interest to us.

Everywhere B = ‘E‘,/A>o.b

.—?"'— 2
fae 1AL B0 - 2 (c.1)
(a "+ A )')”o 0!
Jd7r 1 elar—hr _ infE (c.2)
0 r OCd+>\
}dBr 1 iat-hr = ——arctgg (c.3)
T
X.X: i0T=AT 2mA n nAz o
deT —1-4—416 = - O \—2-— - 2(-& + ?—)arctg/\— }
r Tl o
Y1l 67 Z(Tt + 3TE)(E)arct a ? (C 4)
v =gl - 2y v T Jeretey | °
o o o ‘

NG P

-~
Jd L Xi iaT-dr 4y 4miday
3 T o

o
= - C.
e a3 arctgx (c.5)

deT E%elar-)r = - 421&;) 5 4n;aiarct§§ (¢.6)
T a (X +a”) o
]d3r P L L (c.7)
(X"+a")
{ X:K: 10T=AT {4m 4T o
d_r —=f=de =% — - ——arctge
J 5 r3 133a2 o ) R g
2
os{ 8 ) 12mA
- g&gﬂ?ﬁg + 24n; 5= + 2 arctgg B (c.8)
o e a (a"+ N) o _

Finally the Fourier transforms needed in Section 6.
N

. s N e ;
fd r £—(1 - e—lpr—lpr)elar = 27 {1og \l - 62 + B log‘aiﬁl +
3.0 1-8

+ ino(p-1) + ins@(l-ﬁ)l (c.9)
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-é—y 2 - ] 2 oy
7 — - - 200\ 2
= 2nf . a.p > - 5 p(?z g‘>log p+ipaa$‘ —(ga)lo (OC 5 %3 +
SRAREFERG O R p- =Bt 22
) 1
+ inap | (c.10)

To evaluate the last integral we reject terms of the form

f .p.p. and make use of what is essentially Feynman's rule:
13717 ]
’ -y 1 -y
ﬂ*l (1 _ e—ipr—ipr) _ i]dz e(-ipr—ipr)z
pr+pr J

~AT v
We also added a factor e ,)‘? o which is necessary to make

the result unambigous in the region p< \D-a| .
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