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ABSTRACT

The proof of dispersion relation is extended to higher
momentum transfer by meking use of the unitarity of S matrix
for the energy region below the threshold for three-particle
states, For the pion-nucleon scattering, dispersion relation
can be proved up to the momentum transfer Az 40 l,:,z,
While Mandelstam was able to show an extended analyticity of
the scattering amplitude for ecual mass particles, we cannot
apply his method to unequal mass cases. Therefore, we follow
essentially the procedure of Streater with a view to apply
the Jost-Lehmann~Dyson integral representation explicitly to

the final expression of the absorptive part.
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I. Introduction

During the past few years, dispersion relations have been rigorously
proved for a certain class of the strongly interacting processes, however, only
up to certain limited values of the momentum transfer oF 2). As to the failure
to establish them for a higher momentum transfer of these processes, it has been
attributed to our inability so far to iﬁcorporate all the information contained
in the underlying basic axioms into the analysis, For instance, the content
of the unitarity of the S matrix has not been sufficiently applied in the
hitherto treatment of the problem, due to the difficulty arising from the non-

linear character of the unitarity.

In fact, Mandelstam succeeded recently to show that the region of
analyticity of the scattering amplitude for equal mass particles could be ex-
tended by making use of the unitarity 3). In this paper, we shall investigate
whether one can improve the restriction on the momentum transfer for the validity
of dispersion relations for unequal mass—particle scatterings by making use of
the information contained in the unitarity of the S matrix, To be specific,

we shall consider the pion-nucleon scattering.

First of all, we start w1th the observation that the absorptlve part
of the scattering amplltude AW, zﬁ g) is analytlc in’ the region
Z—-{g —R(Rej’( !,g !Im '<<§}, provided that W » m+2p and
Zﬁ L 4.7 fb as shown by Lehmann ‘. In order to prove dispersion relation
up to zﬁ 4.7 }Lz, one has now to consider only the elastic contribution
to the dispersion integral. In the elastic region, the unitarity of S matrix
takes the simplest form A(W,Az,g’) NJdQT(W,Af,g, ;.E)é*(w,élg, S, }3).
Then, following Streater 4 , we derive dispersion relations for the intermediate
tran81t10ns, before applying the Jost-Lehmann-Dyson representation to
T(W A g ’U.) as it was ‘che case in Refs, 1) and,z). Now in turn, we apply
the Jost-Lehmann—Dyson representation to A(Wi,zli,§,yf2) whicl: are absorptive
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parts of the intermediate transition amplitudes to carry out the angular
integration d ) over the intermediate states. With it we obtain an explicit
dependence of A(W, Az,g) on W as well as on g and Az. Unfortunately,
this expression for A(w, Az, g ) cannot be shown to be analytic in the required
sfrip Z in the § plane, however, for the proof of dispersion relation‘it
,suffices to prove the analyticity of the dispersion integrai. By maeking use

of the explicif W dependence of Aw, A2,§ ), the method of Polkinghorne et al.
shows that the dispersion integral is in fact analytic in Z, though

AW, Az,g) itself might nof be S0,

II. Preliminaries

‘:'Wefco'ns'ider the pion-nucleon scattering. Let the four-momenta of the
incoming and outgoing pions be k1 and k2, respectively, while those of the
~_nucleons be Py and Pye As vsual, we neglect the spin and isospin of these

 particles, since its inclusion does not affect the analyticity considerations,
With the definition of an additional variable S’ = kf = 2,

pion mass § £ - Az, we can derive the following dispersion relation

for a fictitious

W ‘AI = —Lp # "'z.l [y Yy , > !
T( / §> 7{; W (W'—-W‘LG-" W‘i*wz—2m>’2§ "'QAI A(W,A,ﬁ)
(m 1}4)‘ , . - . (1)
+ single nucleon terms,
with
L . T - s 2 i
g . 1 L 2..= ‘-_.( ) 2 ) ~ ZA
W = (?b‘[’éy) ) L/"A 77‘ f)).) ) WQ / Kz(wlg) )
(2)

KW, €)= (w'+ ’m“;§):—4fw‘m" Kiw) = ;(.»L'(,W,#‘)._
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3

1)

As it is well known °, the absorptive part of the scattering amplitude

A(W,0,8) is analytic 3 in the strip 2(W) in the § plane defined by

mw)s{g:-auzege,u‘ [Im¢ | < Sw)
provided that

Az( KL(W) R 8;;, (zm+/L) |
W = (m- 2,» (3)

We now separate the dispersion integral in (1) into the following

two parts
T(w,8,¢)=T.w.5,6)+ Tilwa,s) + | (@)
| \ + single nucleon -terms,
with
Um+5h)z
(Ml A, oaw '’ ( 1 l
> (Jrr) (W Twhie WewT-2mto2g - 4A>A(W 4.8
» o ,
T.(w0 €)= = (dw + ' w'a
2 ('vm)./,( (.W‘f.w (¢ W W 2m -lg ~4—A >A{ g)

Then according to (3), T2(W,A, S) is shown to be analytic in Z(W), if

the momentum transfer is restricted by
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' 8,}’{’3 Clmfﬂ.) | - 2 V
W =m "1},: (M +£/L )L_'(M]-I‘M-)} = 4‘—.7,/&, .‘ ()

Now, what we attempt to show in this paper is that T 1(W,A, ¢) is also
anslytic in Z under the condition (5) as well as TZ(W,A, §)

Mo this end we start with the following expression for the absorptive

1)

- part

Aw.5,8) ~ T <ps 130l V<L 1PY
| Y ’ (6)

where j(x) is the interaction current of the pion, The summation should be
extended over all the physical states | 7> with the total four-momentum
pi+ki (i= 1,2) and with the same quantum number as the states - , pi,ki> .
Since we are now only interested in T1(W, A q), namely the contribution from
he elastic region m+ ’A_ W < me2 }A.. the reduction formula of Lehmann

et al, 6) allows us to rewrite (6) in'the following form

Aw.o, €)= 2 {otq'x“Jd"Xz o* 1) % - this) X
s 3 - N °
< )"

(7)
B0 ) 0oy <Py | 133X, 40 £ )0l e, 7 Xp, 7| L9(in), (L N
+ terms involving equal time commutator,

where p3 and 1«:,5 denote the four-momenta of nucleon end pion in the inter-
mediate states l”)/ > , respectively. From the transitional invariance

we get

/r);‘l" ’f(, = /Fl-rfél:: ?93¢/£_5
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5.

It should be noted here that k; = PL?’ and pé = m?,

We now fix the Lorentz frame in the c.m.s. as follows

pgy= (0, 0, KW e))= - k(s

ﬁ‘(<)=(l<(wi§)”“‘9’0’ K(W[§)Cc<)€-’):-fef(§) -
8

P, = (Klwyesoomg, Kiw)ant'se6", KW') ert’)

hans ‘ Y

then the summation over the intermediate states turns out to be

N 17 .
s - f O‘?”j o en§’ |
’a, W 4 ! (9)

With the following definition of the transition amplitude

Tlwie e peyforn e O o0 <p Tt TENIR2
(10)

where

R I A R Y

Eq. (7) which is nothing but the unitarity of S matrix takes the following

simplest form

Awb,$)= ‘S%V{)j/dﬂ'dc«m&"r(w'ﬂ.,s,,“‘) THw oS, 1)

(7a)

3925



with

bo =9 {fiw.s, p') —m" - K(W'f')}((wlmdj SR (11)

where

")‘(;wf?,.)x‘)

il

(4w ) (w'sm ™ )W e’ - Iy

: o , (12)
T‘::m@j K:M@Mvélwsﬂ 4(’/0'39&’19/,

In particular,

fow. ¢ ¢y= Kiw/ g)+m’

III, Dispersion relations for intermediate transitions

In order to apply again the unltarlty of 8 matrix now to the inter-
nediate tran31tlon amplitudes (W, Zl § H ) (we shall hereafter drop the
prime over EW), we shall have to be able to express them in terms of their
imaginary parts, and evidently it will be possible only through the dispersion
rolatlons for these amplltudes. For the purpose of obtain;ng dispersion

2

relations we shall proceed along Oechme and Taylor S proof of dispersion

relations for inelastic scattering.
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Since for the time being we keep § at some sufficiently negative

—

value such that l cos @ <€ 1, we have \rzl < 1 as well as
el &1, 1,4, 8, 2) and T™(w, A, €, LL) can be treated in the
same way. Now we fix the momentum transfer &i‘ at the value determined by

2 2 2
K, = g and Lk = !A, , then clearly

A, (5 p) >0 (15)

Now we move both k:.?z (i = 1,2) and k; to the off-mass shell and introduce

(§C (S, Ai is fixed for the time being), then we can obtain a dispersion

relation

T (w, 8,05, 1,8, 5:)

bo ! |
l 2 ’
R P =) AL,

- —— ¢.)
7Y Ry W+ W=l - - -4 .
Cmr p)* W W crWmim =€ - 4 4y (14)

4+ single nucleon terms

provided that

?,*,fl &\1‘ (:_S_l_:_si) —_
2 < oot ANR = %, , (15)
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Fixing g 1~ §2 at the value § —ybz, this inequality is satisfied by
sufficiently negative values of § \* fz/ 2 (= &), Then our problem turns
out to prove that both sides of Eq. (14) can be analytically continued in cA.
up to the value ol= C+ H«2/2 . As it will be shown in the next section by
means of the integral representation, A(Wi’Ai’g 1,§_2) will be proved to be
analytic in the relevant domain of theé  of plane, we Tinally wrrive ~t the

~dispersion relation

o
2 | |
e A(g’ \-), ke ____L fd L(____,__..;.- + - T - T x
T(w, 00,25, /)= Ve W wam < 4ol
: i (mipm) v
 A(w. ,L\C,g.}/“z) + single nucleon terms » (16)

Substituting (16) into (7a) we obtain

po ) T !
Aw.n,g)= 2 gdwr[dwi EW Eoiwae' ,
(mrp)” ey p ) TR
i — (17)

N ‘ﬁ {(D: - D) AW, oS, ) k+

=1

L anis

+ terms involving single nucleon terms

with

D

Wo- W 1 (-)ce

D= W, +w'-2m' - ¢- M __4&‘:: |

*

(18)
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9.

IV. Integral representation of A(Wi,LXi,g 1,§ 2)

For the purpose of studying the analytic properties, we start with

the Jost-Lehmann-Dyson integral representation 7 for the absorptive part

’ gdu o U, e W)

AW, A8, )8, 80) = ga N Ko Kew 059 (80 —2)
(s) (19)
‘ 19

(1=1,2)
where
dU = d‘ua.du(,; 0“'&«' d‘&*' AO‘;LdG’: d.%l d&'t 5

K”v: Kiw., €52, (20)

Ko Kiomb. = Flwe s, 1) - Flw.g, p) + Klw S Klw p) e

and

qg\;]\: (2 A %d" ltl;! )’] i:l?_j\h-l—(r;.l‘\- K} -'\{ G gg) _ MJ%“T-] |

2 W
(202)
. = “ e T N
\f(' ’]a‘;'\ai\l{‘ \l‘?}t\"K;‘l J?L‘l—”_kL};
The support for the weight function is given by
W"’ P W T
& >%WX{ o " "‘1(%4 U -y s e \’iw“ "%JD)L'J:(J{ }
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10

It is well known that the minimum value of y in the region (,S ) is
Y + 2(65"’2“@{)("”‘*%)
) Wt = (v-2p)

It 2

P ‘2.
M= Koo Z. =K
) ) o

(22)

~

\(b. -_— \h(; + Z.C‘% \)KL;"' gt‘: + 2 2oz

To prove the dispersion relation (16), it suffices %o show that the denominator
in the integral representation (19) does not vanish in the relevant regions of

all the variables involved, namely

flwee, g ~fcws, p) « Kw.g)Klwp) n,

+ Yo torot, L JY;‘—' Kol Ko Aoy ) (23)

As we assumed "ri are real and |ri l £ 1, all terms in (23) are real

except for the second term of the r.h.s., and we have to show only

Fowe,6,8) = FW S, 1) + Kw.5) Kiw,w)ng + Y,

(24)

Since lri\ < 1, this inequality will follow immediately, if we can prove

the following inequalities

Y(w.8,$.) + fwe80,60) > Kog)Khww) + fiw e, m) (25)

and

YWos8) 4 F v g, 1) > Kiwe) kv p + Tl s, 5.) (25
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1.

for the relevant regions of the variables involved, namely m+ ‘/L<, W < m+21Lc s
LARAR . PR & S+ !43/2, §’1-§2/2 = 5~ Pg/z. In the following
we shall show that these inequalities are valid in gencral for any ‘;1 < §2$

¢, < . S,

< ’A?, which obviously include the region given above, The
' 2
validity of these inequalities for éa =€, §é = }L. will turn out to be

essential in our later discussions.,

1) Proof of Eq. (25)

Tt is clear that the 1.h.s, of (25) takes its minimum value at
Wi = m+’L, while the r.h.s. becomes maximum at W = m+2fk. Sub-
stituting these values which give rise to the worst case, it is

easy to show that

B(,g\,g\ )E ZLJIBL“L* {(Wagg)l‘kj * f(Wp, 6,, f?—) >O

since B('§1, 32) can be shown to be monotone decreasing both in

§1 and in §2, respectively, i.c.,

2 e o= @Mt [AWC, Wam=6)
BQUB ,g) 3(1%*}&)\16“’0 _g\( 4W; 4-0

(i3 =1,2 and 1# )

and

Bwip -Ty'p )] = [Kw] = 3pi2ep
WL.:M.,./LL W:mﬂ_/w

> 0
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12,

3925

- Furthermore,

q o[, g, ) >'{{ (wi, S x> Klw. £

because , ,
D 1 w--Kl'(W,§) < O
;5'? I 'L} (Wt ; i ) } 2

?:%‘ (W, Mg - K*(w, 1) > O

But ,ﬁ\f is given by ( 22), so e proved the inequality (25).

ii) Proof of (25a)

(a) m+ ,;L(WiQ W2

In this case, clearly

/\F(Wc»"agl,, g).) + ‘f(W,g ,f/l";) > Y(Vh +f4, f‘, §’_>
- 4+ f(mtpm, s, M),

and

Kiw S W M) + T We, g 6) ¢ Kimrap, 8K (m+ap i)
+ Flmezp, § €.)

thus we can immédiately apply the above argument for i).

(v) W, > m2 |4

For our purpose, it suffices to show

C €, 80 = K(We 8K, 5 - Kw,$)ic(w; p) — F(w. 6, ¢6.)

+f(w, s . p) 20,



13.

since

\((w €% >K(W¢§)K(Wt.§)

Further, one can show that C( §1, SZ) o( Sg,/& ).

Now, from (20) one has

C (5, K
K{w. S k(w., [

If W, =W, then (s, }J@) =0, i.e., cos @, =1, There-
fore the point W =W lies 'evidcntl;v in the physical region
of the dispersion relatlon for T(W A f r\/)

3925
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14,

As it was discussed in comnection with the dispersion relation for the
associated production 8), there appears only a T inito unphysical region between
two physical regions extending to infinities in W plane (Fig. 2), unless the
momentum transfer becomes negative., From the deflnltlon (11), we have A > O.
Hence, any W  greater than W lies clearly in the physical region. Conse~
quently, ‘ cés Qi( 4 1 for Wi > mk2 R, since - W £ m42 JA. Thus we

proved that O §1, §2) > o.

2
Since our discussions made above is valid for any §1 < §2 < /A,,

we can assert that

AW, §’

,/2) is analytic in Z' and 32,

A‘(WZ,AZ, §'1 ’52) is analytic in 2',
where

2'={e e, ok, < R($ 1S LSt pt, Rels-€)=Cpt
and }j}'m §Lf < & }

MNRe S

2

(s, ¥)

) (FJL Pl)

SN

Re S (Re §)
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15,

Along the strip 2!, the dispersion denominators 5i‘ may vanish,

however, it is immaterial, since we have a uniform finite strip of analyticity

which allows us to shift the path of the analytic continuation through

g5 g -e .

It should be noted here that the inequalities (25) and (25&) are valid

also in the uniform finite strip Z although it might be small.

V. Dispersion denominators along 2

-While the zeros of 51 “along .Z' did not cause any trouble in the
derivation of the dispersion relation (16), those along Z, if any, would
give rise to a éingularity inxthevanalytic continuation of. A(W,é&,g ) given

by (1%) in g , since there appears a product of the denominators, le€ay
D,D, which contains .§'4 In this section we shall show that there is no

172
such zeros of ﬁih along 7, under a certain condition on the momentum transfer.

From (11) and (18)

Dote uye W iW-s-p =2f(w, S p + 2Kw, .,
Duls s WaW = 8- b =2 f (W, S, p% + 2RIVSIKOw PR

The worst case arises when cos ©' = -1. Put

D p= i+ W= -p -2f e pt) = 2KW,$) KW, p)
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16,

then 5?( g, }E) is evidently monotone increasing in g s 1eCay

iﬂ‘ T) (¢, ur) <O

thus it takes & minimun value at the minimum possible value of §
By choosing this value appropriately (of course it must be

§ < —AZ such that at the starting point of the analytic
continuation in g cos 8 1is physical) we can show that
.-o( C I“‘) > 0. Then it is ObVlOU.S that D ( S, }L does not
vanish along Z up to S ,,L,

ii) For i =2

In this case r, = sin © sin ©' cos o ' + cos © cos @', For
some negative values of g cos & is still in the physical
region., Then we can prove D g Pg) > O by the same argument as
given above, But for g greater than a certain critical value,
cos 6 will take an unphysical value, i.e., cos & ( -1, thus

sin © will become pure imaginary. Hence, in order ']52(§ . 'M?)

to vanish, the following two conditions must be satisfied simultane-

ously, namely
sin @' cos 8;.’ = 0,

and

S—

Re D, =W, + W -Cop' =2 f(w.g, b)) +
* KW g) KMy enseas 2 ()

(27)
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17,

But from (2) one obtains

B, (5. j0) > Wi+ W' =€ pT=2f (0 s ) + 2 KW s ) Kl p)
40t

for cos ©' = 1 which would give the worst case possible, since
cos 6 { -1, One can now show that the r.h.s. is monotonously

decreasing in Y , i.e.,

Dnkeye g, Womip | KO WeniG) o
s 2w’ Kw.s) 2W

thus we get

Man Re Dols, )= Wi wi-2m*2u’ -44°
With it we proved that

D; (€, }41) '75 ®] (either complex or real (27a)
and positive) for §6 Z

provided that
GO W' = (- )’ (29)
For W = m+f.A, it turns out to be
ARPEW — ~ 4, 2 (29)
o=

which is evidently weaker than the condition AZ £ 4.7 /M,z
given by (5).



18,

VI. Integral representation of A(W_,,é .S

As it has been mentioned in Section IV, A(WZ,Az,g ) }«LZ) fails to
be analytic in the strip Z, while A(W1,A 1,g" , V’) is analytic in 2 as
well as in Z', due to the fact that the former involves cos 6 which becomes
unph‘ysic:al in a certain domain of Z. Therefore, we now proceed to investigate
the analyticity of A(w,A ,$) in 2 by explicitly making use of Eq. (17),
instead of treating A(Wi, Ai’ §, }Lz ) separately. Td this end we shall have

to carry out the angular integration Jd. S;’ d cos ©' explicitly.

First of all, for this purpose we rewrite the Jost-Lehmann-Dyson integral

representation (19) as follows

) 27
Alwe AL S 1) = jau foldu
(s) @

(30)
(YL - Ko Koy mé;m%;) @(U s o o) W‘)

{Ku‘i chMGL ”\’/LA Loy ~LJ\<7:K:“ f;’ladeQ(L’-‘}{k’”k[lcmet,- XC«)@O{F *‘:{\f‘z’k:ﬁz‘ 4"""0(63

after having made use of the symmetry property
Py ‘
faw FIIRN f(wao():o/ , (31)
0

where f is an arbitrary function. Now substituting the definitions of

cos Gi into (30), we get
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19.

T .
Jdor Com .@ (Urc""’c'(/:W:)

Alw,a, e u) s Ao,
/u Kw , ¢ ) IK(w) ) 2, — %
L' \/y J’du O;d. A‘;‘dl @ (U/ cenf 3W,)
Kw.$) KWWY, =~k K5 J Yo R R G
(32)
and |
| 270 ‘ ; @
A (Wz,A.ng)/ux): (C‘U O(G(l Cod oA 2 ((J/Wa(z/' %)
Kw, @) KW VY, Z, =Yt § -] -x* A MS’,
¢ \f j R @C ;323)
* === dUJo{ggl A X3 U, cndd, s W,
K(W§)K(W)\/Y»— Ky K g, | B — X g __ﬂ':_; o w?,
‘with

2, = - JC(WL,§,f4‘)-‘f(W,§,/4’)rY;co—aou-C YK K ol
Klw,$) Kiw, pu°) | - (3

and x = cos ©', PFrom the inequalities (25) and (25a), we have that
either Zi, is real and‘ ’l'zi l > A1v
' (33a)

or z; is complex

for § in Z.
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20.

Further we infroduce

B;ffyﬂ)‘?p'l K. $) K0P (Rar 1) (54)

o w)‘ d

_’5: (Q,/U»’):—: ‘2K'(W,§)K(W,}4‘)(22d -l X - Mém&nf') )
,

thrdugﬁ \

VV‘

le-pnt-2fw, €, M) (35)

Ry = -
e | lK(w ) K(W, )

o

We now substitute (32) and (34) into (17). After having carried out decomposi-
tion into partial fraction, we can easily perform the angular integrations to

get a standard form, With the definition

@)%, 2) = o foq 2ot A 2haiaan 2 -l
E \1/\’“’?2 S22, r){\ EA et (36)

we finally get

A (w[f,g) 7.C_l :I‘dw. Jo«w, Jdu fau ]ow fdo{z (U cons W)

1 L. s + 2 b
W whe Womw e Wo-W -t <(w. e ) Kiw)l Z‘dz z) (57)
[ | 9 (2,2
+ (1@ 3) + T (2,2, =)
( (a-1)(2ar2) KW K‘M} K*ws) Kiow oo

+ terms involving g(z,zd1,22), ‘g(z,zf,zdz) and g(z,zd1,zd2)
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21,

Here we have made use of the well-known integral

w . L
10 ! ‘ ? 2 -2,3,+ A
o dx — = = 122 g
jo(’? ‘L 2)-x 2, -A T ~ \jox \i =2} &ra(f’ A 2 '—i'.iz*m , (3 )

We now proceed to show that the terms arising from the dispersion denominators
(for crossing amplitude) are analytic in Z., Let us consider the following

integral

Lh . i

) | | ( 2 ¢ np), (39
dg | ox o i
£ f !" (2-%) (2, -2 -V [1-2-en¢’) (for A7 < "L)

It is clear that both factors of the denominator do not vanish in Z.

Likewise, the following integral is also analytic in Z,

bl | l
d ( dx —
AN (Bt -x) (2 . =x2 T2 { 13 ewi¢p’)

since this integral is symmetric with respect to the interchange of z,

and z as shown by (38).

ar’?
As to the factor (zdi—zi) which appears in the denominators, it is
easy to show that it does not give rise to-any additional singularities. This
factor arises from the partial fraction decomposition of the crossing amplitude
and may in facﬁ vanish, however, for Z45=% g(z,z1,22) = g(z,z1,zd2) is
analytic in Z as discussed above, provided that /A & nlr,;" Further-

more, this factor appears always in a pair of terms, i.e.,
' |

(2 2., 2,) — 2
E['EM.j ' 2.~ 24a j 2, =, Ld)

and it is nothing but

[ 2 3 2,2 |

which appears to be also analytic in Z as well as g(z,z1,z2d) itself.

Z;_,: 2500
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22,

Now we have to investigate the analytic properties of the remaining

terms of Ecq. (36), which is essentially

by Bz
i e ol

For this purpose, first of all we shall show that singularities might occur
only if both z, and z, are real, so long as .g is real., Assuming one of the
of zg to be cormlex, say z, 1is complex, then we see from the integral

o

representation after %:' integration

l | I
f d x
-1 2o 24 2TAxT-22,2 0

that both factors of the denominator do not vanish, Hence, from now on we

shall have to consider only the case with e(i =0 or TUL essentially,

since we are to perform an enalytic continuation along a small strip along the

real S . axis.

From the definition (37), one obtains the following integral

representation

T, |

f ?/{_? '\“/\(Z"j . . (372)
7, ° s

which shows'eiplicitly the position of'singularity.b Wamely, a branch cut

appears and it starts from the point

'Z+ = 2,2, + ¢2,1—| 2,-) 5 for £, 2. 70

: —_— : (41)
222 TR e 2.2.<0
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At this point we note that it suffices to study the singularity which occurs

for =z <: -1, since we are to carry out the analytic cohtinuation in C;

up to .§ = sz, where z = cos © takes unphysical value z < -1. This

means that the right-hand cut in the 2z plane which starts from Z, irrelevant
to our discussion, while the left-hand cut beginning from z_ might prevent the
analytic continuation desired. Therefore, we may now restrict ourselves to

the case 2,2, <; -1, From the definition of 2, this can be the case, if
end only if sin.()(1 sin o(2= -1, To be definite, in the following we

suppose s(,l =7 and 0(2 = 0.

In order that the left-hand cut does not prevent our desired analytic

continuation in Z, we must require

2 oy zo= 22, - Nz {2 (42)

throughout the relevant regions of variables involved.

1) m+ r( W, { m2 Y, and me W W, <mr+2{,u

In this case, through an elementary calculation which is
_essentially the same as hat given for the proof of (25), one can

- easily find that (42) is in fact valid, provided that
. B _ ,
AL < M i ’S—::Lm { ‘ - 2,2, % \j 2, ' -1 \] 212;" }

Putting the numerical values of masses, we find it is greater

, _ P >
than the desired maximum value of A = 4.7 foe
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ii) W1 > m+2 W and W2 > m+2}/\,

It is clear from the definition (33) that z, tekes its minimum

takes its minimum velue z. =1

value at W 1= m+2 ‘A., while =z >

2
2 .
for W, - o at € = {~. Then it turns out that the

inequality (42) will be satisfied, if

Az £ [ /’(,;" )(W, )]W\=7n+z,u;:.- 4. 1 /M}

which is the desired value of A2nax'
’

So far we have in fact considered only the analyticity of the

integrand in (3’7) with fixed value of W, and W and in general

1 27
it is not sufficient to guarantee the analyticity of the integral

5)

itself, However, the argument by Minguzzi and Streater

suffices to establish the analyticity of the integral.

iii) m+ < W, { mi2 ft, and W, > m+2,[/u (or W, W, interchanged)

In this case, our argument is exactly the same as that for ii),
namely the worst case occurs when W 1= m+}k», W2 —» o0 and

S = ’,A:Z'", - where z 1 and 2, take their minimum values, respectively.
However, unfortunately putting these values into the inequality (42)

which turns out to be true only if

AN W?Mw,mw =

which is nothing but the value obtained by Lehmann, So long as we
are concerned with the proof of dispersion relations only, our result
up to this point is not different from that by Lehmann, however,

Lehmann's is much more fruitful than ours in the following respect.
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In fact, we cannot show the analyticity of A(W,A,G ) in the
Lehmann ellipse, since W1 and W2 extend to infinity. This

fact is not at all unreasonable, since we have lost some information
by introducing the dispersion relation (17) for the intermediate
transitions. This is due to the fact that the Lehmann ellipse in
the cos 6 plane shrinks down around the physical region at high
energies, for instance in our case z, — 1 for W2 = o0, As it
was emphasized by Mandelstam, so long as one is employing the
ordinary dispersion felation in W variable in connection with

unitarity, this situation appears always there.

" However, in our representation of alw, LE, g) in the elastic
region, we have a new information which was absent in Lehmann's, While in
Lehmann's representation W dependence of A(W,lgg,(;) was hidden in the
weight function, in ours we have a W dependence explicitly, although at the
cost of the new variables W, and W2 which are clearly hidden in the weight

1
functions., In addition to it, for the proof of dispersion relation (1) for

§ = }1,2, it is necessary and sufficient to show that the integral itself

(’m*H-f.A)z'
) i s i / P
i === dw T - N 2 2 2 /:* W,A
T(W’ A,§) 7‘f 4 (W'LwlL'e i Warw -2m=26—-4A ) R §>
(mt )"

is analytic in 2, though A(W',A,C) might not necessarily be analytic

for some values of W', As it will be shown in the next section, by exploring
these two facts, the difficulty described above can be avoided at least for
the proof of ordinary dispersion relations, though not for the analyticity

in the cos © plane.
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VII. Analyticity of dispersion integral in 27

"We now turn baék to the very starting point of the whole discussion.

Confining ourselves to the regibn
AT <eTnt —¢ |
| ¢ (50)

- £ s arbitrary but fixed small positive-number)

we consider the dispersion integral T1(W,£5,§;) given above, In the usual

proof of dispersion relation, we start with the definition

Twe'g) = fd“x beple s Uh thax b BOn<p, |[(%), JC0NR7 (@)

which is analytic in D given by

D= twg o] > hfasa]| @

(which is R, in Ref. 1)), where

2 S 2
W-m-€-24 (45)
2Nm 4+ A '

w =

Then we show that the dispersion integral given by the r.h.s, of (1) is

analytic in a finite strip Z, and the physical mass value §::ft2is on the
boundary of the intcrsection of D and Z. As it is well known, it is possible
for Re w :713?4-}(% but is not the case othervise, In terms of the c.m.s.
energy, the physical mass value can be reached through D(\Z only if

W W, = (T + T )

(46)
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For the range of integration in T1(W,Lfi fg) is well below this onset for

the physical region, so long as 3 Hf 411132 4:'4.7'rb2, the denominator

2 .2 . . . . .
W' =W~ does not vanish, Besides, the crossing denominator never vanishes for

N

Although we have an eXplicif W' dependence of A(W',éﬁ?, g) given
by (37), we are unable to carry out the integration in W' explicitly., There-
fore, in order to obtain an analytic property of T1(W; sz,g ) in g; , we
shall apply the method developed by Poli<inghorne et al,, which has been
intensively used in the perturbation theory, to study the analyticity without
carrying out the integrations involved. As regarcs our cise under consideration

9)

we shall apply the following lemma given by Polkingnorne .

Lemma: the singularities of the function

- /
_ <ol s (s, t)
s 4) = |ds f{__‘_f_f__—f_.‘—-——~ + ssed tex
f;( ) j S crossed term, (47)

(the subscript 2 denotes the two-particle term, end disc. stand for the

discontinuity across the normal threshold branch cut) are given by:

i) a pinch between a singularity of disc. £ and the pole of

1/(s—s').
ii) a singularity of disc. £ at one of the cnd points of integration.
iii) a pinch between two coincident singularities of disc. f.

To be specific in our case, the range of intcgration runs from
m+ K to w2, and disc, fz(s',t) is nothing else but the absorptive part

A(W',Lﬁz,g). First of all, a singularity of type i) is excluded, since the
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dispersion denominators do not vanish as discussed above. Now we proceed to

discuss the possibility of the singularity of type ii)s

ii)a at W' = mifh
I

For, at this point X(W', }LZ) = 0, we shall have to prove

rather
KA JKWE) 2 % K K0P ) (302 -Grm 1) (42a)

than (42)., It is easy to see that this inequality is indeed valid

for any value of W, and ' WZ’ since

1
s, = K ) p ) K'w,g)-24') =0
and
rose L KN (WMD) KW E) 2,2,
= { flwig uw)-fow, e,p )+ Y}~
o {flwa, e ) - Fwlsp )= Yo | <O

At this point it should be noted that for W, =5 Lo and €= f*‘z
the r.h.s. might approach to zero, since at § = I.A-2

{(Vh,g,fu)'%"\rz ""KYW;//A“) - KL(W;,/M']— }6,1“3(2"”&%
W, — (m-2p)
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However, it does not give rise to any trouble, because this expres-
sion tends to a non~vanishing finitée value, if the associlated

dispersion denominator (wf-w '2) is multiplied.

ii)b at W' = m2i
1

So long as the momentum transfer is restricted by
2 2 . .
ANE S N r. -, A(w ,Az, C’)) at this point is clearly
analytic in Z, as it was the very starting point of our discussion

(see Egs. (3) and (5)).

Finally, we now turn to the possibility of the singularity of
type iii). As it was discussed in the last section, the curve of

singularities of A(W! ,A,g) is given by
2 =2,2,.- \gi{z- , vor Nz} = (48)

Then 'the possible singularity in § of T1(W,Q2,§‘) might

appear only from the term

e mne
:ﬁ(W_.A,@):L ( dW“So\wf J dw ' gd_u.JoiuL «

)
L (\M*ﬂ)l (’M*l/r\ )“ ('w\«tlu)’
o , (49)
y Kiw) B, o, wow.) | 2 -2 2 WD
W (W Wi ), W (W S =€) VA () 7 -2 -\N@) )
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since the contributions from other renges of W1 and Wé were
shown to be analytic, as discussed in the last section. As it

is proved in the appendix, we have

e N\ (2w, 2w, Z, w0, for. N = 0}.(50)
W

which implies that g(z,z1,z2) "itself does not give any pinching
singularities in the W' plane, In other words, it weans that the
singularities in the W' plane is discormected from the real axis,
except for those singularities which move along the real axis as

S: increases along the real axis toward the phyéical mass value,
However, we have unfortunately the dispersion denominator
W$4W'2 which may venish in the reclevant interval and together

with /\ (z) = (0 can give rise to a coincidence singularity.

To investigote this point in detail, we now turn back to the
definition of g(z(W'z), z1(W'2), ZZ(W'Z)) (see Eq. (%6)). It
is obvious that for some negative values of §' we have ) z}<< 1.
From:this it follows that g(z(W'2), z1(W'2), zz(W‘Z)) is
analytic in the W'2 plane, at least around the elastic interval.
In addition to this, (Wz—W')(W'—W) does not vanish in the elastic
interval. Therefore, we are now entitled to move the contour of
integration in W’2 a bit upward (small but finite) off the’reél

2-i€r) (see Fig, 3). As to

axis to avoid the pole term (W?-W'
the pole term (Wf-W'2+ié-) we must deform the path of integration
correspondingly downward off the real axis. ‘Thus, we may now drop
i& and we have finally

e

¥ (o) - ,7% fdwadulf Pow,) (492)

Aw? Kw) 9(2,2,2.)
W' (W - )W -w) (- w Y
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Because now W1-W' = 0 is excluded, a possible coincidence

10)

singularity might anpear, only if

- (51)

A(2,2,2.) =0 and NGy =0 o C

however, it is excluded in virtue of (50), since g(z) is

analytic in W',

X W:H‘e
(mrpor 7 [z p)t

C.

Flg 3
Collecting all the results obtained above, we may now conclude that
T.(w. ¢ A), which was defined by (4) for g - AZ
is in fact analytic in 7, as well as Tz(w,A,‘; ), though we could not show

the analyticity of the absorptive part A(W!, z,\2,g) itself in Z. DNow

carrying out the analytic continuation of both sides of (1) with respect to §
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up to the physical mass S = ,,Lz , we can write down the following dispersion

relation

0o

- ‘ W - ‘ (w, )+
‘ (W,a J = T\ {W',& ) + 7 (O‘W (W’f_wlﬁce‘r W'Z‘H/V L~lm“——l§—‘f&> A ( a) )

+ single nucleon terms.

where T 1(W,[_\) denotes only symbolically the analytic continuation of
T1(W,A, g) along Z to §= ‘Q,LZ, while we could not give sense to
A(wr, 4, 9 for mt o< < omt2 =

Finally, we come to the gquestion of the physical interpretation of the
contribution from the unphysical region. Evidently, the contribution from
W' > mi2p can be well ¢stablished in terms of the partial wave expansion and
the analytic continuation in 2 >=' cos © to its relevant unphysical value,
since the large Lehmann ellipse guarantees both convergence and analyticity in
cos © of this expansion. However, as to the contribution from the elastic
region it cennct be intermreted in that 2y, in the case 3 }/,2 L 02 < 4.7 /LZ.
But in principle, we can give physical meaning to this in the following manner.
In our discussions made above, we have been interested in the analyticity in
C variable, Now instead of q we consider the analytlclty of T (W A §)
as a function of A (or cos ), fixing at §= },g Our whole dis-
cussion so far for § varlable can be stralffhtforwardly translated to the
1(W JANN {A ) is at least analytic
in A plane in the neighbourhood around the interval 3 y\ < /A L 4.7 L(,

analytlclt:y in AZ. Thus, we find that

Therefore, we are ble, in principle, to give physical meaning to T1(K1,,L\) for these
values of the momentum transfer, by performing analytic continuation in AN

il : .
from the point AZ 3 HL, where T1(W,A) is well defined as described

above,
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So far we have treated only the pion-nucleon scattering, but the
present method can be straightforwardly applied to the pion-hyperon scatterings,
where the most stringent restrictions on the momentum transfer appear in the
elastic region 11). As to the kaon-nucleon scattering, the very trouble which
prevents us to derive the dispersion relation comes also from the two-narticle
intermediate states, i.c., /\ + 7L and Zi+ 70 states, however, in this case

one can show that Zi =1 will not be excluded and therefore the present

approach breaks down.
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In this appendix we shall prove that

2 /\(z,(w'v,?.(w“),’Z»L(w“,‘u) % O (a0)
W

under the condition

- ‘L . ,2 . (w{]ﬂ) —_ O
/\ (Z(w?), 2w’ . % ) (42)

(For simplicity, we shall drop hereaftecr the prime over W,) 1In virtue of (42),

it is clear that

A C32a) 28 ¢ 22 (2-2) 2(1-7) 2R
. 2(2 &!2 ) DW:}"‘ awz 3 2

W ow’ (43)
Now by making use of the fact
e =2 g (meg)y
AN 4K W) w
R 2,1t 2. (e - ) (m = J)
——(2.2&):w___!.___—-—-(.~.t 2y -
oW 4 K(w.g) KW, p) 4
S)K(W. p W (44)

!,.(.'llll.ujl l—-''("‘V"'“':‘;t,‘g")‘1
Loz 2 [ w? — W
G (2L ———— T N ,
K(w,/ﬁ Kiw . g) )~

and (AZ), we obtain
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{m=g)

2 -2 { T W T orZa .
— = £ -2, 1 - -+ 2
W 2 (2 ) Ik 3w, §) K (w, g ) K(W, 1)
. o AmmS) [w=pM)?
Ww* & K (W.%) K “(w, p*)

(45)

We now proceed to prove the expression in the curly bracket which

is in fact positive definite:

1) if z1+22 :7 0

From the condition z = 2,25~ Jz{-1 z2-1 < 0, one can

easily obtain

- . (2
B d 2 2 0. (16)

Besides, u%(1+z) itself is positive, therefore, we have

. (m-g)’ ” BT
(2-2,7,- 122 Wy, _wxm LT wE
l. : < KZ(LV‘Q) ) : . 2z I,< l(w’ //{7,) > 0

and because z1+z2 > 0, the expression in the curly bracket

is positive.
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3.

z1+z2 0.

For ¢ E-/A?, clearly

|- (m‘iqg)} | gm"ngm?—/x‘)
W - w ¢

—i .5 <
Furthermore,

(.Ml' )(wl" }41) ? 1,0
| - moSim Z f _ ? {m'-h)

TP Gt bk iAW
Kwg)kw p) =\ Kiws) K (w, W

This inequality can be proved as follows: to prove (AB), it

suffices to show

[ w s (we =t p ')+ K (=60 | -

— 9 KW, ¢ Kw, pt (W o) W) S0 (a3e)

In order to find its minimum value, we differentiate with respect

to §: y le€ay

o (A80) = - WImmg gy ontopey sy KO,

K(w.®

x (WY =(m =g Y0P = w4

t 2 K(w pt )f Kiw. pr)fwm'-¢ ) — K(ng)('m*_[w)}
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The sécond bracket also

Clearly, the first bracket is negative.

turns out to be negative, since

2w potng ) = KW ) (= )

0%
—_ =( im' =€) __Vlj_.”_“_;_:. (- ,‘)L
2 K (w, fx | + S H

3 —

- iig\f_l L“Y\‘ (V\/“t W' /M}')"— é&»\/\/l-'w\’ ‘{ (-1“”“ ﬁ) +
4o Wrm - g M m- }47')1}

{ CZmL-r;/M-—WL)(jmi.,g) +. (W—/A’)Lﬁ ;7 0,

[

1
2

for W & m42 2

and
Mord KCtw per Jom* = )" = K (w € ym™ u)' | = 0
at- g‘::/tp'

Further, we have
(49)

-2, <0, Tir2aco . ~0+2) D0

thus by making use of (A7) anc (AS), the curly bracket in (A5)
turns out to be

.{.J - ‘ié of (45) ;>

. \‘ | | (n” 5 3m- 4)
>{(é~2sil)+z,+£l~(;+z)}«h__,_j.g__..,_
Klw,s)Klw, pr)

| i o € ')(m” .41.\
=-(-2)(-2.) _ A
Kw,g ) K (w, j)

(85)
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39
As it was proven that z, < =1 and Z, j} 1, the expression
(A52) is evidently positive definite, Besides, the factor

does not vanish, hence we conclude that (A1) is valid.



N
~

3)
4)

5)

6)

7)

9)

10)

11)
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