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ABSTRACT

Some rigorous analytic properties of the kaon-pion
scattering amplitude as a function of energy and momentum
transfer are proved, following the method of Mandelstam.
The partial wave amplitudes turn out to be analytic in the
neighbourhood of the elastic cut and the analytic continu-~

ation into the second Riemann sheet is easily carried out.

3519/TH. 259
19 March 1962



In this paper we derive some analytic properties of the kaon-pion

scattering amplitude as a function of energy and momentum transfer in the

1)

for the scattering of the lightest equal mass particles. Though the kaon-pion

axiomatic formulation by making use of the method developed by Mandelstam

scattering process is rather far from being of immediate physical interest,
except for its appearance as an intermediate trahsition in some interesting
processes 2 , at least from a theoretical viewpoint it is etill worthwhile to
consider a possible extension of the Mandelstam proceduré to unequal mass

scattering.

In fact, KK — U7 is the only annihilation process, for which ordinary
dispersion relation can be proved in the framework of the axiomatic field theory.
First of all, we give the proof of the ordinary dispersion relations for
KT = KTt and KK = JUTC processes and determine the Lehmann ellipses 3)
associated with each of the three chammels. Then, a function 9’(s,t) is
constructed in terms of the Bergmann-ieil integrals which involve the absorpfive
parts of the transition amplitudes analytically continued to complex values of
momentum transfer associated with each channel which are contained in the large
Lehmann ellipse in an exactly same manner as in Ref.1). The function so defined
can be shown to be analytic in a domain of,the form I(s-so)t(u-uoﬂ<\a, except
for the cuts along the real axis in each variable starting from the corresponding
normal threshold. Using the proved dispersion relations in s and t channels,
the function gws,t) turns out to be identical with the scattering amplitude

T(s,t) in the physical regions of each chamnel, having chosen appropriate

subtraction terms,

Extension of the analyticity domain through the unitarity is impossible
in our case until we could analyse production processes,. since the most stringent
restriction on the validity of the dispersion relation comes ffom the inelastic
region, However, the partial wave amplitudes turn out to be analytic in the
neighbourhood of the elastic cut, and the analytic continuation into the second

Riemann sheet is easily carried out.
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1. Proof of dispersion relations and Lehmann ellipses

Let the four momenta of the incoming and outgoing kaons be k1 and ‘k2
respectively, while those of the plons be P, and Pye We neglect the spln
and 1sosp1n of the partlcles, since its 1nclus1on does not affect our analyticity

cons1derat10ns. As usual we introduce

S=(p+ A, T=(PoR), U= hok)

with
> 2 2 2 & 1 o 2
R L LY T R

As it is well known, s 1is square of total energy in c.m.s. for the chanidel

K1+’T — K +"/1‘2 and -t is the momentum transfer in this chanﬂel. For the

channel K1K - 7'1 T, % dis square of the total energy in c. m.s., Whlle

-s 1is the momentum transfer,

g) K,'+.‘77;,l - K2+ T'L2 _ (s—channel)

3)

According to Lehmann we can derive dispersion relation

provided that

3 |
0<*<qtimi)m+¥%%q;wé

(2)
for s)(m+ )2 where we used <O|J (0) In> =0 for p2<(m+2 )2

p o i K n ik
Unfortunately, the minimum value of the r.h.s. cannot be found algebraically,
but its lower bound turns out to be > 27 ,‘42. . At this point it should be noted
that the r.h.s. takes its minimum value in the interval m+2 K <s(m+3rk',
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3.

and for this reason use of the unitarity below the inelastic threshold does not
lead us to any extension of analyticity, until we have some means to

analyse the three-particle intermediate state.

Now the large Lehmann ellipse associated with this channel, in which

the corresponding absorptive part is regular, is given by

2 -
t = Zi{(ﬁ) - 7.16{56090( + v \/'751'((,(5) s v o (3)
Van J
with

Kis) = (Srmi=p)t 2
43

ys = 2 9(52 - [‘<IC$) . (4)

An

As long as the value of t is within the large Lehmann‘ellipse given by Ref, 3),
the absorptive part can be found by analytic continuation from the physical

region by using the partial wave expansion. As to the u-channel K1+7E2 - K2+71,
(2) and (3) turn out to ve also true, except for the interchange s &3 u due to

the crossing symmetry.

b) K1+K2 - 7I1+‘ﬂé

s being momentum transfer in this channel, dispersion

relation can be proved if

' - 2
0O < -5 < 2 (1,7()_ T “JI,A—?I‘ (12}“_?: ) + (Z:l’f ?1 )(5)

Lenndt [VIN s
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with
2 2 2 p - L'
X, = X omt g ‘Ié(:ngg ) xiz Lo é;_p.
e Lt o . (6)
:z,i« 4 - ) ?f = G T /"‘* .

Though we cannot find the exact minimum of the r.h.s. of (5), its lower bound

can be easily found as follows, First of all, we have

, . : »

L2 (7)
Mo Ly (£) = 177 pat A A

(From this it is obvious that dispersion relation cen be derived for

K+K = K+K process up to the momentum transfer 4A2< 4(7{\4—(&) f‘v.) Thus

we have

(nhos) ef (5) > 2«/(«*4«,;1 XY (Mo x5
+ 2 M (}X.ii:‘f%#‘zf 4 %ll'{‘ ?)z)

(8)

e

= 2 G [T+ @ T p — e

In the physical annihilation process the momentum transfer can never vanish
and we must show that the value given by (8) is well above the momentum transfer

at the physical threshold, i.e., at t=4m2.. It is in fact true, since

- =

T A8
-3 =m -4 = -3, at r =am”, (9)
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In the proof of dispersion relation we must also require that the absorptive
part for the crossing process (in this case s—channel) can be analytically
continued with respect to the external mass variable up to the physical mass
under the same restriction on the momentum transfer. As it was proved in a)
the absorptive part for the s-channel allows the required continuation, so long

as the momentum transfer is 27 P?’ which is well above =S,.

The large Lehmann ellipse for the absorptive part in this channel turns

out to be

S =9+ 4. -2 Ny T s

‘ wl k" [g'fz‘md - 2 ,?t "71 2; Ay X

- (10)
with

9= ot s g e

e

It should be mentioned at this point that the absorptive part in this chennel
can be found through partial wave expansion for any values of s in the
ellipse (10) only if t;>4m2. As to the interval 4/&2<2t <4m2, however, we
do not have direct means for its physical interpretation, though it is a

mathematically well defined quantity. At least for the elastic region, i.e.,

4 F2< t'<9’«?, it may be possible to give a certain physical meaning through

5)

the procedure Of Streater 7,

Summarizing this section, we have now

P o
A (Slzt) / /
_T; (s, )= ) 4[ ——%——“ o £+ u Jﬁ:iﬂ;j? ol w
n -5 ks M- u (112)
(mtp > thﬁ)*
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= : _ vo
- l A (s, z’('t(') ouw’ IR Hﬁ(sltj ’
I(S'“zj-i.f = “ ‘*xj = o7
. : CM"'/{ )\, o Ll‘/{)"
(11Dp)

with
A, t) ~ 2 <KEDTP)ImH»<n| K@) 7P

h

A, (s, t) 5,-2;; < K(&,)ﬂ‘(—P;)|%><h"k(ﬁz)}t(‘ﬁ’> 4(12.)

Rstst) ~ 2 < Kk K (-RInG] = p) TR

where we denoted the transition amplitudes by Ts(s,t) and Tt(s,t) for each
channel, Besides, Ai(s,t) (i=s Aor t) is analytic in the corresponding large
Lehmann ellipse given by (3) or (10), which will be denoted by ‘;is and JZ%,

respectively. The crossing symmetry reads in our case as

A, t)y= A.(s, ) = A_,-(u,'-c) (13)
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2. Construction of ¢ (s1,t)

Following Mandelstan 1) we introduce the function
o

o ‘o el o , .,
27t‘cg>(s,t)::Jd5 jdt’ 2((55 %})(Ht/ u u«:ltfo) A, (s, T
=5 {56, T (Ww,) - (5-5.)T (U-u,)}

(m+pe)

+ [ouw |at/ =(u/-ua)(5+8-T-%"-25.) A. (W, 2") (14)
(nyurt N qu’—'u){(s’-sp)t’(u’-uo)f(s¢sn)r(u-uo)J

23]

+ Jd t’
4p

ds/— =t/ (s+s’-u- ") Ry (57, 27)

(- ) (5508 (' -uy) = (5=3,) T (1)

)

where a will be chosen such that the region defined by

e = 4,1, w0 G50 T ewg| < a (15)

(uo =8, was introduced only to put the crossing symmetry s &> u into
evidence) lies always in the corresponding J: , if one of s, t and u 1is
real and bigger than the associated normal threshold, which is (m+ ’A)z for
gs= and u-channel and 4. }A% for t-channel, Furthermore, we require that for
some physical value of s, t or wu, m is contained even in the small

Lehmann ellipse associated with that channel.

Now we proceed to determine the maximum value of a. As we have
no longer the complete symmetry among s, t and u as in the case of equal

mass scattering, we shall again congider s- and t-channels separately.
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a) s—channel

B U —— ¢

For a fixed s;>(m+}i)2 the domain YL is characterized by

t — 9.%11-');5\__5_“0 + (lml'})-/‘bl—s—aoz o 16
P2 - \/ 4 ) tios, ( )
o« < A

and we require that Nt C:Jig From (3) we know that ;Cs intersects the real

axis of the t—plane at

r, = _{ L Ks) + 28 (m+p) u? }
~— S —(m-pl?
(17)
7-‘4,_ = 12% (my p) u3
| S ~(wm-p

It is then necessary that these points lie outside ?ﬁﬁé, namely

,lg(m.,.ﬁ)&a}.( (m‘:ﬂ\)z+ ua(mﬁd#g—uo } S a
S

i IR
(s=%.,) ﬁv 4 K(s)+ — S —(m-p)? (18a) ’

and
3
el R AR e LSRN P
# B al : (18pb)

For the equal mass case these two inequalities turn out to be identical,

however, it is not the case for the unequal mass case., But we have

S — LI, S (S-;m"_ 25

since

Mo =/Al‘W\r <0
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thus it suffices to consider (18b) only. Majorizing the product of the first two

factors by 128(m+ rL) }443, one gets immediately [gee (2_27

‘ . 3 .
O < Munll h s of (18b)) =125 (mrp ) -27 j (19)
~ 9500 //L‘ .

Now we proceed to show that under the condition (19) m is in fact
czntained in oz',i, i.e,, aots f\am'= 0. To this end, we must prove that
/see (3) ana (16)/

S 2am'2pv we )R
2

- (S—2m"->_rlu*+uo)l)) < Co
4 [S~5,

[(245emst + 20y gheg amd —2K'(s) +
(20)

O €« < 27 .

Should it not be the case, we would have

' N - L S=2 “’2‘ 2 <
(Z?smd + 2 175 —Kis) A — 2 Kot ’;‘ ff”"‘”)

(s-om’-2 kv w,\> _ Qe
4 T (21)

Then it would clearly imply that

Z

{ p\&(f L. S)S + {}M(I’LQ)S 7-: Gt

(S’_Su)a.. *

(22)

It is easy to see that the l.h.s. of (22) tales its minimum value at o = O.

But for & =0, (22) reads

. Soamo2 ey, \ —Imia 2
(2'35-1K’“/<)+ . /W) — Lz ophu) o
— 2 4 ~ s, ()

and it gives « contradiction to (19).
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b) t-channel

For a fixed real t2>4 ]‘—2, JTC is now given by

\ :
_ 2 2 )._' v, 8 —_ <
S = m;& ti\{(imﬁ»uw-t 2 Uy +% , la ] < &

2 (24)

z{c intersects the real axis in the s-plane at

t ks 1 L2 ‘
Sth_ =-1 w'-m-tﬁ by J(—‘;t—m‘+ ————-—»"—"—#Ié_ém" ) )(ffﬂl* _6_;_4-_}4.9') ¥ (25)

3

F Llerp
In order that M C I}t » we must then require that these points be lying

outside Y1} , namely

. l Sia =50 (am*a2ut = Sp - £ -t)] > 4, (26)

In virtue of the crossing symmetry s #9u either sign leads us to the same

inequality. As in the case of s-channel, we can ecasily find the lower bound

to the l.h.s, of this inequality, namely

,ﬂ ,‘, S . > M"/“" {1 J(%L;yﬁt«r'é(m.'.#)\/u;)(z%’i -/4"+é<f,u(")

. 1 s 27
+6‘+(M+/A)/A3‘;t—+(m"+/ﬁ)t—-uat}' (=)

. . t‘_ N (m 4+ ) gt v [
h«mrl\/(; M+fiélﬂi&)(%—f«+7/"’¢)
b 4lmig) 42 | £ o
T ey
EMW A G (et ) R Y AR éqrww/ﬁ-uot)
“Min (2nd term ) T 424G /vt“‘a
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It is also seen immediately as above that we have in fact éﬁ£~j JYL , under the

condition (27). Taking the smaller among (19) and (27) we obtain

Lowor 4ound Xo A = #5224 rus . (28)

It is clear from the definition of the domain 77 that it is included
in the small Lehmann ellipse associated with the corresponding channel, for
some physical value of s, t or u, For instance, take sufficiently large
value of s, then from t = a/(s—so)(u—uo), t becomes sufficiently small

to guarantee JY{, to be within the small Lehmann ellipse.

3, Analyticity of ¥ (s,t)

From the definition (14) it is evident that the singularities of
%Ws,t) occur if and only if any factor of the denominators vanishes, i.e.,
there is no singularity in‘7Tt , except for the réal cuts starting from the

corresponding normal threshold in each channel, namely
S >(m+ p) >4 + )2
//L s t /L“ y) udv(m //“)'

In particular, for t fixed at t =0, @?(S,O) is analytic in the
entire s-plane except for the real cut., It will also be the case with its
1]
finite derivative with respect to t, i.e., . é%h QF(S,t“==0). Furthermore,

the discontinuity across the real axis turns out to be

| 2t .
20 P (S""(/‘, = - S—E, 6 =0 :__2 _ . ‘v.h)
o 3o | Plimo tau) = 6 ) =2 0065 teg = 475 g

3519 Foe > Cn )



12,

"—% \ ) h n
e T{h \)(:f u t-0 —%(M“c.’ t:"u)% = %AAI.(M) t‘—-(.)) Ao ()'U U)

Ton  w > (w+ /A)l.

Thus we arrive at the dispersion relations

RO ) Lo /U,h)

(v.n ’
o1 [ Lo o1 (Al
=z <~ s bW -w ‘ (29a)
((M*/‘.)" \V"TIMI‘

if we suppress the subtractlon terms. Though the treatment of the subtractlon
terms is not trivial, the Mandelstam procedure can be stralghtfomardly translat-
ed into an~unequal mass case and we shall skip its discussion. Comparing (29a)

with (11a), we obtain
{v,n) —_ (0,n])
Cf (S;t.—:.()): ls (g'tgo)‘

As to the t-channel, ?(s t) is analytic in the entire t-plane except for the
real cut, since then }(s—s )t(u—u \ ¢ a is satisfied by any values of +t
‘at s =8  Therefore, Cj?(s,t) ‘and ;D—-»m(s t) satisfy the corresponding
dispersion relations. The discontinuity across the real t-axis now turns out

to be

, h ()\Jb)
T 5‘% {‘f(su,t«“e - ¢ (S, t-ue }“ As(so,_t)

j"” 1 Y4 mt

h o [n.o)
i Zw’{cf(’ht*‘é) - Cf (50, % ~0C) } ALh (Sa'/t)

ff"‘f t < (m-,,)‘gs

(i e

”i

“u > Cw+/uJ") .
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1%,

With it we proved the dispersion relations

P

(h l (n,0) . Y e

o) S ’ ’

(f U(Sa,t) = ‘7‘ M Mh' < _l__ A3 (Sl't)dt/'
- \'M”L\ ~r\' kf't (29b)
\h“*/’) q,,‘w

Comparing it with (11b) we have

(n, ) b, ov)
(f (s.,, £) = T'¢( (s., T).

Summarizing our results, there exists a function (_f (s,t) which is
analytic in 77{;, except for the real cuts starting from the normal thresholds

of each channel, and

S, 6= T, (s 1)
around t =0 and

Yl £) = T,s )

around S = so.

4, Analyticity of the partial wave

The partial wave amplitude T 0 (s) . is defined by

‘ |
T, (5 = -{Lo}z T(s,~25?sJ(/-z)) Pz(.z) (30)
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with v .
Z-:—o,,,?g) t:‘zﬁl ("'Mé’)} wu= (-—-M;- T-—),KQ(MMS)
Defining | , ' |
Cf (s) = L f a3z Cf(g t) P (
2 2 ) p 2 8)
we obtain

%gﬂt(su‘(—) = T,0s) . (31)

€& Sy

Since 8(3,17) is analytic in 1T except for the real cut, 32(3) turns
out to be analytic in the region defined by
— - mt’ ") 1 kN i ‘
m -—-{..S » ((s-s.,)((_.s_ﬁ_i —2K (1+ n®) +m __’At) 2 K(S) ("Mb)' <&}
(32)
(o<ce<n )
except for the above-mentioned cut and the well-known kinematic cuts 6), which

are given by

() (mip's 5 < 00

{ill] (m—/”)‘Z s > - (33)

Y

(;n;) 15‘3%)--/!—' )

We now proceed to show that the domain (27) includes the elastic

region, i.e., (m-l- t&)2<s <(m+2’/t)2. ‘Clearly, the point s = (m+ 'A,)Z is
included in Y] . Besides, '

2

4(3—5.,){@‘—%&3 . w‘,/ﬁ} K(s)
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15,

is monotonously increasing in s, since
P2 N NP
BS‘](S_SD)L(—S—‘E_*%-IA )(f >0

Therefore, it suffices now to prove

Gflm+2u )‘+m‘,/u‘H (.%)’4 m' KI(S-.MH-/«)\/i a .

Putting the physical mass value (m = B.S}L), we have

2.4 s f:,loqifj: < Q.

With it we proved that the neighbourhood of the elastic region is included in
'7?i, and that ﬁ?v(s) is in fact analytic around the interval
(m+ F)Zg s s.(m+2Po, )2,

It is now straightforward to use this analyticity together with the
unitarity below the production threshold to carry out the analytic continuation
of T1(s) to the second Riemann sheet around the zero kinetic energy which was

6)

Zimmermann we introduce the two-particle irreducible amplitude

performed by Zimmermann for equal mass particle scattering, Following

Py = Tats) (54)
|+ (-711(5) CJO'E(S)

where JP(S) J(s—(me ) (s— m+r~) stands for that branch which is
analytic in the complex s-plane with the cuts sf>(m+}&) ’ s<:(m—r¢) .
is obtained by continuing 53(3) from the upper side of the right hand cut.
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16.

Then by making use of the unitarity

—_ TLe( — 3 R N
Jon Ty 51 = qZSJ | To0] fon Grepd’<s <lamp)’(35)

it turns out that Cy ] s) is analytic in )’R and the right hand cut actually
starts at the inelastic threshold s = (m+2 Vv) , except for poss1ble existence
of poles. Now the analytic properties of the partlal wave amplitude Cj) 2 (s)
can be obtained by solving (34) with respect to Cf A (s)

C?}'L(s) = Fﬂ.“’ . LR P (s ) Gots)
43 (36)
with
“
F'E(S) = Cff (S) .
' 7‘1 L : 2 :
I+ (6:‘ els) %"(5) - (37)v
and
n +
G,(s) = g ()
i : o ’ (38)
| + 7L > A s

From this expression it is clear that_ ch(s) has a twofold bia.nch point at
s = (m+ f‘-)z and can be continued to everywhere in the domain TYY on the
Riemann surface of f(s) with cut , SZ(HHQ ‘u)z, except for poles. Denoting
the values of sz(s) on the second sheet by the index 2

N S OTCP(s) '
Cf; (s) = | Q(\)‘ - '—_Ti—§~£—- ék((g) (39)
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By taking the limit of (36) we obtain

ReTels) = Hls)
fox (ot p1'€ s é(m+%ﬂf (40)

— pls)
Im Tots) = < GG
and

. Q) - ' *
\ . - 7‘[? —
/@VM’\ Cfﬁ (s +i'¢) = l[e(g)“ —f———-'('é‘j CTE(g) = ,e (é]

G20 é\"s ' (41)

Thus we are able to continue the unitarity condition (35) analytically into the

domain jﬁ%; of the complex s-plane to obtain

(o) ~‘—f’;’(s) = “T:S(S) T, 050 ()VZ'CS) ) (42)

Though the treatment of cach partial wave given above is very simple,
the determination of the Lehmann ellipse in the cos e-plane, in which the partial
wave expansion converges, is rather involved and depends very much on the
value a, for which we could not algebraically find the maximum possible

value,

The author is grateful to Professor L, Van Hove for his kind

hospitality at the Theory Division of CERN,
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