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ABSTRACT

For a system of weakly repelling bosons, a theory of the
elementary line vortex excitations is developed. The vortex
state is characterised by the presence of a finite fraction of
the particles in a single particle state of integer angular
momentum. The radial dependence of the highly occupied state
follows from a self consistent field equation. The radial
function and the associated particle density are essentially
constant everywhere except inside a core, where they drop to
ZEero. The core size is the de Broglie wavelength associated
with the mean interaction energy per particle. The expectation
value of the velocity has the radial dependence of a classical
vortex. In this Hartree approximation the vorticity is zero
everywhere except on the vortex line. When the description of
the state is refined to include the zero point oscillations of
the phonon field, the vorticity is spread out over the core
These results confirm in all essentials the intuitive arguments
of Onsager and Feynman. The phonons moving perpendicular to the
vortex line are coherent excitations of equal and opposite
angular momentum relative to the substratum of moving particles
that constitute the vortex. The vortex motion resolves the
degeneracy of the Bogolyubov phonons with respect +o the
azimuthal quantum number.
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1. Introduction.

The idea that liquid helium permits macroscoﬁic vortex type motions, as
does an ordinary-liquid, has played a key role in suggesting and interpreting a
large number of recent ekperiments; The experiments of Vinen ! provide convincing
evidence for the existence of free vortex lines with a circulation quantized in
units of g, Superpgied on a fieldzgf vortex motions is the general phonon field.
The idea of Onsager and Feynman ~7, that circulation is quantized, meets the
objection that if vortex excitations of arbitrary circulation and energy ‘
were perwitted,' there would be no ‘superfluidity., On +t:e other hand
if there were only phonon type excitations, it follows from Landau's well known
argument based on Galilean invariance, that the critical flow velocity would be
much higher than is observed experimentally. With the assumption of quantized
vortex lines and rings a qualitative explanation of the low critical velocity
becomes possible. The same is true of the behaviour of rotating helium and of

many other phenomena.

The description of a vortex quantum mechanically has a number of puzzling
aspects. Arguments, pro and con the existence of vorticity have been made. None
have been precise enough to be universally convincing. Against the existence pf
vbrtioity one can argue as follows. In the wave function g?(x1...x ) =R e‘ég »
S plays the role of a velocity potential when the Schroedinger equation is written
in hydrodynamic form. The existence of a potential seems to imply that there can
be no vorticity. This has been one objection to attempts to relate macroscopic
continuum quantum hydrodynamics with vortex motions to the properties of liquid
helium. But it has not been shown, with reasonable definitions of the velocity
and vorticity, that the vorticity is everywhere zero. For example, if we define

the density as

A "
=N T X T - D
(X)) = [ P°F T 8(X-X ) d e
L3y
the velocity,
—> _;, - f | ‘I- ,\/ — X 7 RS J— -~ (\ -3} —~7 ?__
’U—()‘)’".""‘*:’ "*":”’-2 f'f [5(’“)(",)2 + < S(x=x ) (Ldr
7’7()() M 2, ‘ DXe DX J
one would have to show that the vorticity, curl .%(g), is zero. At best one can
make it plausible that if S is slowly varying, and R not very different from

the ground state in certain spatial regions, the vorticity is zero
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On the other hand, there is the more convincing reasoning of Ohséger éﬁd
Feynman, which indicates that there may be vorticity in concentrated regions.
We will try to paraphrase their argument. One may start by considering the flow
in a multiply connected region, for example, between concentric cylinders.
Corresponding to a given state, say the ground state, there should be other states
- in which 8§ . differs by /J-géjlﬁd§; » Where 4+ is an integer. The new
motions are those in which each particle has S units of angular momentum,
i.e. the system has a total angular momentum N7i#(. Without vorticity anywhere,
there is nevertheless a circulation. When the inner radius, P ’ of the region
is made small, if it is assumed that the real part of the wave function is still
essentially the ground state function, the expectation value of the azimuthal
velocity should be proportional to %, énd the vorticity still essentially zero.
But the situation becomes unclear as £ shrinks to atomic dimensions. An ideal
classical line vortex has a vorticity zero everywhere, except on the singular
vortex line; and has a characteristic 1/f> value of the velocity. Quantum
mechanically, the 1/’p behaviour of the velocity can persist as © - O only
if the real part of the wave function drops essentially to zero on the vortex line.
Otherwise the kinetic energy would become infinite. But there must be limitations
on the definition of the position of the singular line implied by the uncertainty
principle. So, one expects a core in which the density will become small but not
necessarily zero, and in which the velocity will be finite. The vorticity should
be spread out over the core and should drop continuously and rapidly to zero, as
one moves out. That these things happen has not been shown in a detailed theoretical

treatment.

Starting from the assumption that thére exist such macroscopic excitations
with a core of atomic dimensions and with a quantised circulation, but otherwise
behaving like a classical vortex, Feynman 5) interpreted a large number of
phenomena occurring in helium. This point of view was extended and applied with

1)

great success by Hall and Vinen and others. In spite of the fundamental impor-
tance of these physical ideas, both practically and conceptually, very little work
" has been done to relate the ideas to basic quantum mechanics. Instead attention

has been concentrated recently on how the phonon type excitations, which are
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relatively well understood as a result of the work of Landau, Bogolyubov and
Feynman, follow from the many body Hamiltonian. The purpose of the present paper is
is to construct a theory of the structure of the simple line vortex, and of the
superposed phonon type excitations.when a vortex is present. We shall do this

for the case of weakly repelling bosons (or for a dilute gas of hard spheres) in
the quantised field description of the many body problem. In this limit a
systematic theory is constructed which follows closely, and is essentially an

application of the work of references 4?) and 40)

5)

Bogolyubov's fundamental paper ~’. The results agree in all essentials with the

. It is close in spirit to

ideas of Feynman and Onsager.

The main results are already apparent in the Hartree approximation. That
is to say, the possibility of describing a vortex motion in a Bose fluid is
cohtained in this approximation. Each particle is in the same single particle
state with angular momentum 7«  about the =z axis. The single particle state
is a eolution f}i(P )ei}r of a self consistent field (or semiclassical self
interacting field -— ref. 4a)) equation. It has the remarkable property that the
density 'ffL(P )’2 is substantially constant at distances greater than a
Length a. Near the vortex core the density tends to zero like (§)2fb. In the
gemiclassical approximation the expectation value of the azimuthal velocity is
strictly proportional to 1/F , Jjust as for a classical elementary vortex. The

core energy per unit length of vortex line is finite. The radius of the core is

12

given very simply as the de Broglie wavelength a = where B is the wean inter—

action energy per particle anV(X)dBX. For a gas of dilute hard spheres,
described by a pseudopotential, this is 5T X where . o  is the

V7
sphere radius and n is the density. These results are obtained in section 2

from an exact solution of the semiclassical field equation. The connection of

such a solution with a Hartree wave function is discussed in ref. 43).

In section 3 we consider the small oscillations of the semiclassical field
about the exact solution, i.e. the phonon spectrum in the presence of a vortex.
The phonons are described as coherent excitations of pairs of particles of equal
and opposite angular momentum relative to the Hartree state of angular momentum
Nppm. Far from the cortex core, where the fluid is har%ly turning at all, the
5

phonons go over to the usual excitations of Bogolyubov The vortex motion
removes the degeneracy of the Bogolyubov spectrum with respect to the azimuthal
quantum number.
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In section 4 the classical considerations are put in a fully quantum
mechanical form. One result is the lowering of the self consistent field estimate
of the energy of a vortex line because of the shift in zero point cnergy of the
phonons provided by the normal mode analysis. In addition, consideration of the
form of the wave function of a line vortex shows that the zero point motions. of
the oscillations smear out the density pattern of the Hartree field, yielding a
small finite value at the vortex line. At the same time the expectation value
of the velocity drops to a finite value, (in fact to zero in our approximation),
at the vortex line. There is now a definite finite vorticity, differing from zero

mainly in the core.

The systematic quantum theory has been obtained by first studying in some
detail the associated semi classical field theory. Notably, we use special
solutions of the semi classical theory to suggest an appropriate single particle
basis, in terms of which the quentised field is cxpanded. We use the small
oscillation analysis of the classical field to suggest a suitable quasiparticle
transformation. This pattern of analysis can be cxtended to study more general
types of vortex excitations. In order to obtain insight into the reason for the
success of the hydrodynamic arguments of Feynman, we transcribe the semi classical
theory into hydrodynamic form in section 5. The main differences from the usual
cquations of compressible flow arc the nonlocal pressurc-density functional

relation, and a quantum mechanical pressure term. The latter is responsible for

‘the vortex core structurc. Provided the corcs arc well separated, complicated

solutions of the equations can be obtainced in the same way as in usual hydro-
dynamic thecory. Each pattern of flow rcpresents a wave packet of macroscopic
duration. This opens the way to a consideration of gencral hydrodynamic flows
of a system of bosons, on a basis which has a clear and definite quantum counter-

part.



9745

4a)

2. _Semi classical theory

Consider the boson fluid governed by the Hamiltonian

H= B (gur b a1 (4700 &G VIR ) (2 () 7 !
;’Vit ' (21>

The equation of motion of the field v is

=IO GO) JVIx=xpl1e GO Lx (2.2)

2.7

and will be studied as a classical field equé‘tion, of the self consistent field

type, in this section.

Let us look for special exact solutions of the equations of motion
possessing cylindrical symmetry. We put ' ‘

PNV -

o - ¢
}L//(;") = /;‘(/o) 64‘/‘ € % (2.3)

where p, 5 , z are the cylindrical coordinates. The 2z component of the field

angular momentum associated with such a solution is,

S ES ——.9_:_’”\#)%% = pp Sl 4

But the total number of partloles is f\# «//d fﬂ d”x. Thus the total
angular momentum is N#H M~ , 1.e. 72/“ per tarticle. In addition the local
angular momentum density is constant in time and equal to If?(ﬁ )7:/4 The
component of the velocity of the field at a given space point may be defined as

vy = L Efytiay - L 2% %f

Yt Lo P2 £ oF

and 1s equal to 1%4 . It exhibits the characteristic radial dependence of the flow
pattern of a classical line vortex. We shall see that in contrast to the usual in-
compressible (or even oompressible) fluid the density.. \/J+\P = (f(P )l2 tends
to zero as £ - 0 (at the vortex line). However, as L > ® the density
tend? %o a constant as is the case for the usual vortex. The vorticity w,= (curl v 2
P IF

=% ( PVy) = 0- everywhere except at the singular line. But the circulation
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=Jvl9,(d :9}>) =/AT/%1# O, so that we may write vy = -PLTZF_@ . The radial

function f( P) must satisfy the equation

£f = : 4,,0( d,f) ~ A2 ) ple) ) vt U/,ﬂp’)/(2 o)

K

Since

Virxxy = I/(\//(Z‘Z')Z*ﬁz*P’L~2p/0’um(}—zﬂ"I)

is invariant to the rotation -%— ﬂud ) S5 S #o , the assumed separation

of variables is indeed consistent.

To examine the behaviour of the function f( P ), we consider first for

- =2 o -
simplicity the case of a short range potential, in fact v( /x-xt/)=V g‘(}%—x')
v 6)

We have in mind, more precisely, a pseudopotential . At this stage of the

theory it can be treated as a 5\ function. Then

2 ‘ (2.5)
Z:__f - z; // 174 /O;;"f;) \/«/—2_2)% 74_[/%/%(/0)/2_ |

Znrg Ay ~
with

f/f(,o}/lﬁ(jz =N
1;2

(For the s-wave pseudopotential V = 8/ N where o 1is the radius of the

hard spheres) .

f(/O) may be taken as real. For small L ., the centrifugal force term

dominates and

(/o) —_ e as p —> 0 (2.6)
¥ P (Vg P ) -

As /D —> o
f</o ) —%fo = constant ' (2.7)

We must have B =V £°. The last remaining constant, ’fi, is fixed by the

normalisation condition ﬂ f%dBX = N. This has a small finite contribution from



the core of the vortex as N —= w, {2 -5 o. In this 1imit

L = M
7] L TR*
where L 1is the extent of the system in the =z direction and R is the radius

of the ecylinder of "quantisation". Thus fi is the mean number density. The
behaviour of ' f as L - o is quite remarkable. It is brought about by the
non-linear term V f {f|2, i.e. the self consistent field. It is physically
clear that the repulsive forces should force the system to uniform density almost

everywhere.

The energy of the fluid is obtained by substituting the solution f'u ( f))

in H

H '-’7;‘ JK(F){F dF(P”ff‘ ) //‘ }L/,q/f)d »
() V*‘x’)@é%'})

For the vortex free case (/A —O) the lowest state is fo = f = const., with
an energy H = -25_- fggV(S )d3 . When a vortex is present (/V #O fﬂ(,ﬁ ) 741’0

5 (2.8)

everyvhere and there is a finite correction to the potential energy per unit
longth of the vortex, arising from the core. The behaviour of the kinetic energy
is, however, morec important. If the kinetic energy is evaluated with ff4 P) 0
everyvhere, the result is divergent, as £ —» O. However, the actual f/u (/@) — 0O,
as P —=>» 0, so that the density of fluid tends to zero as the velocity tends to

00, in such a way that the kinetic energy per unit length of the vortex core is

finite. The region outside the core (/9 > a) contributes a kinetic energy

R ,2Z ‘ 2 2 , -
ZL./“ f f.@ pdp.aml = B A /’o ond f/nﬁ
20 P’ <M, “
= M/’Nfo 4{)//}_@ (2/7'1_)
— “

J/TT £

i.e., the charactcristic logarithmic dependence on the outer radius of thé vortex.
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For a more general, but still essentially short range potential, f(f’)

still tends to a constant fO with

£ vis) 43 (2.9

The behaviour for P —> O is again the same as for a ES' function potential,

and is determined entirely by the centrifugal potential.

It is of course not easy to find exact solutions of the self consistent
ficld equation for f‘ﬂ(P ). However, it is casy to find an accurate cstimate
of the size of the vortex core. We use our knowledge of the exact behaviour at

small and large distances and assume that
fﬂ(p) = /)/ﬂ(l/zwt , p<a
= Z‘éa > P Za
A is fixed by the continuity requirement at o = a,
=f = 2.1
a1/ 4,022 (2.11)
The continuity of the radial derivatives of f reguires

dfu, fum |
(= p/ =0 . (2.12)
ij He P /rEx _

Whis fixes the core size ay  in terms of the position of the first zero of déU‘

(2.10)

We have . 41P
M= a,= A (1 57)
Vart &
/4:2 Qz;‘ D (1-97)

M (cm;e Ct/,\ z ) (/u+ 26T pm 73)

For M =1 the core size is of the order of the de Broglle wavelength associated

irith the mean encrgy of interaction per particle =V fo . For a dilute gau of

/3 f

2
hard spheres of radius &« , mass M, V = 8rrjﬁ and we have a' = ( )

i.e. : the vortex radius }Q larger than the hard sphere radius by the
3/2
factor ‘% (partlole sepa?atlon)
sphere radius
the vortex would have a size about equal to the interparticle spacing. But we

This indicates that in a more dense gas,

cannot be surc for thc zero point motions of the phonons are as important as the

self consistent field.
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The energy associated with this approximate solution may be obtained
readily. We define the pure numbers

= ‘ S ds r ., 1
C/A {:—)————g—/—:———'—‘ ) ‘22"‘: ‘f‘) J/u S“a(S
745 (3p) ' # (5. ) (2.13)
2, ;/" 7
Cuz S [ 1= o504, 5) ]
2 T
where S/,. are the lé:)otsﬂ81 = (.59), 82 = (.97), Then the normalisation
of ff2d3x =N yields
2 2 2 Z
ﬂ:fo/ﬁcﬂqf—ﬁ-aj o (2.14)
2l - 52
o~ 2
The benergy is .

2 ﬁ
2rrL =/ ﬁ( )+Vf (= a)+@;4 o (2.15)

In addition to the potential energy of the quiescent fluid and the logarithmic

vortex cnergy there is the finite correction (ass R => ®) per unit length of
the vortex core.

If we write 1n]§ = ln% - lna, we can make the corrections
vanish by taking
Cpu+ Dp =L =& & @
+ o , — Lk
Fl 7 b ’ e
Fhen b is a "pscudo" radius of the vortex core
We might improve the above estimates by takinga more rofined trial function
f(}) ) and using the variation principle for the cnergy with f subject to
ff 2d3x = N. But the results differ from the above in only unimportant ways
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10.

3., Small oscillations of the fluid about a vortex motion.

We have shown that there is an exact solution of the classical equations of
motion involving circulation. It differs from a hydrodynamic vortex in that the
structure of the core is fully determined, and the density goes to zero at the

gingular vortex line.

In the classical theory of the wave field, the next step is to examine the

small oscillations of the system about the exact solution. We put
_LEf /M /419’ ) ]

and linearize the equations of motion. One finds for a ép function potential
Lm/,_—z T + (VIf(p)°~£) +}]// (,oz e‘/
{/g—-//q (p* e CP } (3-2)

together with the complex conjugate equation

It corresponds to the Hamiltonian ,
) EE ,ZL/S
Hy=~2" Je" v cw“‘““/ff(”/‘f‘”e CW)’ WL
2
PV [R) ot 2R (5.3)

6%‘9 + Tt “’3”

Under the canonical transformation ¢ = ¢ € , g T F € this

Hamiltonian goes over to
Jacp (‘7 + ¢_4g ’JP f’ /)ﬁP 4
C Y[ gElengr)iat + VIR

which is positive definite., The same argument holds for more general positive

= =
interactions V(| x-y!).

To analyse the normal mode spectrum, we define a complete set of orthonormal

functions as the eigenfunctions of the linear operator

A A A T (3.4)

<M
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We shall continue to work with the ) function, in spite of the fact that one
must use a pueudopotentlal to avoid a divergent total zero p01nt energy from" the

shifted normal modes. The spectrum itself is quite definite

We write
# - .;’//‘ - .2) *
L %/g_)m = LC’" 7 f:)k /( (‘PK/(,\/ oo (3'5>
21
where
_ / ka Vs }"r/
(P/g.dim - e 6 yo_ (/r)
V2me o

X
fgc{‘m (p)g;fjm(p),o dp = S b

The superscript A4 is to emphasize that the set of functions depends on the
state of vortex excitation. The eigenvalues Eé: are independent of m because
of the cylindrical symmetry of the potential V{f # (p) 2. Ve will work with
stahdihé waves. The functions %:tm(P_) can be taken to be real and defined in

a large cylindrical region, with the boundary: conditions
G (P 7 R) = (5.7)

We note that

M p _
?0//4 V—— j? 40) £ =&
where we write @ =0 for the lowest possible value of G~ . We also have
/-4 /A ‘ x l JA
- , M -
?0_,7"7 jo‘/ - 3 LPI<:57‘: - CF“N. -

Let us now expand
;2\ CZﬁ(/G} »7 cf”(,ov'nﬂ

# (3.8)
2 Q 7’)7 90/\/ (—)"’) Z a_j;("o-/_.m (fklo",m

Then equation (3ﬁ2) is equivalent to
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12.

b2 = }a_ =
{_% —(£S ¢+7sk) K, e, m

Z{F’(WM/‘T/M) G o’ mv‘*/‘ﬂ/vh“/"" DZAY C‘-Ko LM m]

o/

(3.9)

where

-
Flricmla'm) 2V S gom 65, (47) P 4P, F7=F
It follows that
+ =
{"‘Aﬁaa —'{t ﬂbfﬁk)}&._./(lgjz/u—m
21

(3.10)

%/(Ff(ajf/u°m /a‘/z/u M)Q_k - 2/47"' /—’/4/7-&/4 ’"{O_,m)aka-’ }

The dominant feature of these equations is the strong coupling of aK - and
+ '
%X,G,2u-n :
absence of vortex motion ( P =0), the coupling is that of equal and opposite

. There is a less important coupling of the radial modes. In the

linear momenta, i.e. Bogolyubov's theory, here described in cylindrical coordinates.
Vhen there is a vortex, the annihilation operators of angular momentum m- M
rclative to the vortex angular momentum is strongly coupled to the creation operator
of angular momentum -(m~ ,u) relative to the vortex. This actually involves a net
loss of angular momentum in the small amplitude approximation. In the quantum
version the state vector for the vortex contains pairs of particles of equal and
opposite angular momentum excited out of the vortex "reservoir". ‘There is a loss
of 2 M units of angular momentum for each pair, since it comes from the moving
substratum which is treated as fixed. The state is one of indefinite angular
momentum and is analogous to, but in addition to, the description in terms of an

indefinite number of particles in the usual boson theory.

Let us consider only the terms 1n which T '= g, thus neglecting the
radial mode coupllng. We look for solutions where a é.nd a+ have the time
behaviour e-‘;g% (The fact that this violates the requirement that (p+
is the hermitian conjugate of ¢  1is taken care of by the fact that there is a

g
corresponding solution e TAEY, ).
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(3.11)

The energy & is given as :
£24+ & [ F(o,2pm }@“Z/*-m)—f:/“‘m/””)f:
{Aa~,<+ F (o, 2pmml e 2} { Bo i 4 F/f*""”“))z (3.12)

— Pl o zpem) Fl2pml @ m)
Ag k = £, - £F # AKE

The cigenvector is S
A o wm F/a"m’ﬁ“)l/u—w‘)
-~ = (3.13)
TR, T, 2 re
In complete analogy with the usual boson theory, the variables
\ ) +
b’(/q"m: LMA/ QK’,u’,m + aurh & Q—K,a*/z/f‘—m
- + (3.14)
boy oo = 208 Argm coh & A oo, spm
] J

J - é/k T, M
arc connected by a canonical transform to the a, a+. They oscillate harmonically

as o

th é”ﬂ“’ﬂ”’ - E/(G—m é/<,‘77”'7

(Comparo equations (4.12) to (4.16) for the values of 3’ K. o m.,).

For the case that there is no vortex, we should recover the fesul’cs of
Bogolyubov. Let us review how this comes about. Our treatment is wnfaniliar,
first because we are using cylindrical coordinates, and second becéuse we have
expanded in standing waves. The first step has been the determination of the
gself consistent field £t (F ) The function f (p) obeys equation (2 5) with
p =0. It is independent of p as f -> 0. We have also E = V(f ) But
as P - R, % must adjust to our cemand fO(P =R) = 0. The function drops

to zero within a distance h / JOME  of the cylinder of quantisation.

9745
8670
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14.

This is the same characteristic length that occurs in the core size argument.

Thus the ground state contains a finite fraction of the particles in a single
particle state which is cssentially a constant. This is substantially the starting
point of the usual theory as developed with periodic boundary conditions. The
details of fo(f>) near thce boundary complicate the analysis, -but are not
esscntial for many pyrposcs. It is clear that the samiclassical starting point
offers a natural way of treating general boundary cohditions; The highly occupied
single particle state, as determined by a sclf consistent field equation, tends to
uniform density except near the boundary. One can impose the condition that the
vave function vanish, just as onec can impose periodic conditions, without creating

artificial difficulties which occur in other methods.

When there is no vortex, the functions %:’ (p ) are ordinary Besscl

functions (070), with. the quasi continuous values of @ determined by

2
jm(a*R) =0, eand with E, - E = Eﬁ%; . The energy normal mode frequencies are
2
£t =7 (vsz"*)[[f (> +/<z)+2 F(G"”/”—“”)j? (3.15)

217

Now the motrix element
Folemler) = f 9. 50l0) Govn, (497 Ap

is Jjust 3;70-/ ( f?ﬁ and is independent of m. Thus the frequency spectrum of
the excitations is degenerate with respect to the azimuthal quantum number.
Iquation (3.15) is of course Bogolyubov's spectrum, as written in cylindrical
coordinates. In the special case of no vortex, the entire Hamiltonian H is
made diagonal by the 31mple normal mode. trdnsformatlon, i.e. there is no radlal
mode coupling. Thus we see how the usual theory is contained in the present

description.

When there is a quantised vortex, there are modifications of the normal
node frequencies and eigenvectors. The most striking feature of equation (5. 1)
is the removal of the m degeneracy. The only remaining degeneracy is that
equation‘(BJQ) is invariant to the substitution & —» -£, nrziEfl—m,~ This
reflects the possibility of forming standing waves relative to the vortex. The
modes with different m values represent different motions relative to the vortex

and are therefore perturbed differently.
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15.

A more detailed study of the normal mode spectrum may be made if one takes

a crude approximation to the "self-consistent" potential

UR) = { V(ix- x’f)/f’u/ ))*ax’

U(x ) ~ O for L < a (3.16)

£ for £ > a

where a depends on M .

Thus a cylindrical well will be used to generate an approximation to the

orthonormal basis c)o Ko This leads to
? 9

R / a
Goim = o (T'a) , pe
(3.17)
:fs?m{"'/”)*fwm{ylo) y P

where

(.2/‘45(77"/2 , 9 :(“.%iz(t‘o__c’))'/i

and o ,ﬁ , ¥ depend on o and m. The conditions that & o and its radial
y!
derivative be continuous at p =a fix A and § in terms of % , i.e.

< I, (o~'a):ﬁ/m/\7’a)+— § 7 (ra)

I 3018
(T .Z_M ﬂ’a'/fZM(V'C() + o 4?7,,,7(0“(/ ( )
de's) Aoa) Alra)
In turn, o« is fixed by the requirement that g o be normalised. The possible
H
values of ¢~ are determined by
- —_ ' Py« — .
Goom(R) =B pom (7R) + & 71, (+F) = 0 (5.19)
There are of course shifts from the vortex free values in the permitted values
of G of order %{, and associated shifts in E,.= £ * %% ? . There
< rq

will be additional shifts in the normal mode frequencies & Koo 11" This gives
LA A

rise to a change in zero point energy. We can compute the difference in zero
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16.

point energies with and without a vortex as

(EK”' ZK,O" ) ‘ . (%.20)

Kawm
using equation (3.12)

The examination of the phase shifts is‘closely related to the theory of
the scattering of a phonon from a vortex. It is sufficiently interesting to

warrant separate treatment, which will be carried out in a separate paper.

Let us now sketch the modifications to be expected for a more general

potential. The operator Lk‘ becomes

ettt +fv(!x X’/)//”(FV/ dx!

Iy (3.21)
The "potential™ is again cylindrically symnetrical. We expand
- K(272) (mltsos)
V(ii-x"1) : % Wit (p.p') € e | (3.22)
o7l Klm' _

The "potential" is
’ 2 v }
T Woo(2120) ] 470 )70
The equation for the small oscillations is

(‘”*"2 ) /*fv(z?’-?’V/f“/,w/zcxfz'-f]30

It 2nM

+5“{p)e‘/‘ fl//x-*/f’u(P’) fe o +(xf)20§?ﬁ3)

Expanding in terms of the basis (¢ ., . we find equations (3.9) and (%.10)
9" olt

with the replacements

Frlrm| o 'm) = Ff (] 7))

A H 4 A _/q . / P , )
jf[ d’/cfn‘ 4p 60 (/ﬂ)ga;m,/f’/ __V\//{ (,o f/({ (Iojjo‘m (ﬁ324)

The rest of the theory is then developed as before.
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4. Quantum theory.

There arevmany, essentially related ways, of developing the quantum theory
of weakly interacting bosons which yield identical results in the lovest approxi-
mations. We adopt the general approach of section 4 of reference 4b), which is
in particularly close correspondence to the semi classical theory. In this
approach the main new point in the quantum theory is that the appr ximate eigen-—
states no longer correspond to a sharp value for certain constants of the motion.

-iBt/f (

. ) \9_
Thus the classical solution e % ) elH corresponds ©to fixed, time

independent values of the number functional N = St dox and the

angular momentum functional JZ =h. J((xp*f_f Ty ) d3z . In the quantum

P oS
theory, the approximate eigenstates of H have given expectation values for the

operators NDPand JZ, but are not exact eigenstates. This is particularly
apparent in the case of the number operator. The phase factor emiEtA# may
be removed from the field operators by the time dependent canonical transformation
U=e®4Mp uhich changes the Hemiltonisn to 1 - M. This is equivalent,
in the quantum theory fo introducing the Lagrange multiplier E and determining
it by the condition that the expectation value of Nop is . To find approxi-
mate eigenstates of the Hamiltonian which are also exact eigenstates of N and
Jz, one has to apply projection operators in the‘ﬁfesent formalism. For the
vortex state, there are of the order of N particles in a single particle state
of angular momentum % s with a vortex type radial dependence. This amounts
to a total angular momentum of N”Ef&. In the quantum theory we ought to
introduce another Lagrange multiplier «2 , to be determined by the requirement
that the expectation value of JZ is Nhm .

We shall thereforc study the effective Hamiltonian #% = H-EI - w(JZ)OP.
The quantised field is expanded in a complete basis similar to that of section 3.

s
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The Hamiltonian is

- P
ﬂ :Z{ (KV‘/V)/T/KG’/”/) ~ (£ Ecdm)o;a_f } A i Qk o

t 1) + g
t T (K Ko [ GIR Y 5k ) axrmailr’m/ @ttt Ay (f4,1)
«7'),,7/1/

Here

_ 2 i, * 2 3
(KrmrﬂkWﬁMQ;-E.J?kwwv ?KV%‘dz
2

- ‘O f ” : (4.2)
= St e /‘%)f?;m(f“)/j G k2 G P
D, = 1+ 4 4 _
: F JPM dp)
and
< Kom | kol 'G/ KM G‘"w”) KMo m> -

’ ‘ be /;('? 4131
LE5V0y) O () €ty ) Prirrnn(?) G325 AT (4.3)
g / . (‘ ” " . ] .
2ISeie A We n 0P Gomle)g L g ) 9,400
,51_,/\’.—/('/ (""!La’k""——k’ (";?_,l‘ s =i (;_7’) o171 g !
G contains factors ' %,

—

[
z 2nl
m+m! ,m"+m™ C K+K!  K"4K™ ¢

We now introduce the unitary transformation

+ -*
W/ = /UXJ? (Cooﬁ aoo/w ’COU/_"' Q ) (404)

OU/M,
expressing the privileged role of the single particle state . Then
-1 '
W, CLOO/‘{ W' = C(_)Q/A + Qoo/‘A
(4.5)
For simplicity we write Cogu =c and aody-= a,. .
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The transformed Hamiltonian is expressed in the form

Wiﬂw/": 2—4;0 %“ (4.6)

with
ﬂu = ((00//‘/7--/&0/0)_E‘__F(_()/u,)/c,/z
r (copsoop|C logpsogp) e/ /e1*

ﬂ/: 5,(00‘/4/7’/00/4)— (é"fx‘d/"// a,c + hc,

F I (copsoopl &) oo oop)r (oopoop | C loop oop) f al Fe?

+h.oc.
# = j{(KfMTI.K'a*’m’) —(£150m) dges }.aimﬂamﬂm
A

- z)cl"‘j{( kom, 0ol G [ker'm; oop ) + (koms o0 | Gloge ko) @y, A,

* -+

+.h, ¢ .
KT =k o‘/lzf~w‘

+CZZ(KVMJ-ka?/‘M/G/oy{w@ﬂ)G

#3: < C 2‘(/47—;,,4)' < ,m’ /G//(-;‘/(; -

+ ~ .
27 £y /—/4 J 0/0/’)4 w~aomr A oy’
\ 1,
| - e
&k'lkjla‘”/ PSS /—/q £ 4 ,C. 1;1,1»-/6’//: )

%4 - /P/‘f

In the limit of weakly interacting bosons {Coo /2 is N, but for
finite interactions there is a depletion effect which reduces the value to a
finite fraction of N. In the limit of weak interactions the function
is determined by the condition that 1@3 vanishes. There will then be no

constant term in the equation of motion of the a

. This leads to the
K m -

requirement

3 lel® %o,f)f V(75 ) ooy (1™ 2 )
(») .

%
o D/A »
_—( £t B oo ) &, op X

2
b
M
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This is substantially the same as equation ( .4) of the semi classical
theory. It is the same condition as 5H /( T, * o for fixed | c] subject
OO/

to the multiplier conditions

fLPGOﬂ’ d/x -/ 7 it’ j‘(P()o/.A ’DP(J(,J;/J dj)( - ~E‘/A
7 —-—-——\Z) 4)

The operator which takes the place of the 1"  of equation (3.21) is

VR e A f(/(/x /)/%a/(;//z ~ (£+50pm) (1.8)
ZH

. If we use the eigenfunctions and eigenvalucs (’OK on’ Ezo.of L
’

and multiply

# .- = - /‘—- ﬁ, Z5ed 2/(2 el
L (PK'O‘M = [:K(;- (PI(O"W} ([a“ v /4*%1 /sp/'( ‘/4'7 (4‘9)

by ¢ ;' ! and integrate over space, we find

KT o VTR = (1 Tesm) Sieet byt &y (4.10)
4.10

!

} 2 N
+ 2icl (ka-m;oO/*,C’”/b?mJO“/‘): Ero Guit do

o’ dr;?, ”
% 5 then takes the simple form

% 2 ke G /«c—m UK o m

+ 22 /)t (/(G\m OU/M/G/OO/M <?”’)0A7m O

(4.11)
+ a
2 (/<‘7"'7"’,,"/(0~ 2HM - W/G/(J(_/M ’och)C akrh q“/~<.4</, ”
+ Lo
. . . . +
The main point is the strong coupling of X om to a_K, o apm-m’ We may

again partially diagonalise 4 5 (negleoting the coupling of the radial modes)

by introducing the normal mode transformation W X



! ) . ) T
W, @ o in Wz S0k, = costr & Gy, + P LY ~k, o 2 pm
-+ l; _l+ - f_‘ W a s L J"Q“L
N/- "\']O”,. 2[/!..6"&1“; Wl -_ ’K"g-j:’u‘m - A, d 123 , 3 »_,(.\ )/M.‘(M
¥ o= YK,O"‘, o d/‘K 7, ;g/w -
(4.12)
Viith
Eovm 5 Ly +2d (Ko ooy J Gloop ) om )
} (4 13)
)K"\'FW‘ - g{{.rw- /C" ((<c’f‘m ) — kfa—l ,g/uﬂm! G '@c/,‘; 00/4)
we find for & Ko m
P - O
(1+Lrd?bicom ) @ Axrm Lomb Fir, R
The zero point energy is
o Wew 70 S (4.15)
while the spectrum of excitations is
j a-;i’:r ¥ Qﬂ{»’f'lr' E«crm
' | (4.16)

/{' [ e o

where

—_ - 2 i //;t_,l,.,vv-.hg o d’;( ”
Ereorm =< é‘kﬁ"m (Wdﬁ‘ d//(.o‘m * o-»r)

A ooy

Thus, we have

~ Q. + . »
W.Z ﬁz h/:a / = CC‘ o 1 J.) & KT & 1< o i & fo P e + f‘é’l
. /
[ < Sl sl ; oo s ¢ o /”’ ) .
%)1 = A 57‘5\7"/ / (/{‘7/') 56/4'/( /”f/u/ /< ~)(a,4/a~.«w, ",erf‘;—;/ (4.17)

- ‘ , | ) /
+ 2 C<( Ko l4¢ o*’: 7 x-m/ G /(3 C"/"'_,'C"«’fj‘,vz) /a L p I_?JJ/A “M)
oFo! ) ; |

4 & ¢
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In the lowest approximation, neglecting depletion eff ects and the modlflca—
tions of the self consistent potential arising from close collisions, oo)/«J
and the Lagrange multiplier ¢9 is zero. The results are then ezxactly the same
as for the semi classical theory, and mainly provide a formal justification for
adding the shift zero point energy of the oscillations to the self consistent

field energy of the vortex state. The state vectors in this approximation are

— _ T Cb S - " . t o
%,new W,W2 i’F_ 01d where ¢ old runs through a set of states consisting of
a vacuum state d}o sv.ch‘_that o qE 0= 0, and a set of states obtained by

I}

operating separately on <% o with the creation operators

a+p<<r~m = j q"l(’() 4{)¢<o"m (x) A7 x
+ +

- - ) - LJ ] C)‘ e
% = {;'_‘)(,D Z(( G_;‘-. - CYC.’O.) C ST L ‘}'/Kd'rfj /[ Ho e a—K’u"; ,g/u “h éa—pzé
nes pil

-y

It is of some interest to examine the expectation velues of physical
quantities to see the modifications of the self consistent field approximation
- induced by the zero point motions of the field. The expectation value of the
density is

-/ .
n(x) =< ¥, ¢wu¢()w>;;<@;@4Mwﬁ¢mw¢)ﬁg;>»

/%O/t(x// st S PV A S //a'm (pll* (4.18)

The main interest is when p2 -2 0. TFor m;éO all terms tend to zero. The
only contribution is from m=0 and is f_/{v Ry A R | s a/: o)/ %t o The
zero point fluctuaticrs of the s-wave phonons give a non zero density at the

vortex line. We may define the expectation value of the velocity as

— - + / ST
Ty = L FLLE, (VLo —L 2t y) g
T k) 2 > oS P oo )£ ) (4.19)
The density is now non zero at p =0. But the nunerator is
/‘:‘Uu/‘ / i” /J /[)/ 2 -'/:”V‘w"/q ) ‘f};\-'o'w; Zk/“ /J/.J/ //// (4.20)

9745
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It tends 0 zero as /O —> 0, since the m=0 term contains a factor + m,
and is thus absent from the sum. Hence, the expectation value of the velocity is

finite, and is in fact zero at @ =0. For M =

/ 2
U, 5 /Coul/ . /ﬁwl(/@)/

n(p=o) o (4.21)

,0

since go1 (/O) goes as J //2,-# / where « 1is a normalisation factor,

we have

‘ m——— 2 P
Uy —> [Ceul” Fp (2me )R
) >

e '7'7{/0'.(,:) o (4.22)
Thus the vorticity -z~ =L/ 2 ( £ 27:» ) has the limiting value
| P op
25— ‘2_?/_;} -2 Z/CUM/ Lot (éML) = constant # O (4.23)
S0 : :
£ r J';(/o e)

The vorticity has a finite value in the core.

It is clear that these results depend on the general form of the vortex
wave function W1W2$ and are independent of the precise values of 'coo/,(‘{ 2
and & KT n' As described in ref. 4b), in a higher approximation these parameters
are shifted from the values given by the theory that considers only e O+J,f1+Jff'2.
One must consider the modifications induced when the creation and amnihilation
operators are reordered after the normal mode transformation. This includes a
diagonal contribution to the ground state energy from W2 . Wz— I. The best
ground state for the chosen type of approximate state vector is obtained variation-
ally. The parameters Coo,“ , W, and E, are determined by minimising the
ground state energy exmectation value with respect to Cﬁo , and imposing the
two Lagrange multiplier conditions. Since we are not working with a plane wave
3 21 leads to a modified self consistent potential
because terms linear in the creation and annihilation operators appear. Wg} 4\1\1'2-1

basis, the reordering of W S&

also contains terms that lead to a modified normal mode problem, i.e. a redetermina-

tion of the ¢ Kom' Following these lines we may obtain an improved value for

the energy of a vortex state without phonons. One main effect is the replacement
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2
c
of the total density N by the superfluid density l-EQ#LL— in the estimates.
: 4 » il

Purther improvements must consider a more general normal mode transformation to

take into account the radial mode coupling, and also off diagonal contributions

" of Wz(ff3+j¥4)wz1. Tt would be worthwhile to undertske a systematic calculation

to give a clear development of all quantities in the strength-of the inter-
particle potential. A trustworthy calculation for the actual case of liquid
helium would be difficult. It is likely that the zero point oscillation spread
of the core density is comparable to the self consistent field contribution. It
is well known that the Bogolyubov normal mode transformation is too restricted
for studying the phonon spectrum in higher approximations. The off diagonal

elements of wz(ﬁﬁ3+z¥4)w;1 must be considered to avoid spurious energy gaps.

It is, however, not our concern here to study these refinements. PFurther
development might be preferably undertaken by other methods 7)—10). The main
point, however, already appears in the simpler treatment presented here. It is
the specification of a special, highly occupied, "vortex" single particle state
qyooﬂ(i)' For weakly repelling bosons, where the self consistent field contri-
bution to the structure of the vortex dominates quantum fluctuation effects, the

picture is particularly clear.

The wave function representing an elementary vortex state has an expectation
value NHM for the angular momentum. The projected state with the exact value
N tp is of course orthogonal to the ground state without a vortex. In our
approximation the orthogonality occurs as N = oo, essentially because the inner

product

¢ b AV TS o g )27

Cf. the similar discussion of the periodic gfound states in ref. 4b). This

argument holds when we consider corresponding states with a small number of
excitations. But it bresks down when there are of the order of N excitations,
for example at a finite temperature near the 1 point. Furthermore, the terms

Wzﬁf3W21 and wzf;4w;1 create and annihilate only a small number of particles
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in a single act. Thus an elementary vortex can only decay by a very high order
process in perturbation theory, i.e. it has an essentially macroscopic lifetime.
We do not try to éétimate this lifetime here. With a large number of excitations
the vortex state becomes seriously depleted and the core grows in size and
fluctuates. There are then'rapid transitions to a circulation free state with
production of phonons. The problem appears difficult to discuss precisely from
the present point of view. We have an overcompleteness of states characteristic
of self consistent field theories. Each ff‘(i) and the associated excitation
spectrum presumably spans the same space of state vectors. The approximate wave

functions can then be accurate only when there are a small number of excitations.

5., Further discussion of the semi classical theory

The equation of motion for the classical field ¢ (f,t) may be rewritten

in hydrodynamic form. Putting ¥=R e SA: where R and S are real, one

finds
2(p) = = der (RTYS
oz 7o | (5.1)
- 25 = (‘75)2‘ _ % VR Vixd 0% ) 47
> = A X - g ) A - |
21 21 <M ~ " f y/[e 4 ¢ (5-2)
75
We introduce the velocity field v = T and take the gradient of the

second equation. Then

Lo o =7 _
po( 2T 4 (@F9)T ) # VT <o
Es

(5.3)
7T is given by the functional
T -4t VR (VKGR Ly (5.4)
2 /«{)
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consisting of a "quantum” contribution and a contribution arising from particle
interactions. It has the dimensions of energy. - In the usual hydrodynamics one
assumes the pressure p 1is a function of the density and 7T- = f %B . But
the present hydrodynamics is quite different. It is useful to introduce the

. 2 .
density n=R~ and to write (summa’cion oonven’cion) :

277 4 2 (mvy) =0 (5.6)
z OXp
Mﬁ(?’)U}){—M_é (//7/47/?)—)75777—
PYa 2Xs Sx (5.7)
77 2__7/_ can be expressed as 1)
2 X o
2 O = —nd [Vixy) rig)dy + I %k (5.8)
dxp DXp 2 Xk

with a stress tensor

- 2 V4 Liq 7Y - \ ; i ) '
2 DX aX& X p X, N 2 ~

This differs from ordinary hydrcdynamics in that the stress depends on derivatives

of the density, rather than velocity.

: -
The elementary line vortex has the property that <7 2S=O and  38.Y R=C_)}
2 _»
and that R=0 on the vortex line. The quantum pressure i 'R s>—@ as

(v )2 M R
P 0 and cancels -~——— vwhich —% + @, leaving a finite quantity. It is

2 M
clear since the vortex core is small in extent, that we can generalisce the argument,
and find approximate solutions representing steady patterns of vortices separated
by distances greater then the cors diameter. Onc way is to look first for
solutions of V2S=O, e.g. ring vortices, sets of line vortices etc. Then one
finds the appropriate behaviour of R near the lines of singularity. This

brings into play the type of classical hydrodynamic argument already used in



interpreting experimental properties of superfluid helium. The main role of the
quantum mechanics, at least for weakly interacting bosons, is to provide a
foundation for this procedure, and to ensure that there is a definite theory of
the structure of the vortex core. This type of consideration is foreign to
classical (even compressible) hydrodynamics. The structure depends on the quantum
pressure term, as is evident from the fact that the characteristic size depends

on a De Broglie wavelength. In addition, the study of the quantum state vectors
associated with a flow pattern should show that decay is possible only in a

macroscopic time.

Phenomenological single fluid hydrodynamic equations have been used to
study processes such as scattering of phonons and protons from vortices 12).
These theories assume a pressure density relation such that é%%(iﬁ‘)yi agrees
with the observed first sound velocity. In contrast the present theory contains
the quantum pressure term and is directly related to basic guantum mechanics.
However, the defect of our procedure is that only weakly interacting particles
can be treated in a clear mamner. It should be possible, in the spirit of a
pseudopotential method, of Brueckner's ideas, or of Landau's theory of a Fermi
liquid to justify replacing the interaction potential ab initio to treat strong

interactions. Then the semi classical theory itself would become useful for

quantitative applications to superfluid helium.
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