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THE TOPOLOGY OF REDUCED THREE-BODY PROBLEM AND THE
EXISTENCE OF PERIODIC ORBITS

L.SBANO

ABSTRACT. We consider the Three-Body Problem (3BP) with a Newtonian-like potential propor-
tional {|z; — z,]||™ with a > 2 we consider also the Newtonian case a = 1. We study the dvnamics
reduced on the manifold defined by the vanishing of the total angular momentum. Using vari-
ational methods and the topology of the reduced configuration space, we prove the existence of
periodic solutions: For the Newtonian potential, we prove the existence of a weak periodic solution.
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1. INTRODUCTION

In this paper we want to use the topology of the planar Newtonian-like Three-Body Problem
{(3BP) together with the variational methods to study existence of periodic solutions.
We study the 3BP with the following potential:

V(zy. 20, 23) = Z _mimy

o Nz =zl

(with & > 2 and a = 1).

The potential V' is O(2, R) invariant and we study the SO(2,R) reduction of the system on the
submanifold of the phase space defined by the vanishing of the total angular momentum J. The
interest of this choice is due to Sundman’s result [4] about total collision solutions. For the Newtonian
potential, he proved that total collision solutions take place on J = 0, for a generic & one can refer
to 5], 2 [3].

We study existence of the periodic orbits on J = 0. In order to apply the variational method, first
we construct the Lagrangian function on the manifold defined by J = 0. This is obtained by the
Routh's reduction method. The topology of the reduced configuration .M, space is then studied.
[t turns out that M, is a double covering of the space of the relative distances of the bodies. On
M., with the reduced Lagrangian we construct the reduced Least Action principle. Then we apply
variational methods to study the reduced Action. If the coincidence set is eliminated.the topology of
the reduced configuration space leads to identify classes of non contractible trajectories: the reduced
Action 1s positive and coercive on these sets and therefore attains its minima.

For a > 2 critical points are strong solutions of the reduced equation of motion and different critical
points lie into disjoint classes. For @ = 1 (the Newtonian potential) critical points are weak solution
of the reduced equations of motion and we are not able to distinguish the homotopy class of these
solutions.

These critical points are T-periodic solutions of the 3BP in the reduced configuration space. It is
not possible to check whether these orbits are 7T-periodic in the unreduced configuration space since
they are not explicitly constructed.

A general reference for the application of the variational methods to the N-Body Problem is the
monograph [9)].
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2. LAGRANGIAN REDUCTION AND REDUCED CONFIGURATION SPACE

The system is composed of 3 point-like particle of masses my, ma, ms which lie on a plane and
interact throudh a newtonian potential. The configuration space is taken to be R® = {r; € =% i =
1,2,3} with z; = (z}, z). The system has 6 degrees of freedom.

The dynamics of the systém is described by the Lagrangian function L : R12 — R.
mim;
(1) Z 2 + Z P
=1

where < .,. > ||.|| are the scalar product and the norm in R2.
The Lagrangian L is defined outside the coincidence set:

(2) [X-ci{(.L'l,...,JI;;)EQGIJ.‘,':J}j,i#j}

The linear momentum P = (P;. P») and the angular momentum J (a scalar)

3
(3) Po=Y miif k=12 J =Y mleli? - 2z}
i=1 1

are integrals of motion.
For fixed values of J we describe the motion through a reduced Lagrangian obtained by the Routh’s
procedure (see [7]).

Let the center of mass be at rest in the origin, consider the class of frames defined by selecting

one of the bodies, say the 3th one . and setting:
=23 — 2

. nza-
g2 = I3 — I2

We denote by M the reduced configuration space.

The Lagrangian takes the following form

3
1 mamy TR{M>
(5) Z 3 1] QMQJ + Z :

llq:l|* th —qafl®

where [lq|| = (¢, )

m; (1 Ln_L) _mmy
(6) M = g ;
_mmy m; (1 - &)
[z “

and u = 21‘2:1 m; is the total mass of the system.
By the further change of variables

(7) T RO\K, — ROA,
(q1,92) — (p1,01,p2,02)
q, = p; cos b;
(&) { ? = p;sinb;

the Lagrangian becomes:

(9) L= Z A,]p,pj + Z szg 9 + Z Cz_]pze + V(Pl;P?yelyg")

1]1 1_]_1 ij=1




)

where:

. My, — Mz cos(f; — 6-)
(10) A= ( —Maycos(fy — 1) Mg

. Anpl  Appips )
11 B =
(11) _ ( Aaprpa Azpl
and :
- 0 legpl sin(01 - 92)

(12) C - ( .\’fglpg sin(02 - 01) 0

e m m; myma
(13) V(Pl,P2,91,92)=Z > —

[ 23] p’a (\/ﬂ% + p% — 2p1p'_) COS(HI - 92))0

The reduced system is defined on M ~ R2 x [0, 27]?, with R, = {p > 0}.
The matrices A, B, and C are functions of py, p» and 8; — 8. The Lagrangian (9) is invariant under
rotation

0; = 6; + a, a€]0,2n]

One can then introduce a cyclic coordinate conjugated to the total angular momentum and apply
Routh’s construction of the reduced Lagrangian.

Setting:
To: Mo M
(14) p2=0,—6
one finds the following form for L:

L=37,_) 3Aijpipj + Crap1é2 + L Basipl+

(15) +162 ij Bi; + 6 [(212#1 Biaga + 34 Cijﬁi)] + Vi{p1, p2, ©2)
f1 1s the cyclic coordinate and the total angular momentum is given by
oL 2 2
(16) J = % = > Biagn + > Cijpi | +6 > By
1 : i%j ij=1

Now Routh’s prescription gives the reduced Lagrangian for J = 0:
R=37 1 SAiipip; + Carprés + L Baagpd+

Biséa+Cij o 2
() Bt bl Vo1, )

The reduced system has configuration space given by:
M/St ~R2 x [0, 27

Remark 2.1. [n the reduction we obtained a system defined on the quotient space M, that is a
quotient. In order to reconstruct the whole motion on R? one needs to use the expression of 8; given
by the condition J = 0. A periodic motion on M, with period T leads to a periodic motion (in
general with different period) of the original problem only if:

I
(18) ﬂ_/(; dtf, eQ
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3. REDUCED 3BP

Let us return to the formulation of (17) and describe the reduced system.
We have seen that M ~ R3 x [0, 27] x [0, 27] and then

(M\K.)r ~R2 x [0, 27

and the reduced Lagrangian R : T(M\K,.), — R is written as follows:
-~ 1 (€8] P 1 r(2) [
R¢.Q) =5 ZJ M (Qpids + 5 Z M (C)pio +

1 .9
(19) +§M(3’(C)¢“ + V{1, p2,9)

the matrices M), (2 and M® forms a positive definite quadratic matrix on R2V-3,
We introduce another description of the reduced configuration space (M\K.),. We now show that
(M\K.), is diffeomorphic to the algebraic manifold

3
(20) N\Ee = {(p1,p2,p3,2) ERL x R' | 22>~ p? = [A(p1, p2, p3)]*}

where A(p1, p2, p3) is proportional to the oriented area of the triangle whose sides are py, pa, p3:
1 [3 ! .
[A(p1. p2, p3))* = 5 [Z Pz] H(Pi + P — pr)
i ik

Hid—‘k is the product cyclic in the indices ¢, j, k. From the definition of N, one verifies

lim z{p1, p2, =0
(P1,p2,£3)~(0,0,0) (pl p2 PB)

Proposition 3.1. (M\K,), is diffeomorphic to N'\K..

Proof. In (M\K,), ~ Rﬁr x S' we take ¢ and we describe it by the local coordinates (ry,72,%); the
we define the map f as follows:

Pi =T 1= 1, 2
2 1/2
ps = (r{+r3 —riracosp)t/
. . rirasiny
2v2\/ri+ri—rir;cosyp

At the coincidence set K, the jacobian is not defined. One verifies that the rank of the jacobian of
[ equals three out of K. Indeed the jacobian has the following form:

1 0 0
0 1 0
ri—racosg ro—rycosy rirasing
\/rf+r§—2r;r2 cos \/rf+r§—2r1r; cos ¢ ri+r2-2rirycosy
r sinp rising rari[(ri+r3) cosp—rira cos 2p]
Qﬁ\/rf-i-rg—r;r; cos 2\/2—\/r3+r§—r1r2 cos Qﬂ\/rf«}-r;"—r;r; cos @

The transformation f can be inverted, f~! is given by:

ri =pi1=1,2
a :{ —arccos [(pf + p3 — p3)/(2p1p2)] if z(p1, P2, p3) < O
T +arccos[(p} + p3 — p3)/(201p2)]  if z(p1, p2, p3) > 0

Therefore (M\K.), and M\ K, are diffeomorphic. O
4
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In the sequel we often consider (M\K,), ~ N\ K,.
About M\ K, note that:
(i) The expression defining [A(py, p2, p3)]? must be positive, then p; -+ pi > px for all permutation
of i, j, k. These are the triangular inequalities.
(i) If = =0, p; >0, i = 1,2,3 then for some indices t,J,k pi + pj = pk, this corresponds to a
collinear configuration of the three bodies.
(iii) In the closure of M\ K, there are p; = 0 for some i then triangular inequalities imply that
p; = pr with j, k # 1.
We term N the closure in R* of M\ K.
Now A can be embedded into RD x R! where

(21) RD={r={(ry.rs,r3) € 2:2‘3, | i +7; — ri > 0 cyclic permutations of i, j, k}

where R.*. = R+ U {0}
R.D is the set of the relative distances among the three bodies. Note that dRD # §:

where rr;.k are:
(22) ﬁ;ki{f:(rhrz,rs)GR:i|7’1‘+T'j—7'k‘-:0}

Using that (M\K.), ~ N\ K, and local charts we can write the reduced Lagrangian in terms of the
relative distances.

3 7
- .o m;m;
(23) R(¢,C) = Z Mi;(C) iy + Z TkL
ij=1 ik

The 3 x 3 symmetric matrix M has entries smooth homogeneous functions of the r's (see [1]):

1/2(14m3+1/m3) —(r? +r —r3)/2riroms ~—(r§+r§—r§)/?r1r3mg
M 1= ~(r? + 1% - r3)/2r roms 1/2(1/my + 1/m3) —(r3+r3 —r{)/2rzram
—(ri4ri- r3)/2rirsmy —(r3 +r? - ri)/2rsram, 1/2(1/my + 1/ma)

In the application of variational methods we will need that the reduced Lagrangian written in term
of local coordinates = = (21, 29, 23) € (MN\K.)r hence:

3

(24) R(C.C) = Z A/[ij(C)éiéj +Z m;m])-

=1 i pij(z

We now extend, at least formally, the Lagrangian on the space A that contains the coincidence set
K. We will show that consider trajectories which have the tangent vector with a finite number of
discontinuities.

3.1. Geometry of the reduced configuration space. The Lagrangian L is invariant under the
lift on TM of the diagonal action of the group O(2,R).
We denote this action as follows:

P:02R)xM = M
(25) (9.2) = @g(z) =(g9- 21,9 22)

where g- denotes the standard action of O(2,R) on the plane.
Recall the following properties of O(2,R):

Proposition 3.2. The group O(2,R) is generated by the set So of all reflections with respect to
independent lines in the plane.



Proof. Here we consider the natural action of O(2, R) on the vector space R% The proof is elemen-
tary, it is given noticing that in the plane the product of two reflections is a transformation with
untt determinant. This transformation is a rotation.

Now we want to give an explicit matrix construction:

In a chosen coordinate system we take a direction [v] = [v1 : va] € RPL. One can show that the
reflection Sy, ;) € S» w.r.t. the direction [v1 : va] takes the following matrix form:

] 1 vi — v} 2uyvs
b[vljvz] - ”17“2 ( 2v V9 U::: _vf )

If one considers [v) : va] = [cosa : sina]

5, = ( cos2a  sin2a )

sin2a  —cos 2a

Now given two directions in plane defined by two angles, respectively a and 8, by means of simple
manipulations one finds that:

A cos2(B —a) sin2(f - a)
Qa1 S5 = ( —sin2(f - a) cos2(8~a) >

and so:

Sq - Sp = Rg(g_a) S SO(?,R)

The reduced configuration space is given by the quotient:

(M\K.)/SO(2,R)

We now consider the the geometry of reduction of the 3BP:
The symmetry S, is not reduced. one can describe the reduction of the configuration space by the
following diagram:

(MK 5 B2 x[0,24] x [0, 27]
S
R2 x [0,27]

With F" we denote the diffeomorphism describing the coordinate transformation from q; tori. 2,01,
The map 7 describes the quotient of (M\R,) w.r.t. SO(2,R) action. The map p = 7 o F provides
the reduction and induces a map p : (M\RK,)/SO(2,R) = RD\K,.

The map p is the transformation between the coordinates (r1,72,¢) and (p2, p2, p3):

pi =rii=12
p3 = (rf+r3 —rirycosp)l/?

Note that:
ﬁ(rl) ra, 30) = ‘5(7'1! re, 2m — 50)
If one studies the configuration space in terms of the RD it turns out that:
Proposition 3.3. The map p : ((M\K.) = Ry x [0,2x] induces a map p : (M\K)/SO(2.R) —

RD\K. which is a ramified covering with a monodromy group 1somorphic to Zo.

Recall the definition of ramified covering:

=3
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Definition 3.1. A quadruple (S,S,Z,, ps) where ps : S — S is a ramified covering if:

(i) S, S are manifolds.

(it) There ezists a closed subset K C S such that (S\K,S\ps(K), Zn.ps) is a covering with mon-
odromy group Z,, ¢

(111) For all s € S there exist a neighborhood V(s) homeomorphic to a ball in S such that the
connected components of p5'(V(s)) are homeomorphic to a ball in S

Proof. Consider the quotient manifold (M\K.)/SO(2,R). Any class [q] € (M\K:)/SO(2.R) is
composed of configurations which differ by a rotation.
Now chosen a direction [v; : va] € RP! any element of S, can be written as the product of a reflection
w.r.t. a fixed chosen direction times a rotation:
S23 S[Ulivzl ‘Ro = Rg - S[Ul"-’:’]

for some R,, Rg € SO(2,R).
Therefore on (M\K.)/SO(2,R) we define the action of S, as follows:

D : 8y x (M\K)/SO(2,R) — (M\K.)/SO(2,R)
(26) (S[ulzu;], la) — (I)S(u,;u;,]([q]) = [(1)5[.,1:”2](‘1)]
Then the action of S on (M\K,)/SO(2,R) is equivalent to the action of only one reflection w.r.t.
a chosen line [v; : v2] € RP!. The direction [v; : vs] corresponds to the classes Alv] with A € 2\{0}.
Consider the group G = {S[y,.s,}, id}. The action of G on (M\K.)/SO(2, R)\{)\[v]} is proper and
discontinuous without fixed points, then

(M\K)/SO(2, R\{AR]} = {(M\K.)/SO(2, R\ {A[2]}}/G

is a covering. In fact we can use the following result (see [8]):

Theorem. Let X be a connected, locally arcwise-connected topological space and let G a properly
discontinuous group of homeomorphisms of X. Let p: X — X/G the natural projection of X onto
the quotient space. Then the couple (X, p) is a regular covering space of X/G.

In our case X = (M\K_.)/SO(2,R)\{A[v]} and the rank of G is finite and equals two, then we
have a ramified covering whose monodromy group is Z,. The map p can be defined as
B(lg)) =p(g) = (ro F){g) =n€RD

One verifies that § is not a homeomorphism at {A[v]}. One can also verifies that for any lg] €
(MA\Kc)/SO(2,R)/G there exist a neighborhood whose connected part, homeorphic to a disk. is
mapped by 57! into open set in (M\K,)/SO(2, R) homeomorphic to a disk.

Therefore we can conclude that

(27) p: (M\K.)/SO(2,R) — {(M\K.)/SO(2,R)}/G

1s a ramified covering whose branching points are A[v] with A € R,
The thesis is obtained noticing that

{IM\K.)/SO(2,R)}/G ~ (M\K.)/O(2,R) ~ RD\K,
O

Now we want to extend the reduced configuration space adding the coincidence set k.. Note
that there is only one configuration where the quotient is singular, this is the total coincidence
configuration K, i.e. the origin in M. We define the reduced configuration space M, as:

M, =p~Y(RD)
where we define p(K*) = K*.
We give a geometric description of the ramified covering. M, is embedded into R* and M. is an alge-

braic manifold: for any (p1, p2, pa) € RD\OR D we have two values for z, z = +A(p1, p2, p3)/\/ Z? pi.
7



RD x R,

RD x (B\R,)

FIGURE 1. Reduced Configuration Space. The couple of surfaces (A;, A)),
1,2,3 are identified (glued)

! =

In the figure 1 we show that .M, can be thought as two copies of RD (two infinite dihedraj
embedded in R3 with common vertex and common faces. They form the two sheets of the covering
that are glued along the collinear configurations, (thin and dashed lines represent the gluing). The
surfaces 4;,¢ = 1,2, 3 and A:-,i = 1,2,3 are the two copies of the collinear configurations = =

Heavy lines correspond to the coincidence of two bodies, while the common vertex is coincidence of
three bodies. Indeed. consider the two spaces RD x Ry and RD x (R\Ry). Define the map:

i:0RD - RD
(28) ¢ = U0 =¢

now take the disjoint union

RD x Ry URD x (R\Ry)
8



then the following equivalence relation is defined:

¢~ (it i
either (= CI
or i(¢)=¢

then, by i, we define the gluing

M =(RD xRy URD x (R\R4))/ ~=RD x Ry U; RD x (R\R,)
For N = 3 we define the followmg involution:
c: M, = M,
(29) C={r1,ra,9) — o[¢]=(r1,r, 27— ¢)

The action of o on M, corresponds to the action of 8 on M and in fact it has a manifold of fixed
points corresponding to dRD.

4. REDUCED LEAST AcTION PRINCIPLE

Consider M, as submanifold of R*. We specify the functional spaces of trajectories on M, in
order to study the solutions of the Euler-Lagrange equations as critical points of the reduced Action
functional.

Choose T' > 0 (the period), on 2* and define the space of continuous functions CY(R?) as follows:

(30) CHE) = {C(1) € C°(0.TLRY | ¢(t) = Glt +T), [l = sup c] < 0}
with |(] = max;=; |z:].

We now define the fuctional space on trajectories on M,.
First we define the space of continuous periodic trajectories on M.,

(31) C[0,T], M) = {¢() € CO[0, TLRY [¢(t) € My, [[C(8)]]oo < 20}
We also define:
(32) C=([0. T, M) = {¢() € C=([0, T),RY) [¢(t + T) = ((t), <(t) € M.}

In the construction of the reduced Lagrangian we found a positive definite quadratic form defined
on TM,:

(33) (M(C)v,v) = ZM,J
with { € M, and v € T M.

We describe a trajectory ¢ : R — M, with 1, ra, ¢, then using (33) we define H}(M,) the following
Sobolev space:

(34) Hp(M:) = {¢() € C=([0,T1, Me) 1 ¢(8) = St +T), IKl3a < 00}
where [IG113, 00y = o dtl(M(Q)E).() + T2, 72 (1)), and

‘,\

(M(C)E(1), {( Z[M it + MP Qi) + ME (C)(9)?

By H}(M,) we define the following space:
AF(M;) = {¢(.) € Hp (M) |
(35) rilt+T/2) =rilt) i=1,2,3 p(t+T/2) = 27 — (1)}

9



The space A%(.M,) can be described using the involution ¢ introduced in the preceding Chapter:
(36) AT (M) = {C € HE (M) | C(t+T/2) = 0(C(t)), C(t) € M, VL €[0,T}}

Note that by the standard Sobolev embedding ( € H(M,) implies that ¢ € C2(M,) therefore the
condition ((t) € M, for all ¢ € [0, T] is well defined. On H 1(M;) we define the following (Action)
functional Az[]

T
(37) Arl(] = / dLR(C, )
' with ¢ € H}.(M,)

The Action Ar[] is continuous on the set:

(38) Dy {geHTM /dt Gi'(ll'—("l;‘)?<m}

Note that for &« = 1 D4 contains the collision solutions at which the Action is not differentiable.
The Least Action Princple states that, in the domain of differentiability of Ar[.], the equation of
motions are given by the first variation of Ag[]:

(DAr[Cl,v) =0
{39) for all v € T HL(M,) ~ HA (T M,)

We can now define the Action functional for trajectories in M,.. Let us recall the reduced Lagrangian
is:

i,j=1
We take the following integral as a definition of the reduced Action functional:

T 3 m
(40) AT[C(t)]:/O dt %ZM,, ~,zJ+Z ”"J }

ij=1 p”
Ar[] is defined in HL(M, )N Dy4.

Any C? solution of (39) is termed strong solution.

In the next section, we will show that for the considered problem with o > 2 we can prove
the existence of strong T-periodic solution, while @ = 1 we can show the existence of generalized
T-periodic solution.

5. T-PERIODIC SOLUTION FOR THE NEWTONIAN-LIKE REDUCED 3BP, AND GENERALIZED
SOLUTIONS FOR THE REDUCED NEWTONIAN 3BP

In this final section we study of the Action principle for .A7[] in two different cases:
1) a > 2 Newtonian-like Potential,
it) o = 1 Newtonian Potential.
The case i) it is the case of Strong Force SF potential, in fact:

Definition 5.1. The potential V : R\{0} — R satisfies the SF condition if there erist a,r > 0
such that

V(z1, 22, za) >aZIl '—1:||2
iz 1T
for all (z1 za x3) such that 0 < ||z; — || < r.

10



The variational methods can be directly applied in the case i). In case ii) one studies just the
modified problem.
In fact, for « = 1 we consider the Action A7[.] expressed in terms of the relative distances r's and
we define the new Action

T 3 5
(a1) AL(C] = Ar(]+ / Y s

The new Action (41) is of class C! wherever defined and it takes value +c0 on collision solutions.
In the domain of definition of the Action. using the geometry of the coincidence set K., we define
classes of non-contractible trajectories, on which an inequality of Poincaré type holds and we can
prove the coercivity of the A%[].

On each such class ' the Action attains absolute minimum which is a strong T-periodic solutions
of the reduced 3BP with SF. We prove that when 6 — 0 the sequence (& converges weakly in
H' to a trajectory (r which is a weak T-periodic solution of the reduced 3BP. In general in our
context we cannot prove that (v # (v for I' # I". We have to notice that this solution lives in the
reduced configuration space .M,. There is the problem of the lifting of the T-periodic orbit into the
unreduced configuration space. The condition (18) cannot be directly verified since the solution is
not explicit given.

5.1. The "strong force” method. We describe any trajectory on M, using the local coordinates
given by:

ri=2z 1=12
rs = \/z} + 23 — 22129 cos z3

here z3 is the angle between r; and rs.
The the Action is now expressed in terms of { = (z1, 22, z3). Now Ar[.] will be written as follows:

T 3 !
= . mym; mims
(42) AT[C] = / dt Z z\/f,-j(z)z;zj + z _% + .T.l(—.,)
0 ij=1 ijk£3 F 3\2
The functional A%[] is defined on H}(M,) by
AF[C] = Ar[) + FP[(]
R T 2 5 T s
(43) - with P[] = / AR +/ _
i 0 ,Z:; () Jo r3(z1,22,23)

For every é > 0 the .AéT[.] is of class C! on its domain of definition and it formally takes value +2c
on collision solutions of the 3BP.
Then we study the sublevel sets of the Action A%[].

Se = {A}[¢] < ¢}

We will show that we can find a set of T periodic trajectories I' such that S, N T is invariant under
the gradient flow and .A%[] is coercive on S, N T (not empty for ¢ > 0), i.e.

Jim AF[Ga] = +20 if {Ga}n C Se NT and [[Gallgrs m,) = 0

Then S, NT is compact in C°([0. T}, M,) and one concludes that minima exist.
To obtain a solution for the 3BP without the SF additional term, we study the limit of ¢ when
6 — 0. We prove that this limit exists, and it corresponds to a weak T-periodic solution of the
problem. Weak solutions are defined as follows (see [9]):

11



Deﬁnition 5.2 (Weak solutions). We term ¢°(t) a weak solution of 3BP iff:
(1) ¢° is a stvong solution for AS.[] for any § > 0

(2) lims 0 ¢ = ¢° weakly in Ag(. M) and uniformly in [0, T)

(3) A%[C*] < o0 for all § > 0.

Then we prove that (% is a generalized solution i.e. it fulfills the properties collected in the
following definition:

Definition 5.3. Let 1.(¢°) be the subset of [0, T] such that
L%y ={te0,T) | @) € K.},

we term (o(.) a T periodic generalized solution of the Euler-Lagrange equation iff:
(0) ¢°( t+T) ¢O(t) for allt € [0.7]

(1) I.(¢°) has zero Lebesgue measure

(2) go € C ([0, TI\L.) and satisfies the Euler-Lagrange equations.

(3) ¢° has for all t in [0, T]\I. the same Energy.

(4) AT[C°] < o0,

In particular we show that the set of collision times I.(Co) is discrete.

5.2. Class of non-contractible trajectories. For the modified Action A%[] the coincidence set
K¢ 1s a singularity. In fact one can prove that the Action increases without bound on any sequence
of trajectories converging weakly in H}(M,) and uniformly in [0, 7] to a trajectory intersecting 1.

We now study the space of non contractible loops of M \K.. We show that there exist classes of
non-contractible loops on which the Action is finite and coercive.

The first homotopy group of .\ \]\c can be computed. Consider the Fig. 2, M, \ K, is arcwise
connected and it is homotopic to 23 minus three independent half-lines {,, 2,13 having a common
origin. Denoting by v; a contmuoua loop around ; and by [v] its homotopy class, one can prove
that:

(44) [vi] + [vj] = [3] with ¢, J, k cyclic permutation of 1,2, 3

i

hence the presentation of mi(R*\{l;.s,13}) is given by two of the cycles {(vi] 1 = 1.2,3 and one of
the relations (44). Therefore we have:

Proposition 5.1. The first homotopy group of the space M, \K, is given by:
(45) T (MAK) > ZS 7

Proof. We know that:
MK = m (R3\{l1,15,13})

Without loss of generality we identify the space RBA\{l1, 15,13} with R3 with the negative half-axes
removed.
Now we apply a corollary of the Siefert-Van Kampen theorem which states that if a space X can be
covered by two open arcwise connected sets U/ and V such that

m(UNV)~0
then

‘Tl(xY) ~ 7T1(U) 5 ﬂ'l(V)
12



l3

R\ {11, 13,15}

FIGURE 2. non-deformable loops 71, v2 and 73 with the ”strong force”

We take X = M, \ K, and define
U={(z.0.2)€R3|2>0,y#0,2#£0}
V={(z,v.z) €R®|y> 0,2 £ 0,z 0} N {R\{z> 0,2 = y = 0}}
One verifies that:
mU)~Zm(V)2Zm(UNV)~0

and this concludes the proof. .

Note that the classes n[v;] — m[v;] with i # j, n,m € N are not homotopic to one of the generators.
On these classes we now evaluate the Action.
Now we can state the following Lemma:

Lemma 5.1. For alli=1,2,3 for any X € [y] there exist t; < ty (depending on A) such that A(t,)
and A(t2) are different collinear configurations.

Proof. Indeed in M, collinear configurations forms three planes. We define the varieties 7r;~ x as the
subset of M, such that:

ri =r; 4+ rr  cyclic permutation of ¢, j, k
13



Y . . . . . ! ;
We have three 3, they have co-dimension one, M, has three dimension. Now the union Ui jxTix
(that is IR D see Chapter 1), disconnects M,. Now coincidence configurations are:

l,‘ :ﬂ‘}kﬂﬂ'fj

Any element A(t) € [v;] is homotopic to a generator of 71 (M \K.) which does not intersect I; and
must have points in the two connected part of M\IRD. by the continuity of A(t) we conclude that
there exist two different times t; # t» such that

At) € 78 A(ta) € 7,

The Action A%[] is finite and C! on the open set
(46) Pr( M) = Hp (M) 0 {¢(t) ¢ K, vt €[0,T]}

We now define the classes of trajectories where we study the Action.

Definition 5.4. We term Sp the set of all smooth, closed trajectories v(t) = y(t + T) in M\ K.
homotopic to an element of

n[vi] — mly;]
for some i # j and m.n € N\{0}.

Remark 5.1. Using the preceding Lemma 5.1 we can always choose the parametrization of \ :
0,7} —» M \K., homotopic to a fundamental cycle, such that:

if X~ then A(t1) € ﬁf-"j .and Alta) € =, witht) < ta,

if A~ —7i then \(¢;) € 71, and A(ts) € rrfj with t, < .

We now prove an important property of the elements of Sp:

Proposition 5.2. For any v € Sy there exist at least four times 0 < t) <ty < t3 < t4 < T such
that:

ri(ty) = rj(ta) + re(ty), ri(ta) = rita) + re(t2)
(47) ri(ts) = rj(ts) + ri(ta), rj(ts) = ri(ta) + re(te)

for a sequence of the indices i, j, k.

Proof. Without loss of generality consider the class [y;] — [v;]. Take )\, one of its element. Now we
can continuously deform A in such a way that it becomes the union of \; € [%] and A; € —[v)].

Up to a reparametrization we can write that \; is defined in [0, 7/2) and A; is defined in {T/2.7).
Now we can apply the preceding Lemma 5.1 and Remark 5.1 to ); and A; and we conclude that

Aity) € 7y Nilta) €
with ¢, < t5 in [0,7/2) and

Aj(ts) € why  Alta) € 7
with ¢3 < t4 in [T/2,T). This concludes the proof. O
Definition 5.5. We call 'y the ||.||~-completion of Tp.

In I'y there are trajectories which enter the coincidence set K., these are the collision trajectories.
We can define a subset of 'y which does not contain collision trajectories, in fact we have:

Proposition 5.3. If V' satisfies SF then for any ¢ € (0, +00) the set
(48) A =Tyn{{eTr(M,) | AL[¢] < ¢}

does not contain collision trajectories.
14



Proof. By contradiction we assume the there exists a sequence {¢(.)n} C A4 which converge in the
[lllec to a trajectory ¢(.) which enters in K.. Therefore we can consider that there exist + € [0.7)
such that {(7) € K.. Then there exists € > 0 such that [|(,(¢)]| < r for t € [r —¢, 7+ €] and n large.

For all ¢
T T 1
L T

The bound on the Action implies:
T 1 T

but

(n) )z o e [ 1
(In{r; (74 €)) = In(r;" (7)))* < ||r; HZ:/O dtmﬁal

taking n — oo we get a contradiction. In fact either r;(¢) = 0 forallt € [, r+¢] or rfﬂ)(r) - 0. O

Note that this Proposition holds for the modified Action .A%.[.] with § > 0.

For any trajectory in 7 a Poincaré’s inequality holds. We now study the trajectories in T
that have four collinear times. Since we consider with time intervals where the trajectories are not
collinear we can use as coordinates the relative distances ry, 7, 73.

Proposition 5.4. Forall{ € Sr:

T
.o 8(11 . 2
49 / dt{M{r)r,7) > — su min r;(t
(49) A (M(r)r,7) > 9T t;{g%]lemls} i (t)

Proof. Let us assume the following sequence of collinear configurations:

ra(ty) = ra(ts) + ri(ty), ra(to) = rs(tz) + ri(ta)
ri{ta) = ra(ts) + ra(ts), ra(ts) = ra(ts) + ri(ts)
We have to estimate the kinetic energy of a trajectory which passes through at least four collinear
configurations. Three collinear configurations are different.
For simplicity we put:

ri(0) = z; = sup r(t) withi=1,2,3and z; < 22+ 23
te{0,T)

ri{t1) =& withi=1,2,3 and &3 = &4 + £,

ri(tz) = n; with¢=1,2,3and gy =y + 13
ri(ts) =v; withi=1,2,3and v, = vy + 13
ri(ty) = x; withi=1,2,3 and x2 = ¥1 + X3

15



Now we have:

tigr

T 3
/dt(l[(r)f,r’)zz:/ dt(M(r)7,7)
0 I=o vl

then

T 3 3
/0 dt{M(r)r, i) > Z t—“l— I:Z(ri(tl) — ri(tig1))?

—t
1= LTI
Now in each interval [t;,#,41] we minimize the auxiliary functions:
3

freted = D _(relte) ~ ri(tigr))?
i=1

Taking account of the constraints of collinearity one finds:

. 1
min fio,¢,] = g(xs —z2—z1)?
. 22 ”
min fie, .} = §§($1 +z3+ T —22)°
2
min f[t'_),t3] = gg(ih +z3+ 21 — xg)"’ -
2

minf[ra,“] = 3—7(32:3 + 4z9x0 + 3 — :1:1)2

Now taking account of the triangle inequalities and that ¢;,; — ¢; < T one finds the thesis. O

5.3. Periodic solutions of the 3BP. Now we can prove the main Theorem.

Theorem 5.1. In the set Ay = {A%[C] < ¢} N Ty there exist ¢4 strong T-periodic solution of 3BP
reduced on Jy with SF. The solution (® converges uniformly in [0,7] to ¢° that is a weak T-periodic
solution of the reduced 3BP. The limit ¢° is a generalized solution of the reduced 3BP.

Proof. On Ar we have that:

4 8 : 2
ALY > G min s r20),sup () suprd(ra ) 7o), () )+

2 T ) T F)
(50) +3 L twmt |

For any sequence {(,}» € A4 such that |[(s]jec — o0 we have

A‘ST [Cn] = +o0

hence the Action is coercive. The Action is C! on Ay4 since no trajectory has a collision. The Action
1s bounded from below and hence by standard argument:

S 18] — i A4S
A7) = fain Az[¢]
therefore (¢ solves the Euler-Lagrange equation for AL L]

We now prove that when one removes the SF one obtains a weak solution for the 3BP.
For all § € (0,1) we have:
AT S AF[C = K < oo
this implies that

K
4
HC N e,y < o

16



therefore ° converges weakly in H1(M,) and uniformly in [0, 7] to trajectory ¢°.
¢ is different from zero since

K >/ ijmk

ijk "
(here r3 = r3(r1,72,2)). The preceding expression would give a contradiction for § — 0.

Now we prove that (% is a generalized solution of the 3BP.
From the previous inequalities we have that:

T / .
o mym; d -
11gnl(§'lfL dt Z pr; + Ei (r§)3 < K

—
ijk k H

(here r3 = rg(ry,re,z)). Using that (% — ¢° uniformly in [0,7] and Fatou’s Iemma one finds that
the set of collision times has zero Lebesgue measure.

The complement of the collision set is open and dense, we call it /. Take a smooth function w with
support in / C [0,7]. Consider the equations of motion

(DAT[C®), w) =0

- . .. 0 -
‘/Idtzil/fij(z‘s):?wi = '——/IdtZl] Zwkﬂﬂfﬁ(zé)zf:ﬁ +
ij k

—/dt [w AL + w3 2 J

i (rs(=1, 23, 23))? (ra(z7, 23, 23))°

For all t € [ and for § € [0, 1] we have

OM(2%)
BN

sup
ijk

and

!

mim; 2% myms 26
9 + + + < c3
Z; (=0)? ; (k)37 (5> T ()3

with ¢a,c3 > 0 by Lebesgue’s dominate convergence theorem we can pass to the limit § — 0 getting
the weak form of the equations of motion. The strong form of the equations of motion out of the
collision set is obtained using standard regularity arguments.

To prove that (? is a generalized solution we have to prove that the mechanical energy has the same
value in all /. The energy is:

N omm; J mima J
2ZM,J LD EDY wE "~ rgl(nj) IRCIBE

ijk#3 Tk k#3

then one finds
.1 T 5N2 48[
Bs < oz dt ) (:])* - AF[C7)
0 k

therefore £5 is bounded when § — 0. Then for any ¢* for which ¢°(t) is generalized solution we
have:
17



’

By =3 3 MW NRE)NE) — 3 T _mime

ij ik #3 “k(i*) r3(:o(t‘))

where Es — Eo (up to a sub-sequence). E, does not depend on ¢*. 0

Now we can prove:

Corollary 5.1. The weak solution (°(.) has at most a finite number of collisions.

Proof. Note that I,(¢°) C [0,T] is bounded and if there are not accumulation points then 7.(¢%) is
finite and hence the collisions are isolated.

We now prove that there are no accumulation points in I.(¢%).

We have seen that ¢?(.) is a strong T-periodic solution. Let us define the function:

3
Gy () = 3 D (o))’

We define the function {51) using the the relative distances because the finite dimensional metric
defined by matrix M is equivalent to the Euclidean metric.
Let us assume that along (%

2

;tzAé(t) >0 for all ¢,8 such that A%(¢) < p with g > 0

Then for any ¢ € [0, T\ 7.(¢°) such that A%(¢) < u/2 we get A%(t) < x for & small enough.
Now (% — ¢ uniformly in [0, T]\Z.(¢°) we obtain

d?

FAO(t) >0 forte[0,TN\L(¢C°) and A%(t) < /2
By contradiction, if f is an accumulation point of IC(CO) one can take a sequence {tp}, witht, <t,41
such that t, — f. Then there exists #, € [tn,tn41] where A%(.) attains its maximum at i,. Now
A°() is convex then A%(f,) = u/2. Hence we get:

— N O¢r y —
u/2= nlglgoA (ta) =0

(52)

and this is a contradiction.

Now to conclude the Corollary we have to prove (52).
We evaluate the second time derivative of (51) along ¢® we write A% in the coordinates ry, ra, 3.
This can be done because any strong solution ¢?(.) is collinear at most on a discrete set of times
(see [1]). We have:

(53) 5 g ) = 2 3

Now the Euler-Lagrange equations are:
For ¢ =1,2 and j, k are determined by the cyclic permutation

d .6 a .6 .6
2= Z Marf = o > Mimifié, +

tim
mem; 20
T2 T (p9)3
(r{) (rf)
moreover the conservation of the energy gives ‘

1 6y 86 ! m;m; )
§ZM,'J'(T )rirj = Fj +Z——T5 +Z (9)?
[} ijk k k k

(54)

18



Substituting into the expression (53) we obtain:

d? OMjm 5.
g (O == 30 MG R il 4

2 ')
dt ijlm Ti
(55) +5 Z re M ‘ PR+ —AL(CY)
ijim !
where
(56) Ag(¢%) = 2E% + - Z“W

z]k

Now one can evaluate the derivatives of the matrix M by the formula M = —M -9M—1- M. Matrix
M has smooth entries. Using the explicit form of M ~! given in section 2 we find:

_Z‘H[‘la[ P QZ"M‘—‘”‘“Z

ijim ijim

- (rd)* = (r)° 512
(57) CZ 5r6 2.0

iik §

The constant C' depends only on the masses. Considering the properties of regularity of the matrix
M, we see that we can choose z;(t) so small that A;(¢%) is positive definite and it is the main
contribution to (55). So there exists p such that (52) holds. g
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