Author(s)
|
Zioutas, K. (Thessaloniki U.) ; Aalseth, C.E. (South Carolina U.) ; Abriola, D. (CNEA, Buenos Aires) ; Avignone, F.T., III (South Carolina U.) ; Brodzinski, R.L. (PNL, Richland) ; Collar, J.I. (CERN) ; Creswick, R. (South Carolina U.) ; Di Gregorio, D.E. (CNEA, Buenos Aires) ; Farach, H. (South Carolina U.) ; Gattone, A.O. (CNEA, Buenos Aires) ; Guerard, C.K. (CNEA, Buenos Aires) ; Hasenbalg, F. (CNEA, Buenos Aires) ; Hasinoff, M. (British Columbia U.) ; Huck, H. (CNEA, Buenos Aires) ; Liolios, A. (Thessaloniki U.) ; Miley, H.S. (PNL, Richland) ; Morales, A. (Zaragoza U.) ; Morales, J. (Zaragoza U.) ; Nikas, D. (Thessaloniki U.) ; Nussinov, S. (Tel Aviv U.) ; Ortiz, A. (Zaragoza U.) ; Savvidis, E. (Thessaloniki U.) ; Scopel, S. (Zaragoza U.) ; Sievers, P. (CERN) ; Villar, J.A. (Zaragoza U.) ; Walckiers, L. (CERN) |
Abstract
| The 8.4 Tesla, 10 m long transverse magnetic field of a twin aperture LHC bending magnet can be utilized as a macroscopic coherent solar axion-to-photon converter. Numerical calculations show that the integrated time of alignment with the Sun would be 33 days per year with the magnet on a tracking table capable of $\pm 5^o$ in the vertical direction and $\pm 40^o$ in the horizontal direction. The existing lower bound on the axion-to-photon coupling constant can be improved by a factor between 50 and 100 in 3 years, i.e., ${\it g_{a\gamma \gamma}} \lesssim 9\cdot 10^{-11}$ GeV$^{-1}$ for axion masses The same set-up can simultaneously search for low- and high-energy celestial axions, or axion-like particles, scanning the sky as the Earth rotates and orbits the Sun. |