ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна BD E6-97-189 V.G.Chumin, V.I.Fominikh, T.A.Furyaev, K.Ya.Gromov, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya, V.V.Tsupko-Sitnikov STUDIES OF α -SPECTRA IN 221 Fr, 217 At, 213 Bi AND 213 Po DECAYS Submitted to «Известия РАН, серия физическая» Swy749 ## 1. Introduction In the last ten years several investigations on the decays of nuclides from the 225 Ac equilibrium decay chain (Fig. 1) have been published. New data on the structure of the 217 At, 213 Bi, 213 Po and 209 Pb nuclei close to double magic 208 Pb have been gained. It is expected that the 225 Ac α -decay studies can reveal some new information on the presense of the static octupole deformation in the 221 Fr nucleus. To study nuclear radiations of the above nuclei, 225 Ac is separated from 229 Th. The daughter nuclides are rapidly accumulated in the prepared source. Complex α -, β - and γ -radiation spectra and relatively short half-lives of the daughter nuclei hinder the identification of specific transitions with the decay of appropriate nuclei from the 225 Ac chain. The fine structure lines in the 221 Fr α -decay were identified by Liang [1] as he investigated the 225 Ac α -recoil nuclei α -spectrum with the magnetic spectrograph. Ardisson et al. [2,3] developed and used fast radiochemical methods for separation of 213 Bi, 209 Tl and 221 Fr nuclei and investigation of their γ -spectra. Sheline et al. [4] and Gromov et al. [5-8] confirmed the belonging of γ -transitions to the 225 Ac, 221 Fr and 217 At decay in $(\alpha - \gamma)$ -coincidence experiments. But some problems still require careful studies of the weak components of the 22t Fr, 217 At and 213 Bi α -spectra. For example, - Liang [1], when studying the α -spectrum of recoil nuclei from the 225 Ac source, observed a weak line with $E_{\alpha}=6037~{\rm keV},\ J_{\alpha}=0.003$ % per decay. An excited 217 At level with energy 310 keV and $I^{\pi}=(13/2^+)$ is introduced on this basis [1,4,6]. Unlike the case with other levels introduced on the basis of the 221 Fr fine structure α -lines [1], no γ -transitions from the 310 keV level are observed. It is not impossible that the 6037 keV line is not associated with the 221 Fr α -decay, but with the α -decay of the daughter 217 At nucleus to the 1050 keV level of 213 Bi and, therefore, this line can be found in the α -spectrum of 217 At. - Ardisson et al. [2] assumed that the 868 keV ²⁰⁹Tl level is excited in the ²¹³Bi α -decay. The sum intensity of the 868 and 545 keV γ rays from this level was determined to be 0.03 % per decay. Accordingly, the fine structure α -line, with E_{α} =5018 keV and J_{α} =0.03 %, should be observed in the α -spectrum of ²¹³Bi. - Chumin et al. [7], studying $(\alpha \gamma)$ -coincidence in the decay of $^{225}{\rm Ac}$ Fig. 1. Decay chain of ²²⁹Th to ²⁰⁹Bi Fig. 2. Block diagram of the experiments for α -spectra investigation using an α -recoil: once (a) and twice (b). S - $^{225}{\rm Ac}$ source, C1 $\,$ and C2 - collectors of recoil nuclei, D - α -particle detector, RN - recoil nuclei and its daughters, observed the coincidences of 150 keV γ -rays with $E_{\alpha 150}$ =6612 keV α -particles of 221 Ra, resulting from the β -decay of 221 Fr [1]. Thus, the observation of the 221 Fr β -decay [1] was confirmed. Its intensity was redetermined as $(11\pm5)\cdot10^{-5}$ decays. It is of interest to confirm this result in direct α -spectrum measurements. - Chumin et al. [8] found the ²¹⁷At α -decay to the ²¹³Bi 759 keV level. The α -line $E_{\alpha 759}$ (²¹⁷At)=6322 keV, $J_{\alpha 759}=5\cdot 10^{-3}$ % is close to the ²²¹Fr α_0 -line ($E_{\alpha 0}=6341$ keV, $J_{\alpha 0}=85$ %) and was observed only in ($\alpha - \gamma$)-coincidences. It is worthwhile to confirm these data in direct α -spectrum measurements. In the present paper the weak components of the $^{221}\mathrm{Fr},\,^{217}\mathrm{At}$, and $^{213}\mathrm{Bi}$ α -spectra are studied. The phenomenon of recoil in α -decay is used to eliminate the contribution to these spectra from the α -radiation of mother nuclei. ## 2. Experimental set-up The main source of α -radiation was $^{225}\mathrm{Ac}$ separated from $^{229}\mathrm{Th}$ by the technique "The isotope generator of $^{225}\mathrm{Ac}$ " [9]. The $^{225}\mathrm{Ac}$ source activity was about 20 mCi. The $^{225}\mathrm{Ac}$ activity was electrolytically deposited on a tantalum foil and then vacuum evaporated on an aluminum foil. Small thickness of the resulting sources provided a considerable (up to 30 %) yield of recoil nuclei. To study α -spectra of the recoil nuclei, the $^{225}\mathrm{Ac}$ source was placed in a vacuum chamber so that the detector, situated in the chamber, could not detect α -particles from the source (Fig. 2). The recoil nuclei from the α -decay of $^{225}\mathrm{Ac}$ and daughter nuclei were gathered on a collector (C1 in Fig. 2). The detector recorded α -particles from the decay of the recoil nuclei gathered on the collector. Thus the α -spectrum of the $^{221}\mathrm{Fr}$ and daughter nuclei free of the contribution from α -particles of $^{225}\mathrm{Ac}$ was provided (from here on it is called the $^{221}\mathrm{Fr}$ α -spectrum). To have the 217 At α -spectrum the α -recoil phenomenon was used twice. The detector was placed in the chamber in a position where it could not "see" both the 225 Ac source and the first collector. The recoil nuclei from the α -decay on the first collector were gathered on the second collector. The detector recorded α -particles from the decay of nuclei on the second collector (Fig. 2(b)). A Canberra Si(Au) detector (diameter 10 mm, FWHM 15 keV) was used to measure α -spectra. The $^{221}\mathrm{Fr}$ and $^{217}\mathrm{At}$ decay spectra shown in Figs. 3(b,c), are compared with the α -spectrum of the $^{225}\mathrm{Ac}$ and daughter nuclei (Fig. 3(a)). Note that the widths and forms of the α -lines from the decay of different nuclides are different. This is because part of the nuclei resulting from the lpha-decay penetrate into the collector material, which broadens the α-lines of these nuclei. That is why the narrowest in spectrum Fig. 3(a) lines belong to the ²²⁵Ac decay, in Fig. 3(b) to the ²²¹Fr decay, and in Fig. 3(e) to the $^{247}\mathrm{At}$ decay. Note also that since the recoil nuclei leave the $^{225}\mathrm{Ac}$ source or the collectors with a relatively high yield, the number of decays recorded per time unit will be not constant for different members of the $^{225}\mathrm{Ac}$ decay chain. It decreases with increasing number of α -decays leading to formation of the nucleus in question from ²²⁵Ac. Therefore, the relative intensities of α -lines from the decay of nuclei with the same mass numbers were used in the analysis of the result given in Tables 1 and 2. The relative intensities of α -lines were taken to be proportional to their areas, i.e. the efficiency of the detector was taken to be constant in the energy interval $E_{\alpha} = 5.0 \pm 8.5 \text{ MeV}.$ # 3. Experimental Results The comparison of the 221 Fr and 247 At spectra (Figs. 3(b,c)) with the spectrum of the 225 Ac and daughter nuclei (Fig. 3(a)) allows one to estimate the degree of their purity from α -radiation of mother nuclei. In the 247 At α -spectrum the $E_{\alpha0}$ =6341 keV 221 Fr line is observed. Its intensity is $5 \cdot 10^{-4}$ J_{α}, 247 At. Thus the investigations, whose results are displacd in Fig. 3(c), are equivalent to the investigations with the mass-separated source of 247 At (32 ms) with the 221 Fr impurity of the order of $5 \cdot 10^{-4}$. To evaluate the 225 Ac impurity is more difficult because the α -lines ($E_{\alpha0}(^{225}$ Ac)=5830 keV and $E_{\alpha0}(^{213}$ Bi) =5870 keV) are too close in energy. But it can be said with confidence that the intensity of the $E_{\alpha0}(^{225}$ Ac) line in these spectra is below $5 \cdot 10^{-3}$. Table 1 gives the results of the analysis of the spectra from Figs. 3(b) and (c). Fig. 3. Alpha spectra of: - a) $^{225}\mathrm{Ac}$ and daughter nuclei (exposition 108 h); - b) ²²¹Fr and daughter nuclei (once recoil nuclei, exposition 270 h); - c) $^{217}\mathrm{At}$ and daughter nuclei (twice recoil nuclei, exposition 182 h). Complex line: $E_0(^{224}{\rm Fr})=6341~{\rm keV}$ and $E_{\alpha759}(^{217}{\rm At})=6322~{\rm keV}$ is shown in the insert Table 1. Intensities of the α -lines of the $^{217}\mathrm{At},\,^{213}\mathrm{Bi},\,$ and $^{213}\mathrm{Po}$ decay | Energy, keV | | Intensity per cent | | |--|---------------------|--------------------|--------------------| | Levels | α -particles | Present paper | Other publications | | $^{217}{\rm At} - ^{213}{\rm B}$ | i | | | | 0 | 7067 | >99.9 | >99.9 | | 258 | 6814 | 0.038(4) | 0.036(3) [8] | | (465) | 6609 | - | 0.010(5) [10] | | 593 | 6485 | 0.022(2) | 0.021(2) [8] | | 759 | 6322 | 0.012(6) | 0.005(1) [8] | | (1050) | 6037 | < 0.002 | (0.003) [1,10] | | $^{213}\mathrm{Bi} \rightarrow ^{209}\mathrm{T}$ | 1 | | | | 0 | 5869 | 2.05(3) | 1.94(11) [10] | | 324 | 5549 | 0.153(3) | 0.16(3) [10] | | (868) | (5018) | $<10^{-4}$ | (0.03) [2,10] | | ²¹³ Po → ²⁰⁹ P | 'b | | | | () | 8376 | 97.76(3) | 97.91(3) [10] | | 779 | 7614 | 0.0030(2) | 0.0047(5) [10] | Note: Energies of alpha-particles and levels are from references [1,2,8,10]. - The 217 At α -spectrum: Intensities of the $E_{\alpha 258} = 6814$ keV and $E_{\alpha 593} = 6485$ keV lines are in good agreement with the results of the $(\alpha \gamma)$ -coincidence experiments [8]. The $E_{\alpha} = 6341$ keV line (Fig. 3(c)), whose main part we attribute to the 221 Fr decay (see above), is a complex one. Its decomposition, shown in the insert in Fig. 3(c), allowed us to determine the intensity of the new $E_{\alpha 759} = 6322$ keV line (α -decay of 217 At in the 759 keV level of 213 Bi). It is $J_{\alpha 759} = (12\pm6)\cdot10^{-3}$ % and agrees with [8]. The intensity evaluation of the $E_{\alpha} = 6037$ keV line does not exclude the possibility of assigning this α -line to the 217 At decay. - The ²¹³Bi α-spectrum: The measured intensities of the E_{α0} (²¹³Bi)= 5870 keV and E_{α324} (²¹³Bi)=5549 keV lines agree with the known ones [10]. The measured upper limit for the intensity of the E_{α868}=5018 keV line appeared to be 100 times smaller than expected from [2]. Thus, the assumption that the ²⁰⁹Tl 868 keV level is excited in the ²¹³Bi α-decay is not confirmed. Note that in their later paper [3] the authors of [2] attributed the 868 keV γ-transition to the ²¹³Bi →²⁰⁹Po β-decay, but did not abandon the earlier assumption that the 868 keV - level is excited in 209 Tl. Accordingly, in the 1996 Table of Isotopes [10] the 868 keV level in 209 Tl is preserved. - The ²¹³Po α -spectrum: The measured intensity of the $E_{\alpha778}(^{213}\text{Po})$ line agrees with the known data [10]. Table 2 gives the results concerning the β^+ -decay of $^{224}{\rm Fr.}$ $^{217}{\rm At}$ and $^{213}{\rm Bi}$. **Table 2.** Intensities of the 221 Fr, 217 At, and 213 Bi β^- -decay | Nuclei | β -decay | | | |---------------------|---------------------------|----------------------------|--| | | Present paper | Other publications | | | $^{221}\mathrm{Fr}$ | $(4.8\pm1.5)\cdot10^{-5}$ | $(11\pm5)\cdot10^{-5}$ [7] | | | $^{217}\mathrm{At}$ | $(6.7\pm2.4)\cdot10^{-5}$ | $(12\pm6)\cdot10^{-5}$ [1] | | | | | $<5.10^{-5}$ [7] | | | ²¹³ Bi | (0.9776(3) | 0.9791(3)[10] | | - 221 Fr: In the 221 Fr α-spectrum very weak lines of 221 Ra are observed. The $E_{\alpha 150}=6612$ keV line is the most distinct. This line was earlier attributed in the 225 Ac decay chain to the 217 At decay [10]. Its belonging to the 221 Ra decay was proved in [7] by observation of coincidences of this line with the 150 keV γ -ray, and is confirmed in the present study by the fact that 221 Ra α-lines are displayed in the 221 Fr spectrum and are not observed in the 217 At spectrum. In the 225 Ac decay chain 221 Ra results from the β-decay of 221 Fr. There is not another explanation of the 221 Ra presence in the 225 Ac decay chain. Using the 6612 keV α-line intensity we determined the intensity of the 221 Fr β-decay branch to be $(4.8\pm 1.5)\cdot 10^{-3}$ % in agreement with the result of [7]: $(11\pm 5)\cdot 10^{-3}$ %. Now that the 6612 keV α-line is ascribed to the 221 Ra α-decay, there are not experimental data for introduction of the 213 Bi 450 keV level in the decay of 217 At [10]. - ²¹⁷**At:** In the ²¹⁷At α-spectrum, (Fig. 3(c)) the $E_{\alpha 0}$ =7741 keV. $J_{\alpha 0}$ =100 % α₀-line of ²¹⁷Rn ($T_{1/2}$ =0.54 ms) is observed. This ²¹⁷Ra is formed both in the ²²¹Ra α-decay and in the β-decay of ²¹⁷At. The intensity of the ²¹⁷At β-decay branch was calculated as a difference between the $E_{\alpha 0}$ =7741 keV line intensity in the spectrum of Fig. 3(c) and the ²²¹Fr β-decay branch intensity found above. The value $(6.7\pm2.4)\cdot10^{-5}$ per decay does not contradict the upper limit determined in [7] and earlier investigations. - ²¹³Bi: The intensity of the ²¹³Bi α-decay determined from the ratio of the α-line areas in the spectrum of Fig. 3(c): $$\frac{S_{\alpha 0}(^{213}Po)}{S_{\alpha 0}(^{213}Po) + S_{\alpha 0}(^{213}Bi) + S_{\alpha 324}(^{213}Bi)} = 0.9776(10).$$ is in agreement with the known value [10]. ### 4. Conclusion The use of the α -recoil phenomenon to study α -spectra in the $^{225}{\rm Ac}$ equilibrium decay chain has allowed us to free spectra investigated from the α -radiation of mother nuclei and to gain new or more reliable experimental data on the intensity of weak components of these spectra. The research of the 217 At α -spectrum confirms the results [8] about the excitation of the 759 keV level in 213 Bi and yields more correct data on the intensity of the 217 At α -decay to the 258 and 593 keV levels in 213 Bi. It is established that the 6612 keV α -line, previously attributed to the 217 At α -decay, arises from the 221 Ra α -decay and thus there is no experimental basis for the introduction of the 450 keV level in 213 Bi. It is shown that the assumed [2] excitation of the 209 Tl 868 keV level in the 213 Bi α -decay contradicts the results of the present 213 Bi α -spectrum investigation. Identification of the $^{221}\mathrm{Ra}$ and $^{217}\mathrm{Rn}$ α -lines in α - spectra of the nuclei from the $^{225}\mathrm{Ac}$ decay chain and measurement of their intensity has allowed us to repeat determination of the β -decay intensity for $^{221}\mathrm{Fr}$, $^{247}\mathrm{At}$, and $^{213}\mathrm{Bi}$. The authors are grateful to Dr. V.B. Brudanin for his interest in this investigation. The investigation was supported by the Russian Foundation for Basic Research (Project No. 94-02-04828). #### References - 1. Liang C.F. Theses LT University de Paris, Orsay (1969). - Konassi M.C., Hachem A., Ardisson C. and Ardisson G. NIM, A280 (1989) 424. - 3. Ardisson G., Barci V., El-Samad O. NIM, A339 (1994) 168. - Sheline R.K., Liang C.F., Paris P. Phys. Rev. C51 (1995) 1192. - Gromov K.Ya., Kuznetsova M.Ya., Norscev Yu.V. et al. Izv. RAN, ser. fiz., 58, No. 1 (1994) 35. - Butabaev Yu., Adam I., Gromov K.Ya, et al. Izv. RAN, ser. fiz., 59, No. 11 (1995) 35. - Chumin V.G., Elissev S.S., Gromov K.Ya, et al. Izv. RAN, ser. fiz., 59, No. 11 (1995) 58. - Chumin V.G., Fominikh V.I., Gromov K.Ya, et al. JINR Preprint E6-96-160, Dubna, 1996. Accepted by Z.Phys. A. - Tsupko-Sitnikov V.V., Norseev Yu.V., Khalkin V.A. Journal of Radioanalytical Nucl. Chem., 202 (1996) 75. - 10. Firestone P.B., Shirley V.S. Table of Isotopes, eighth edition (1996). Received by Publishing Department on June 9, 1997. Чумин В.Г. и др. Исследование α -спектров при распаде 221 Fr, 217 At, 213 Bi и 213 Po Для получения информации об интенсивности слабых компонентов α -спектров нуклидов из цепочки распадов ²²⁵Ас использовано явление отдачи при α -распаде. Показано, что нет экспериментальных оснований для введения уровней 450 кэВ ²¹³Ві при распаде ²¹⁷Аt и 868 кэВ ²⁰⁹ТІ при распаде ²¹³Ві. Подтверждается возбуждение уровня 759 кэВ ²¹³Ві при распаде ²¹⁷Аt. Измерены интенсивности β --распада ²²¹Fr, ²¹⁷At и ²¹³Ві. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна, 1997 Chumin V.G. et al. E6-97-189 Studies of α-Spectra in ²²¹Fr, ²¹⁷At, ²¹³Bi and ²¹³Po Decays The alpha-recoil phenomenon is used to gain data on the weak components of the α -spectra of the nuclides from the ^{225}Ac equilibrium chain. It is established that there is no experimental basis for introducing the 450 keV level of ^{213}Bi in the ^{217}At decay and the 868 keV level of ^{209}Tl in the ^{213}Bi decay. Excitation of the 759 keV level in the ^{217}At decay is confirmed. The intensities of the ^{221}Fr , ^{217}At and ^{213}Bi β^- -decay are measured. The investigation has been performed at the Laboratory of Nuclear Problems, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna, 1997 Редактор Е.И.Кравченко. Макет Т.Е.Попеко Подписано в нечать 02.07.97 Формат 60 × 90/16. Офсетная печать. Уч.-изд.листов 1,14 Тираж 335. Заказ 50034. Цена 1368 р. Издательский отдел Объединенного института ядерных исследований Дубна Московской области