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Abstract

We find a remarkably simple path emerging which begins with QCD and
ends with rather accurate predictions of detailed hadronic production data
(favors, distributions, correlations) in electron-positron interactions, the
cleanest situation in which to study such hadronization phenomena. This
path involves relatively few significant parameters and many plausible
physical ideas. The predictions are especially clean (only two ‘natural’
parameters and no ‘ad hoc’ ones ) and accurate for the production of var-
ious flavored light-quark mesons, the most fundamental and elementary
tests of colorfield behavior. This appears to improve our understanding
of the physics of the meson formation process and forms a foundation
for further development of other more complex areas (e.g., baryon pro-
duction, Pr effects) which we currently predict adequately, but where
we must employ a small number of ‘ad hoc’ parameters. The physics of
our approach resembles that of a relativistic string and, in fact, histori-
cally is a spin-off from the very successful Lund modeling. However, our
model’s conceptual basis represents a paradigm shift away from empha-
sizing intermediate stages in an event and toward an emphasis on the
total transition from the e*e~ initial state to the entire set of final state
hadrons. The model’s central feature is a simple Event Weight Function
incorporating a QCD-motivated space-time area law which, on the one
band, leads with very few assumptions to predictions agreeing remark-
ably well with ete™ — hadronization data, and, on the other hand, can
also be plausibly related to strong-coupling soft QCD and can form a ‘tar-
get’ for non-perturbative calculational approaches. Our approach avoids
most of the parameters employed by traditional relativistic string models.

1 Introduction

It is commonly believed that QCD is the appropriate underlying theory for
the ‘hadronization process’, that is, how hadrons are formed. Our goals, in
this paper, are (first) to develop our phenomenology as a simple and accurate
description of ete~ — hadronization data, especially focused on flavored
meson production, and (second) to discuss the ways in which QCD relates to
this phenomenology: how QCD suggests the structure of our phenomenology,
how this ‘fundamental’ phenomenology forms a ‘target’ for QCD calculation
and approaches, and how ultimately QCD may perhaps be used to predict the
parameter values of the phenomenology.

Hadronization can occur in many different arenas — hadron-hadron interac-
tions, lepton-hadron interactions, etc. The cleanest arena in which to study it
in detail is electron-positron interactions in which the electro-weak annihila-
tion creates an almost asymptotically free initial quark-antiquark pair at very




large @2, with a QCD colorfield emerging between them as they separate. The
system then evolves into a very soft low-Q? non-perturbative regime in which
the hadrons are finally formed. The rates and distributions of various flavored
light-quark mesons are particularly useful in such studies, since they are the
simplest most fundamental probes of colorfield behavior. Fortunately the data
in e*e™ interactions from Ecp of 10 GeV to 91 GeV is becoming so copious
and detailed that decisive comprehensive studies can be carried out.

1.1 Historical development of UCLA model

The conceptual path from QCD to accurate predictions of ete~ data which
emerges in our approach is sketched in Fig.1. Logically, the path flows from
QCD (upper left in Fig.1) to comparisons with data (lower right). Historically,
however, the development was exactly the opposite: We first noted (‘UCLA
stage I’ in Fig.1) in 1987[1] that if the Lund Symmetric Fragmentation Func-
tion [2,3]

(1 —Zz)“ o (m,2,+P.}h)/z )

f(z, Pf)=N

was used as a hadronic production density (i.e., with a constant normalization
N for all hadrons), then the predicted rates agreed rather well with measured
ones. In this phenomenological approach, the suppression of heavy hadrons
arises from the factor of ezp(—bm2/z) in the fragmentation function rather
than from suppression factors such as s/u and vector/all as used, for example,
in the Lund implementation. (See Appendix A for a detailed comparison of
the Lund and UCLA approaches.)

After this initial phenomenological success, we then began, with some guidance
from the Lund group, to develop the idea and form of the Event Weight
Function[4] (‘UCLA stage I’ in Fig.1), recognizing in fact that it both (a)
leads to the idea of using the Lund Symmetric Fragmentation Function with
constant normalization as a hadronic production density as we were already
doing phenomenologically, and (b) also begins to connect with QCD ideas.

1.2 Present UCLA emphasis - The Event Weight Function

We now view the central feature of our approach as this EFvent Weight Function
(dWj) which emphasizes the entire transition from the initial state all the
way to the final state hadrons. The Fvent Weight Function can be written
for any final state of specified hadrons — that is, if the flavor (and, therefore,




The Path From QCD to Hadronization DATA
(via The UCLA Approach)

in terms of e+e- — vy — hadrons
first for light-quark mesons
Stage 11 approximate 1+3 dimension %o\'\b'

.

Fig. 1. The conceptual flow of the UCLA approach from QCD to the Event Weight
Function to the Fragmentation Function to predictions of data. However, the his-
torical development proceeded in roughly the opposite sequence.
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Fig. 2. Feynman-type diagram of e*e™ annihilation into hadrons. Hot (perturbative)
gluons radiated from the high-energy quark-antiquark pair get colder and colder
(non-perturbative) until they collapse into a narrow tube structure about the time
when virtual ¢7 fluctuations begin to screen the colorfield and to split it into hadrons.
Although implementation is done along the direction of the arrow in the picture, it
must be remembered that physics happens along the time axis.

mass) and 3-momentum of each hadron is specified, then the Event Weight
Function provides the probability of that specific event occurring relative to
other possible final states.

1.3 Conceptual path from QCD to accurate predictions of light-quark mesons

Thus, we currently conceptualize the logical path (see Fig.1) as moving from
QCD to the Event Weight Function (dWj), to the fragmentation function
(dP,) for an ‘outside-in one-hadron-at-a-time’ iterative implementation, to
comparisons with data. The structure of this ‘logical flow’ for our approach is
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3. Five hadrons are produced with small intrinsic Pr relative to a "planar”

hadronic event of ete~ annihilation. These Pr’s distort the plane of the event in
such a way that the resulting area becomes slightly larger than for the planar event.

as follows:

a)

b)

QCD has two extreme regions where it can be calculated in an expansion
series (see Fig.2): _

e (i) the high Q?, high virtuality, low coupling-constant region (¢ < 1)

just after the initial godo pair is created from the virtual photon.
e (ii) the low Q2 low virtuality, high coupling constant region (g > 1)
at the end of the process as the hadrons are finally formed.

In region (i), one traditionally uses a perturbation theory expansion in
‘g’, the bare coupling constant, in terms of the number of quanta ex-
changed. The calculations are believed to be accurate to the order of the
number of quanta exchanged (with the possible exception of not including
interference effects). In practice, exact calculations are limited to two or
three particles exchanged, and are often supplemented by leading-log or
next-to-leading-log calculations as an approximate method of extending
to several particles exchanged.

In region (ii), one can expand in (1/g%) on a space-time lattice with
Euclidean metric and with finite lattice spacing ‘a’. Within these limita-
tions, the calculation is exact to whatever order the expansion in (1/ g%)
is carried. However, to make contact with an actual physical regime, one
must presume that the structure or results remain valid under two as-
sumptions: (a) extrapolation to the continuum limit of @ = 0, and (b)




extrapolation from the Euclidean lattice space to ‘real physics’ space with
the Minkowskian relativistic metric.

d) The hadronization process spans from the extremes of region (i) to region
(ii); this transition from very high Q2 to very low Q? both contributes to
the problem’s interesting character and also to the difficulty of accurately
calculating it.

e) In region (ii), the very important result of the first-order expansion is
a space-time area law and also a perimeter law (described in Section 8)
in Euclidean space-time with lattice spacing ‘a’. [Note that the region
(i) weak-coupled behavior of the early system is essentially common to
all events. Thus, in comparing the weights of various events, this effect
essentially cancels out and one can treat the situation as if the strong-
coupled area law dependence was valid throuhgout the entire space-time
area of an event.]

f) We presume that this result extrapolates for our Event Weight Function
to the continuum limit of @ = 0 and to Minkowskian space. [Note: the fact,
as shown later in our paper, that our approach works so well can be turned
around to argue that these extrapolations are indeed approximately okay.|

g) From our Event Weight Function, we derive a fragmentation function in
order to implement our ideas for comparison with data. The fragmenta-
tion function contains a factor of exp(—bm2/z) arising from the Event
Weight Function space-time area law.

h) This suppression from final state hadron mass, arising from the QCD-
inspired area law in the Fvent Weight Function, is all one needs phe-
nomenologically to fit the light-quark meson rates and distributions in
ete™ annihilation events.

1.4 Emphasis on initial-to-final-state transition

The basis for our present approach, which centers on an Event Weight Function
for the transition of an event-as-a-whole to the entire set of final state hadrons
which are created, involves some conceptual visualization or intuitions which
are somewhat different (and may seem somewhat foreign to the reader!) from
our modeling’s origins in which (a) the process was predominantly studied in
terms of advancing forward one step at a time from one stage to another to an-
other (i.e., from e*e™~ annihilation, to virtual v/Z, to primary quark-antiquark,
to gluon emission, to virtual quark-antiquark pairs from the colorfield, to for-
mation of direct hadrons, to decay of some of the directly-produced hadrons
into the final observed hadrons) and (b) the outside-in one-particle-at-a-time
iterative fragmentation function Monte Carlo implementation strongly influ-
enced one’s conceptions. (See Fig.2.)

By contrast, we follow rather strictly the conceptualization of classical quan-




tum mechanics: (a) specify an initial state and a final state; (b) the transition
rate from the initial state to the final state is controlled by a matrix element
involving the transition through all the intermediate stages and is propor-
tional to the density of final states. By recognizing that the initial stages can
be calculated from ElectroWeak theory and that decay tables can be used in
the last stage, our studies can be focused on transitions from an initial state
of the quark and antiquark created from the virtual photon to a final state of
the hadrons formed directly from the colorfield.

1.5 Physical concepts of the Event Weight Function

The Event Weight Function involves very simple principles: In its most general
form, it involves (a) kinematics, (b) an area law[5,6] in space-time (which
almost any strong-coupled theory will suggest), (c) approximately longitudinal
phasespace, (d) the possibility of suppression ‘penalties’ in creating massive
quark-antiquark pairs from the colorfield (v;;) as depicted in Fig.3, and (e) the
coupling of quarks into the final state hadrons. The latter divides into: (el)
Clebsch-Gordon coefficients to describe the flavor and spin combination of a
quark and antiquark as they coalesce into a meson or of three quarks into a
baryon (C?), and (e2)a new concept, spatial ‘knitting factors’ to describe the
combinations into the spatial wave functions of the hadron to be created (N;).

In our UCLA modeling we make the simplest possible assumptions within this
general structure for the Event Weight Function, namely: (d) there is no ap-
preciable suppression for creating light-quark pairs from the colorfield [namely,
in Fig.3 »; =~ 1.0 for ui, dd, and s5 virtual pairs from the colorfield] and (e2)
the spatial ‘“knitting factors’ for forming all hadrons are approximately the
same [namely, all N; ~ (75MeV)~2 ~ (2.7fm)?]. As we will see, the suppres-
sion factor of around 0.3 usually associated with s3 virtual pair creation via an
‘s/u’ parameter value and also the suppression factor ~ 0.3 ~ 0.6 associated
with creation of a vector meson rather than a pseudoscalar meson via a ‘vec-
tor/all’ parameter are replaced, in our modeling, by a suppression associated
simply with the heavier mass of the actual final state hadron produced.

1.6 Testing the Event Weight Function by a fragmentation function imple-
mentalion.

How should we go about testing our Event Weight Function hypothesis against
experimental data? The ideal way would be to have a computer big enough and
fast enough that, for a given center-of-mass energy, a library of Event Weight
Functions could be calculated for each possible set of final state hadrons within
a grid of the flavor (mass), longitudinal momentum and transverse momentum




of each hadron produced. This, unfortunately, is not presently practical; but it
is useful to remind the reader that the goal is a method to simulate this ideal.
The practical technique to carry this out is to use a Monte Carlo program in
which one hadron at a time is picked in such a way that an event as-a-whole
is eventually constructed appropriately. The program we use is an adaptation
of the relativistic string Monte Carlo JETSET7.4 written by Dr. Torbjérn
Sjéstrand of Lund University, Sweden (with many thanks to him for making
it available to us and aiding us in using it)[7,8]. The program uses an ‘outside-
in’ implementation, that is, first picking the outermost hadron containing the
initial quark, and then working its way inward.

1.7 Summary of the UCLA model hadronization picture

Thus, it is necessary for us, beginning with an Event Weight Function, to de-
rive the fragmentation function - i.e., the probability (dP,;) - for the flavor and
momentum of a first outermost hadron. (See, e.g., Fig.3.) When we perform
this derivation, we find that our simple UCLA assumptions (above) for the
Event Weight Function vertex suppression and knitting factors yield essen-
tially the phenomenology which we originally found to be successful: namely,
using the Lund Symmetric Fragmentation Function as a hadronic production
density in the outside-in JETSET implementation framework.

The use of JETSET allows a further simplification of our treatment: Namely,
we currently use JETSET’s parton shower and also its recipe for moving the
fragmentation implementation past a ‘kink’ in the relativistic string caused by
a gluon emitted in the parton shower. This allows our treatment to be reduced
to that of Fig.3 - the transition from a straight relativistic string between the
primary quark and antiquark to the final state direct hadrons. Throughout,
we have tried to be careful that the implementation always simply reflects the
overall initial-to-final state conceptualization displayed in Fig.2. [There is a
very interesting caveat on this which we are now exploring and which is dis-
cussed more fully in Appendix B.2, namely: The parton shower, approximately
calculated by perturbative QCD, is in fact an unobserved intermediate stage
and not necessarily useable as a calculable ‘final state’. This raises the possi-
bility that an area-law-dominated type of approach might in fact be developed
which includes the parton shower.]

Thus, the total physics picture which emerges in our current approach for an
electron-positron annihilation into hadrons (subject perhaps to the caveat of
Appendix B.2) is:

A) The initial quark-antiquark pair is created by the virtual v/Z at the
(calculable) electroweak vertex.
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B)

C)

D)

E)

F)

G)

H)

I

As the quark and antiquark recede from each other, a colorfield emerges
between them and gluon emission occurs, the first stages of which are
calculable from QCD perturbation theory.

As the system continues to evolve, the parton shower evolves toward and
then moves into a strong-coupled non-perturbative regime.

QCD lattice work[9] indicates that, at quark-antiquark separation > 1 ~
2 fm, the colorfield is dominantly confined to a narrow tube of very high
energy density (i.e., approximately a ‘string’). Thus, the system evolves
toward a tube of colorfield, kinked by the more substantial gluon emis-
sions.

The JETSET7.4 Monte Carlo program(7,8] has a good approximate treat-
ment for the parton shower and also to carry the implementation past
a gluon-created kink. Thus we are allowed to focus our studies on the
properties of a straight relativistic narrow colortube. (Subject possibly
to the caveat of Appendix B.2.)

In line with the points (a)~(h) in the QCD analysis above, the strong-
coupling nature of the later low Q? stages of the hadronization evolu-
tion suggest that we incorporate a space-time area law{5,6] in our Event
Weight Function. Restricted transverse momentum is suggested (via the
Heisenberg Uncertainty Principle) from the narrow finite-width color-
tube. The vertex suppression factors, the Clebsch-Gordon coefficients,
and the ‘“knitting factors’ are obvious factors to introduce into a gen-
eralized Event Weight Function structure. Our UCLA assumptions (no
appreciable gg vertex production suppression, all spatial knitting factors
approximately the same) are the simplest possible assumptions within
this framework; they correspond to the idea that the process is domi-
nated by. the creation of the actual final hadrons (where the virtual ¢g
creation stage is so close to the final hadron production stage that it is
in fact dominated by it).

In implementing this Event Weight Function approach in the outside-
in implementation of JETSET7.4, we find that we are led into using
the Lund Symmetric Fragmentation Function (LSFF)[2,3] as a hadronic
production density, that is, with constant normalization where the nor-
malization constant knitting factor’s value is determining by probability
unitarity on the fragmentation function to be = (75MeV)~2 ~ (2.7fm)>.
In comparing our predictions with data, we find that we predict all
light-quark meson production properties (flavor, momentum distribu-
tions) from Ecpy of 10 GeV (continuum) to 91 GeV with no significant
deviations from the data using only the two natural parameter ‘a’ and
‘b’ of the LSFF. For the more complicated baryonic hadrons, the present
level of agreement is encouraging, though we need one (or possibly two)
ad hoc parameters. We also presently need an ad hoc parameter for Pr.
The success with mesons suggests that our treatment can be used as a
foundation for studying more complicated phenomena such as baryon for-
mation, Py effects, spin-spin correlation, etc on a level more fundamental
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than heretofore.

1.8 Organization of Report

In organizing this paper, we have tried to construct the body of the text for the
semi-casual reader who is primarily interested in the conceptual development
of our approach; thus we have systematically placed the details of our devel-
opment into Appendices for the reader who wants to understand our approach
in greater depth. Though we now conceptualize our approach as flowing logi-
cally from QCD to our phenomenology to data comparisons, in the structure
of this paper we honor the historical approach in which the phenomenology
and data comparisons were developed first and then examine the connections
from QCD. Accordingly, Sections 2 ~ 5 develop our phenomenology, Section 6
compares our predictions with data, Section 7 develops the crossing symmetry
relation with deep inelastic scattering, and finally in Section 8 we focus on the
relation between QCD and our Event Weight Function.

2 The Event Weight Function dW; for Mesons
2.1 Event Weight Function structure

Referring to Fig.3, the Fvent Weight Function (including the possibility of
suppression factors v;; for the production of virtual ¢g pairs in the colorfield
and of different spatial knitting factors N;) for an event with a final state f is
written as:

N C? i}
AW, = 1y dE1dPa P, dPy8 (B} — P} —mf) e XA i) v .
N,C? 2 2 2\ .—x(P2, +P?
xyn_l,anEnszndP,ndPyné (E2 — P2 — m2) e x(FautFl)
x(2m)*8 (E— ZE:) é (Pz - EP,‘.) 6 (Pz - ZPza) 6 (Py - ZP-')
X e“blA-pla.ne (2)
where
12 2 2 2 2 2
(-2-7;) dE:dP,dP,,dP, 6 (E? — P2 — P% — P2 —m}) (3)
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is the four-dimensional phasespace for the i-th meson

(5r) Ps e -m) = (35) 23

and

(2m)46 (E — ZE) ) (P, - Z,-:P"') 6 (Pz - XijPz.-) 6 (P,, - ‘;Pi) (4)

is overall four-momentum conservation, where the bold face E signifies E*%,
etc. The factor exp(—b'Aptane) is the QCD-inspired space-time area law factor.

We include a structure to describe the probability that a quark from one
virtual vertex and an anti-quark from an adjacent vertex combine to form the
state function of a final meson. This involves both Clebsch-Gordon coefficients
to control the flavor and spin parts (C?’s) and a ‘knitting factor’ N; for the
spatial part of the meson’s state function (see Fig.3). The factors exp(—x(PZ +
P?)) provide a structure for limited transverse momentum of the hadrons.

Because the JETSET implementation provides a good recipe for iterating past
a gluon-induced string kink, eq(2) is written relative to a straight relativistic
string.

In compact form, eq(2) can be written as

W90t — [H G )‘3d4P6 (P2 —m?) e‘x”%.-] [nf[l u.-,,-+1}

=i

x(2m)*s* (P - th P,-) e~ Aptanc (5)

This general form of the Event Weight Function structure can be used to an-
alyze not only the assumptions in our UCLA approach, but also the structure
of the Lund modeling.

2.2 Assumptions in the Event Weight Function for the UCLA model

The UCLA assumptions are:

1) The v;;'s for ui, dd, and s3 are all ~ 1.0, that is, there is no substantial
penalty for creating any ¢q pair, as long as the quark mass is well below

13




2)

the QCD scale of ~ 1 GeV, the approximate energy stored in a string-
length of the size of a hadron. [The other side of this presumption is that
a qg virtual pair whose mass is substantially greater than ~1.0 GeV, e.g.,
cZ or bb, has negligible production in the colorfield.] This also recognizes
that at this stage the event is very close (in time or virtuality) to the
actual final state hadrons and that the virtual quark pair production
from the colorfield is being ‘pulled’ by the configurations of allowable
final state mesons, toward which QCD ‘knows’ in a quantum-mechanical
sense it must proceed.

The Clebsch-Gordon coefficients for creating mesons are remarkably sim-
ple, flowing from three aspects of our approach:

(a) Only sets of final state hadrons are allowed which correspond to local

flavor conservation in creating virtual pairs in the colorfield. That is,
udi, dd, and s5 pairs can be created virtually in the colorfield, but ud,
u3, and d§ pairs cannot.

(b) Our emphasis on the total transition to the final state hadrons with

no penalties for virtual u, dd, or s5 creation in the colorfield (with its
intense energy concentration of =1 GeV/fm) means that whatever light
quark-antiquark combination is needed for a particular meson is sim-
ply available from the colorfield ‘for free’. For example, if a k* meson
is part of a hypothesized local-flavor-conservation-allowed chain, then
the u3 pair needed to form the k* (where the u and the 5 come from
different virtual pairs which are adjacent in rank) is simply available
with no appreciable suppression penalty. The flavor coupling, then, of
this ‘available’ u3 pair into the k* flavor state function, whose only
flavor composition is u3, is simply 1.0. Note, however, for example,
that a #° has equal terms in both u@ and dd composition. Thus, if
a uf@ mesonic combination is allowed by a hypothesized local-flavor-
conservation chain, then this u#’s coupling to the 7%’s flavor state func-
tion would be 0.5. Similarly, the couplings which we use into either an
n or into an 7' have strength 0.25 from u#, 0.25 from dd, and 0.5 from
S5.

(c) The spins of the final state hadrons are presumed to be (at least, ap-

proximately) independent. Given the intense amount of spin angular
momentum in the gluons of the colorfield, this would seem to be a
plausible approximate assumption. Therefore, the colorfield couples in
spin to a final state hadron simply with the hadron’s spin degrees of
freedom.
Thus, to summarize, the colorfield couples to a final state meson in fla-
vor and spin with simply the spin-counting of the meson’s spin degrees
of freedom, except for neutral mesons where the additional content of
the meson’s flavor state function must also be coupled to by the quark-
antiquark combination allowed by local flavor conservation.

3) The ‘knitting factor’ N; express the probability of a quark and its ‘neigh-

bor’ anti-quark coupling into the spatial wave function of a particular

14




4)

meson. The units for N;, as can be seen from the Event Weight Function
expression, are (Energy)~2. [The knitting factor is conceptually some-
what akin to a mesonic decay factor in reverse]. We presume that all such
knitting factors, whether the meson be a pion, kaon, 1,7/, p, w, K*, ¢, etc.,
are all approximately the same. The unitarity normalization constraint
from the probability for the outermost hadron, as we shall see in Section
3 and Appendix E.3, then establishes all N; ~ (75MeV)~2 ~ (2.7fm)2.
The transverse situation is described in terms of Pr of the observed
hadrons. The structure used is discussed in Appendices B and C and
summarized in Section 5. '

In our modeling, the suppression of heavier particles arises from the mass of the
final state hadron (as will be seen in Section 3), rather than from suppression
factors at the virtual quark pair production level and smaller knitting factors
for vector mesons, as for example Lund presumes.

2.8

Assumptions in the Lund model

The Lund model, discussed in more detail in Appendices A and B can be cast
into this Event Weight Function form. Its assumptions are:

(1)

2

®3)

(4)

(5)

At the virtual ¢ production stage, there is vertex suppression of s5 pro-
duction (the famous s/u ~ 0.3), based on a WKB tunneling sort of
argument; that is,

Vg = Vgg>~10 and v,;; ~03

Also, for baryon production, the ggq/q factor of ~ 0.09 is introduced as a
vertex suppression.

As in our UCLA treatment, Clebsch-Gordon factors are different from
1.0 only, for example, to decide whether a u state is to be coupled into
a7 n, ory.

The knitting factors are used, via some detailed wave function arguments,
for the vector/all parameters, with different suppression factors ranging
from = 0.3 for light quarks to = 0.6 for heavy quarks. The final state
phase-space spin-counting is also incorporated into the vector/all param-
eters.

The Lund modeling conceptually originates the Pr structure from locally
balanced non-zero transverse momenta of a virtual quark-antiquark pair
as it is created from the colorfield. See Appendices A and B for more
details.

On the level of the Lund Symmetric Fragmentation Function, the Lund
recipe should be followed in which the flavor (and therefore mass) and
Pr of the meson are determined first and then the LSFF is used only to

15




determine the energy-momentum fraction z (thus avoiding the natural
suppression arising from the factor e~tmk/% in the LSFF).

3 Derivation of the Fragmentation Function dP, for the Outermost
Hadron from the Fvent Weight Function dWy

3.1 Probability and weight of an event

Quantum mechanical phenomena such as hadronization inherently involve am-
plitudes which, in a coherent process, are first summed and then squared in
order to get a probability for the process. However, our Event Weight Function
involves probabilities directly. This is justified as an appropriate approxima-
tion in Appendix D in which it is shown that, given a final state set of hadron
flavors and momenta, then use of the area law implies that the configuration
with the largest amplitude leading to that final state will almost always domi-
nate. That is, the second largest amplitude is typically much smaller than the
dominant one so that using only the probability associated with the configu-
ration with the largest amplitude is a quite reasonable approximation.

Using this probabilistic basis, the steps from the Event Weight Function to the
fragmentation function for the outermost hadron are as follows (see Appendix
E for details):

e Define the Total Weight for all possible final state configurations at some
value S = EZ,, by

gtmﬁo (S) — 2 deqmio (S) (6)
f

where Y sums over all possible final state flavors and multiplicities and
integrates over all possible momenta.

e Then:

deqodo (S)

] =
dPPR(8) = g@do(S)

(7)

is a properly normalized probability for an event of specified final state f
such that

2 dpfqoﬂo(s) =1
f
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Fig. 4. The probabilty that the first hadron is produced with a specific en-
ergy-momentum and flavor can be extracted by comparing g®% (5) (an integra-
tion/summation of the weight function for the rest of the system) to g%%(S) (an
integration/summation of the weight function for the original system). The primary
g with kinetic energy E will stretch until all kinetic energy is converted to potential
energy, i.e., 2E = kd where & is the string tension (presumed constant) and d is the
maximum separation between the primary qg. This enables one to write distance
and area in terms of energy and energy-squared respectively. For example, the en-
ergy-momentum fraction of the hadron z can be written in terms of the lengths
l; and lp and the mass-squared of the first hadron can be recognized as the area
labeled m? in the figure.

3.2 Light-cone variables

e Integrate over the azimuthal angle of each hadron, introduce light cone
variables W,, W_, and define

_(Bit+P)y _ Wi _ L

Zi = = = — 8
(E+P)y Wi b ®)

That is, z is the fraction of the initial quark’s energy plus longitudinal
momentum which the hadron carries. As is explained in the caption of
Fig.4, the last step in eq(8) is due to the proportionality between the length
and energy via a presumed approximately constant string tension. (See
Appendix E.1 for details.)

e Then, eq(2) becomes:

NC”dz v P2
1V lexPTl

deqoqo(S) = (4m)? z

dP%‘ Vig X ...
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1(\;:); don o-xr}, dP} - (27)*s (1 - Zz,)

i=1

(-5 s (r-Sr)s(p - R) H @

XVn—l,n

i=1

where m2 = m? + P2 for the i-th hadron.

8.8 Derivation of the outermost hadron’s fragmentation function

e Next, one notes that a partial weight integrated /summed over all possible
flavors, multiplicities, and momenta of all particles except the first (outer-
most) one, normalized by the Total Weight g(S), yields the fragmentation
function of the outermost hadron, that is, the probability of the first hadron
with a specific flavor, specific energy-momentum fraction z, and specific Pr.
Thus, the fragmentation function is:

1 NIC 2/, le —y P2
quo (ZI’PTl,mf) gqoqo(s) (47r)1 bﬂ’h/ 1 z_l e X T, quz_‘l V12
N.
N g

XVUn_1n 1(\;6)' dz" e~XP7, dPT (2m) 45 (1 -2 — Zz,)

2
afe-B£) o(r-r- )
1

i=2 ~i i=2
x& (Py — Py1 — Z Py..) e""zrlone (10)
=2

Using the variables § = (S - m%l/zl) (1 — z) and Z; = 2;/(1 — 2;) scaled
with respect to the remnant system and the identity d(az) = r}llé(z), one

establishes that the part after ¥ in eq(10) is simply g2%(S). (See Appendix
E.1 for details.) Thus, eq(10) becomes

C _ 2 dz _up2 q14o g
e < 5] i o, 28

where b = b'/k?, k ~ 1 GeV/fm is the string tension, and m?/z, is the part
of the original area A(S) which is excluded from the new remaining area
A(S) = A. (See Fig.5 for the geometrical definition.)
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(d)

Fig. 5. Various geometrical definitions to be used in deriving the outermost hadron’s
fragmentation function dP; are displayed. A heavy initial quark travels along a
hyperbola rather than a light-cone, which affects the area involved. One has to
modify the definition of z in order to incorporate this change.
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3.4 Dependence of the total weight on S = E%,,

The reason to introduce the Event Weight Function dW;%*%(S), instead of
using the probability dP;%%(S), is that a very useful Lemma can be proven
for g7(S) (see Appendix E.2 for details):

Take the natural log of both sides of eq(11). Differentiate with respect to
S. Make the crucial assumption that the fragmentation function dP;%(S) is,
in fact, independent of S when S is large enough. (This is reminiscent of the
scaling phenomenon in deep tnelastic scattering that, when an electron of high
enough energy probes a proton, the parton structure function is a function of
the momentum fraction but not Q2). Then, one obtains at large S

S dge(s) §  dg»(S)
gn(5) 45 gon(3) dS

Separation of variables implies

gPP(S) = dgygoS® and g1%(9) = dg,4,5° (12)

where all systems have the same power ‘a’ of S¢, but the coefficients d;; depend
on the flavors of the system. (See Appendix E.2 for details.)

- 8.5 Final form of fragmentation function

Thus, finally, our fragmentation function for the outermost hadron is (as de-
rived from dW; with the one assumption that dP,%(S) is independent of S at
large S):

N,C? 2\ dz; _
dquo(Zl, P%l,mf) = 2417[_—); V12 (1 - Zl)a (1 — Sﬂzll) e—bm%/zl T:ll e XP’12‘1 dl’,;11

X d‘]lﬁo ( 13)
dqotio

Note that an absolute normalization
NC2
(47|')2 Vi2

for the fragmentation function is indicated in this derivation.
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3.6

UCLA form of the fragmentation function

Eq(13), with all »;; =~ 1.0 and all N; approximately the same, is the primary
structure to be used in the outside-in iterative implementation of our UCLA
modeling. However, there are several important subtleties to be mentioned in
its implementation:

(1)

(2)

Eq(13) contains an exponential suppression of Pr, carried over from the
Event Weight Function of eq(2). There are questions of the structure of
the argument of the exponential, of the strength parameter in this ex-
ponential, of whether Pr compensation is only global in the event or is
local either on the quark-antiquark level (Lund) or on the hadron level
(UCLA), and of how to incorporate whatever approach is chosen into an
outside-in iterative implementation. At this stage in our work, we want
simply to use some good approximate Pr treatment which works so that
we can focus on the question of meson production rates. We note that if
one simply replaced m} by the transverse mass squared m% = m? + P},
this would set x = b/z in eq(13). However, one can show that, if there are
local compensation correlations between hadrons, then the subsequent Pr
distributions will be narrower than the ‘natural’ no-compensation distri-
butions. (See Appendix C.) In particular, in an outside-in implementa-
tion, if the Pr of one hadron is compensated for by the next n hadrons,
then one can show that a factor of n/(n — 1) is introduced into the expo-
nential. We find that the following works reasonably well and use it as an
approximate treatment for the time being: (a) We use n = 2 (the most
local compensation possible on the hadron level) so that the suppression
factor is exp(—2bP2/z). (b) After one hadron’s Pr is picked, the next
hadron’s Pr is centered at —1/2 of the remaining Pr imbalance. This,
as will be seen, gives an adequate description of the data. We also note,
however, that a different factor in e~20P#/% from e~*™/# leads to a small
Left-Right symmetry violation(2].

In Fig.3, we have presumed that the initial ¢¢ pair are quite light and
essentially travel along the light cone. This is a good approximations for
up, down, and even strange quarks. However, it is a poor approximation
for charm and bottom quarks, which travel in a hyperbolic path inside
the light cone. This is indicated in Fig.5(d). Focusing on area-law consid-
erations, we presume that zg is really m? /(comparison area) of Fig.5(d).
This modifies the definition of the energy-momentum fraction z to be
used in the exponential of eq(13), which arises from the area-law. The
result is

2
1t - bk log (75)

Zeff — (14)
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3)

where p is the current quark mass and m is the hadron mass. This has lit-
tle effect on light and strange hadrons, but softens the predicted spectra
for b-and c-hadrons in a manner which gives substantially better agree-
ment with experimental spectra than otherwise.

The ratio dg,g/dgg correctly expresses a procedure which was clearly
called for in our original phenomenological approach. Consider Fig.3: Let
do be a #, where we want to focus on properly picking hadron #1 using
our fragmentation function weights of eq(13). If vertex,, is either ua
or dd, then hadron #1 is non-strange. However, if vertez;, is s3, then
both hadron #1 and hadron #2 are strange and therefore heavier than
otherwise and therefore provide more suppression to the event via the
exp(—bm?/z) factors. In our phenomenological treatment, as we consider
hadron #1, we must Yook ahead’ at hadron #2 also and incorporate the
effects of the quark-antiquark flavor at vertex12 on the mass of hadron
#2; that is, we include a factor of

N;C? (1-2)° 2\*

z,Pp

from each appropriate hadron #2 into the weight for each possible hadron
#1. The d;; factors in eq(13) explicitly summarize and require this pro-
cedure.

More precisely, eq(13) can be recast into an eigenvector problem for
the d;;'s with the knitting factor N related to the eigenvalue: Since some
first hadron must be created, there is a probability unitarity constraint
of:

25 dP,%®(z, P2, m?) = 1

+,Pp,

Jlavor
where the summation over flavor is for the flavor of the hadrons contain-
ing a quark go. Carrying out this sum/integration over possible hadron
flavors, 2’s, and Pr’s and generalizing to any combination of initial quark
and antiquark flavors leads to a set of coupled equations:

2 _ \a 2\¢
dij = Zfr;’;; > zZ) (1 - %) e (mA2PR)/e dzdP} - dyg
z,Pp

flavor

The factor quoted above which we use in the weight for hadron #1 from
appropriate hadrons #2 is just the first step in an iterative solution to
this eigenvector problem for the d;;’s. Solving the eigenvector problem
directly for our best fit values of a = 1.65 and b = 1.18 GeV 2, we find

dug =~ dgg = d g = dag
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d,ﬁ = Quz =~ dsj = dd; ~ (0.47 duﬁ
dss ~ 0.47 dsﬁ

These, of course, to first order are simply the factors we have used for
the hadron #2 weighting.

The solution to the eigenvalue problem also gives an intriguing new
piece of information, namely, an eigenvalue for the knitting factor:

N =~ 160 ~ 220GeV % ~ (68 ~ 80MeV) ™% ~ (2.5 ~ 2.9 fm)?

The knitting factor appears to be a new and interesting concept, which
may in some manner be related to the inverse of an hadronic decay con-
stant. We note, in fact, that N ~ (2/f,)? for typical hadronic decay
constants fy of 110 ~ 160 MeV. The knitting factor and other spatial
properties of hadronization development are discussed in a semi-classical
artist’s conception in Appendix F.

4 Baryon Formation

During our hadronization studies, as we have come to understand meson for-
mation as apparently a very simple process, we have also come to view baryon
formation as a much more complicated process: (1) three quarks must some-
how coalesce into a baryon wave function; (2) whereas a quark and antiquark
define a one-dimensional line between them in forming a meson, three quarks
can have a more complex two-dimensional structure in forming a baryon; (3)
one or more ‘popcorn’ mesons can be formed between the baryon and an-
tibaryon; and (4) because of the multiple popcorn meson formation possible,
there are many more combinations possible in the flavor chain of an event.

Recognizing this much-increased complexity for baryon formation, we extend
our approach for mesons to baryon formation in as simple a manner as possible.
The following approach works encouragingly well, though we currently must
introduce at least one ‘ad hoc’ parameter in order to reach fairly reasonable
agreement with baryon rate, distribution, and correlation data. Thus, our
current baryon studies have three purposes: (1) to do an adequate enough
job of phenomenologically fitting baryon data so that the fit in the baryon
sector doesn’t produce any significant bias to our comparisons and conclusions
in the meson sector; (2) to show that our UCLA approach, extrapolated to
baryons, works encouragingly well; and (3) to point the way to the kind,
quality, and quantity of additional data needed to bring our understanding of
baryon formation close to the current level of understanding of mesons.
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4.1 UCLA approach for baryon formation

Following the philosophy of our meson treatment, our approach for baryons
is:

1) For any given final state of hadrons with specified flavors and three-
momenta, now including baryons and antibaryons, we assign a weight
via the Event Weight Function approach. For this weight function, we
presume:

2) The area law approach is valid. Likewise proper kinematics for the Event
Weight Function are still valid.

3) The same values of ‘a’ and ‘b’ are used in the fragmentation function for
baryons as for mesons. (See Section 7 for possible differences of ‘a’ for
mesons and baryons.)

4) There is no significant suppression for creating any number of virtual ui,
dd, and s5 pairs from the colorfield, as we also assumed for mesons.

5) To knit quarks into baryons:

e Proper Clebsch-Gordon coeflicients should be used for creating baryons
as well as for mesons.

e The spatial knitting factors to form baryons are assumed to be the
same as for the mesons, where the universal value is found to be =~
1/(75MeV?) from data and probability conservation, as is discussed in
Section 3 and Appendix E.3.

The Clebsch-Gordon coefficients for flavor and spin couplings are as simple
for baryons as they are for mesons, presuming the three assumptions made in
Section 2: (1) local flavor conservation in creating virtual qg pairs from the
colorfield; (2) virtual ¢q pairs are available ‘for free’ from the colorfield; and (3)
the spins of the final state hadrons are (at least, approximately) independent.
Given these assumptions, the flavor coupling of whatever quarks are needed
into the final state baryon flavor state is simply 1.0 and the spin coupling is
simply the final state baryon spin degrees of freedom, i.e., 2.0 for spin 1/2
baryons and 4.0 for spin 3/2 baryons. The only difference between mesons
and baryons is in the neutral sector: Mesons such as 7%, , p°, @, etc. contain
superpositions of different ¢g flavor states (i.e., uii, dd, and s35) and therefore
a given state of flavored ¢q (e.g., u@) couples into a neutral meson flavor state
with less than 1.0. By contrast, for example, every term in the A and ° flavor
state is uds. Thus, the flavor coupling of quarks within the colorfield into each
of the A and X0 is 1.0.

In terms of area law treatment, because baryons contain three quarks, there
is a new spatial degree of freedom. Whereas quark and antiquark in a meson
always define a 1-dimensional line between them, the three quarks in a baryon
can form a 2-dimensional spatial structure. As the three quarks propagate
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Fig. 6. (a) The baryon and anti-baryon pair are produced adjacent to each other. (b)
One popcorn meson is produced between the baryon and anti-baryon. (c)(d) Two
possible ways of producing two mesons between the baryon and anti-baryon. (e)-(h)
Four possible ways of producing three mesons between the baryon and anti-baryon.
As more popcorn mesons are produced, the number of diagrams increases rapidly.

?

forward in time, an area law structure can take either a ‘Y’ structure or a
‘A’ structure connecting them. In our current treatment, we presume that the
area law for baryons can be treated in an approximate manner where the Y’
or ‘A’ structure has been collapsed into a 1+1 dimensional structure (as for
mesons).

4.2 Popcorn meson structure

Even within the context of our presumed 1+1 dimensional treatment for
baryons, another new degree of freedom emerges: namely, events where ‘pop-
corn’ mesons are ‘popped out’ between the baryon and antibaryon. Fig.6 shows
(a) the baryon and antibaryon are adjacent and share two virtual ¢ pairs;
(b) there is one intermediate popcorn meson and the baryon and antibaryon
share one virtual ¢ pair; (c) there are two popcorn mesons and the baryon
and antibaryon share one virtual pair (where the ‘first’ virtual pair must ‘live
a long time’ before the rest of the baryon-antibaryon formation occurs); and
(d) there are two popcorn mesons in a ‘crossed’ diagram where the baryon
and antibaryon share no virtual ¢g pairs; (e)-(h) various diagrams with three
popcorn mesons. Hypothetically, the popcorn diagrams, with ever increasing
complexity, could extent to very many popcorn mesons. Note that the pop-
corn diagrams introduce new baryonic degrees of freedom which are otherwise
unachievable, e.g., a p — = (baryon-antibaryon) pair, and thus increase the
density of final states for baryon production.

25




We find, in fact, that the series diverges as one increases the number of pop-
corn mesons. Thus we must introduce a parameter to effectively cut off long
popcorn chains. We are led by the fact that strong interaction theory suggests
a perimeter law as well as an area law (see Section 8). In the case of popcorn
diagrams, where in fact the perimeters are longer than for non-popcorn dia-
grams, this suggests the use of a suppression of the form exp(—9 - Mpopcorn)-
This works well phenomenologically with  ~ 3.5/GeV. One interesting con-
sequence of this structure is that the possible length of popcorn chains, even
though suppressed, lengthens as E¢ys increases and thus slowly increases the
density of final baryonic states as E¢)s increases. This seems to correspond to
the fact that in tuning JETSET the Lundian parameter gq/q which controls
baryon production must be increased from = 0.06 at Ecys = 10GeV to ~ 0.10
at 91 GeV.

5 Summary of UCLA Event Weight Function and Its Fragmenta-
tion Function Implementation

We summarize the structure used in our UCLA modeling. The Event Weight
Function for a straight piece of relativistic string, incorporating the specific
assumptions of our UCLA approach, is:

aw o — O dE\dP,,dP;,dP,,6 (E? — P} — m}) e~ x(PE+P) &
f (27!’)3 2 Ul g, ULy, 1 1 1 <o
NCr2z 2 2 2\ —x(P2 +P?
X s EndPendPr AP, (B2 - P2 — m2) e x(PhntFi)
x (27)46 (E - ZE,-) ) (P, _ ZP,,.) ) (P: — EPI,,) ) (P,, -S°P, ,.)
x e_b,Aylane

where we have

(a) set all the v;;'s (possible virtual quark-antiquark suppression factors) to 1.0,

and
(b) set all the spatial knitting factors N; (for pseudoscalar and vector couplings,
etc) to be a universal factor N.

This leads to a fragmentation function of the following form to be used at
each step of an outside-in one-hadron-at-a-time iterative implementation;

NC? a 2\* d
dquo(z7P’I2‘am2)=(47r)12(1—2) (1—%) e bm?/zeq 72
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X e"'ﬁb{(l"z“¢z/2)2+(Pv_¢y/2)2}/z,g dP'12-v . d‘h‘fo
dtmtio

where:

1) we have presumed that dP; is independent of S at large S, which leads to

g""‘ij (S) = 2 deq‘qj (S) = d,‘jSa
f

2) b= Y [k?, where « is the string tension (=~ 1 GeV/fm)
3) For Pr (see Appendix B and C), we have used the form

4)

5)

7)

n b

X= n—1 zg

The factor n/(n — 1) expresses the phenomenon of approximate local Pr
compensation (where, as we will see from the data, n ~ 2, the strongest
local Pr correlation possible in this formalism). For the outside-in itera-
tive process, we have also centered the Pr distribution at —¢/2 in each of
the x and y directions, where ¢ is the Pr total accumulated over the pre-
vious iterations. We note that using different factors for m? (i.e., —b/z)
and for PZ (i.e., —2b/z2) slightly violates left-right symmetry for the frag-
mentation function [2]

The fact that a virtual quark with non-negligible mass travels classically
in a hyperbola rather than along the light-cone leads to

FA

1— 4 - bt og (35;)

Zeff =

to be used in the exponentials of the fragmentation function, where u is
the current quark mass and m is the mass of the hadron to be created.
Unitarity in the iterative use of the fragmentation function (some hadron
must be created at each step) leads to:

I dP%®(z, P2, m?) = 1

z,Pp,
flavor

In the iterative implementation, the d;;’s account for the additional sup-
pression from the mass of the next hadron (e.g., when a virtual s3 pair is
created in the color-string). The d;;’s are the solution (using the unitarity
condition of (5) above) to the eigenvector problem of the coupled linear
equations (see Appendix E.3), which also determine the spatial knitting
factor as N =~ 180GeV 2 ~ (2.7fm)>.

In producing popcorn mesons in baryon-antibaryon production, an addi-
tional factor of exp(—#nmypep) is included. (See Section 4.2.)
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Implicit in our treatment are six other assumptions:

1) Local flavor conservation, in creating virtual quark-antiquark pairs.

2) There are no significant spin correlations between nearby hadrons.

3) There are no significant iso-spin correlations between nearby hadrons.

4) After one hadron has been created in the outside-in implementation, then
the remaining system in the iterative process has the same characteristics
(but based on a smaller Ecy system) as the initial system.

5) There are no significant interference effects. That is, we can deal with
probabilities rather than amplitudes. (See Appendix D where we establish
that this is a good approximation.)

6) Higher mass states (e.g., [ = 1), which decay rapidly, are adequately
approximated as pieces of relativistic string.

6 Comparisons of Predictions with Data

6.1 Structure for comparisons

Within the context of using JETSET7.4 (an outside-in iterative Monte Carlo
program) to implement our approach, the comparisons of our model predic-
tions with data and the associated tuning of parameters naturally divide into
five ‘sectors’ which are fairly separable, though there is some ‘parameter cross-
talk’ between the sectors: (A) the parton shower; (B) Pr effects; (C) heavy-
quark hadrons (containing c- or b-quarks); (D) light-quark baryons; and (E)
light-quark mesons. Our main thrust in this Report is to make sure that (A)-
(D) are well-tuned so that they create negligible biases and we can study the
main focus of our investigation, namely (E) the light-quark meson production
rates and distributions.

Comparisons are made at e*e™ center-of-mass energies sufficiently high for
hadronization studies, where there are large data samples from more than one
detector, namely 91 GeV, 29 GeV, and 10 GeV (continuum). Data used include
flavored multiplicities and distributions for the light-quark meson and baryon
sectors, as well as for various topological and single particle distributions for
the parton shower, Pr, and heavy-quark sectors.

For multiplicities, all relevant data through Summer 1996 have been included.
At 10 Gev and 29 Gev, we use the data review by E. C. Berg and C. D.
Buchanan[10]; at 91 Gev, we use the 1995 data review by A. De Angelis11],
updated by publications and papers up through the ICHEP Conference at
Warsaw in July 1996[12]. For the flavored distributions and for the topological
and single particle distributions, a comprehensive (but not exhaustive) sample
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SECTOR PARAMETERS VALUE

Parton Shower | A (QCD strength) 0.32 GeV
Qo (Cuts off shower) | 2.0 GeV

Pr n (Local correlations) | 2
Heavy-quark | (None needed)
Hadrons

Light-quark |  (Controls popcorn) | 3.5 GeV !

Baryons

Light-quark | a (Growth of g(s)) 1.65
Mesons b (related to the 1.18 GeV 2

string tension)t

Table 1

Parameters for UCLA and their tuned value. Note that this set of parameters are
tuned to span 10 GeV, 29 GeV and 91 GeV.

1 b = b'/x? where & and b are the real and the imaginary part (which allows a
system to decay into the final state hadrons) of the string tension respectively.

of relevant distributions gleaned from the same sources is presented.

6.2 Tuning and overall results

Our predictions have been tuned simultaneously for all three center-of-mass
energies with only the one set of energy-independent parameters cited in Table
1, which lists each sector, the major parameters used in tuning that sector,
and the best-tune values of those parameters.

Once (A)-(D) (above) are reasonably well tuned, we reach our major conclu-
sion in sector (E): there are no significant deviations between our predictions
and data at all three center-of-mass energies for all the various flavored light-
quark meson rates and distributions studied, using only the two parameters -
‘a’ and ‘b’ — natural to the light-quark meson sector.

It is also worthy of note that: (D) our current predictions for light-quark
baryons, developed following an extension of our approach used for mesons, are
approximately accurate (though not as good as for light-quark mesons) using
only one additional ad hoc parameter; (C) our predictions for spectra of heavy-
quark hadrons, which are substantially influenced by the area-law approach in
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Fig. 7. UCLA predictions for various topological variables and charged particle
distributions are compared to LEP experiments at Ecpr = 91 GeV.

our use of z.g, are rather good and require no additional parameters; and (A,B)
our predictions for the topological distributions (dependent on the JETSET
parton shower treatment and using the two major parameters therein) and
for the various Pr distributions (using one ad hoc parameter) are also rather
reasonable.

It is worth noting in the comparisons that there are some deviations between
our predictions and data. The important questions to bear in mind are: (1)
‘Are the deviations in the other sectors significant enough to affect the light-
quark meson comparisons?’ and (2) ‘Are the deviations in the light-quark
meson sector big enough to affect our conclusions?’ We feel that the answer to
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each of these questions is ‘No’. We also note that there are other treatments in
the JETSET7.4 program which are approximations and which therefore can
affect the comparisons slightly. These include: the parton shower, the treat-
ment during iteration to move past a gluon-created string-kink, the treatment
of the final two hadrons at the end of the iteration, and the tables used to
decay higher-mass hadrons into those ultimately observed in a detector. Our
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very rough estimation is that these effects can lead to 2 ~ 10% biases in the
flavored multiplicities predicted.
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91 GeV 29 GeV | 10 GeV

DATA |ucLA|sTD!'| DATA {ucLA|sTDt| DATA |UCLA|sTD!
Noal2092 2024 [2062 | 0.940]12.57 +0.26 [12.79 |-0.760||8.48 +0.42 [750 | 2.080
x* ||17.06 £0.44 [16.88 | 0.32010.60 +0.36 [10.41 | 0.450]{6.53 £0.51 |6.13 | 0.75¢
© | 9.39 +0.53 | 9.56 |-0.310| 5.84 £0.28 | 5.96 |-0.400(3.33 £0.26 |3.55 |-0.82¢
Kkt | 2.37 013 | 2.24 | 0.8 1.444+0.080] 1.490|-0.510 [ 0.897+0.058(1.001 |-1.630
10 || 2.01240.033| 2.038|-038¢| 1.402+0.048| 1.308| 1.470|0.809+0.049]0.854 | 0.800
0 Il 0.95 £0.11 | 0.79 | 1290 0.593+0.075| 0.484| 1.310 [ 0.207+0.038]0.289 |-2.050
o Il 0.22 £0.07 | 0.15 | 1.000| 0.260+0.103| 0.105| 1.49¢ [|0.03420.011{0.070 |-3.22¢
© | 120 013 | 1.16 | 0930 | 0.846+0.054| 0.723| 1.930||0.353+0.064]0.425 |-1.100
W0 || 111 2014 | 1.02 | 0610
k£ | 0.71340.056] 0.791|-1.100 | 0.641£0.062| 0.518| 1.69¢ [|0.276+0.073]0.342 |-0.885
50 || 0.759+0.041| 0.736| 0.380 || 0.574+0.039| 0.448| 2.420 [|0.299:+:0.0290.280 | 0.56¢
# | 0.10740.009| 0.126|-1.530 | 0.084+0.010| 0.080| 0.335||0.046+:0.005(0.053 |-1.13¢
Table 2
UCLA predictions for the mesons at 10 GeV, 29 GeV and 91 GeV are compared to
experiments.

{ Decay table uncertainties are incorporated into the calculation of the number of
standard deviations between the data and predictions, the column labeled ‘STD’.

(See text.)

6.8 Comparisons for parton shower, Pr, and heavy-quark hadrons

6.83.1 Parton shower

We use the parton shower option of JETSET7.4. This is a recipe which incor-
porates leading log parton shower structure with a weighting function to allow
mimicking of the matrix element calculations for the first two perturbatively-
calculated gluon emissions. It employs two somewhat correlated parameters
A controlling the QCD running strength and Qy controlling the low-virtuality
cutoff at the end of the shower. Various ‘topological’ distributions, such as
sphericity, thrust, aplanarity, planarity, major and minor eigenvalues of the
sphericity tensor can be used to tune these parameters. A potpourri of such
topological plots from 91 GeV and 29 GeV, as well as single charged particle
distributions for rapidity and z,, are displayed in Fig.7~9. The overall agree-
ment seems quite acceptable , though there are minor discrepancies apparent
at high thrust, high and low major values, and possibly high z,.
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Fig. 11. Comparison of the experimental and predicted absolute production rates
per event for various flavored light-quark mesons at Ecpy = 10, 29, and 91 Gev.

6.3.2 Pr effects

If only transverse mass were involved in Pr effects, then we would use x = b/=
in eq(2) and eq(13). However, local Pr compensation between nearby hadrons,
such as is discussed in Section 3 and Appendices B and C, suggests a factor
greater than ‘one’. We use x = 2b/z, which approximates the most local
Pr correlation possible. Agreement (see Figs.7, 8) with data seem acceptably
good, though our predictions might be a little high at high Pr values.

6.3.3 Spectra for heavy-quark hadrons

Our use of the area-law to derive z.5, as described in Section 3, leads to
considerably softer spectra for heavy-quark hadrons than would otherwise be
predicted. Using this, we find reasonable agreement with the observed spectra
in both peak positions and in shapes (see Fig.10). This internally-consistent
treatment would seem to eliminate the need to switch to the Peterson frag-
mentation function[13] for the heavy-quark mesons.
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Fig. 12. The summary of experimental data vs. UCLA prediction for the mesons at
Ecy =10, 29, and 91 GeV. On the right, in an ezpanded scale, the comparison is
shown for each flavor meson averaged over all three energies.

6.4 Comparisons for light-quark mesons

[Note: We defer the discussion of light-quark baryons, which are influenced
by ‘a’ and ‘b’ of the fragmentation function as well as by the ad hoc popcorn
parameter 7, until after the light-quark meson discussion. Roughly speaking,
the light-quark meson data are used to tune ‘a’ and ‘6’ and then 5 is used to
tune to the baryon data.]

This light-quark meson sector is our most important study of ‘elementary fun-
damental’ behavior of the colorfield. This sector is predominantly controlled
by only the two ‘natural’ parameters of the fragmentation function for the
modeling - ‘a’ from the growth of g(S) with S and ‘b’ which is related to the
imaginary part of the string tension which allows the system to decay.

Our predicted multiplicities are compared with data for various pseudoscalar
and vector mesons at Ecp=91, 29, and 10 GeV in Table 2 and in Fig.11 and
12.

Fig.11 compares the absolute magnitudes of predicted and measured multiplic-
ities and gives an overall view of the range of rates over which prediction and
experiment are compared. Fig.12 provides a finer grain comparison by sup-
pressing the absolute rates and displaying deviations simultaneously in both
percent and standard deviations. We use ‘data minus prediction’ to determine
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the + sign in our presentations of standard deviations.

Though the uncertainties quoted for the data in Table 2 are simply the ex-
perimental uncertainties, in the comparisons with predictions in Table 2 (the
column labeled ‘STD’) and in Figs.11 and 12, we have included in quadrature
estimations of the effects on the multiplicity-comparison uncertainties arising
from the decay table uncertainties. [That is, if the decay table rate of a particle
decaying into a relevant particle is incorrect, then the predicted rate for that
relevant daughter particle will be biased. If the decay table rate is incorrect
for a decay mode used experimentally to reconstruct the multiplicity for a
relevant particle, then the experimental rate found will be biased. We have
presumed the uncertainties in multiplicity comparisons from these decay table
uncertainties to be: 2% for pions; +3% for kaons; +4% for p° and W% +6%
for n, n/, k® and k*; and +8% for ¢; also, 1% for Nenarged-]

Comparing data and predictions over the range of meson multiplicities from
17.1 7% at 91 Gev to 0.046 ¢’s at 10 Gev (a range of ~ 400), we arrive at our
Report’s most important conclusion, namely: Over this broad range, there are
no deviations which seem truly significant.

Of the 31 comparisons, the largest two deviations are: (a) We overpredict the 5’
rate at 10 GeV (measured only by the ARGUS collaboration) by 3.2 standard
deviations; however, we note that, in reality, this is composed of overpredicting
ARGUS’s p multiplicity by 2.1 standard deviations and their 7’ /7 ratio (where
the 7 is used in reconstructing the #’) by 1.1 standard deviation; also, we note
that we somewhat underpredict the 7’ rates measured at 29 GeV and 91 GeV
(b) We underpredict the vector mesons (p°, k**, k*°) at 29 GeV by an average
of =~ 20% or 2.0 standard deviations; however, this effect does not appear at 91
GeV or 10 GeV. All 26 other comparisons are under 1.7 standard deviations;
17 (55%) are under 1.0 standard deviations. Overall, the x2/d.o.f. for light-
quark meson multiplicities (not including Neharged) is 50.7/29 = 1.75, or an
average of ~ 1.3 standard deviations per comparison.

If we presume that our model is accurate (and the deviations appear to be
fairly randomly distributed), then we can treat the comparisons of the same
meson at different energies as different measurements of the same quantity. Us-
ing both fractional deviations and standard deviations, these can be combined
appropriately to give an overall comparison for each meson. This is displayed in
the right-hand column of Fig.12, which employes an ezpanded scale, since the
deviations are small. As displayed, there is very little difference between data
and prediction; each flavor is typically within £10% and/or £1.0 o. These
energy-averaged flavor comparisons have an overall x?/d.o.f. = 9.69/9 = 1.08
or an average of ~ 1.0 standard deviation. .

Fig.13~16 display sample energy and momentum distributions for various

36




91 GeV

10F

(1/Cre) dorae/dXp

-

[ AN

0.01

10

29 GeV

(1/0'm) dome/dxp
(1/0nee) dOnee/dxe

001 FUUSIUUOPIUST OIS a X . . )
. 06 os 1 ] 02 0.4 06 08 1

100

0.08 012

10 GeV

(1/Gnea) AOnea /dixE

08 1
Xe

Fig. 13. UCLA predictions for m mesons are compared to experiments at
Eca = 10, 29, and 91 GeV'.

37




91 GeV

29 GeV

10 GeV

Fig. 14. UCLA predictions for k mesons are compared to ezperiments at

ECM = 10, 29, and 91 GeV.

Q
X
T
3
2
©
k=]
<
2
L
-
ha
0
12
Q.
X
R4
3
=
o}
ko]
5
£
L
~
Z
0.005 . " . et
° 0.2 0.4 (X3 o8
xp
20
10
10}
w
b4
3
2 a8
(o}
k-]
—
3 1
L
ha
s
o1 . . . R
° 0.2 04 0.6 08

Xe

38

(1/0'ma) donee/dXp

(1/0'm4) dona/dxe

100
w
1
(A
0.01
0.001 S
] 02 04 0.6 08
30
w0}
k 0
b
® TPC
- UCLA
ot}
0.05 R . . ,
[} 02 0.4 0.6 08




100

(1/0‘ma) doma/dxp

® ALEPH

©
o

(1/0‘m) dones/dxp
o
o

0.001

(1/0hed) dona/dxe

01

0.0
0.07 0.1

-t
T

(1/O‘h-d) doma/dxe
o

0.01
0.04

(1/0’nw) donea/dxe

0.001 }

0.1

0.2 04 1
Xe

Fig. 15. UCLA predictions for various other mesons are compared to the experiments
at Ecym = 29 and 91 GeV'.

flavors at the three center-of-mass energies. Again, the overall agreement seems
good. Possible minor concerns are: we slightly underpredict the data for 7t at
low momentum; we slightly overpredict K°® production at low momentum at
91 GeV, but not K*; we might slightly underpredict several of the flavors at

very high momentum.

Overall, we find that our predictions for light-quark meson rates and distribu-
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tions are reasonably accurate and appear to display no significant deviations
from the data over integrated multiplicity rates ranging from 17/event to
.046/event (a range of ~ 400) and over differential rates in 1/oror - do/dz,
ranging from 500 to 0.01 (a range of =~ 50, 000).

6.5 Comparisons for light-quark baryons

Baryons are much more complicated objects than mesons and their physical
dynamics are much less clear. E.g., three virtual quark-antiquark pairs must
be created from the colorfield and, via some dynamics, the three quarks must
knit together into a baryon; popcorn mesons can be formed between the baryon
and antibaryon, which radically increases the number of ways in which a given
set of final state hadron flavors and momenta can be achieved.

As described in Section 4, for baryon production we follow an extrapolation of
our successful meson production approach in order to see whether this sort of
approach makes sense for baryon production: We use our Event Weight Func-
tion (a) incorporating the area-law, (b) presuming no suppression for creating
any number of 4@, dd, or s3 virtual pairs from the colorfield, (c) assuming the
spatial knitting factors for baryon formation are the same as for meson forma-
tion, and (d) developing the necessary Clebsch-Gordon coupling apparatus for
the flavor and spin coupling. Since we follow a Fermi Golden Rule addition of
final states type of approach, the possibility of long chains of popcorn mesons
increases the rates of baryon production. Currently, we introduce a parameter
7 in exp(—1 Myep), motivated by QCD-inspired perimeter law arguments (see
Section 8), to cut off these long chains.

Our goals currently in studying baryons are: (1) to show that this sort of
approach has potential merit, (2) to tune the baryon sector predictions to the
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Fig. 18. The summary of UCLA prediction vs. experiments for the baryons at
baryon averaged over all three energies.




91 GeV 29 GeV 10 GeV

DATA UCLA | STD! DATA UCLA | STD! DATA UCLA |STDt
P (098 +0.10 |0.97 | 0.09¢/0.570 +0.036 |0.498 | 1.815}{0.275 +0.034 ]0.196 | 2.26¢
A° [10.373 £0.008 |0.383 |-0.70010.209 +0.010 |0.197 | 1.025[{0.080 +0.014 |0.079 | 0.07c
¥+ ||0.182 +0.019 |0.119 | 3.01¢
0 ||0.070 +£0.012 |0.092 |-1.79c
=~ [10.0262+0.0010|0.0204 | 3.52¢ | 0.0176+0.0034|0.0106 | 2.990 [|0.0059 +0.0009 {0.0045 | 1.48¢
A+t {10.124 +£0.065 [0.094 | 0.4650.094 +0.094 |0.049 | 0.485[(0.040 +0.010 |0.019 | 2.060
£*% [10.047 £0.005 |0.074 |-4.860 || 0.0330+0.0094|0.0359 |-0.300 [|0.0107 +0.0020 |0.0133 |-1.260
=*0 110.0058+0.00110.0073 | -1.250 || 0.005240.0040 | 0.0035 | 0.420 ||0.0015 +0.0005 (0.0013 | 0.400
Q- |/0.0013+0.0003 |0.0006 | 2.19¢ || 0.0053:0.0032|0.0003 | 1.560 |{0.000720.00038 | 0.00010] 1.62¢
Table 3

UCLA predictions for the baryons at 10 GeV, 29 GeV and 91 GeV are compared
to experiments.

t The decay table uncertainties are incorporated into the calculation of the number
of standard deviations between the data and predictions, the column labeled ‘STD’.
(See text.)

data well enough that they won’t create any biases in the meson studies, and
(3) to point the way toward the kind of data needed to really understand
baryon production.

We find that indeed this approach works rather well. Thus our baryon mod-
eling, though clearly not yet as fundamental as for mesons, provides a very
good platform for further developing our understanding of baryon formation
on a fundamental level as significantly higher quality data becomes available.

Our baryon multiplicity comparisons are summarized in Table 3 and Figs.17
and 18, paralleling Table 2 and Figs.11 and 12 for light-quark mesons. The de-
cay table uncertainties presumed are: 3% for protons and lambdas; 5% for
v, ¥0 =-, A*tt and T**; and +£8% for =*° and Q. Fig.19~20 display vari-
ous single baryon distributions. Fig.21 displays the baryon-antibaryon rapidity
correlation for AA pairs. Table 4 displays baryon-antibaryon, baryon-baryon,
baryon-meson, and meson-meson correlation rates.

The rates vary from = 1.0 for protons at 91 GeV to = .001 for Q~ at 10
GeV. Generally, the predictions follow the data fairly well. However, we seem
systematically to underpredict the rates for = ’s and 2~ ’s and possibly protons
and to overpredict the rates for £**. The overall x2/d.o.f is 87.4/22 = 3.97,
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DATA UCLA

AA/evt 0.089 +0.007 |0.114
{(E A -Z"A) + (EYA —E+A)}/evt | 0.0096 +0.0023 | 0.0146
(&t - (E-=~ + E+E+)}/evt | 0.00038+0.00067 | 0.00128

(AA + AA) Jevt 0.0249 +0.0022 | 0.0272
(AKS + AKD) fevt 0.403 £0.029 | 0.394
KOK? Jevt 0.593 +0.036 | 0.628

Table 4
Baryon-antibaryon, baryon-baryon, baryon-meson and meson-meson correlation
rates at Ecm=91 Gev.

or an average of ~ 2.0 standard deviations. The comparisons averaged over
all three energies have a x%/d.o.f of 59.99/8 = 7.50, or an average of ~ 2.7
standard deviations.
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Other intriguing deviations in baryon production include: (a) As displayed
in Fig.19 and 20, we consistently overpredict the baryon production above
z, =~ 0.5. (This phenomenon leads to the ‘leading baryon suppression’ factor
recently introduced into JETSET.) (b) Our predicted A — A rapidity correla-
tion in Figure 21 is not sharp enough and too broad (e.g., suggesting somewhat
too much popcorn in our Monte Carlo). However, (c) our predictions of the
absolute baryon-antibaryon correlation rates (see Table 4) are too high, sug-
gesting too little popcorn (whereas we note that our predicted baryon-baryon,
baryon-meson, and meson-meson correlation rates agree adequately with the
data).

To bring the understanding of baryon formation to the same, apparently fun-
damental, level as our current meson formation understanding will require
=~ 108 e*te™ annihilation events with good, relatively unbiased, efficiency and
particle identification in order to obtain three-body baryon-meson-antibaryon
rapidity correlations. This appears to be achievable only with the continuum
events from one of the high luminosity B factories currently being built.

7 Crossing Symmetry with Deep Inelastic Scattering

The idea of crossing symmetry establishes an interesting relationship between
hadron production in electron-positron annihilations and deep inelastic elec-
tron hadron scattering. This is illustrated in Fig.22 (a)-(f). If the diagrams
are viewed with time flowing upward, then they represent electron-hadron
scattering (DIS). If they are viewed with time flowing from left to right, then
they represent electron-positron annihilation into hadrons (ANNIH). Fig.22
(a) (DIS) represents either elastic scattering or (ANNIH) baryon-antibaryon
exclusive production. Fig.22 (b) (DIS) shows a quark within a meson struck by
the virtual photon from the electron giving rise to a leading meson. Fig.22 (b)
(ANNIH) represents three meson production. Fig.22 (c) (DIS) shows a baryon-
antibaryon pair produced from a meson. Fig.22 (c) (ANNIH) represents pro-
duction of a baryon-antibaryon pair and a meson. Fig.22 (d) (DIS) shows a
leading meson and a baryon produced from a baryon. Fig.22 (d) (ANNIH) rep-
resents production of a baryon-antibaryon pair and a meson as in Fig.22 (c).
Fig.22 (e) (DIS) shows a leading baryon with a non-leading meson produced
from a baryon. Fig.22 (e) (ANNIH) represents baryon-antibaryon production
with one popcorn meson between them. Fig.22 (f), the most complicated di-
agram shown, in DIS shows a leading baryon followed by two mesons. Fig.22
(f) (ANNIH) represents baryon-two popcorn mesons-antibaryon production.

In DIS, considerations on a simple parton level of different helicities of the
incoming hadron in the infinite momentum frame, combined with the number
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of spectator quarks in the incoming hadron, lead to distributions at high z of

(1—2)* (15)
where z is the scaling variable
(E+ P,),
= _— 16

where h stands for the incoming hadron, ¢ stands for the struck quark within
the incoming hadron, and

a=2n; —1+2|Ap — A (17)

where A, and A, are the helicities of the incoming hadron and struck quark in
the infinite-momentum frame respectively and n, is the number of spectator
(non-struck) quarks in the incoming hadron. This rule says that it is harder
to force a struck quark to have all the parent hadron’s momentum (z — 1)
when there are more spectator quarks and also when the struck quark has a
different helicity from its parent hadron (helicity conservation). The specific
exponent is a consequence of QCD[14,15].
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Crossing symmetry between DIS and annihilation diagrams implies that for
annihilation diagrams the same values of o will hold in distributions of

= (E+ P,y
" (E+P),

ie, (1—2)* asz— 1.
Thus o would have the following values:

(1) For a probed proton (DIS) or leading proton (ANNIH) a = 3 (Fig.22 (d),(e)
and (f))

(2) For a probed A*+ (DIS) or leading A** (ANNIH) a = 5 (Fig.22 (d), (e)
and (f))

(3) For any probed meson (DIS) or leading meson (ANNIH) o = 2 (Fig.22 (b)
and (c))

Note that QCD corrections would generally raise these values slightly and
inclusion of ‘higher twist’ terms would tend to lower the values of a[16].

Comparisons with DIS data confirm that these predicted values of « agree
well[17,18] for each flavor of leading particle.

It is interesting and gratifying to note that our best-fit value for ‘a’ of 1.65 is
close to the naive parton-level prediction of 2.0 for leading meson production.

Since our present focus is on meson production, where all meson production
would have the same value of « (or in our notation ‘a’) independent of whether
the meson’s spin is 0 or 1), for the time-being, we have simply used the same
common value of ‘a’ for both meson and baryon production, leaving for later
studies whether interesting information can be learned by letting ‘a’ values
for baryons be greater than those for mesons. It is interesting to note that a
higher value of ‘a’ for leading baryons would qualitatively go in the direction to
lower our predicted rates for high momentum baryons, the direction needed for
better agreement with data. It is also interesting to note that eq(12) - g(5)
S — expresses the idea that, as S increases, then g(S), the number of different
diagrams allowed, combined with an exponential area suppression, increases at
a rate comparable with S2. Because of the many degrees of freedom associated
with popcorn production, one might expect g(S) for baryon production to rise
at a rate greater than for meson production.
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8 Connections with QCD

When one has a successful phenomenology, there are two possible approaches
toward deeper understanding: (1) Working ‘backwards’ from the phenomenol-
ogy with as few assumptions as possible to see what kind of a theory might
justify the phenomenology, or (2) Hypothesizing a theory and then working
‘forward’ to see if (or under what conditions) it leads to the phenomenol-
ogy. Since QCD exists as a very strong candidate for the theory underlying
hadronization, we will work primarily in the second mode to see to what ex-
tent QCD can justify our Event Weight Function for hadronization. [We do
note, however, that virtually any strong-coupled lattice theory with a non-
zero lattice spacing will lead to a space-time area law. This even includes
QED, though the existence of QED’s phase transition allows it to become a
non-confining theory in the continuum limit.]

There are two main questions to try to answer from QCD:

e To justify the structure of the Event Weight Function: i.e., the space-time
area law, the limited transverse phase-space, the possible vertex suppression
factors, and the Clebsch-Gordon and spatial knitting factors.

e To estimate the sizes of the vertex suppression factors and knitting factors.

Ultimately, one would then hope to extend the treatment to include under-
standing of Pr, of baryon formation, etc.

We will discuss three tools to develop QCD related topics in the hadronization
area:

1) Relativistic string theory
2) Strong coupling expansion of lattice QCD
3) Approximate Minkowskian calculations using an effective QCD lagrangian

Taken together, these approaches allow a picture to emerge which (with room
for many better calculations to be done) leads from QCD to the Event Weight
Function structure as a target and suggests that ultimately estimates of pa-
rameter sizes may be made from a QCD basis.

Lattice QCD work[9] within a Euclidean space-time metric indicates that, as a
quark and antiquark separate, the color-field begins to collapse into a narrow
tube-like structure — approximately a ‘string’. There is some very preliminary
lattice-work indication[19] that, if virtual quark-antiquark pair production is
allowed from the colorfield, then the energy density near the center of the
string begins to drop — that is, the string begins to break. This, of course, is
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also bolstered by the very strong intuition that as a string stretches, a string
broken by a quark-antiquark pair represents a lower energy state and therefore
that the string prefers to break. Also, there is semi-experimental corroborating
evidence (see Appendix F) from the distribution of vertices in the Lundian
modeling structure that the string breaks most likely when it is elongated
~ 2 ~ 5fm in its center of mass system — that is just as or after the string
begins to form.

8.1 Relativistic string theory

The quest to find the connection with QCD begins with the exploration for
justification of the area law from a relativistic string model. Because of the
striking similarity to Wilson’s lattice theory, numerous attempts have been
made to connect string theory to QCD. Indeed in 1+41-dimensional space-
time, the connection between the string model and lattice QCD was made
precise[20]. As will be mentioned later again, this is the rationale to expect
the outcome of string theory in 143 dimension to hold approximately in QCD.

The classical string action, for any motion of a string, is given as

S =kZ (18)

where ¥ is an area of world sheet swept out by the string and « is the string
tension. In 141 dimensions, with an assumption that the probability of cutting
a length of string Az in time At by creating a pair of massless quarks is a
universal constant P , X. Artru and M.G. Bowler[21] obtained an area law
dependence, namely the probability of having a particular string configuration
is

e—'PE

where T is the space-time area containing no cuts. Recognizing that 'S rep-
resents a quantum mechanical amplitude for the propagation and decay of a
state and combining this with eq(18), they obtained the expression for the
amplitude

AD) x eE e~ 7T (19)

where the string tension in the action is interpreted as a complex number

=il
€=K+IE
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(a) )

Fig. 23. (a) and (b) produce the same final state hadrons. When summed over all
the histories leading to the same final state, (b) can be ignored since it involves
much more area than (a).

Armed with this, they quantized the system and obtained an expression for
an amplitude for n final state hadrons by a Feynman path integral approach,
i.e., adding up all the possible histories of the string configuration:

Ao 3 eF = 50 (20)

histories

where in the last step, they argued by a stationary phase approximation that
only the classical configurations (with space-time areas £(0)) give an impor-
tant contribution and, further, among the classical configurations, that con-
figurations such as Fig.23(a) are dominant in the summation compared to
ones like Fig.23(b). In order to construct a probability, one needs to square
the amplitude, which gives a dependence of e~PZ(®) for the probability, and
integrate over the phase-space. Thus, one can motivate an area law behavior
from relativistic string modeling.

8.2 Strong coupling expansion of lattice QCD

Since string theory is closely connected to lattice QCD as mentioned before,
we expect that a similar structure would be observed in lattice QCD. Even if
one can’t expect truly quantitative results from this analytic tool due to the
difficulty of extracting the behavior in the continuum limit, the strong coupling
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hadron 3

Fig. 24. The virtual photon created by the ete™ annihilation decays into the initial
qq at zo. Three hadrons are produced at z;, 2, z3 where the solid straight lines II
depict the classical trajectories of massless fermions (quark or anti-quark) whereas
gray lines depict all possible loops connecting the 4 points zo, z1, T2, 3.

expansion can provide some insights about the physics typical to the strong
coupling domain which otherwise would not be possible. For this purpose, we
sketch (below) the relevant results of lattice QCD without extensive derivation
or justification but with appropriate references, in order to demonstrate what
lattice QCD can suggest.

To the lowest order in QED, the cross section ete™ — f, where f is a final
state of hadrons with particular momenta and flavors can be written as

Geterng = (26 (Bu + By = Py) Lu 10X SIT(O)10)" (21

where

by = l Z {0 (Pr,€1) vuu (Po, €2) HO (P, €1) v (P2, €2)}

4 £1,€2

is the lepton current of an electron and

JH EZQq:d_}q'y“wq e
q

is an electromagnetic current. Q,, ¥,, and 1/3,, are the charge of the quark and
the quark and antiquark fields respectively. The matrix element (f]|J#(0)|0) is
related to an n-point Green’s function. For example, as displayed in Fig.24, a
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4-point function, with a loose notation, can be written as

(£19%(0)]0) ~ (O|TYototh 1922 ¥s¥|0) ~ G (o, Z1,%2,%3)  (22)

where indices for the quark fields 1, 2, 3 indicate the production points of
hadrons and O indicates the origin where the virtual photon couples to the
current J¥.

Since, as the initial quark and anti-quark recede from each other, we expect
the coupling to increase, and also since the energy of the virtual quark pairs
created in the color field are smaller than the potential between the initial
quark and anti-quark (a tunneling situation), Euclidean lattice QCD with a
strong coupling expansion is rather attractive in this situation. Due to its
similarity to a solid state lattice system, the expectation value of an operator
is defined as the average value of the operator weighted by the Boltzman factor
e~5 (S is the action) in lattice QCD. That is

(9) = - [ (dUdiay) (U, B,4) eSO (29)

where

Z= / (dUdipdy) e=5@#¥) (24)

where U is an element of a gauge group associated with each nearest neigh-
bor pair of lattice sites (a link variable). In the quantum mechanical Hilbert
space, this is the vacuum expectation value of the corresponding time-ordered
operator.

In general, there are many different ways to construct QCD action on the
lattice space-time; the Wilson action is[22]

S(U, %, ) = -632; (1 LTy (Ua + Uat )) +a® Y Pu(4 + ma)in

—a—; Z Va{ (1 +7) U (n+ i, —p) Ynsa + (1 = 7) U (n — £, 1) Y-z (25)

:

where Ug is the product of links connecting four nearest sites (a ‘plaquette’),
i denotes the space-time index, a is the lattice spacing, and g is the bare
coupling constant. One can simplify eq(25) into

S = Z,-«Z.-K.-,-(U)wj + Sg (26)
i,j
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with the definition of the pure gluonic part of the action

S¢ = %20: (1 - %Tr (Ua + Uut)) (27)

and combining the fermion self energy and interaction part of the action by
defining the matrix

1
K,'j = (8 + 2ma)6,-j - (1 + 6#7u)Uij = E(Jij - K;Mi-)

where
M = (1+&,7,)U;;

and €, is the unit 4-vector in the direction of the link and with the hopping
parameter

1

n:8+2ma

(28)

Upon introducing source terms (p, ) and integrating out the fermion fields,
eq(24) becomes

Z(P) ﬁ) :/(dU) det K exp (E ﬁiK,‘;IPj) e—Sa(U)
ij
= / (dU) exp (Z i KSI Pj) e—Sa(U) (29)
i

where the Quenched approzimation (det K = 1; that is, no closed internal
quark loops) was used in the last step.

Then, the 4-point function eq(22) can be written using eq(29)

G (o, T1, T2, T3) = -é— / (dUdpde) T (oot ths Patrrthstss) o=5(¥$.080)

__ 1 0Z(p, p)
Z(p,p) Opo - --3p30po -+ - 9p3 | g
= / (dU) ( K(ﬁl ce K3—01 + permutations) eS¢ (30)
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By an iteration, the inverse matrix K ! identically becomes

Kt = (8 + KitMg) = (S (31)
=0

ij

Thus, K~! will include the product of (1++,) U. One, then, finds the impor-
tant result that eq(30) becomes

G (20,71, 72,38) x LK™ [(dU) Tr (U -+ U)c €™
C

= Z Km (P eigfc dz“A“)gluon (32)
C

where m is the perimeter p of the loop C in lattice units, A, is the gauge
field, and P stands for path ordered product. The summation runs over all the
loops connecting the 4 points. The quantity in brackets (- - -) is the expectation
value of the Wilson Loop over the gluon field.

The behavior of the Wilson Loop expectation value for two extreme values of
coupling can be analytically evaluated.

When the coupling is strong, for any fixed size loop C

(P el Ay o = [(dU) ei8Iots"Ar =50 (33)

can be expanded in a series in terms of 1/g2. Since the link variable U is a group
element, the integration over U is a group integration and the contribution for
the lowest order in 1/g? is obtained by bringing down Ug’s (plaquettes) from
S¢ to fill the inside of the loop (the strong coupling ezpansion). This results
in an area dependence

. 1 Afa?
(P eig o dz“Ap)gluon = (?> (34)

where A is the minimal area defined by the loop C and a is the lattice spacing.
Any terms with bigger area than A are higher order in 1/¢* and are thereby
suppressed.

As a toy example, if the loop is a rectangular with the dimensions of R and T

in space and time as in Fig.25, the static potential between ¢ and ¢ is related
to the Wilson loop via
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A

L il e R 4

Fig. 25. The static potential can be related to the Wilson loop integration when the
quark and anti-quark are infinitely heavy. ¢g are created at O and annihilated at Q
after an elapsed time T.

1
V== Jim 7108 (P

1 —sRT
=— jim = log e”

=kR (35)

So, when the coupling is strong, the Wilson Loop expectation value results in
an area law (eq.(34)) and a linear potential (eq.(35)).

When the coupling is weak, the expectation value of the rectangular Wilson
Loop with the dimensions of R and T can be calculated in perturbation theory
in terms of lattice spacing[23,24]

. CT 22 R
zgfdz"A,, — 4 fabd
(Pe Jstuon exp( 4R ( + Tor29 o8 a)) (36)

up to the order of g* where C is a group theoretical factor. The static potential
between ¢q in Fig.25 can be extracted again using the first part of eq(35)

1 .
V= lim f1og (P Bt Auy o

CT 22 R

which is just a Coulomb potential with a higher order correction.

In order to maintain the relevant physics to be the same in a given physical
volume while varying the lattice spacing which is an artificial quantity, the
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" lattice spacing a and the bare coupling g must be related via a renormalization
equation[6,25]. For a small lattice spacing, the relation is

1672
11— %Nf) log A2q?

g(a) = - (38)
(

where A is a renormalization constant. Thus, the continuum limit is realized in
the weak coupling regime. Eq(38) is not much different from the expression for
the running coupling constant obtained in perturbative QCD, since a lattice
spacing is another form of regularization. A in eq(38) is expected to be different
from that of perturbative QCD, since different renormalization schemes will
result in different renormalization constants in general.

Now, when the coupling gets weak (and therefore the lattice spacing gets
small), the perimeter dependence still persists, in the form of e~#?/2_ since it
represents the dependence of the fermion’s internal energy while (as we have
seen above) the area dependence collapses to give Coulomb’s law. So, for weak
coupling (the early perturbative region) the exponent diverges as a — 0 and
dominates the Green’s function in this limit. The energy of the initial ¢q is
so large that their coupling to gluons can be considered to be small. Thus
this perimeter dominance overwhelmly chooses the light-cone as its trajectory
in order to minimize the perimeter. Thus, this eliminates all other terms in
eq(32) except a term with a loop IT which goes through the light-cone as in
Fig.24, i.e.,

G (0, 71,32, 35) x L &™ [(dU) Tr (U -+ U)o &5
C

~ ™ (P ettt Ay, (39)

Next, once the initial gq are separated far away from each other defining a loop
I1, the coupling rapidly becomes strong, leading toward the hadronization pro-
cess. The expectation value of the Wilson Loop over the gluon field in eq(39)
should be evaluated considering that the coupling is a mixture of weak (near
the edge of the primary ¢¢) and strong (in the middle) over the configuration
Il in Fig.24. But the expectation value of the Wilson loop over the gluon field
evaluated over the weak coupling region is essentially common to all events
with different hadronic final states; hence the expectation value over the gluon
field in eq(39) can be evaluated as if the coupling is strong in all regions of
configuration Il in Fig.24 using the strong coupling ezpansion explained above.
[Note that the expectation value of the Wilson loop evaluated over the weak
coupling region can be considered as a weak coupling correction to the expec-
tation value of the Wilson loop evaluated using strong coupling throughout
the configuration II. Further, since this correction factor is essentially common
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to all hadronic final states (in 1+1 dimensions, it is exact), it therefore cancels
in comparing the relative weights of the Event Weight Function for different
final states or when using the fragmentation function eq(13).]

This yields an area dependence (from eq(34))
—Afa?
(&)

Thus, finally, one finds the important result in Euclidean space-time with
lattice spacing a:

a —Afa?
G (130,11?1,-’52,33) = P/ (gz) (40)

where A is the minimal area enclosed by the loop II, p is its perimeter, and a
is lattice spacing.

The above procedure is, in fact, a dual expansion in terms of 1/(4 + ma) (a
hopping parameter) which gives a multiplication of successive link variables
(the perimeter dependence) and a coupling constant g which gives a rule for
tiling the surface with plaguettes (the area dependence). So, one can see there
is always a competition between area dependence and perimeter dependence.
One may compare the situation to making a bubble ring which is made by
connecting the given 4-points (multiplication of the link variable along the
classical quark paths) and then filling the bubble ring with the bubble which
will produce its minimal surface determined by the bubble ring (gauge field
integration or tiling with plaquettes).

This suggested structure not only supports the Event Weight Function, but
also suggests an interesting possibility concerning the baryon production mech-
anism. The situation in Fig.26(b) depicts a popcorn mechanism whereas the
situation in Fig.26(a) involves no popcorn. There have been numerous mod-
els to describe the popcorn mechanism([26). Since three quark-antiquark pairs
created out of the color-field are necessary in the situation in Fig.26(b) and
the first pair (which has a different color from the initial quark and antiquark
pair) has to live long enough to have two additional quark-antiquark pairs
created in order to make the color-singlet baryon, meson, and anti-baryon, it
has been suggested that diagrams such as Fig.26(b) will be suppressed via a
Heisenberg uncertainty type of argument.

However, the perimeter dependence (above) of lattice QCD suggests Fig.26(b)
is suppressed by having an additional perimeter distance (linear in mass of the
popcorn meson) compared to a non-popcorn diagram in Fig.26(a). This seems
to be a more fundamental and natural way to describe the suppression of the
popcorn mechanism than the above Heisenberg type argument.
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baryon baryon

Additional
perimeter

(a) (b)

Fig. 26. Baryon, antibaryon and a meson are produced in two different situations.
(a) depicts a situation where baryon and antibaryon are created adjacent while (b)
depicts a situation where a meson is created between baryon and antibaryon, thus
diluting the baryon-antibaryon correlation.

In summary, the application of Euclidean Lattice QCD to the high energy
ete~ annihilation into hadrons, which is a unique situation where the relevant
coupling smoothly varies from the very weak to the very strong: (a) gives
an area law for the strong coupled region; (b) gives a perimeter law for the
whole diagram, which, for massless quarks, leads to the dominant path being
simply the light-cone trajectories; (c) suggests a popcorn suppression exp(—7-
Mpopcorn—meson) il baryon-antibaryon production through the perimeter law;
and (d) provides a beginning point for understanding the relation between the
early weak-coupled region and the later strong-coupled region in a consistent
manner. However, to be useful, one must assume that the above phenomena
extrapolate to the continuum limit (a — 0) and into Minkowskian space-time.

8.3 Approzimate Minkowskian calculation using effective QCD lagrangians
— the worldline approach

The fermionic part of the QCD Lagrangian causes complications in calcula-
tions due to its anti-commuting nature. Among the recent trends{27} to avoid
such difficulties is the technique of calculating the effective Lagrangian by
treating a second quantized field theoretic object as a first quantized object
(a world-line formalism). Typically this transcription results in a coordinate
integration instead of a field and simplifies the Feynman path integration sig-
nificantly. Since this effective Lagrangian (presumably) has a coupling of the
fermion to the background gauge field and to the pseudo-scalar and vector
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meson fields, one can, in principle, calculate an n-point Green’s function at
least for mesons. A possible recipe to do this may be first to get rid of the
coordinate dependence (in a Feynman path integral) by integrating out the
fermion coordinates along the classical quark paths (giving a perimeter de-
pendence) using the couplings of the fermion (quark) to the scalar mesons
or vector mesons. (Note; this will determine the size of the knitting factor
discussed previously.) Then, the background gauge field integration will look
just like the Wilson loop integration over the loop determined by the classical
paths of the quarks

(ei® § dzk Au(z)) (41)

where A, is a gauge field and the brackets ( ) means the average over the
gauge field. When the high energy initial quark and anti-quark are sepa-
rated by a large distance creating a large loop, then eq(41) is a very familiar
and well known quantity which gives an area dependence for a large loop in
Lattice Gauge Theory. By an analytic continuation from Euclidean space to
Minkowski space, the lattice QCD result can be borrowed appropriately.

Thus, this sort of approach provides the prospect of estimating the sizes of
the spatial knitting factors (and ultimately possibly the suppression factors for
producing a virtual ¢¢ pairs from the colorfield, if any).

8.4 Summary of relations to QCD

Common to all the previous discussions are two results: the Green’s function
has (i) a perimeter dependence due to the fermion (primary ¢g) self energy and
(ii) an area dependence due to the gluon self interaction inside the boundary
defined by the primary qg. Also, as was pointed out, the similarity between
the results of the classical string picture and Euclidean lattice QCD is funda-
mentally intriguing.

Overall, using these QCD-based techniques with the UCLA Event Weight
Function as a target seems to open up many possibilities for calculations
leading toward understanding the effects of QCD in the hadronization process.

9 Summary and Future Work

The hadronization process is a very interesting challenge from a QCD view-
point in that (a) it is a fundamental QCD process, (b) it can be studied exper-
imentally extensively in a detailed clean fashion in ete interactions and with
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particularly simple fundamental probes in the form of flavored meson rates
and distributions, and (c) it is a transition, as the initial quark and antiquark
rapidly separate, from an original high-virtuality state where perturbative
calculations can be performed to a very soft low-virtuality non-perturbative
regime, traditionally the domain of lattice work and strong-coupling expansion
calculations.

We have shown and discussed the steps in an emerging conceptual and calcu-
lational path from QCD to successful predictions of e*e~ annihilation rates
and distributions into hadrons, the simplest arena in which to study quark-
colorfield behavior. Central to this path is construction of an Event Weight
Function which, for our stringent UCLA assumptions, depends only on a QCD-
motivated space-time area law, approximate longitudinal phasespace, and fac-
tors to knit quarks into hadronic wave functions (Clebsch-Gordon coefficients
for flavor and spin, and a universal ‘%nitting’ factor for spatial wave functions).

Our approach is particularly successful in predicting data on light-quark me-
son production, thereby contributing to our understanding of this simplest
manifestation of colorfield behavior. It also forms a foundation for further un-
derstanding of more sophisticated colorfield behavior - e.g., baryon formation,
Pr effects, spin-spin correlations, etc — as larger samples of more detailed data
become available in the future.

The Event Weight Function — a simple phenomenological model — also per-
forms the valuable role of a ‘target’ for physicists interested in various QCD
theoretic approaches to hadronization — e.g., Euclidean-space lattice work,
relativistic string modeling, approximate Minkowski-space calculations using
new emerging techniques such as world-line formalism — to use as possible
verification of their work.

The following outlines in its simplest form this path from QCD to successful
prediction of light-quark meson data comparisons.

(A) Perform a strong-coupled expansion in 1/g* for QCD at large distances
(> 0.2 ~ 0.5 fm). On a Euclidean lattice with spacing ‘a’ this leads to a
space-time area law e™¥# as a factor to be included in the probability of
a particular event (i.e., a particular set of final state hadrons) occurring.

(B) Presume the spacetime area law holds (i) for the entire space-time area of
the event (the correction due to the weak-coupled area is essentially the
same for all hadronic final states and cancels when building the fragme-
nation function), (ii) in the real world with a Minkowskiian metric, and
(iii) for the continuum lattice limit a — 0. [The fact that our modeling
works so well provides support for these assumptions.}

(C) Construct an Event Weight Function incorporating this space-time area
law. Also include kinematics, approximate longitudinal phasespace, a uni-
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(D)

(E)

(F)

versal spatial knitting factor, and Clebsch-Gordon coefficients. [No sup-

pression of virtual ut, dd, or s3 pairs created in the colorfield; all spatial

knitting factors are the same.]

Derive a Fragmentation Function for outside-in one-hadron-at-a-time it-

erative implementation from the Fvent Weight Function. This essentially

yields the Lund Symmetric Fragmentation Function with

e a factor of exp(—bm2/z), from the Event Weight Function area law,
which provides a suppression in the formation of heavy hadrons arising
simply from their mass.

e a universal normalization for all hadrons of NC?/(4x)? where N is the
universal spatial knitting factor and C? is the Clebsch-Gordon coeffi-
cient squared for flavor and spin.

Use JETSET’s recipes for parton showers and to allow the fragmentation

function implementation to move past a gluon-induced kink in the col-

ortube. Also, use JETSET’s decay table to decay the hadrons produced
directly from the colorstring into the daughter particles observed in the
detectors.

It simply works quite well for light-quark mesons. Using only the two

parameters ‘a’ and ‘b’ natural to the model (with no ad hoc parameters),

it predicts the light-quark meson rates and distributions at Ecys of 10,

29, and 91 GeV with no significant deviations. It works encouragingly

well for baryon production and Pr effects.

Work to be done in the future includes:

(1)

Accumulation of large flavor-identified data samples such that accurate

" two- and three-particle distributions can be studied in order to under-

(2)

(3)
(4)
(5)

stand baryon formation, Pr effects, spin-spin correlations, etc. on the
same level as the present understanding of meson formation. This will
require =~ 108 events with good efficiency and particle identification, such
as can be obtained from the continuum events of a high-luminosity B
factory.

More highly developed phenomenological Monte Carlo modeling, in par-

ticular of phenomena such as popcorn production and local Pr compen-
sation, in order to help interpret the data on these phenomena. A simula-
tion approach which allowed direct implementation of the Event Weight
Function (rather than the intermediate step of deriving a fragmentation
function) would be a significant step forward.

Further phenomenological studies of heavy-quark hadron production and
of orbitally excited states such as B**, etc.

Continued lattice work to understand the shape and possible decay of
the colorfield between a quark and antiquark.

As QCD calculational techniques continue to improve, attempts to derive
the Event Weight Function structure (or modifications of it) and then
to predict the parameter values within this structure, in particular (a)
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the vertex suppression factors, which our UCLA model assumes are all
approximately 1.0 for u#, dd, s5 and 0.0 for cc and bb, and (b) the knitting
factors, which UCLA assumes are all approximately equal and for which
probability unitarity of the integrated/summed fragmentation function
leads to a value around 1/(75MeV)~2 ~ (2.7fm)>.

(6) Attempts to calculate and/or understand, either from a QCD-basis or
from other physical mechanisms, the values of the ‘natural’ constants ‘a’
and ‘b’; e.g., using spin-and-spectator-quark counting arguments from
deep inelastic crossing symmetry to estimate ‘a’ values for mesons and
baryons.

(7) Attempt to develop the ‘Initial-to-Final-State Global’ approach (UCLA
Stage III) described in Appendix B.2 in which the parton shower is
treated as an unobserved intermediate state and an area law type of
approach is applied to the entire transverse momentum (combining Pr
from gluons and Pr from the finite colorfield width) of a set of specified
final state hadrons.

For those interested in working with our model, the program and manual can
be found at www.physics.ucla.edu/~chuns.
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A Comparison of Lund Approach and UCLA Approach

In order to simplify the description of the comparison of the Lund and UCLA
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Fig. A.1. The primary qg created by the virtual photon at the origin stretch the
string as they recede from each other. As the string stretches it breaks into smaller
pieces (hadrons) and these smaller pieces propagate in space-time in a ‘yo-yo’ mode.

approaches to flavor and longitudinal momentum selection for hadrons, we
restrict ourselves to a 141 dimension situation. Fig.A.1 displays an event for
such a situation. In Appendix B.1.4, we compare the Pr techniques in 143
dimensions.

A.1 LUND Approach

The Lund group’s approach is imbedded within an outside-in iterative im-
plementation using a fragmentation function at each step to select the next
hadron. Historically, they originally (=1980) used a flat fragmentation func-
tion f(z) = 1.0 and employed suppression factors, following in the Feyman-
Field tradition, of ‘s/u’ to suppress strange virtual quark-antiquark produc-
tion, ‘vector/all’ to suppress vector meson production, and ‘qq/q’ to suppress
baryon production (followed by other baryon parameters to control ‘extra
strangeness suppression’, spin 1 diquark suppression, ‘popcorn’ mesons, etc).

The physics rationale for ‘s/u’[3] was that constituent strange quarks (= 150
MeV) were considerably more massive that up and down quarks (~ 2 ~5
MeV) and therefore, via a WKB sort of argument, it was more difficult for the
s and 5 of a virtual ¢ pair created from the colorfield to tunnel out through the
potential energy barrier created by their mass in order to become ‘free, on-the-
mass-shell’ particles. Any such actual calculation was very approximate and so
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a parameter was introduced, whose value was found to be ~ 0.3 from various
data comparisons, to phenomenologically describe this situation. Thus, this
provided a rationale for strange hadron production being suppressed relative
to non-strange production.

The rationale for ‘vector/all’[3], with some plausible arguments, was that
the spatial wave function for a vector meson was harder for a ¢¢ pair to
couple into than was the wave function of a pseudoscalar meson. The ‘vec-
tor/all’ parameter combined a suppression for this effect with the natural
final state spin-counting which favored vector production by a factor of 3.
Thus, if there was no ‘spatial wave function suppression’, ‘vector/all’ would
be 0.75. Comparisons with data yielded ‘vector/all’ values of =~ 0.45 for light
quarks, = 0.5 for strange quarks, and ~ 0.60 ~ 0.65 for charmed and bottom
quarks. That is, ‘spatial wave function suppressions factors’ of ~ 0.27, ~ 0.33,
and & 0.53 ~ 0.62 respectively.

The original rationale for ‘qq/q’ was similar to that for ‘s/u’, namely that, to
form a baryon, a diquark-antidiquark pair had to tunnel through a potential
barrier, thus creating the need for a suppression factor. Experimental values
of ‘qq/q’ ranged from = 0.06 at 10 GeV Eca up to = 0.10 at 91 GeV Ecys.

Operationally, there was a problem with many of the possible forms being used
for fragmentation functions around 1980. Namely, if the outside-in iteration
in the Monte Carlo implementation was always performed from the quark
side, one would obtain statistically different results than if the implementation
was always from the antiquark side. This, for example, led implementors to
randomly select the side from which the next iteration would be performed.

In ~ 1983, the Lund group discovered a very powerful theorem(2]: namely,
that if ‘Left-Right Symmetry’ (that is, the same statistical results from the
quark and antiquark sides) were demanded, then the fragmentation function
had to be of the form

f(z)= N(l——z—%)—‘l e—bmi/z

Henceforth, they used this ‘Lund Symmetric Fragmentation Function’ (LSFF)
in all their treatments and discussions.

Note that the LSFF has built into it a ‘natural’ suppression dependent on the
final state hadron’s mass. However, the ‘recipe’ which Lund used, following
their historical development, avoided this. Namely, the Lund recipe (restricted
to mesons, for simplicity) in 1+1 dimensions is:

1) Use ‘s/u’ and ‘vector/all’ to select the hadron flavor. Thus, for example,
a ud flavor combination will be designated asa 7+ ora p*,ausasakt or
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Fig. A.2. (a) Lund uses the LSFF to pick the z value only after determining the
hadron’s mass and Pr through external parameters, i.e., for each flavor, the proba-
bility integral under the curve is 1.0. (b) UCLA uses the LSFF as a hadron produc-
tion density so that the suppression for a heavy particle arises through the LSFF
with the same normalization factor for N for each flavor.

a k**, etc. There, however, remains an ambiguity for neutral mesons. For
example, a uii pseudoscalar combination can be within a 7° (135 MeV),
an 1 (547 MeV) or an 1’ (958 MeV). In such a case, the Clebsch-Gordon
couplings of the flavor combination into the meson flavor state function
were used (with no regard to the hadron mass created).

2) Now that the hadron’s identity (and therefore mass) had been selected,
this was inputted to the LSFF in order to select the value of z for the
hadron. Thus the LSFF was used to select the momentum of the hadron,
but the ‘natural’ suppression from the final state hadron mass built into
the LSFF by the factor exp(—b m2/z) was not used (see Fig.A.2 for
comparison). Instead, the suppression of heavier hadron production was
controlled by the ‘s/u’ and ‘vector/all’ parameters.

Armed with all this machinery, the Lund approach predicts flavored hadronic
production rates and distributions rather well.

In retrospect, there are three areas of potential concern with this approach:
(i) In the WKB-type tunneling argument used to suppress virtual s5 (and
diquark-antidiquark) creation relative to u@ and dd creation in the colorfield,
the quark and antiquark after the tunneling are nowhere near free, contrary
to the typical assumptions of the WKB approximation. Rather, they ‘imme-
diately’ evolve into final state hadrons on essentially the same time or Q?
scale, hadrons toward which QCD ‘knows’ it must evolve. (ii) Because of the
historical order of development of the Lund modeling (s/u, etc. came before
the LSFF), the ‘natural’ suppression within the LSFF from the final state
hadronic mass is not used. (iii) There is roughly a parameter (reasonably well
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motivated by plausible physics arguments) for each flavor degree of freedom.
Recently, three more (physically motivated) parameters have been added to
JETSET in order to improve agreement with data: a parameter of = 0.65 to
suppress 1 meson production; another of = 0.27 to suppress 5 production;
and a third of = 0.5 to suppress leading baryon production. A fourth possible
concern is raised in Appendix B.1.4 where the Lundian recipe for picking Pr
is discussed.

A.2 UCLA Approach

In our approach, we begin with an Event Weight Function which incorporates
a QCD-motivated area-law dependence for the event. In our modeling, we as-
sume no suppression for virtual s production, even though the Event Weight
Function structure could allow such a suppression (where the Lund approach
would incorporate such a suppression with a value of = 0.3) and no suppres-
sion for coupling a ¢g pair into a vector spatial wave function rather than into
a pseudoscalar one (where, again, the Event Weight Function could allow such
a suppression and the Lund approach would incorporate values ranging from
~ 0.3 to 0.6).

From this Event Weight Function, we derive a fragmentation function for
outside-in iterative one-hadron-at-a-time implementation. The result is the
LSFF (with a finite energy correction), where we naturally incorporate the
factor exp(—b m? /z) providing suppression from the hadronic mass and where
the relative normalization between various hadrons involves only Clebsch-
Gordon coeflicients with no additional suppressions from virtual quark-antiquark
creation or from coupling into a vector spatial wave function.

This works quite well for predicting meson rates and distributions. The exten-
sion to the more complicated situation of baryons works encouragingly well,
but with the need for a popcorn parameter, motivated by QCD perimeter law
arguments in the present implementation.

B Treatments of Transverse Momentum

It appears that transverse momentum effects can be described fairly accurately
by various different modeling approaches. This result, fortunate for those inter-
ested in simulating data, also means that it is hard to arrive at a fundamental
understanding of the phenomenon.

We here describe three possible approaches: Two of them — the Lund approach
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and the current UCLA approach — are based on implementation by JETSET,
the Lund Monte Carlo program developed by T. Sjostrand, and have been
demonstrated to predict data rather accurately. The third is a speculation on
our part which follows more closely from our initial-to-final-state approach,
might lead to a more fundamental connection to QCD, but is currently under
development and untested.

B.1 JETSET-based models

In this type of approach, followed successfully both in Sjostrand’s JETSET
implementation and in our approach which uses a modified version of JETSET,
the treatment of Pr in an event develops through a series of stages, each of
which is either calculable (at least approximately) or model-able.

First, the primary ¢ pair created at high virtuality by the virtual photon (see
Fig.2) initiate a parton shower of (virtual) gluon emission, which is calculated
down to some cutoff parameter around 1 GeV at which point the shower
evolution is terminated. The matrix element for the first two (‘strongest’)
gluon emissions can be calculated exactly using perturbative QCD. A leading
log approach can simulate a many-gluon shower, but is weak on the initial
gluon’s emitted. The most successful JETSET parton shower description uses
a recipe of the leading log approach, but weights the initial emissions to agree
with the matrix element calculation. It also introduces angular ordering of the
emitted gluons as an approximate treatment for the coherence effects amongst
gluon emissions as they become softer with longer wavelengths and overlapping
effects.

The result of this parton shower, then, is a set of quarks and gluons (virtual,
not on the mass shell) of defined momentum. It is visualized that a colorstring
(actually, a colortube with a finite width of ~ 0.6 fm) then connects these
partons, running from the primary quark on one end through the various
gluons to the primary antiquark on the other end. This colorstring, is straight
in between partons, but is kinked at each gluon in the shower.

Second, in a fragmentation function iterative outside-in implementation it is
necessary to pick a z-value (determining the longitudinal momentum along the
string) for each successive hadron. This process must be allowed to move past
a gluon-induced kink in the string. JETSET incorporates a sensible recipe for
this process.

Thus, the remainder of the hadronization description is reduced to the simpler
problem of the treatment of the evolution of a straight piece of colortube of
finite width into observed final state hadrons. As the reader will note, we have
used this simplification extensively.
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Third, it is presumed that the finite width of the colortube leads to a finite
spread in momentum effects transverse to the colortube due to the Heisenberg
uncertainty principle, likely described (at least approximately) by a Gaussian
distribution. (See Appendix F.)

Fourth, many of the final state hadrons directly produced from the colorstring
in the process described above are, in fact, unstable; they are not directly
detected, but rather the daughter products of their decays are finally observed
in our detectors. These decay processes can also contribute to the transverse
momentum of the final observed daughter particles.

Thus, the final total transverse momentum of an observed particle has three
contributing sources in these JETSET-based approaches: (a) the kinkedness
of the string as it is distorted by the momentum of the gluons in the parton
shower, (b) the ‘Heisenberg Py’ from the finite width of the colortube, and (c)
the effects of the decays of the primary hadrons created.

The original JETSET approach and the current UCLA approach, implemented
by a modified version of JETSET, share the above effects in common. However,
they use very different (but comparably successful) descriptions of transverse
momentum associated with the finite width of the colortube and of local cor-
relations as successive particles are produced in the implementation chain of
the Monte Carlo program.

B.1.1 Lund JETSET approach

The Lundian approach to the finite width of the color-tube focuses on the stage
of virtual quark-antiquark pair production from the colorfield (a virtual stage
very close in virtuality or time to the final state hadrons, which in some sense
are the eigenstates toward which QCD is progressing). This approach presumes
that the transverse momentum of the virtual quark is governed by a Gaussian
distribution of form exp(—PZ/0?) where o, is an adjustable parameter related
to the finite width of the colortube and is typically found to be =~ 350 ~
400 MeV/c. The transverse momentum of the virtual partner antiquark is
presumed to be equal and opposite to that of the virtual quark, which creates
a local Pr correlation between the hadrons which are ultimately produced.
The transverse momentum of a meson is then determined from the transverse
momentum of the quark and antiquark (from another next-in-rank virtual
pair) which are combined to form the meson.

This treatment of Pr from the finite colortube width, combined with the JET-
SET parton shower, the recipe for moving past a string-kink, and the hadronic
decay tables used in JETSET has been quite successful in predicting topolog-
ical event distributions such as sphericity, thrust, etc and also of transverse
momentum distributions, both in and out of the ‘event plane’ determined for
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example by the sphericity eigenvector approach, at center of mass energies
ranging from 10 GeV to 91 GeV.

B.1.2 Current JETSET-based UCLA approach

Our current UCLA approach (within the framework of JETSET implementa-
tion and using much of the machinery of JETSET) focuses its treatment of
transverse momentum associated with the finite colortube width directly on
the final state hadrons produced, rather than on the intermediate stage of vir-
tual quark-antiquark production. We should, perhaps, emphasize a paradox in
our view of our current approach: It is quite adequately successful in predicting
topological and transverse momentum distributions; it has reasonably attrac-
tive physical motivations; but we are not overwhelmed by its virtues and, in
fact, regard it somewhat simply as a fairly reasonable mechanism which works
within our framework to predict topological and transverse effects accurately
enough that we can focus our present investigation on meson production with-
out any significant biases introduced from the transverse momentum sector
of the analysis. We presume that we will return to the transverse momentum
sector in the future with better modeling tools and improved data with which
to work.

Since our modeling focuses on the hadrons produces, we presume in our treat-
ment that (subject to corrections from local correlations to be described below)
the hadronic mass in our 141 dimensional description should simply be re-
placed by the transverse mass in 1+3 dimensions where m% = m? + P#. Thus,
without local correlations, our event weight function and fragmentation func-
tion would simply have the factor exp(—b(m? + P2)/z), relative to the local
string direction for each hadron. (Recall that in this JETSET-based approach,
the problem has been reduced to a treatment relative to a straight piece of
colorstring.)

It is quite interesting to note, as we develop below, that the structure of
our Event Weight Function dW; (see eq(2) of Section 2) in which we incor-
porate a form exp(—xPZ) for each hadron and a QCD-inspired area law of
exp(—b'Apiane) for the event as a whole (relative to a straight string in 143
dimensions) can be deduced from a ‘kinked area law approach’.

Thus, referring to Fig.3, where the event in 143 dimensions is originated by
a straight piece of string, but where each of the hadrons acquires momentum

transverse to the string because of the finite width of the string, we can write
the Event Weight Function as

de = (phase Space) . e_bI-AWorId—Surftce
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Fig. B.1. The three points A’'B’C’ corresponding the hadron with energy-momenum
(E,P) can be calculated from the points ABC in the hadron’s rest frame by making
a proper Lorentz transformation.

where Aworid—Surface 15 the ‘kinked area’ as shown in Fig.3. If the hadrons
are produced with Pr’s, the area of world-surface will be increased compared
to 141 dimensional (planar) case. This world-surface will be one with min-
imal area defined by the quark and anti-quark lines (light cones). One way
to approximate this bent surface is to consider two triangles as in Fig.B.1.
By performing a proper Lorentz transformation from the hadron’s rest frame
where the hadron’s momentum is zero to the frame where the hadron has
transverse-momentum Pr and using straightforward but lengthy algebra, the
area of the triangle A’B’C’ is found to be

m?2 [m2+2P% 1 , ,
Avpo = o5\ T S e (m® + Ff)

when Pr of the hadron is small. Here x is the string tension as usual. This
means,

x "
-Aworld—surface pa-s plane + 2 #P ’12‘,
i

This then leads to our Event Weight Function as originally delineated in Sec-
tion 2 eq(2).

It seems physically or intuitively attractive to allow the possibility of local

transverse momentum correlations amongst the hadrons produced. We cur-
rently incorporate a treatment which is adapted to the outside-in iterative
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implementation of JETSET. However, this current treatment of ours is so de-
pendent on the outside-in implementation structure that it seems somewhat
artificial in terms of an event-as-a-whole approach. But, comparisons with
data indicate that some such structure is needed and that this approach does,
in fact, work quite reasonably.

The derivation (suggested to us by Gésta Gustafson of the Lund group)[28] is
displayed in Appendix C. The result is that a hadron’s distribution in either
P, or P, which is ‘naturally’ (without local correlations)

exp(—Pr/o")

becomes

where, after some steps in the outside-in interative implementation, ¢ is the
unbalanced Pr (in either P; or F,) accumulated over the previous steps and
n is the number of following hadrons over which this accumulated ¢ is to be
compensated statistically in equal amounts.

We find that n = 2, the most local correlation possible in this framework,
yields results in agreement with data.

B.1.3 Pros and Cons of JETSET-type Pr treatments

The attractive features of these JETSET-based approaches to transverse mo-
mentum effects are:

1) The modeling proceeds step-by-step through the various stages presumed
for the overall hadronization process.

2) The parton shower can be approximately calculated.

3) Local correlations, which certainly are a distinct possibility, can be built in
and, in fact, seen to be necessary.

4) Good agreement with data can be achieved.

The less attractive features are:
5) The parton shower is an unobserved intermediate state which spans a transi-
tion from a perturbative high-virtuality regime to a non-perturbative low-¢*

regime. It does not end in free final state partons, but rather with a cut-
off parameter which leads into the hadronization stage. Further, the parton
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shower’s use of the Altarelli-Parisi splitting function is a probability descrip-
tion rather than an amplitude description. It therefore does not naturally
treat interference effects, though the JETSET use of angular ordering in the
gluon emission partially compensates for this. Thus, it’s ‘calculation’ ends
up being somewhat of an approximate recipe, rather than a pure calculation.

6) It requires a recipe to move past a gluon-induced kink in the string.

7) It requires recipes to get Pr relative to the string and to incorporate local
correlations.

B.1.4 Effect of Pr treatment on longitudinal structure

A dramatic example that the specific way in which an idea is implemented
can affect the results in subtle, and perhaps unexpected, ways is evidenced in
the effects on longitudinal momenta from the ways that Pr is handled in the
Lundian and UCLA recipes.

The UCLA approach is simply to treat the LSFF as an hadronic produc-
tion density. Thus the distribution in z can be simply obtained by integrat-
ing f(z, P%,m?) over PZ with the interesting result that the factor 1/z in
f(z, P, m?) is canceled:

Flz,m?) o (1 — 2)* e~ ™/

The Lund approach is more complex: In 143 dimensions, before the LSFF
is used to pick the z-value for a hadron, the value of Pr (quark) is picked
from a distribution exp(—P%/0?) at the same stage in the implementation
that the flavor of the hadron is picked (see Appendix A for the 14+1 dimension
flavor selection treatment). These values of both myadron and Pryagron are then
inputted into the LSFF to select z. Approximately, this maintains the (1/z2)
factor in f(z).

Thus, for a given value of ‘e’ and ‘b’, the Lund distribution falls more rapidly
with increasing z than does its counterpart in the UCLA approach. Therefore,
when fitting to a given flavored momentum distribution, the (1 — z)* factor in
the LSFF implies that a larger value of ‘e’ will be found to fit the distribution
shape with the UCLA approach than with the Lund recipe.

Turned around, this helps to resolve an old question: ‘If Lund JETSET 7.4
with ‘a’ values around 0.4 ~ 0.5 fit the momentum distributions of various
hadrons at high z, rather well, then how can UCLA, with values of ‘a’ around
1.6 ~ 2.0, also fit these data reasonably well 7’ The answer, approximately, is
the following:

Comparing the fragmentation functions for various flavors at z, = 0.9 with
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the fragmentation functions peak values at lower z,, one finds that the factor
of (1 — z)* has dropped approximately a factor of ten more for the UCLA
model (¢ = 1.65) than for the Lund model (a = 0.4). However, the different
treatments of Pr, in particular the 1/z factor not present in the distribution in
z for the UCLA model), increases the UCLA model at z, = 0.90 by a factor
of 2 ~ 3. The difference in ‘b’ values of the best-fits, further increases the
UCLA model at z, = 0.90 by 10 ~ 15%. Thus, the net drop for the UCLA
model is about a factor of 3 ~ 4 larger than that for Lund in comparing
the fragmentation functions at z, = 0.90 with those at the peak heights.
Comparing at z, = 0.95, one finds a further drop in the UCLA fragmentation
function, relative to that for Lund, of a factor of 2.0 ~ 2.5.

Thus, one might expect that the high =, behavior of the data might pro-
vide a sensitive probe to choose between the ‘a’ values obtained in these
two approaches (even despite the fact that the different Pr recipes amelio-
rates against this). However, this important comparison is somewhat obscured
by two factors: (1) Most of the hadrons observed at low z, are decay prod-
ucts rather than hadrons produced directly from the decay of the colorfield.
Thus the models will be tuned to these large decay product populations. (2)
The quality of the data measurements at high z, deteriorate very rapidly.
For a typical flavored distribution, the highest z, value with fairly accurate
data is &~ 0.7 ~ 0.8. There are weak suggestions in the comparisons, both
in the flavored data at z, ~ 0.7 ~ 0.8 and in the overall Ncnargea data at
z, ~ 0.90 ~ 0.95 (see Fig.9, 13~16), that the UCLA predictions might be
dropping below the data.

B.2 An initial-to-final-state global approach

If we extend our philosophy of insisting on a total transition from the ini-
tial state of the go and @ directly created by the virtual photon to the final
state hadrons created from the colorfield (including the parton shower as an
unobserved intermediate state), then an alternate possible approach suggests
itself.

In this approach, all one knows presumably is the flavors and three-momenta of
the final state hadrons. One also presumes that QCD, a very strong interaction
at distances greater than a few tenths of a fm, is responsible for evolution
into hadrons. QCD has a form which allows the beginning of a parton shower
to be calculated (though it quickly loses accuracy and does not lead to free
final particles). But in the later stages of the event where QCD’s coupling is
very strong, it is very hard to avoid the conclusion that a space-time area law
will be valid.
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Let us now visualize some sort of kinked area in 143 dimensions spanning
to the final state hadrons whose flavor and momentum have been specified.
This is rather like the treatment in the current UCLA approach depicted in
Fig.3 and discussed in Appendix B.1.2, but with one large difference: In our
current approach of Fig.3 and Appendix B.1.2, the kinked area law approach
is invoked relative to a straight piece of string after the parton shower and the
recipe to move past kinks. In this new approach our kinked area law approach
tncludes everything intermediate together, that is, the parton shower as well
as Pr due to the finite width of the string (intrinsic Pr) in the JETSET-based
approaches. It is clear that this sort of approach will at least qualitatively
prefer jetty events, as it should. That is, a ‘two-jet-like’ event will have a
smaller total area than a ‘three jet-like’ event, etc. As a matter of fact, since
the world-surface in this case is a thin curved 2-dimensional surface (very
similar to the string), qualitatively, one can expect most all the properties
of the string. This approach is provocative to the conventional viewpoint of
hadronization models including not only string models[3,8] but also parton
cluster models[29].

The attractive features of such an approach are:

1) It is faithful to the proper initial-to-final state approach of quantum me-
chanics

2) It avoids many of the ‘artificial’ intermediate stages of the JETSET-based
approaches such as a parton shower, as well as suppressions associated
with creating virtual ¢g pairs from the colorfield.

3) It identifies the source of a hadron’s Pr (before its decay into stable
daughter particles) as a bent surface. Thus, this scheme doesn’t know
whether a hadron’s Pr came from hard gluon emission or intrinsic Pr
due to the finite size of the string.

4) It draws on the powerful space-time area law type of approach indi-
cated by almost any strong coupled interaction such as QCD at distances
greater than a few tenths of a fermi.

5) It at least qualitatively will give most of the properties of the string such
as jettiness that are proven to be valid phenomenologically.

Since this scheme relates the perturbative region directly with the non-perturbative
region, it may have to predict the running coupling constant o, of perturbative
QCD. Whether this scheme can be developed to be consistent with perturba-
tive QCD is currently beyond our scope. For the time being, we are using the
current JETSET-based approach of our modeling, but we recognize that the
extensions of the lessons we have learned from our present approach lead in
the direction of this new approach to transverse momentum.
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C Transverse Momentum Correlation

Another important aspect of the transverse momentum considerations is that
one has to implement its overall conservation, since it has been orphaned in the
course of a longitudinal formulation of the system. To incorporate this, let’s
start from a simple example: When two independent Gaussian distributions

and

2
dPy = exp (—%) dPb,

2

convolute into a distribution via a constraint

Pi+P=Q
the resulting distribution is

dP Pl P
Ea:/dPldPg exp (———;%— - ?‘l%) (P +P—-Q)
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where (aP, — b)? completes the square of P, and is integrated out. The above
example can be extended to a system of n variables

P2
dP = exp (-—-&-'_2—) dP, (i=1,n)

1

whose constraint is

The resulting distribution is

dP Q?
dQ x &P (— ?:1 012)

Now, the transverse momentum probability distribution for a piece of string
having n hadrons subject to a constraint

can be written as

n n P2
dP = [[dP; 6 (ZP, - ¢) exp (——a—'?)

=1 t=1 i

The individual momentum distribution of each hadron is affected by the con-
straint on the system. The effect of the constraint on the first of the n hadrons
to be studied can be seen by integrating all the hadrons’ momenta except the
first one. By defining a new variable R as

n

R=Y P,

=2

and introducing a delta function, the integrated distribution function becomes

dP=dpP e P/t [ [[dPiePlet 5 (ZP,- - ¢) [ars (R - ZP.-)
i=2 i=1 =2
2

2
o dP, exp (—%) /dR exp (——,{2—02) S(R+ P, — ¢)
i

=2 Y
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P2 (¢ _ P1)2
=dP, -1 _\Ww L
ariexp (ot ) oo (-6
When all the momentum distributions have the same width, this becomes -
ap P; (¢ — P)?
e (53w (-
1/ n ) ¢
o exp (‘;3 (+59) (P - ﬁ) ) X (‘;z:z
1 n ¢ 2
wesn (-5 (25) (r-2))

What we have shown is, in an outside-in iterative implementation, that when
there is net momentum ¢ before the particular hadron in a string and all the
hadrons have a Gaussian Pr distribution with the same width, if we require
compensation of this net momentum over the next n hadrons, the distribution

alters its form to:
2
dP o exp (__15( ") ( _f> )dP
g2 \n-1 n

Note that the above requirement not only alters the width of the Gaussian
but also shifts the centering of the distribution.

D Discussion on Amplitude vs. Probability

The Event Weight Function (eq.(2)) is a probabilistic weight associated with
a particular final state hadron configuration and is equivalent to the square
of a quantum mechanical amplitude. Hence, in principle, one has to include
interference terms amongst the degenerate final states in calculating the Event
Weight Function. There are many degenerate diagrams which correspond to
the same final state. These degenerate diagrams are obtained by rotating the fi-
nal state hadrons, by mirror reflecting them, and by other permutations consis-
tent with local flavor conservation. For example, starting from a rank-ordered
diagram Fig.D.1 (a.1) for a final state of four hadrons with specific flavors
and momenta, Figs.D.1(a.2-4) are its rotations, Figs.D.1(b.1-4) are its mirror
reflections, and Figs.D.1(c.1-4) are other possible permutations. [Note that, in
some of the permuted diagrams, the flavor of the initial ¢¢ pair created by the
virtual photon may be changed.] As is shown for a typical event (Fig.D.1(a.1)),
the diagrams obtained by the permutations of the original rank-ordered dia-
gram typically have much bigger area than that of the rank-ordered diagram
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Fig. D.1. Example of diagrams corresponding to the same final hadronic state.
Since all diagrams other than the rank ordered diagram (a.l) statistically have a
considerably bigger area, the diagram (a.1) dominates and the interference terms
are small when a probability function is obtained by squaring the amplitude.

so that their contributions to the amplitude are expected to be small. We
approached the possibility of significant interference effects by permuting (in
all ways consistent with local flavor conservation) a sample of Monte-Carlo
generated events, presuming that all interferences were constructive in phase,
and studying the area law probabilities associated with the various diagrams.
Fig.D.2 displays a log-log plot to the base 10 of

| Y eEAp
permutations
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Fig. D.2. The amplitude-squared including all the diagrams leading to the same
final state (vertical axis) is plotted against the amplitude squared including only
the leading diagram with the minimum area in log-log (to the base 10) plots for
various initial quarks. The deviations from the straight line in the light quark events
indicate small contributions from the diagrams other than Fig.D.1(a.1), whereas for
heavy quark events these effects are almost non-existent.

which is the total amplitude-squared of an event, plotted against
(| e‘“%Amin |2)

which is the amplitude squared of the leading diagram with the minimum
area, using our experimental value of b = 1.18 GeV ~2. These are displayed for
different initial quark flavors, u, d, s, and c.When there are no interferences
at all (that is, one diagram dominates), the points on the plots are along the
diagonal line. We note that for ¢¢ and s5 events, there are almost no non-
leading contributions, whereas for u# and dd events there are some.
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Fig. D.3. The fractional increase in probability from non-leading diagrams in events
with primary dd quark pairs.

To explore this further, Fig.D.3 histograms the fractional increase in probabil-
ity for final states whose dominant diagram is a dd primary quark pair, that

18:

Bt - et
e_bl-Amin

We find that =~ 90% of the events have < 1% increase from non-leading con-
tributions. =~ 5% have > 20% increase; ~ 2% have > 50% increase. We draw
three inferences from this:

1)

2)

3)

For the level of our present modeling, it is a very good approximation to

use probabilities (without interference) via the Event Weight Function dWy,
rather than to use quantum mechanical amplitudes.

The interference terms as in Fig.D.4 between diagrams involving different-
flavored primary ¢§ pair are quite small, since the same final hadronic state
from different initial flavored ¢g pairs, for example ui and dd, is quite rare.
This supports the traditional parton model view where quarks were consid-
ered to be free, i.e.,

U:?"teal —+hadrons X Z Qz (Dl)
q

where @, is the charge of a primary quark pair flavor.

If experimentally, one could accurately determine the flavor and momen-
tum of all final state hadrons produced directly from the colortube, then
with high reliability one could reconstruct the flavor of the primary ¢qg pair.
Unfortunately, in practice this attractive possibility is diluted both by im-
perfect detection equipment and by the fact that many of the observed
particles are actually daughters of the hadrons produced directly from the
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Fig. D.4. The graphical representation of the total cross section of ete~ —hadrons
for a final state which is reachable via either u# or dd primary pairs. In principle,
there are interferences possible in the square of the amplitude amongst terms from
different flavor primary ¢q pairs that result in the same final state f. But our
systematic study shows that such interference effects are quite small.

colorstring.

E Detailed Derivation of the Fragmentation Function from the
Event Weight Function

We discuss (E.1) the derivation of the fragmentation function from the Event
Weight Function in detail, (E.2) the Lemma for g(S), and (E.3) the Figenvalue
Problem for d;; which arises from the unitarity equation for dP;.

E.1 From the Event Weight Function to the fragmentation function

The Event Weight Function eq(2) for an unkinked relativistic string is:

2
dW %% = I(ZIC;; dE:dP,,dP;,dP,6 (E} — P} —m}) e X(PA+PR) o .
N, Crzn 2 2 _ P +P,
XVt n 3y 4BndPey Pz, dP, 8 (B2 - P2 —m2) e x(Ph+Fi)
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x(27)%6 (E - ZE) ) (P, - Z,-:P") ) (P, - ;P,,.) ) (P, - E;P,.)

X e_bl-Aplcne

This is simplified by integrating over the (assumed to be approximately inde-
pendent) azimuthal angles

dE;dP, dP,.dP, = % / dE;dP, dPLd6; = rdE,dP}

Azimuth

The mass-shell condition, eq(3) becomes

ndE;dP}6 (B? — P2 — P2 — P2 —m})

]

= ’2—'d (E: + P.,) d (E; — P,) dP%5 [(E: + P.,) (E; — P.,) — (m? + P)]
1d(E; + P,) m? + P2
== " H J(E,— P,)6|E;- P, — ———T|dP2
2 (G + B S B P [E T BBy Y
_mdz o
=5~ 4P} (E.1)

with the definition (introducing light cone variables W,, W_ as in Fig.4.)

(B:i+Py)y _ Wa _ b
E+P), Wi b

Z2i =

That is, z; is the fraction of the initial quark’s energy plus longitudinal mo-
mentum which the hadron carries.

The longitudinal part of the delta function eq(4) can be rewritten as

J(E—z"jE.-)a(P,—ij,,.) =5(W+—iw+,.)5(w_—2njw_,.)

=1 i=1 =1 =1

=4 (1 - z":z.-) 5 (W+W_ - znj W+W_,.>

i=1 =1

Sy=W,W.=S and Wy W_, =mk =m?+P}
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where bold face represent the fotal quantity as before. Then, eq(2) for the
Event Weight Function becomes:

N, C? dz -
(9= (L ar .
N C dz,, '_XP2

XVn—l,n

) o dP7. - (21)*6 (1 - E z,)

i=1

T O

=1

Next, construct a partial weight integrated/summed over all possible flavors,
multiplicities, and momenta of all particles except the first (outer-most) hadron:

NIC‘IZ e"b‘mz/zl le __xpTl N202 dZ2 e_xp%

dW; = ( an)? = dPTl V12 ( ) 7 dPT2 Vo3 X ...
N C dzn o 2 i
XVp_1n (4 )2 . xPj, dP2 (27r)45 (1 e iz}:zzi)
a(o- o) oo
21 =2 Zi 1=2
) (P —~ P, — ZP,.) e Aptane (E.2)
i=2

where m2/z is the area associated with the outermost hadron and A is the
area left over after the outermost hadron is produced as defined in Fig.5. Using
the identity 6(az) = IaI6 (x), eq.(E.2) becomes

2
N202 d22 e_xp%

NIC 2 dz
1 o—bmi/z 1 —XPT 2
1 2dPT2V23X...

dW, = dPT1 V12

(4 )2 21 (471')2 29
!
N C dz. 2 o Z§
“en —xP Tn 2 4 _ 1
XVUn—1in (47{') Z dP (27(') ) (1 1:22 1= ZI)
%5 ((S _ ZT_lT_1> (1-2z) _ng,g__Ll)>
21 =2 ' Z;
X6 (P:v: - Py - ZP::.'> 6 (Py - Fy, - ZP -') e—bl'z?l"e (E.3)
=2 =2

The latter part of the partial sum of the weight function (excluding the vari-
ables with index 1) becomes
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N,C3 d7 -xP,
(471’)2 22
!
N C: dzn —vP2 L ~
XVn—1n Tf;)?—z—n—e xFr, dP%u . (21r)46 1- Z Zi)

=2
n 2 - n . n , =
<5 (s -y ";T) 5 (p, _ zp,'.) 5 (p,, _ zp,,,.) eV hune  (E4)
i=2 =2 =2

The definitions of the scaled variables used are:

d.P'12~2 Vg X ...

- Zi

Zi = 1— 7 (E5)
which is the scaled z with respect to the remnant system,
_ 2
5= ( - -"l) (1-2) (E.6)
2
and
P,=P,— P, and P,=P,— P, (E.7)

that is, the longitudinal E%,, of the remnant system and the total transverse
momentum after the first hadron is peeled off respectively.

Note that eq(E.4) is simply g(5). This is equivalent to saying that the property
of the subsystem is the same as the original system. The situation is indicated
in Fig.4(a) and (b).

If we define the Total Weight as

gtlotio (S) —_ 2 deqoﬁo (S)

then, eq(E.4) becomes g (§) and the partial sum dW; normalized by the Total

Weight g(S) is the probability for the first hadron to have m?, z;, and Pr?,
i.e., a fragmentation function

N,C? —bm2/z Q%1 _xP2 0190 (G
dquo(zlvP'Iz‘nmf) = (—;7;5‘;' vz € bmi /21 z_ll e X1y dP'I2‘1 ‘“—‘—2%%25;

Finally, substituting in g9%(S) = dg4,S% and gh%(S5) = dgozo5® (See Ap-
pendix E.2 below.), the fragmentation function is
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N, C? m2\* _ dz, _
dP,?(z, PTx’ ) (41 )1 v12(1 — )a (1 - S_le) e—tmi/n z—lle xPF, dP,Iz,1

d
X q14o

d‘mﬁo

E.2 A Lemma for the Total Weight g(S)

Eq(11) is rewritten

62qu°(z) P72") m2) — NIC'12 g l e—b'nz/z e"XP2 gQIQO(S)
d20P} (4)? z g®h(S)
= f (2, P},m?)

Take the natural log of both sides (suppressing the flavor indices)

2 -~
log f (z, P%) = Constant — b m7 —logz — x P?+logg(S) — logg(S)

Then, differentiate with respect to S. If f (z, PTz,m2) is not a function of S
when S is large enough (a scaling phenomenon),
S dgow(s)  §  dg©n(3)
g‘1°‘7°(S) ds o glod1 (,§) d§

since S ~ S(1 — z) when S — oo and

aS
as

Cnltm

=(1-2)~

In order to hold for all S and S
S dgo®(S) I3 dgdodo (§) .
godo(S) ds gdodo (§) dsS -

with a separation constant a.

Solve the differential equation
dgh®(S) _ dS

goi(S) S
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Fig. E.1. After some hadrons are peeled off from the initial system with g;g;, a sub-
system with §;qg; is left over. The first hadron which is peeled off from the subsystem
has quark content g;q; where a new pair gxqgy, is generated in the subsystem.

and the solution is

g% (8) = dgogo 5*
where dg4, is an integration constant.

E.3 The eigenvalue problem of d;;

After some hadrons are stripped off from the g; end, a subsystem with g;g; is
left over as in Fig.E.1. The fragmentation function for the first hadron of the
subsystem is given as

' NC? 2 4, Az 2 Bk (g)
fi 2, P2, m2 — ik e—bm'.k/z haied e_XPT dPZ J
+ (= PR ) (4m)? z T &;5(S)

By integrating both sides of the above equation (where we have presumed the
UCLA model all v;; ~ 1.0 and N; ~ N) over z and Pr?, one gets an integral
equation

—bm}, /z

gi;(S) = (4—]::)2 ;C?k/e——z;— g; (5) dz (E.8)
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where the indices represent quark flavors. Using

gij(S) = di; S°
derived in Appendix E.2, eq(E.8) becomes

. mi )
dij = 47r A2 E tk/ (1 - z) ( S;) dz dy; (E.9)

which is an eigenvalue problem

dij = XY Awdi; (E.10)
k

with the definitions

—bm, /2 m2 e

A,‘ = 2 ¢ —2z)° — ik .
" C,k/ o (1-2) (1 Sz) dz (E.11)
and
N
A= @ny?

For x = 2b/z as used in our UCLA approach, eq(E.11) becomes

2

- Czk —bm?, [z a mZ \*
Ay = o ] & (1-2) (1 Sz dz (E.12)

For the one flavor case in which all d;; are equal, the above eigenvalue problem
would be an unitarity equation giving a constraint among 3 parameters V,
a and b. In eq(E.10), A is a 3 x 3 matrix without diquarks (i.e., without
baryons) and a 9 X 9 (including 6 diquark flavors) matrix with diquarks. With
the empirical values of a (1.65) and b (1.18 GeV %), one can solve eq(E.10).
Its eigenvalue is

(4n)*

2\l =
N

= 0.80GeV? (E.13)

for the 3 x 3 matrix without baryons and 0.82 for the 9 x 9 matrix with
baryon-antibaryon pairs, but with no popcorn. We estimate this value would
be =~ 0.86GeV? with the popcorn meson inclusion. Varying either ‘a’ and ‘b’
by a conservative amount, i.e., da = 0.2 and b = 0.1, these numbers change
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~ 12%. There is less than 3% variation with energy from Ec) = 10GeV to
91GeV. Combining all this, we find A~! ~ 0.86 + 0.14, or a range of

0.72GeV? < A7! < 1.00GeV? (E.14)

The value of the knitting factor N is, then, N ~ 184GeV 2 ~ (7T4MeV)~2 ~
(2.67fm)? or range of

(2.5fm)? [=160GeV?| < N < (2.9fm)? [=220GeV~?  (E.15)

The eigen vectors, likewise, are

dn _ dgy dy _ dy d3; _ dsy
Ao Bl 046< -2 =22 <049
dy duu dn Ay dn dyy
and 0.46 < 38 = 9 < 49 (E.16)
d31 dsu

This opens up interesting questions about the structure of the weight func-
tion. For example, will the grand sum of the weight function for the system
whose initial quarks are light be the same as that for the system whose ini-
tial quarks are heavy considering there is a competition between phasespace
and exponential area suppression in the weight function? Eq(E.16) indicates
that the Total Weight g(S) for a system with heavy initial quarks is smaller
compared to that with light initial quarks. It is an intuitively expected answer
since a system with heavy initial quarks will involve more heavy hadrons and
the heavy hadrons will contribute more suppression to the Total Weight by
taking larger areas.

F An artist’s space-time visualization of early event structure

A semi-classical view of several phenomena involving the early structure of
an event reveals a rather coherent space-time picture of hadron formation.
Fig.F.1 summarizes these aspects: (1) the energy-distance relation in natural
units (1 GeV =5 fm™1); (2) the region of perturbative QCD; (3) the distance
from a quark or antiquark at which a virtual pair break the colortube, that is,
one-half of the ¢ separation when a colorfield break occurs; (4) the diameter
of a colortube; (5) the length associated with the spatial knitting factor; and
(6) the diameter of a hadron.

1) The curve labeled ‘1 GeV = 5 fm™! summarizes the energy-distance
relation in natural units.
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F.1. Various spatial properties related to hadron formation from a

quark-colorfield-antiquark system.

2)

3)

By setting the perturbation parameter o, =~ 0.7 to establish the limit of
the perturbative region, where

o = 4
© (11— 2Ny) log (Q2/A2)

(F.1)

with A ~ 0.35GeV/, one finds Q ~ 1GeV; that is, when the primary quark
and antiquark are separated by =~ 0.2 fm.

In their paper on Left-Right symmetry for the fragmentation function
(i.e., the requirement for the same statistical distribution whether hadrons
are peeled off from the primary quark side or antiquark side[2]), the Lund
group obtained the distribution of break-up points as a function of in-
variant time squared (T")

H([') =Cree™r

One finds, then, that H(I") peaks at

a

= 7= 1.40 GeV?
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quark-break
distance ~ 1.7 fm

A

Fig. F.2. In the center of mass system, the length of string just before the first
break can be calculated using the distribution H(I') which peaks at I' = a/b, where
I' = k272, K is the string constant, and 7 is invariant time.

for our parameter values for ‘a’, ‘b’. If one views the primary ¢§ pair
in their center-of-mass system and recognizes the string tension as ~ 1
GeV/fm, then for a break in the middle of the string (see Fig.F.2), the
break occurs at about 1.7 fm on average from the quark (or antiquark).

4) We know that the Pr spectrum for hadrons from a straight colorstring
is something like that obtained in the simple Lund description where the
Pr distribution of a quark or antiquark is given by exp (—P% / 03) with o,
= 350 ~ 400 MeV /c. Separating the quark’s Pr into £ and y components
and combining these with those from an antiquark, one finds the rms
P, component (and also P, component) of a hadron to be equal to o,.
Since the Heisenberg Uncertainty Relation is (Pr)ims X (T)rms > %, then
(Z)rms = (¥)rms =~ 0.3 fm. When combined, this yields an rms radius of
the colortube, also, of =~ 0.3 fm, or an rms diameter of = 0.6 fm.

5) The length associated with the spatial knitting factor is =~ 2.5 ~ 3.0 fm.
(See Appendix E.3.)

6) By experimental measurement, the size of a meson is =~ 1.2 fm diameter
(and of a baryon = 1.6 fm).

Thus, for the special case where the first break occurs in the middle of a
colortube (where there are no Lorentz transformation effects relative to the
center-of-mass system), an artist’s conception of the early event space-time
structure is illustrated in Fig.F.3, where ‘snapshots’ (with the same trans-
verse and longitudinal scales within each snapshot) of the colorfield shape are
displayed for primary quark-antiquark separations of 0, 1, 2, 3, 4, 5,6, and 7
fm.

The quark and antiquark are, of course, created at zero separation (a). The
insert (a’) shows that the perturbative region is over very early, at separation
distances <= 0.2 fm. (For simplicity, at separation greater than this, we dis-
play an event with no string-kinking from gluon emission in this very early
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Fig. F.3. An artist’s conception of the early stages of hadronization in
ete™ — hadrons. A color-tube begins to form between the primary quark and
antiquark as they recede from each other. The color-tube breaks when they are
~ 3 ~ 4fm apart. The left side is depicted becoming a hadron. The right side
evolves toward further splitting.

stage.)

When the separation is 1.0 fm (b), one might guess that the colortube would
have a diameter approaching its maximum. At 2.0 fm separation (c), a thinning
in the center of the tube is displayed. At 3.0 fm separation (d), the colortube
is typically beginning to pinch in considerably at the middle. At 4.0 fm sepa-
ration between the primary quark and antiquark, the colortube is displayed as
broken into two parts receding from each other, each of length ~ 1.7 fm and
diameter &2 0.6 fm. At high energies, each of these color-blobs will propagate,
stretch, and further divide. At low energy, one or both of the blobs may turn
into a hadron, rather than splitting further. In Fig.F.3, we show the left-side
blob becoming a meson of diameter =~ 1.2 fm and the right-side propagating
toward further break-ups.
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It is interesting to note from this the somewhat reassuring suggestion that a
hadron, of diameter =~ 1.2 ~ 1.6 fm, seems to have evolved from a color-blob
of comparable 3 dimensional size.

This space-time analysis also suggests a possible speculative interpretation
of the spatial knitting factor, a new quantity introduced in this Report —
namely, that the knitting factor is a spatial scale which controls the ‘ease’
with which an extended color-blob can coalesce into a hadron. That is, if the
length of the color-blob is adequately less than the knitting factor length, then
the color-blob can coalesce easily; if the color-blob length is greater than the
knitting factor, then it becomes increasingly difficult for such a color-blob to
coalesce into a hadron.

It is interesting to note that some lattice QCD work[19] suggests a noticable
decrease of the flux tube in the middle when the quark and anti-quark are
separated by =~ 0.6 ~ 0.8 fm, which was the maximum separation in the
study. Though nothing can currently be said from this about the behavior of
the color flux tube at a ¢ separation more than about 1 fm, if future lattice
study indicates that the flux tube breaks at elongation of around 1 fm, it
would suggest that there may be some intrinsic contradictions between lattice
QCD and our approach where the string breaks typically at 3 ~ 4 fm of ¢g
separation.
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